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Abstract

Turbulent compressible flows are encountered in many industrial applica-

tions, for instance when dealing with combustion or aerodynamics. This

paper is dedicated to the study of a simple turbulent model for compressible

flows. It is based on the Euler system with an energy equation and turbu-

lence is accounted for with the help of an algebraic closure that impacts the

thermodynamical behavior. Thereby, no additional PDE is introduced in the

Euler system. First, a detailed study of the model is proposed: hyperbolicity,

structure of the waves, nature of the fields, existence and uniqueness of the

Riemann problems. Then, numerical simulations are proposed on the basis

of existing finite-volumes schemes. These simulations allow to perform veri-

fication test cases and more realistic explosion-like test cases with regards to

the turbulence level.
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Introduction

Compressible turbulent models are used in many applications, for instance

in the framework of combustion and aerodynamics. They always involve

three conservation laws that govern the evolution of mass, momentum and

total energy of the fluid. Using classical Reynolds averaging and denoting

φ the mean value of quantity φ, we recall that the Favre average ψ̃ of any

variable ψ is defined as:

ψ̃ =
ρψ

ρ
.

Hence, in the sequel, ρ, P will represent the mean density and the mean

pressure respectively, while ũ and ẽ will stand for the Favre average of velocity

and internal energy. Exact balance laws thus read:

∂t(ρ) +∇.(ρũ) = 0

∂t(ρũ) +∇.
(
ρũ⊗ ũ+

(
P +

2K

3

)
.I
)

= ε0∇.(Σtot(∇sũ))

∂t(ρE) +∇.
(
ũ

(
ρE + P +

2K

3

))
= ε0∇.(Σtot(∇sũ)ũ)

(1)

The second order tensor Σtot(∇sũ) cumulates laminar and turbulent viscous

contributions, ε0 is a positive parameter in [0,1] and K denotes the turbulent

kinetic energy. The total energy is: ρE = ρ( ũ
2

2
+ ẽ) +K, and ẽ is a function

that is expected to be given through an equation of state (EOS), for instance,

for a perfect gas EOS:

ẽ(P , ρ) =
P

(γ − 1)ρ
,

with γ > 1. Obviously, ε0 = 0 corresponds to the limit case of vanishing vis-

cosity. Actually, the three-equation model (1) involves four main unknowns

ρ, P , ũ and K. Thus one closure law is required for the latter turbulent
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kinetic energy K, and several strategies have been proposed in the past for

that purpose, that we briefly summarize below.

The most widespread approach consists in deriving the governing equation for

K, starting from Euler or Navier-Stokes equations, and focusing on smooth

solutions. Setting W the state variable, this leads to the following PDE for

K:

∂t(K) +∇.(Kũ) +
2K

3
∇.(ũ) = rhsK(W,∇W ), (2)

where the right-handside term rhsK(W,∇W ) does not include any convective

(first-order differential) term. Thus, by introducing a change of variable:

ξ = K (ρ)−5/3,

where ξ is sometimes refered to as the turbulent entropy, equation (2) may

be rewritten as:

∂t(ξ) + ũ∇.(ξ) = (ρ)−5/3rhsK(W,∇W ),

or alternatively using the mass balance equation:

∂t(ρξ) +∇.(ρξũ) = (ρ)−2/3rhsK(W,∇W ).

Obviously, this only makes sense when restricting to smooth solutions. Some

possible closure laws for rhsK(W,∇W ) can be found in [1, 2] for instance.

However, as emphasized in [3, 4, 5, 6], in the non viscous case, it remains to

define jump conditions, and this is not straightforward, due to the occurence

of non-conservative products (2K/3∇.ũ) in (2), which are active in genuinely

non-linear fields associated with eigenvalues ũ± c̃, noting:

(c̃)2 = c2 +
10K

9ρ
,
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where c stands for the speed of acoustic waves in laminar flows.

Among other possibilities, we recall that the strategy proposed in [3] is only

valid for weak enough shock waves; besides, the approach suggested in [4, 5]

is expected to be meaningful for stronger shocks. The reader is refered to

[6] for a brief review. In the present paper, focus will be given on a simple

turbulent model obtained while neglecting rhsK(W,∇W ); thus, using the

mass balance equation, an obvious solution is:

ξ = ξ0.

This implies: K = ξ0(ρ)5/3. The resulting three-equation model [7] (whose

counterpart is [8] in the two-phase framework) has thus three main unknowns

ρ, P , ũ, that are governed by the closed system (1). The present paper aims at

investigating its main properties, which are detailed in section 1. In particu-

lar, we will derive an entropy inequality which will enable to select admissible

solutions when investigating the one-dimensional Riemann problem in sec-

tion 2. The last section will introduce a simple approximate Riemann solver

in order to compute approximate solutions of system introduced in section

1, including rarefaction waves and shock waves. It will be checked that this

scheme enables to retrieve numerical convergence towards the exact solution

even when shock waves occur, with the expected convergence rate.

Throughout the paper, standard ã and b notations will be skipped.
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1. Turbulent compressible flow model

As recalled before, the model [7] has been obtained by a statistical aver-

aging of the Euler / Navier-Stokes equations, and thus the following system

of partial differential equations is considered:

∂t(ρ) + ∂x(ρu) = 0

∂t(ρu) + ∂x

(
ρu2 + P +

2K

3

)
= 0

∂t(ρE) + ∂x

(
u

(
ρE + P +

2K

3

))
= 0

(3)

It governs the mean evolution of mass, momentum and energy. The quantities

ρ, u, P, K, and E respectively represent the mean density, the mean velocity,

the mean pressure, the turbulent kinetic energy and the mean total energy.

The latter quantity is given by:

ρE = ρe(P, ρ) +
ρu2

2
+K, (4)

where e=e(P,ρ) is the mean specific internal energy, and the turbulent kinetic

energy follows the law:

K = ξ0ρ
5/3, (5)

with ξ0 a positive constant.

We introduce the celerity of density waves c(P,ρ) and the temperature T,

such that:

c2(P, ρ) =

(
P

ρ2
− ∂ρe(P, ρ))/(∂P e(P, ρ)

)
, (6)

1

T
= (∂P e)

−1(∂P s), (7)
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where s=s(P, ρ) is the specific entropy complying with the constraint:

c2(P, ρ)(∂ps) + (∂ρs) = 0. (8)

We will also define the modified pressure P ∗:

P ∗ = P +
2

3
K. (9)

2. Main properties of the flow model

In this section, we give some properties of system (3) in a general frame-

work with respect to the EOS.

2.1. Entropy inequality

In order to introduce an entropy inequality, we consider a viscous pertur-

bation of system (3), which is chosen as follows:

∂t(ρ) + ∂x(ρu) = 0

∂t(ρu) + ∂x

(
ρu2 + P +

2K

3

)
= ε0∂x

(
2

3
µ∂xu

)
∂t(ρE) + ∂x

(
u

(
ρE + P +

2K

3

))
= ε0∂x

(
2

3
µu∂xu

) (10)

Here µ represents the total viscosity and ε0 is a constant in ]0, 1]. In the

following we consider the conservative state variable:

w = (ρ, ρu, ρE),

and the flux:

F (w) = (ρu, ρu2 + P ∗, u(ρE + P ∗)).

We introduce the entropy-entropy flux pair (η, fη) with:

η(w) = −ρln(s), and fη(w) = uη. (11)
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Proposition 1 Then the following inequality holds for smooth solutions of

(10):

∂tη + ∂xfη ≤ 0. (12)

Proof In the case of the viscous perturbed system (10), simple computa-

tions lead to the entropy inequality:

∂tη + ∂xfη = −1

s

∂s

∂P

(
∂e

∂P

)−1
2

3
ε0µ(∂xu)2 = − 2

3T
ε0µ(∂xu)2 ≤ 0.

Remark 1 In the non viscous case, for a discontinuity travelling at speed

σ, we will thus assume that the following inequality holds true:

−σ[η] + [fη] ≤ 0. (13)

This will enable us to select the admissible solution of the Riemann problem

associated with the conservative system (3).

2.2. Hyperbolicity

The system is written in the form:

∂tW + A(W )∂xW = 0, (14)

where the primitve variable W reads:

W = (ρ, u, P )t.

The jacobian matrix A(W) is:

A(W ) =


u ρ 0

10K
9ρ2

u τ

0 ρc2 u

 ,

where τ = 1/ρ denotes the specific volume.
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Proposition 2 We define c̃ such that:

c̃2 = c2 +
10K

9ρ
.

System (14) is strictly hyperbolic, it admits three real eigenvalues:

λ1(W ) = u− c̃, λ2(W ) = u, λ3(W ) = u+ c̃, (15)

and the associated eigenvectors rk(W) span the whole space R3 provided that

c̃ 6= 0:

r1(W ) =
(
ρ,−c̃, ρc2

)t
, r2(W ) =

(
ρ, 0,−10K

9

)t
, r3(W ) =

(
ρ, c̃, ρc2

)t
.

(16)

Fields associated with λ1(W ) and λ3(W ) are genuinely non linear (GNL),

and field associated with λ2(W ) is linearly degenerate (LD).

Proof The proof is simple when using the system written in the non con-

servative variable (s, u, P ∗), see system (20), and it is thus left to the reader.

Moreover, it should also be noted that examining the nature (GNL or LD)

of the waves is more simple when using this set of variables, see the following

section.

2.3. Riemann invariants

Proposition 3 The two Riemann invariants associated with the LD field

(λ2 = u) are the following whatever the EOS is:

I21 (W ) = u , I22 (W ) = P ∗(P, ρ). (17)
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The Riemann invariants associated with the two GNL waves read:

1− rarefaction wave : I11 (W ) = s(P, ρ) , I12 (W ) = u+

∫ ρ

0

c̃(I11 (W ), ρ′)
ρ′

dρ′.

(18)

3− rarefaction wave : I31 (W ) = s(P, ρ) , I32 (W ) = u−
∫ ρ

0

c̃(I31 (W ), ρ′)
ρ′

dρ′.

(19)

Proof I ik represents the k-th Riemann invariants for the i-th wave (1-

rarefraction, 2-contact, 3-rarefraction ). A Riemann invariant is a function

that remains constant along the pathes defined by the corresponding eigen-

vectors, it thus complies with:

dI ik(W ).ri(W ) = 0.

It is straightforward to check that functions given by (17,18, 19) comply with

the condition above. We also note that we can express Riemann invariants

with the variable:

Y = (s, u, P ∗).

Actually, it may be checked that smooth solutions of (14) comply with:
∂ts+ u∂xs = 0

∂tu+ u∂xu+ τ∂xP
∗ = 0

∂tP
∗ + ρc̃2∂xu+ u∂xP

∗ = 0

(20)

If ¯̃ri(Y ) denote the eigenvectors associated with system (20) written in terms

of variable Y, it may be checked that functions ¯̃I ik(Y) satisfying:

d ¯̃I ik(Y ).¯̃ri(Y ) = 0,
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are as follows:

1− rarefaction wave : ¯̃I11 (Y ) = s, ¯̃I12 (Y ) = u+

∫ P ∗

0

1

ρ(s, P ∗′)c̃(s, P ∗′)
dP ∗′.

2− contact wave : ¯̃I21 (Y ) = u, ¯̃I22 (Y ) = P ∗.

3− rarefaction wave : ¯̃I31 (Y ) = s, ¯̃I32 (Y ) = u−
∫ P ∗

0

1

ρ(s, P ∗′)c̃(s, P ∗′)
dP ∗′.

Then, the same Riemann invariants I ik(W ) and ¯̃I ik(Y ) are retrieved up to the

variable change W 7→ Y .

2.4. Jump conditions

We are now interested in discontinous solutions for sytem (3) whatever

the EOS is. We denote

[f ] = fR − fL,

the jump between the left and right states on each side of a discontinuity

travelling at speed σ.

Proposition 4 Jump conditions associated with system (3) may be written:

−σ[ρ] + [ρu] = 0,

−σ[ρu] +

[
ρu2 + P +

2K

3

]
= 0,

−σ[ρE] +

[
u

(
ρE + P +

2K

3

)]
= 0.

(21)

Those jump conditions may be rewritten as follows:

σ = [ρu]/[ρ],

ρRρL[u]2 =

[
P +

2

3
K

]
[ρ],

ρ(u− σ)

([
e+

K

ρ

]
+ P ∗

[
1

ρ

])
= 0.

(22)

with φ̄ = φL+φR
2

.
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Remark 2 When dealing with the LD field associated with λ2=u the solu-

tion of the above jump conditions is equivalent to the Riemann invariants

(17), i.e. [I2k ]= 0.

Proof By applying the Rankine-Hugoniot relation to the conservative sys-

tem (3):

−σ[w] + [F (w)] = 0,

system (21) is straightforwardly obtained. For the first two equations of sys-

tem (22), we can find it thanks to simple calculations. We now detail the

calculations necessary to find the third equation for system (22).

We first note:

v = u− σ. (23)

From the first two relations of system (21), taking into account (23), we have:

−σ[ρ] + [ρu] = [ρv] = 0, (24)

−σ[ρu] +

[
ρu2 + P +

2K

3

]
= [ρvu] + [P ∗] = 0. (25)

We deduce from (24) that ρv is a constant across the discontinuity. By

introducing v into the third equation of system (21) and by using (24), we

get the following form:

ρv[e] + ρv

[
u2

2

]
+ ρv[Kτ ] + P̄ ∗[u] + ū[P ∗] = 0. (26)

Then, by multiplying (25) by ū, we have:

ρv

[
u2

2

]
= −ū[P ∗]. (27)
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Third equation of (22) is finally obtained by introducing (27) into (26):

ρv[e+Kτ ] + P̄ ∗[u] = ρv[e+Kτ ] + P̄ ∗[ρvτ ] = ρv([e+Kτ ] + P̄ ∗[τ ]) = 0,

(28)

this completes the proof.

Remark 3 In the case of a turbulent perfect gas EOS:

P = (γ − 1)ρe,

jump conditions (21) provide bounds for the density ratio whereas the pres-

sure ratio has no bounds, i.e. a shock wave separating two states YR and YL

is such that:

β−1 ≤ ρr
ρl
≤ β,

with β = γ+1
γ−1 .

Proof For the Euler equations (i.e. without turbulent contribution) with

the instantaneous perfect gas EOS:

P ′ = (γ − 1)ρ′e′,

we know that (see [9] ) the value of the ratio max(ρ′r,ρ
′
l)

min(ρ′r,ρ
′
l)

across a shock wave

is bounded by:

β =
γ + 1

γ − 1
.

This means that in the non turbulent case:

β−1ρ′l < ρ′r < βρ′l. (29)
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Since β is a constant for the perfect gas EOS, a straightforward averaging of

(29) provides:

β−1ρl < ρr < βρl. (30)

We thus may wonder whether the solution of (3) also satisfies (30). Actually,

formulae (41) in appendix A.1 for the 1-shock wave provide:

Pr
Pl

=
βz1 − 1 + g1(z1)

β − z1
, and g1(z1) > 0, with z1 =

ρr
ρl
> 1.

Thus, it is staightforward to see that pressure ratio has no bound. Moreover,

positive values of Pr , Pl imply z1 < β, which means that:

ρr = max(ρr, ρl) < βρl = β min(ρr, ρl),

which completes the proof, since a similar result holds using formulae (43)

in appendix A.1 for the 3-shock wave.

3. Solution of the Riemann problem

In this section, we are interested in finding the solution of the Riemann

problem associated with (3) in the case of a perfect gas EOS:

P = (γ − 1)ρe.

First we have to start connecting WL to WR through the intermediate states

W1 and W2, where the subscripts L and R denote respectively the left and

the right sates of the initial discontinuity, and the subscripts 1 (respectively

2) represents the intermediate state of the solution of the Riemann problem

between waves λ1 and λ2 (respectively between λ2 and λ3), see figure 1.
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t

x

1− wave 2− wave 3− wave

WL WR

W1 W2

Figure 1: Solution of the Riemann problem which consists in four constant states WL,

W1, W2 and WR separated by the waves λi, i = {1, 2, 3}.

3.1. Waves connection

We must first distinguish 4 cases for the solution of the Riemann problem,

depending on the nature of the two GNL waves associated with λ1 and λ3:

• case 1: 1-shock / 2-contact / 3-shock

• case 2: 1-rarefaction / 2-contact / 3-rarefaction

• case 3: 1-shock / 2-contact / 3-rarefaction

• case 4: 1-rarefaction / 2-contact / 3-shock

Proposition 5 We first set:

z1 =
ρ1
ρL

and z2 =
ρ2
ρR
.

The solution of the Riemann problem associated with (3) is as follows:
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case 1. We have for z1 > 1 and z2 > 1:

uR − uL + cLf1(z1, KL/PL) + cRf2(z2, KR/PR) = 0,

and:

PLh1(z1, KL/PL) +
2KL

3
z
5/3
1 = PRh2(z2, KR/PR) +

2KR

3
z
5/3
2 ,

with the following definitions:

f1(z1, KL/PL) =

√(
z1−1
γz1

)(
−1 + 2

3
KL

PL
(z

5/3
1 − 1) + h1(z1, KL/PL)

)
,

h1(z1, KL/PL) =
βz1 − 1 + g1(z1, KL/PL)

β − z1
,

g1(z1, KL/PL) =
2KL

3PL

(
z
8/3
1 − 4z

5/3
1 + 4z1 − 1

)
,

and:

f2(z2, KR/PR) =

√(
z2−1
γz2

)(
−1 + 2

3
KR

PR
(z

5/3
2 − 1) + h2(z2, KR/PR)

)
,

h2(z2, KR/PR) =
βz2 − 1 + g2(z2, KR/PR)

β − z2
,

g2(z2, KR/PR) =
2KR

3PR

(
z
8/3
2 − 4z

5/3
2 + 4z2 − 1

)
,

and KL,R = ξ0ρ
5/3
L,R.

case 2. We have for z1 ≤ 1 and z2 ≤ 1:

uR − uL + cLT1(z1, KL/PL) + cRT2(z2, KR/PR) = 0,

and:

PLQ1(z1) +
2KL

3
z
5/3
1 = PRQ2(z2) +

2KR

3
z
5/3
2 ,
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with the following definitions:

T1(z1, KL/PL) =

∫ z1

1

(
zγ−3 +

10KL

9γPL
z−4/3

)1/2

dz,

Q1(z1) = zγ1 ,

T2(z2, KR/PR) =

∫ z2

1

(
zγ−3 +

10KR

9γPR
z−4/3

)1/2

dz,

Q2(z2) = zγ2 .

case 3. We have for z1 > 1 and z2 ≤ 1:

uR − uL + cRT2(z2, KR/PR) + cLf1(z1, KL/PL) = 0,

and

PLh1(z1, KL/PL) +
2KL

3
z
5/3
1 = PRQ2(z2) +

2KR

3
z
5/3
2 .

case 4. We have for z1 ≤ 1 and z2 > 1:

uR − uL + cLT1(z1, KL/PL) + cRf2(z2, KR/PR) = 0,

PLQ1(z1) +
2KL

3
z
5/3
1 = PRh2(z2, KR/PR) +

2KR

3
z
5/3
2 .

The reader is referred to Appendices A.1 and A.2 for a proof.

3.2. Existence and uniqueness of the solution

Proposition 6 The Riemann problem associated with (3) and initial states:

W (x < 0, t = 0) = WL,
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W (x > 0, t = 0) = WR,

admits a unique self-similar solution:

W (x, t) = ω(x/t),

with no vacuum occurrence, provided that initial left and right states, WL and

WR, are such that:

uR − uL < XL +XR, (31)

with Xi =

∫ ρi

0

c̃(s, ρ′)

ρ′
dρ′.

The reader is referred to Appendix A for a proof which is based on the

proof proposed in [9].

Remark 4 For ξ0 = 0, we have c̃ = c and condition (31) is equivalent to the

condition of no vacuum occurrence for Euler with a perfect gas EOS.

4. An approximate numerical Riemann solver

Approximate Riemann solvers are commonly used in order to compute

approximate solutions of hyperbolic problems, where contact waves, rarefac-

tions and shock waves co-exist (see among others the original paper [10] and

the books [11, 12]).

We consider a classical finite volume formulation. The segment [a,b] is di-

vided into cells Ii, where xi+ 1
2
represents the cell interface between cells Ii

and Ii+1, and xi represents the cell center. We define ∆tn the time step at

time tn and ∆xi the lenght of Ii: tn+1 = tn + ∆tn and ∆xi = xi+ 1
2
− xi− 1

2
.
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4.1. VFRoe-ncv scheme

In this section, we recall an extension of the VFRoe scheme [13] called

VFRoe-ncv which was proposed in order to deal with hyperbolic systems in

[14]. The VFRoe-ncv scheme is an approximate Godunov scheme where the

approximate value at the interface between two cells is computed as detailed

below.

First, system (3) may be rewritten as follows:

∂tZ +B(Z)∂xZ = 0, (32)

where:

Z = (ρ, u, P ∗)t,

and

B(Z) =


u ρ 0

0 u τ

0 ρc̃2 u

 ,

and also:

P ∗ = P +
2K

3
, τ =

1

ρ
.

We then consider the Riemann problem associated with the system (32) and

initial conditions:

Z(x < 0, t = 0) = ZL, Z(x > 0, t = 0) = ZR. (33)

At each interface between two cells, we solve the following linearized Riemann

problem:

∂tZ +B(Z̄)∂xZ = 0, (34)
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where Z̄ = (ZL + ZR)/2. System (34) contains 3 linearly degenerate fields,

thus the solution of the one-dimensional Riemann problem is simple. Indeed,

it only requires computing three real coefficients noted αi (for i=1 to 3) and

such that:

ZR − ZL =
3∑
i=1

αir̂i,

where r̂i represents the basis of right eigenvectors of the matrix B(Z̄):

r̂1 = (1,−c̃τ, c̃2)t, r̂2 = (1, 0, 0)t, r̂3 = (1, c̃τ, c̃2)t.

More details concerning the explicit computation of the intermediate states

Z1 and Z2 can be found in appendix B. Hence the exact solution Z∗(ZL, ZR)

at the initial discontinuity location, i.e. at x/t = 0, of the linearized Riemann

problem associated with system (34) and initial conditions (33) is given by:

Z∗(ZL, ZR) =



ZL if λ̄1 ≥ 0;

Z1 if λ̄1 < 0 and λ̄2 ≥ 0;

Z2 if λ̄2 < 0 and λ̄3 ≥ 0;

ZR if λ̄3 < 0;

(35)

where:

λ1 = ū− ̂̃c, λ2 = ū, λ3 = ū+ ̂̃c,
and also: ̂̃c =

√
γP (P̄ ∗, ρ̄)

ρ̄
+

10

9

K(ρ̄)

ρ̄
. (36)

Finally the numerical scheme reads:

∆xi(w
n+1
i − wni ) + ∆t(Fn

i+ 1
2
−Fn

i− 1
2
) = 0, (37)
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where the numerical flux is computed thanks to the exact solution (35) of

the linearized problem (34)-(33) with ZL = Zn
i and ZR = Zn

i+1:

Fn
i+ 1

2
= F (w(Z∗(Zn

i , Z
n
i+1))).

In the definition of the numerical flux above, it should be noted that we

have w = (ρ, ρu, ρE) and that w 7→ F (w) corresponds to the analytical flux

of system (3) as defined in section 2.1. Moreover, we apply the Courant-

Friedrichs-Lewy (CFL) condition:

∆tn

∆xj
max(|λi|) < 1,

in the scheme (37).

Remark 5 An entropy correction is required (see [15]) to compute shock

tube problems when one sonic point is present in the rarefaction wave.

Remark 6 The alternative choice of the non-conservative variable (s, u, P ∗)

has not been retained here because it requires a non-explicit change of vari-

able. The latter thus increases the computational cost of the scheme. This

variable change corresponds to finding ρ such that:

P (ρ, sL,R) +
2

3
ξ0ρ

5
3 = P ∗L,R,

for given sL,R and P ∗L,R. Thus it will not be considered in the sequel.

5. Numerical Results

We present now some numerical results obtained for the model and scheme

detailed in the previous sections. We focus here on two test cases that in-

volve shock waves: the double-shock test case (i.e. case 1 in section 3.1) and
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a “strong shock wave” test case. The former allows to compute accurately

the solution of the Riemann problem, and it is thus useful for convergence

study. Indeed, the computation of an exact solution of a Riemann problem

involving a rarefaction wave requires a numerical integration of the rarefac-

tion fan. These are thus less accurately computed. The second test case

corresponds to a situation where initial states present a great ratio of pres-

sure and density. It is representative of situations involving explosion or

detonation waves. It should be noted that qualitative results for a test case

involving two symmetric rarefaction waves have been added in appendix C.

Numerical convergence curves, at a given time, are represented by the loga-

rithm of the relative L1-error as a function of the logarithm of the mesh size.

The relative L1-error is computed at time tn on the whole regular mesh as:∑
i |φ

approx,n
i − φexact(xi, tn)|∆xi∑

i |φexact(xi, tn)|∆xi
. (38)

Obviously, when
∑

i |φexact(xi, tn)| = 0 , this definition is meaningless and we

change it into: ∑
i

|φapprox,ni − φexact(xi, tn)|.

The first test case provides a comparison between the exact solution and

the approximate solution and it enables to obtain a numerical convergence

curve on the basis of the error (38). For the other test cases, only qualitative

plots of the approximate solutions are presented at a given final time for the

density, the velocity, the pressure P and the modified pressure P ∗.
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All the computations are preformed for a given value of CFL = 0.5, and

for different values of the parameter ξ0. It should be recalled that when

ξ0 = 0, the modified pressure P ∗ is equal to the thermodynamical pressure

P . Moreover, in all the tests below, we have considered the perfect gas EOS:

P = (γ − 1)ρe,

where the constant γ is equal to 7
5
. The computational domain is [0, 1] and

the initial discontinuity separating states WL and WR is located at x= 0.5.

The domain [0, 1] is discretized using uniform cells, ∆xi = ∆x, and the

number of cells varies from 200 up to 1× 105 cells.

5.1. Test 1: Double shock wave

In this test case, we compare the exact solution of the one-dimensional

Riemann problem with the approximate solution. Three different values of

ξ0 are used ξ0 = {0, 10000, 50000}. Each value of ξ0 leads to a different

Riemann problem whose initial conditions are given below:

• For ξ0=0:

(ρL, uL, PL) = (1, 550, 106)

(ρR, uR, PR) = (1,−618.107550, 103990.112994)

• For ξ0=10000:

(ρL, uL, PL) = (1, 650, 106)

(ρR, uR, PR) = (1,−687.545913, 98007.273140)

• For ξ0=50000:

(ρL, uL, PL) = (1, 750, 106)

(ρR, uR, PR) = (1,−750.364690, 94038.441853)
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Figures 2, 4 and 6 show qualitative comparisons between the exact solutions

and the approximate solutions for a mesh that contains 500 cells and for

respectively ξ0 = {0, 10000, 50000}. Figure 3, 5 and 7 show the convergence

curves for the set of variables {ρ, u, P, P ∗} and for the three different values

of ξ0.

First of all we notice that max(ρl,ρr)
min(ρl,ρr)

≈ 4.25, which is less than β (for γ = 1.4

we get β = 6). This is in agreement with the theory as mentioned in remark

3. The approximated shock wave profile is monotonic; there are no spurious

oscillations in the vicinity of the shock. The error varies as ≈ h1 for vari-

ables u and P ∗ on fine meshes, and as ≈ h1/2 for ρ and P on fine meshes

(owing to the occurrence of the contact discontinuity), see figure 3. This

behavior is due to the VFRoe-ncv scheme using the variable (s, u, P ∗) and

the perfect gas EOS. Indeed, thanks to the latter, profiles for the velocity

and the modified pressure are uniform around the contact location owing to

the exact solution. On fine meshes, the error on the approximated velocity

and modified pressure pressure are thus not influenced by the larger error

on the contact wave. This is not the case for the density and the pressure

P , which therefore have an effective convergence rate of 1/2. For ξ0 = 0,

the system correspond to the classical Euler system and P = P ∗. Then the

effective convergence rate reported in [14] is recovered for P .
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Figure 2: Double-shock wave test case. Density (top left), velocity (top right) and pressure

(bottom). Comparison between the exact solution (green) and the approximate solution

(purple) at t = 3 10−2 s, CFL = 0.5, 500 cells, ξ0 = 0.
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Figure 3: Double-shock wave test case. Convergence curves: logarithm of the relative

L1-error versus the logarithm of the mesh size with uniform meshes containing from 200

to 55000 cells. The error is plotted for variables, ρ, u and P ∗, ξ0 = 0 (recall that here

P ∗ = P ).
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Figure 4: Double-shock wave test case. Density (top left), velocity (top right), pressure

(bottom left) and P ∗ (bottom right). Comparison between the exact solution (green) and

the approximate solution (purple) at t = 3 10−2 s, CFL = 0.5, 500 cells, ξ0 = 10000.
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Figure 5: Double-shock wave test case. Convergence curves: logarithm of the relative

L1-error versus the logarithm of the mesh size with uniform meshes containing from 200

to 55000 cells. The error is plotted for variables, ρ, u, P and P ∗, ξ0 = 10000.
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Figure 6: Double-shock wave test case. Density (top left), velocity (top right), pressure

(bottom left) and P ∗ (bottom right). Comparison between the exact solution (green) and

the approximate solution (purple) at t = 3 10−2 s, CFL = 0.5, 500 cells, ξ0 = 50000.
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Figure 7: Double-shock wave test case. Convergence curves: logarithm of the relative

L1-error versus the logarithm of the mesh size with uniform meshes containing from 200

to 55000 cells. The error is plotted for variables, ρ, u, P and P ∗, ξ0 = 50000.
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5.2. Test 2: Strong shock wave

The propagation of strong shock waves, generated by a strong explosion

is of great interest from a physical point of view due to its numerous appli-

cations in various fields. In order to mimic such situations, we consider here

a Riemann problem for which the left state corresponds to a gas at very high

pressure with respect to the right state, the latter representing the ambient

conditions. The high pressurized gas then expands rapidly and generates

strong waves. When the pressure ratios between left and right states are

high enough, a supersonic rarefaction wave is observed. For the latter the

two extremities of the fan of the rarefaction wave travel in opposite direc-

tions (see figure 8). In these situations, an entropy correction is mandatory

for the VFRoe-ncv scheme, as the one proposed in [15] and implemented

here. Without the latter, computations fail because of the occurrence of a

discontinuous - and non physical - pattern in the rarefaction fan (in fact at

the location of the initial discontinuity). Thus this test is of interest and it

shows what happens for the flows during strong variations in density, which

originate from strong variations in pressure and temperature.

We propose here to examine the approximate solution for a Riemann problem

with a pressure and density ratio equal to 1000. More precisely, we choose

the left and right states such that:

(ρ, u, P )L = (1000× ρ0, 0, 1000× P0), and (ρ, u, P )R = (ρ0, 0, P0),

and where the right state corresponds to ambient gas at rest: (ρ0, P0)= (1,

105). Figures 9, 10, 11 and 12 show the behavior of the density, velocity,
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pressure and modified pressure at a given time Tf = 1.25 10−4 s, on dif-

ferent meshes with 500 cells, 5000 cells and 50000 cells. Moreover, we set

ξ0 = 10000 which corresponds to a high level of turbulence.

It should be noted that in this test case, the contact wave and the shock

wave travel to the right with a high velocity: respectively ∼ 2168 m/s (see

figure 10) and ∼ 2680 m/s. Moreover, the fan of the rarefaction wave ex-

pands to the left with a velocity of −1152 m/s and to the right with a velocity

of 1791 m/s. Hence, both the shock wave and the rarefaction wave remain

very close to the contact wave (see on the density variable in figure 9 or on

the pressure P on figure 11). In particular, when focusing on the present

final time Tf = 1.25 10−4 s: the rarefaction fan corresponds to the interval

[0.356, 0.724], the contact wave is located around x = 0.771 and the shock

wave is located around x = 0.835 (see figure 8). The distance between the

two GNL waves and the contact wave is thus small. Since the numerical

scheme is not very accurate on the contact wave, the approximated values

for the intermediate states 1 and 2 (see figure 8) are not very accurate on

coarse meshes. Indeed, the results of figures 11 clearly show that at least

5000 cells are needed in order to get a correct approximation of the inter-

mediate state 2; whereas it is not yet sufficient for intermediate state 1. As

a consequence, fine meshes have to be used in order to get a correct accu-

racy of the location of the approximate contact wave and of the pressure

level of P ∗ between the rarefaction wave and the shock wave. Obviously, an

other solution could be to use a second order extension of the scheme based

for instance on a MUSCL reconstruction with a slope limiter and a second
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order Runge-Kutta time-scheme, see [11] or [12] among others. This is an

important point because the increase of P ∗ across the front of the shock will

determine the importance of the impact of the shock on the surroundings.

Moreover, an accurate location of the front of the shock enables to get the

correct time at which the surroundings would be impacted.

Due to the entropy correction implemented in the numerical scheme, the

approximate profiles in the rarefaction fan remain “regular” and monotonic,

even if very small perturbation may be observed on very coarse meshes

around x = 0.5. We also notice that in the vicinity of the shock wave,

we have ρ2
ρL
≈ 5.35

1
= 5.35. This is still less than the theoretical limit β = 6

(see figure 9) as pointed out by remark 3. At last, the VFRoe-ncv scheme

using the variable (ρ, u, P ∗) enables to maintain uniform profiles for the mod-

ified pressure P ∗ and the velocity u around the contact wave, see figure 10

and 12.
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Figure 8: Sketch of the waves in the (x, t)-plane for the strong shock test case at time

Tf = 1.25 10−4 s.

Figure 9: Strong shock wave test case. Density for ξ0 = 10000 and for meshes with 500,

5000 and 50000 cells.

A. Solution of the Riemann problem

In this section, the notations depicted by figure 1 are used. We recall

that the subscript L, 1, 2 and R respectively denote: the left state, the in-
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Figure 10: Strong shock wave test case. Velocity for ξ0 = 10000 and for meshes with 500,

5000 and 50000 cells.

Figure 11: Strong shock wave test case. Pressure P for ξ0 = 10000 and for meshes with

500, 5000 and 50000 cells.

termediate states between 1- and 2-wave, the intermediate states between 2-

and 3-wave and the right state. The left and right states correspond to the

initial states of the Riemann problem. We also recall that v stands for the
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Figure 12: Strong shock wave test case. Modified pressure P ∗ for ξ0 = 10000 and for

meshes with 500, 5000 and 50000 cells.

velocity in the shock referential: v = u− σ, where σ is the shock speed.

The proof of existence and uniqueness of a solution of the Riemann prob-

lem associated with system (3) is built here following [9]. In reference [9], the

proof of the existence and uniqueness of a solution of the Riemann problem is

built for the Euler system with a perfect gas EOS, but it remains suitable for

other EOS. System of equations (3) corresponds in fact to the Euler system

of equations with a pressure law P ∗ that is a correction of the perfect gas

pressure law P pg. We have the pressure law P ∗(ρ, e) = P pg(ρ, e) + 2K(ρ)/3

and the modified internal energy e∗(ρ, e) = e + K(ρ)/ρ. Thus, the proof

proposed in [9] can also be extended to our system of equations.

As in [9], the outline of the proof in this appendix is the following. First,

the paths across each waves are defined using the Riemann invariants or
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the Rankine-Hugoniot relations established in sections 2.3 and 2.4. These

paths are defined through two parameters which are the density ratios: z1 =

ρ1/ρ2 and z2 = ρ2/ρR. Then, the connection between the different waves is

performed. Afterwards, it can be proved that solving the Riemann problem

is equivalent to finding a root in ]0, β[ of a function z2 7→ H(z2) which is

continuous and increasing, with β = (γ+ 1)/γ− 1). It should be noted that,

since γ > 1, we have β > 1. Moreover, under the assumption that void does

not occur, it can be shown that this function H is such that:

lim
z2→0+

H(z2)× lim
z2→β−

H(z2) < 0.

At least, this allows to conclude the proof of existence and uniqueness of a

solution of the Riemann problem thanks to the theorem of the intermediate

values.

A.1. Paths across the waves of the system

According to section (2.2), the waves associated with the eigenvalues λ1

and λ3 are GNL waves. They can be either shock waves or rarefaction waves.

For the former the path across the wave is defined thanks to the Rankine-

Hugoniot relations, whereas for the latter the Riemann invariants are used.

The field associated with the eigenvalue λ2 is linearly degenerated so that

it can be described by both the Rankine-Hugoniot relations or the Riemann

Invariants.

Definition of shock waves in the sense of Lax.
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Let us first start by the case of the shock waves. The jump conditions for

system (3) are given in section 2.4 by relations (22). These relations involve

the square of the jump of the velocity: [u]2. Hence the velocity jump is not

uniquely defined and an additional information must be added to relations

(22) in order to get a unique definition of the velocity jump across the shock.

As in [9], we use here the Lax criterion for that purpose. The Lax criterion

applied to our system states that for an admissible shock wave with a velocity

σ we have for a 1-shock:

λ1(WL) > σ > λ1(W1),

and for a 3-shock:

λ3(W2) > σ > λ3(WR).

On the contrary, 1-wave and 3-wave are rarefaction waves when we respec-

tively have:

λ1(WL) < λ1(W1), and λ3(W2) < λ3(WR).

With these conditions, if a GNL wave is not a shock wave then it is a rar-

efaction wave, and conversely.

We set σ1 (respectively σ3), the speed of the 1-shock (respectively 3-

shock). The Lax criterion gives for the 1-shock:

uL − c̃L = λ1(WL) > σ1 > λ1(W1) = u1 − c̃1. (39)

When void does not occurs, c̃i > 0 for i ∈ {L, 1, 2, R}, we always get the same

order for the eigenvalues: λ1 < λ2 < λ3, so that we also have the relation:

u1 = λ2(W1) > σ1. (40)
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Then, by combining relations (39) and (40), we obtain the following relation

across a 1-shock:

uL − c̃L > σ1 > u1 =⇒ u1 − uL < 0.

By using the same arguments, the following relation holds across the 3-shock:

uR − u2 < 0.

Hence, for system (3) the Lax criterion implies the relation [u] < 0 across a

shock and thus the Lax criterion associated to the jump relations (22) allows

to define shocks in a unique manner through:

[u]2 + [τ ][P ] = 0 and [u] < 0⇐⇒ [u] = −
√
−[τ ][P ].

But this also means that if [u] ≥ 0 for two uniform states separated by one of

the two GNL waves in a Riemann problem, then it does not correspond to a

shock in the sense of Lax. Since for system (3) the GNL waves are shocks or

rarefaction wave, this means that for [u] ≥ 0 we have a rarefaction wave in

the sense of Lax. Moreover, it should be recalled that [u] = 0 in the linrearly

degenerated wave. So, finally we can conclude that [u] < 0 for two uniform

states in a Riemann problem associated with system (3) if and only if it is a

shock in the sense of the Lax criterion.

Furthermore, the left hand relation of (39) gives that uL > σ1. Hence,

remembering inequality (40), we get that: v1 > 0. The same idea applied

to the 3-shock yields: v3 < 0. Yet Rankine-Hugoniot relations (22) give:

ρv[τ ] = [u]. As a consequence, since [u] < 0 in shocks, we have v[τ ] < 0 in

38



shocks and, thus, thanks to the signs of v1 and v3:

τ1 < τL =⇒ z1 > 1,

in the 1-shock, and:

τR > τ2 =⇒ z2 > 1,

in the 3-shock. It should be noted that the jump relations (22) also leads to

the relation:

(ρv)2[τ ] + [P ∗] = 0.

Therefore, using the results above on [τ ], we get that P ∗1 > P ∗L in a 1-shock

and P ∗R < P ∗2 in a 3-shock.

Path across a 1-shock wave.

The path across a 1-shock wave is obtained through the parameter z1

thanks to the Rankine-Hugoniot relations (22) and to the Lax criterion. After

some calculus, it yields that a 1-shock is defined for z1 > 1 by the relations: u1 = uL − cLf1(z1, KL/PL),

P1 = PLh1(z1, KL/PL),
(41)

with the functions:

f1(z1, KL/PL) =

√(
z1−1
γz1

)(
−1 + 2

3
KL

PL
(z

5/3
1 − 1) + h1(z1, KL/PL)

)
,

h1(z1, KL/PL) =
βz1 − 1 + g1(z1, KL/PL)

β − z1
,

g1(z1, KL/PL) =
2KL

3PL

(
z
8/3
1 − 4z

5/3
1 + 4z1 − 1

)
,

(42)

and KL = ξ0ρ
5/3
L .
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Path across a 3-shock wave.

For a 3-shock, the path depends on z2 > 1 and by using the Rankine-

Hugoniot relations (22) and the Lax criterion we get: u2 = uR + cRf2(z2, KR/PR),

P2 = PRh2(z2, KR/PR),
(43)

with the functions:

f2(z2, KR/PR) =

√(
z2−1
γz2

)(
−1 + 2

3
KR

PR
(z

5/3
2 − 1) + h2(z2, KR/PR)

)
,

h2(z2, KR/PR) =
βz2 − 1 + g2(z2, KR/PR)

β − z2
,

g2(z2, KR/PR) =
2KR

3PR

(
z
8/3
2 − 4z

5/3
2 + 4z2 − 1

)
,

(44)

and KR = ξ0ρ
5/3
R .

Path across a 1-rarefaction wave.

In a 1-rarefaction wave the Riemann Invariants ˜̄I11 and ˜̄I12 exhibited in

section 2.3 remain constant. Hence, we get the following relations in a 1-

rarefaction wave for z1 < 1:

sL = s1, (45)

and

uL +

∫ ρL

0

c̃(s, ρ′)
ρ′

dρ′ = u1 +

∫ ρ1

0

c̃(s, ρ′)
ρ′

dρ′. (46)

Then, using the thermodynamical closures chosen for the model, (45) and

(46) can be rewritten in the form: u1 − uL + cLT1(z1, KL/PL) = 0,

P1 = PLQ1(z1),
(47)
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with the following definitions:

T1(z1, KL/PL) =

∫ z1

1

(
zγ−3 +

10KL

9γPL
z−4/3

)1/2

dz,

Q1(z1) = zγ1 .

(48)

Path across a 3-rarefaction wave.

With the same arguments, using the Riemann Invariants ˜̄I31 and ˜̄I32 , one

can write for a 3-rarefaction wave for z2 < 1:

 u2 − uR − cRT2(z2, KR/PR) = 0,

P2 = PRQ2(z2),
(49)

with the following definitions:

T2(z2, KR/PR) =

∫ z2

1

(
zγ−3 +

10KR

9γPR
z−4/3

)1/2

dz,

Q2(z2) = zγ2 .

(50)

Path across the 2-contact wave.

In the 2-wave, the 2-Riemann invariants u and P ∗ are constant. Hence,

the following relations arise:

P ∗1 = P ∗2 , (51)

and

u1 = u2. (52)

Remark 7 Functions T1 and T2 are defined on the basis of an integral of

the form:

I(z) =

∫ 1

z

(
xγ−3 + a0x

−4/3)1/2 dx,
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for z ∈ [0, 1], with a0 ≥ 0, γ > 1 and β = (γ + 1)/(γ − 1) > 1. Oviously,

we have I(z) ≥ 0. For γ ∈]1, 5/3] and γ ≥ 5/3, the integral I(z) can be

respectively bounded by:

I(z) ≤ 2
√

1 + a0
γ − 1

(1− z(γ−1)/2),

and

I(z) ≤ 3
√

1 + a0(1− z1/3).

Hence, the integral I(z), and thus functions T1 and T2, are defined for z in

[0, 1]. Moreover, it should be noticed that:

I(z) = 3
√

1 + a0(1− z1/3),

for γ = 5/3.

A.2. Connection between the different waves

Thanks to the relations of the previous section, the left state WL and the

intermediate state W1 are related through the 1-wave thanks tou1 = uL − cLGL(z1),

P1 = PLFL(z1),
(53)

where the functions FL and GL are respectively defined piecewise through

the relations obtained either for a rarefaction wave, z1 ≤ 1, or for a shock

wave, z1 > 1, using respectively (41)-(42) and (47)-(48). So we obtain the

definitions:

FL(z1) =

h1(z1, KL/PL) if z1 > 1,

Q1(z1) if z1 ≤ 1,
(54)
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and

GL(z1) =

f1(z1, KL/PL) if z1 > 1,

T1(z1, KL/PL) if z1 ≤ 1.
(55)

In the same way, for the 3-wave, the following relations hold between WR

and W2: u2 = uR + cRGR(z2),

P2 = PRFR(z2),
(56)

where according to (43)-(44) and (49)-(50), we have:

FR(z2) =

h2(z2, KR/PR) if z2 > 1,

Q2(z2) if z2 ≤ 1,
(57)

and

GR(z2) =

f2(z2, KR/PR) if z2 > 1,

T2(z2, KR/PR) if z2 ≤ 1.
(58)

Due to the order of the different waves for system (3) which is always such

that λ1 < λ2 < λ3, the connection of the two GNL waves is easily performed

through the contact wave using relations (51) and (52). Indeed, the modified

pressure reads: P ∗ = P + 2K/3. Hence by combining equation (51) with

first equation of (53) and first equation of (56), we obtain:

PLFL(z1) +
2

3
KLz

5/3
1 = PRFR(z2) +

2

3
KRz

5/3
2 , (59)

The velocity equality (52) combined with second equation of (53) and second

equation of (56) yields:

uR + cRGR(z2)− uL + cLGL(z1) = 0. (60)

System (59)-(60) is a 2 × 2 non-linear system for the unknowns (z1, z2) ∈

]0, β[2. Let us now study this system.
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A.3. Existence and uniqueness of a solution for the Riemann problem

It can been proved that FL and GL (respectively FR and GR) are differ-

entiable functions of z1 ∈]0, β[ (respectively of z2 ∈]0, β[). By differentiating

equation (59) with respect to z1 and z2, it can be shown that dz1/dz2 > 0.

Then, thanks to (59) one can implicitly define a variable change z2 7→ Z1(z2)

which gives z1 as a function of z2:

z1 = Z1(z2).

Relation (60) can thus be expressed as a function of the sole variable z2, and

finding a solution of system (59)-(60) is equivalent to finding a root of the

function z2 7→ H(z2) defined on ]0, β[ as:

H(z2) = uR + cRGR(z2)− uL + cLGL(Z1(z2)). (61)

When differentiating H with respect to z2, we find that:

H′(z2) = cRG ′R(z2) + cL
dZ1(z2)

dz2
G ′L(Z1(z2)). (62)

It can be shown that G ′L and G ′R are positive functions, so that z2 7→ H(z2)

is a continuous and increasing function on ]0, β[.

By studying the definition of GL and GR, the following limits can be found:

lim
z2→0+

(cLGL(Z1(z2)) + cRGR(z2)) = cLT1(0, KL/PL) + cRT2(0, KR/PR).

and

lim
z2→β−

(cLGL(Z1(z2)) + cRGR(z2)) = +∞

The variable change Z1 is an increasing function of z2. Hence, when z2

tends to zero, z1 also tends to zero. This means that the first limit above is
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reached in the cases where both 1- and 3- waves are rarefaction waves. On

the contrary, the second limit is reached in the cases where both 1- and 3-

waves are shock waves (we recall that γ > 1 ⇒ β > 1). These two limits

then give the following limits for H:

lim
z2→0+

H(z2) = uR − uL + cLT1(0, KL/PL) + cRT2(0, KR/PR),

and

lim
z2→β−

H(z2) = +∞.

Since the function z2 7→ H(z2) is increasing and continuous on ]0, β[, the

intermediate value theorem can be applied in order to conclude thatH admits

a unique root provided that the following condition holds:

uR − uL + cLT1(0, KL/PL) + cRT2(0, KR/PR) < 0 (63)

As a consequence, the Riemann problem associated with system (3) possesses

a unique solution if and only if condition (63) holds.

B. Building the intermediate states for VFRoe-ncv

As depicted in section (4), the VFRoe-ncv scheme is based on the compu-

tation of the exact solution of a linearized version of the Riemann problem at

the interface between two cells. It thus relies on finding the two intermediate

states Z1 and Z2: the state Z1 (resp. Z2) is between the linearized waves λ̄1

and λ̄2 (resp. λ̄2 and λ̄3). We have:

Z1 = ZL + α1r̂1, (64)

Z2 = Z1 + α2r̂2, (65)
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ZR = Z2 + α3r̂3, (66)

where the linearized right eigenvectors are:

r̂1 = (1,−̂̃cτ, ̂̃c2)t, r̂2 = (1, 0, 0)t, r̂3 = (1, ̂̃cτ, ̂̃c2)t,
and where the coefficients α1 and α3 associated with the eigenvalues λ̄1 and

λ̄3 read:

α1 =
1

2

[P ∗]RL̂̃c2 − 1

2

[u]RL ρ̂̂̃c ,

α3 =
1

2

[P ∗]RL̂̃c2 +
1

2

[u]RL ρ̂̂̃c .

The linearized sound speed ̂̃c is defined by equation (36). It should be noted

that thanks to (65), we have:

u1 = u2, and P ∗1 = P ∗2 .

After simple calculus on equations (64) and (66), the following intermediate

values can be found:

u1 = u2 = ū− 1

2ρ̄̂̃c [P ∗]RL ,

P ∗1 = P ∗2 = P̄ ∗ − ρ̄̂̃c
2

[u]RL ,

ρ1 = ρL +
[P ∗]RL

2̂̃c2 − ρ̄

2̂̃c [u]RL , ρ2 = ρR −
[P ∗]RL

2̂̃c2 − ρ̄

2̂̃c [u]RL .

C. Additional numerical results: a symmetric double rarefaction

wave

This test case is representative of what happens close to a wall when the

fluid flows outward or in a bluff-body. In these situations, the pressure de-

creases at the wall generating a rarefaction wave that propagates outwards
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from the wall. We reproduce such a configuration here with a symmetric dou-

ble rarefaction wave test case for which the initial condition of the Riemann

problem uses the “mirror state” strategy:

(ρ, u, P )L = (ρ0,−u0, P0), and (ρ, u, P )R = (ρ0, u0, P0),

with a negative normal velocity u0 and (ρ0, u0, P0) = (1, 370, 105). The first

test case (ξ0 = 0) is inspired from [14].

Profiles of the approximate solutions along the x-domain are given in fig-

ure 13, 14 and 15 for a mesh with 500 cells and using three values of

ξ0 = {0, 5000, 10000}. They involve a low-density state in the center of

the domain, between the two rarefaction waves. This feature makes this

problem a test for assessing the performance of numerical methods for low-

density flows. Indeed, this test case allows to examine the stability of the

scheme together with the preservation of positivity of the approximate den-

sity around x = 0.5 (which corresponds to the fictive wall location). The

classical drawback of Godunov-type schemes on the density variable near the

position of initial discontinuity x = 0.5 can be observed: an undershoot of

the density profile which tends to vanish when the mesh is refined.
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Figure 13: Double rarefaction test case. Density (top left), velocity (top right) and pressure

(bottom). Approximate solution at time tf = 3 10−4s, CFL = 0.5, for 500 cells and ξ0 = 0.
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Figure 14: Double rarefaction test case. Density (top left), velocity (top right), pressure

P (bottom left) and modified pressure P ∗ (bottom right). Approximate solution at time

tf = 3 10−4s, CFL = 0.5, for 500 cells and ξ0 = 5000.

49



Figure 15: Double rarefaction test case. Density (top left), velocity (top right), pressure

P (bottom left) and modified pressure P ∗ (bottom right). Approximate solution at time

tf = 3 10−4s, CFL = 0.5, for 500 cells and ξ0 = 10000.
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