
HAL Id: hal-03079400
https://hal.science/hal-03079400

Submitted on 5 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian inversion of joint SH seismic and seismoelectric
data to infer glacier system properties

Franco Macchioli-grande, Fabio Zyserman, Leonardo B. Monachesi, Laurence
Jouniaux, Marina Rosas-carbajal

To cite this version:
Franco Macchioli-grande, Fabio Zyserman, Leonardo B. Monachesi, Laurence Jouniaux, Marina Rosas-
carbajal. Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system prop-
erties. Geophysical Prospecting, 2020, 68, pp.1633 - 1656. �10.1111/1365-2478.12940�. �hal-03079400�

https://hal.science/hal-03079400
https://hal.archives-ouvertes.fr


Geophysical Prospecting Proof for Review

Bayesian inversion of joint SH seismic and seismoelectric 
data to infer glacier system properties

Journal: Geophysical Prospecting

Manuscript ID Draft

Manuscript Type: Original Manuscripts

Date Submitted by the 
Author: n/a

Complete List of Authors: Macchioli-Grande, Franco; Universidad Nacional de La Plata Facultad de 
Ciencias Astronómicas y Geofísicas, Geofísica Aplicada
Zyserman, Fabio; Universidad Nacional de La Plata Facultad de Ciencias 
Astronómicas y Geofísicas, Geofísica Aplicada
Monachesi, Leonardo; Universidad Nacional de Río Negro, Instituto de 
Investigación en Paleobiología y Geología
Jouniaux, Laurence; CNRS- IPGS, Institut de Physique du Globe de 
Strasbourg
Rosas-Carbajal, Marina; Institut de Physique du Globe de Paris, 
Systhèmes volcaniques

Keyword: Electromagnetic, Inversion, Seismic

 

EAGE Publications B.V., PO Box 59, 3990 DB, Houten, The Netherlands

Geophysical Prospecting Manuscript Proof



Geophysical Prospecting Proof for Review
OR I G I NA L A RT I C L E
Jou rna l Se c t i on

Bayesian inversion of joint SH seismic and
seismoelectric data to infer glacier system
properties
FrancoMacchioli-Grande1∗ | Fabio Zyserman PhD1∗ |
LeonardoMonachesi PhD2∗ | Laurence Jouniaux PhD3∗
| Marina Rosas-Carbajal PhD4∗
1CONICET, Facultad de Ciencias
Astronómicas y Geofísicas, Universidad
Nacional de La Plata, La Plata, Buenos Aires,
1900, Argentina
2CONICET, Instituto de Investigación en
Paleobiología y Geología, Universidad
Nacional de Río Negro, General Roca, Río
Negro, 8332, Argentina
3Université de Strasbourg et CNRS, Institut
de Physique du Globe de Strasbourg UMR
7516, Strasbourg, Grand Est, 67084, France
4Université de Paris, Institut de Physique du
Globe de Paris, CNRS, UMR 7154, Paris,
Île-de-France, 75005, Paris

Correspondence
FrancoMacchioli-Grande, Facultad de
Ciencias Astronómicas y Geofísicas,
Universidad Nacional de La Plata, La Plata,
Buenos Aires, 1900, Argentina
Email: fmacchio@fcaglp.unlp.edu.ar

Funding information
FZ acknowledges support fromCONICET
through grant PIP 112-201501-00192. LJ
aknowledges support fromCNRS INSU
through the PICS program. MRC
acknowledges support from the AXA
Research Fund.

In glacial studies, properties such as glacier thickness and
the basement permeability and porosity are key to under-
stand the hydrological andmechanical behaviour of the sys-
tem. The seismoelectric method is a geophysical tool with
a huge potential in determining key properties of glacial en-
vironments. Here we analytically model the generation of
seismic and seismoelectric signals bymeans of a shear hor-
izontal (SH) seismic wave source on top of a glacier over-
lying a porous basement. Considering a one dimensional
setting, we compute the seismic waves and the electrokinet-
ically induced electric field. We then analyze the sensitivity
of the seismic and electromagnetic data to relevant model
parameters, namely depth of the glacier bottom, porosity,
permeability, shear modulus and saturating water salinity
of the glacier basement. Furthermore, we study the possi-
bility of inferring these key parameters from a set of syn-
thetic data, adopting a Bayesian framework to pay partic-
ular attention to the uncertainty of themodel parameters
mentioned above. We tackle the resolution of the proba-
bilistic inverse problemwith two strategies: 1) we compute
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the marginal posterior distributions of each model param-
eter solvingmultidimensional integrals numerically and 2)
we use aMarkov chainMonte Carlo (MCMC) algorithm to
retrieve a collection of model parameters that follows the
posterior probability density function (pdf). Both method-
ologies are able to obtain themarginal distributions of the
parameters and estimate their mean and standard deviation.
TheMCMCalgorithm performs better in terms of numerical
stability and amount of iterations needed to characterize
the distributions. The inversion of seismic data alone is not
able to constrain the values of porosity and permeability
further than the prior distribution. In turn, the inversion of
the electric data alone, and the joint inversion of seismic and
electric data are useful to constrain these parameters aswell
as other glacial system properties. Furthermore, the joint
inversion reduces the uncertainty of themodel parameters
estimates and providesmore accurate results.
K E YWORD S
Electromagnetics, Inversion, Modelling, Parameter Estimation,
Seismics

1 | INTRODUCTION

Characterizing glacier system properties has been a matter of interest in the field of electric and electromagnetic
prospectingmethods throughout the last two decades. The spontaneous potential (SP) method consists in themea-
surement of the steady state and natural potentials that are present on the near surface (Fournier, 1989). Kulessa and
Murray (2003); Kulessa et al. (2006a) were able to characterize hydraulic properties of subglacial sediments, as long
as hydraulic processes within them using this method and Kulessa et al. (2003); French et al. (2006) employed SP to
study the impact of earth tides in the subglacial hydrological system. In this context, the seismoelectric method appears
as a potential utility in glacial studies to detect the interface between the glacier and the basement and to determine
hydrogeophysical properties of the subglacier system.

Seismoelectrics is a lively research realm in which recent results in theory (Jougnot et al., 2013; Jardani and Revil,
2015; Ren et al., 2016; Grobbe and Slob, 2016; Munch and Zyserman, 2016; Gao et al., 2017a,b; Guan et al., 2017;
Zyserman et al., 2017a,b; Guan et al., 2017; Fiorentino et al., 2017;Monachesi et al., 2018a; Dietrich et al., 2018; Gao
et al., 2019) as well as laboratory tests (Bordes et al., 2015; Hu et al., 2015; Holzhauer et al., 2016; Peng et al., 2017;
Devi et al., 2018) were achieved. Seismoelectromagnetics aims at combining the resolution of the seismic methodwith
the sensitivity of the electric methods to fluid content in porous rocks. Both sesimoelectric and electromagnetic signals
originate from the electrokinetic phenomenon. The seismoelectric method uses a seismic source to create the relative
motion between the fluid and the rockmatrix. This relativemotion induces an equivalent density current leading to

Page 2 of 38

EAGE Publications B.V., PO Box 59, 3990 DB, Houten, The Netherlands

Geophysical Prospecting Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Geophysical Prospecting Proof for Review
MACCHIOLI-GRANDE ET AL. 3

an electromagnetic field accompanying the seismic wave propagation. Moreover, strong seismoelectric signals can
arise at interfaces of media with different electrokinetic properties (Haartsen and Pride, 1997; Garambois and Dietrich,
2002). At such interfaces the electric current density is unbalanced, inducing an electric dipole and thus an electric
field propagating at the speed of the light in themedium and detected at the surface. The resulting electrical potential
distribution can provide important information about the subsurface. A detailed account of results onmost topics of
interest in seismoelectrics can be found in the review of Jouniaux and Zyserman (2016) and in the book by Revil et al.
(2015).

On a first approach, Kulessa et al. (2006b) recorded seismoelectric signals on Glacier de Tsanfleuron, Switzerland,
using a vertical sounding geometry. They inferred the electromagnetic waves to be generated by electrokinetic con-
version of seismic waves within the snow pack and near the dry-wet ice and ice-bed interfaces. In laboratory tests, Liu
et al. (2008) proved that an electric double layer is formed at the boundary between permafrost and unfrozen soil, and
observed seismoelectric conversions originated there due to the electric andmechanical contrasts between bothmedia;
on the other hand Zyserman et al. (2012) observed electroseismic conversions at the same interface in a numerical
study of methane-hydrate reservoirs. Later, Mahardika (2013) was able to produce numerical synthetic recordings
compatible with the data collected by Kulessa et al. (2006b), treating the snow-glacial environment in a similar way as
he did with the vadose zone-aquifer zone in an unsaturated porousmedium (Revil andMahardika, 2013). Monachesi
et al. (2018b) developed analytic expressions for the coseismic and interface signals produced in a glacial environment
when a SH seismic wave traverses it. They observed that the electric interface response originated at the glacier bottom,
which proved to be up to three orders of magnitude stronger than the coseismic signal, is proportional to the electric
current density at this depth, and depends on textural and electrical properties of the basement. Quite recently, Siegert
et al. (2018) interpreted, from seismoelectric soundings of theWest Greenland Ice Sheet, arrival times from the till layer
beneath the ice-sheet base fully compatible with previous data obtainedwith seismic amplitude variation with offset
(AVO) surveys. This study firmly heartens future developments for the hydrological andmechanical characterization of
ice-sheet substrates bymeans of the seismoelectric method.

The existing literature on inversion of seismoelectric data is not, to our knowledge, very broad. Jardani et al.
(2010) employed a finite element algorithm to model the seismoelectric response over a two dimensional stratified
medium hosting a reservoir partially saturated with oil. They used this algorithm to generate synthetic seismic and
seismoelectric data and performed a stochastic joint inversion procedure using an AdaptiveMetropolis algorithm. This
allowed them to obtain the posterior probability density functions (posterior pdf) of the parameters (see Section 5 for a
review of these concepts) of the different geological units of themodel, comprising permeability, porosity, electrical
conductivity, bulk modulus of the dry porous frame, bulk modulus of the pore fluid, bulk modulus of the solid phase and
shear modulus of the formations. They were able to recover the permeability within one order of magnitude, electrical
conductivity and othermaterial properties, with the exception of the porosity, which was not well constrained by the
inversion. Although the obtained pdfs aremostly centered around the true values, they show large dispersion, even in
logarithmic scale. More recently, Mahardika et al. (2012); Mahardika (2013), employing a similar approach, performed
an inversion of synthetic data corresponding to the occurrence of a fracking event in a two-layered system. The authors
concluded that when using noiseless data, its electric portion contains more information than the seismic one, and that
themodel parameters obtained via joint inversion aremore accurate than the ones obtained by inverting the seismic
time-series alone. It is worth to mention also the works of Guan et al. (2013); Chen and Yang (2013) and Bonnetier
et al. (2019), which deal with an electrolyte-saturated homogeneous poroelastic medium. Proposing a deterministic
inversionmethodology, Guan et al. (2013) recovered the permeability of different fluid saturated homogeneous porous
formations from seismoelectric well logs, deriving the amplitude ratio of electric signal to acoustic pressure (REP) of
Stoneley waves, and obtaining the permeability from an expression involving the tangent of its phase. They determined
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the conditions under which the electric conductivity and the electrokinetic coupling coefficient can be recovered from a
two-step inversion. On the other hand, Chen and Yang (2013) and Bonnetier et al. (2019) carried out a stability analysis
of the inverse problem for the possible recovery of the same two parameters from knowledge of the seismoelectric
fields, but based on theoretical studies of electroseismic conversions stated by Pride (1994).

In the present paper we propose a Bayesian framework to analyze the information that can be recovered about
relevant model parameters of a glacial environment. Assuming a one dimensional geometry, we simulate the noiseless
data following the analytic expressions for the electric field and seismic waves obtained byMonachesi et al. (2018b).
The seismoelectric theoretical framework used in the forwardmodeling is the one presented by Pride (1994), broadly
used in seismoelectric studies (Garambois and Dietrich, 2002; Hu et al., 2007; Haines et al., 2007a,b; Hu and Gao, 2011;
Zyserman et al., 2012; Guan et al., 2013;Warden et al., 2012, 2013; Kröger et al., 2014; Bordes et al., 2015; Zyserman
et al., 2015; Gao et al., 2017a; Guan et al., 2017; Zyserman et al., 2017a). The probabilistic inversion of synthetic
data is tackled using two different approaches to estimate the distribution of relevant model parameters and their
uncertainties. On the one hand, we calculate the posterior pdf of eachmodel parameter computingmultidimensional
integrals. We numerically compute the latter bymeans of the Cuba library (Hahn, 2005), which offers a variety ofMonte
Carlo and deterministic methods. On the other hand, we solve the probabilistic inverse problem using aMarkov chain
Monte Carlo algorithm: the DiffeRential Evolution AdaptiveMetropolis (DREAM) (Vrugt et al., 2009). This is a highly
optimized algorithm that combines the capability ofMCMCmethods of ensuring convergence to the target distribution
(Tarantola, 2005) with features of Differential Evolution algorithms (Sambridge and Drijkoningen, 1992; Sen and Stoffa,
1992) which allow a proper scale and orientation of the proposal distribution employed to sample the posterior pdf.
This approach results in a collection of model parameters that follow the posterior pdf. Histograms of the marginal
distributions and the uncertainty estimates can be computed from such collection.

The paper is structured as follows: Section 2 comprises the formulation of the equations for the seismoelectric
problem in a glacial environment. Section 3 details themodel parameters we are interested in studying, and Section
4 explains how the synthetic data are computed. Section 5 presents the principles of Bayesian inference applied to
our problem, and the methodology used to compute the posterior marginal probabilities and the full posterior pdf
distribution using aMarkov chainMonte Carlo scheme. In Section 6we present themain results in terms of a sensitivity
analysis and the Bayesian inference with the aforementioned techniques. Finally, Section 7 outlines themain findings
and conclusions.

2 | FORWARD MODEL

Following Monachesi et al. (2018b) we assume a one-dimensional medium constituted by a single layer on top of a
half-space in contact at a given depth denoted by zb (see Fig.1). The top layer represents the ice body of the glacier, and
is assumed to be an elastic medium, while the half-space represents the glacier basement, which we assume to be a
porous medium fully-saturated with water. The seismic source of the system, located at the glacier surface is a shearing
force, parallel to the x axis acting on a horizontal infinite plane. Under these assumptions the source can only induce
displacements in the x direction, with amplitudes depending only on depth.

Themechanical equation that governs the wave propagation in the glacier, written in the space-frequency domain,
assuming an e i ωt time dependence, is given by (Aki and Richards, 2002):

−ω2ρiceux −G ice
∂2ux

∂z 2
= F s (ω)δ(z ), (1)
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whereω is the angular frequency, ρice andG ice stand for themass density and the shearmodulus of the ice composing
the glacier, andux is the displacement. The right hand side of eq. (1) represents the shearing source acting on the surface
(z = 0); F s (ω) is the shearing force per unit area and δ(z ) is the Dirac delta function.

In order to model the seismoelectric response, we assume that the net electric charge is zero and the magnetic
permeability is the one of the vacuum. With these assumptions, the electric andmagnetic fields in the glacier will satisfy
the following simplified form ofMaxwell’s equations:

−σiceEx −
∂Hy

∂z
= 0, (2)

∂Ex
∂z

+ i ωµ0Hy = 0, (3)

where Ex and Hy are the electric andmagnetic fields, respectively, σice is the electric conductivity of the glacier and
µ0= 4π × 10−7 NA−2 is the vacuummagnetic permeability. Note that the displacement currents are not accounted for
in eqs. (2) and (3); this is the common assumption for shallow seismoelectric surveys (Hu and Liu, 2002; Haines and
Pride, 2006; Bordes et al., 2015; Gao et al., 2017a; Guan et al., 2017). This form ofMaxwell’s equations is commonly
known asmagneto quasi-static approximation (MQS). It has been analyzedwithin the frame of seismoelectrics in the
last twomentioned references, and previously by other authors (Løseth et al., 2006; Rapetti and Rousseaux, 2014) in
more general contexts.

To model the seismoelectric response in the basement we use the equations derived by Pride (1994). If the
electroosmotic feedback is neglected in Biot’s equations, as it is usually assumed for frequencies that vary from 10Hz
to 1 kHz, range of interest for shallow seismoelectric surveys (tens to hundreds of meters) (Hu and Liu, 2002; Haines
and Pride, 2006;Warden et al., 2013; Bordes et al., 2015; Guan et al., 2017; Gao et al., 2017a), Pride’s equations can be
written as follows:

−ω2ρbus,x − ω2ρwuf ,x −Gb
∂2us,x

∂z 2
= 0, (4)

−ω2ρwus,x − ω2g0uf ,x + i ω
ηw
κ
uf ,x = 0, (5)

−σbEx −
∂Hy

∂z
= i ω

ηw
κ
L0uf ,x = jv , (6)

∂Ex
∂z

+ i ωµ0Hy = 0. (7)

In these equations, us,x and uf ,x are the average solid and relative fluid displacements respectively, ρb is the bulk mass
density, which can be computed as ρb = ρs(1 − φ) + φρw, being ρs the mass density of the solid grains constituting
the basement porous matrix, ρw the mass density of water and φ the porosity of the medium. Gb is the basement
rock matrix shear modulus, g0 the Biot’s low frequency inertial coupling coefficient, computed as g0 = F ρw (Santos
et al., 2004, 2005; Zyserman et al., 2012), where F is the formation factor given by F = φ−m̂ , being m̂ the cementation
exponent, ηw is the water viscosity and κ the permeability of the porous rock matrix. The right hand side in eq. (6)
is the electric current density, source of the electromagnetic signals, and can be referred to as the viscous current
density jv , whereas σbEx is the conduction current, being σb the electric conductivity of the basement. The coefficient
L0 is the electrokinetic coupling (Pride, 1994); it creates, in this model, the coupling between the seismic wave and
the electric andmagnetic fields. If this coupling is zero, there are no seismo-electromagnetic conversions. Within the
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seismic frequency band it can bewritten as (Pride, 1994;Warden et al., 2013; Bordes et al., 2015):

L0 = −
εwζ
ηwF

(
1 − 2 d

Λ

)
, (8)

where ζ is the zeta potential and εw is the permittivity of water, d the Debye length and Λ a geometrical parameter,
related to thematrix pore structure.

In order to solve the problem stated by eqs. (1)-(7) it is necessary to establish boundary conditions for the displace-
ments and the electromagnetic fields, both in the boundaries of the system (z = 0 and z → ∞) and at the interface
between bothmedia (z = zb). Once the boundary conditions are stated, the problem can be analytically solved taking
advantage of the decoupling of themechanical and electromagnetic equations; we first solve themechanical problem,
and then, the obtained solution is used to derive the final solutions for the electric and magnetic fields. Their final
expressions are given in the Appendix; the full derivation is detailed in (Monachesi et al., 2018b).

3 | MODEL PARAMETERS

Wefirst present the subsurfacemodel parameters that we are interested in characterizing and those we assume to be
known in advance. Then we describe the rock physics models published in the literature which we use to relate our
unknownmodel parameters to others needed to solve the forward problem. In the previous section we established that
both the glacier and the basement are homogeneous. As in a geophysical surveywe have direct access to the ice, we
consider known -and constant- all its relevant parameters (see values in Table 1). The ice shear modulus is computed as
G ice = v 2iceρice.

Therefore, we consider the basement parameters listed in Table 1 as the free ones (the ones to be determined by
an inversion procedure are in boldface). Other parameters, independent of the listed ones but considered to remain
constant, are the water viscosity ηw and the water electric permittivity εw. The water viscosity is not expected to
change significantly from the chosen value (see Table 1) due to the studied geological setting whereas the electric
permittivity could in principle be considered as a possible free model parameter. However, as it can be seen in Gueguen
and Palciauskas (1994, Fig. IX.7), for temperatures near and above 0 ◦C, εw remains almost constant. Consequently, we
considered εw to be constant, and used εw = 85ε0 (Gueguen and Palciauskas, 1994) in this work.
We turn now the attention to the non free parameters of themodel. For the basement electric conductivity σb, we used
Archie’s law (Archie, 1942;Mavko et al., 2009)

σb =
σw
F
, (9)

whereσw is the electric conductivity of the saturatingwater in the glacier basement, andF = φ−m̂ is the formation factor,
which expresses the reduction of the water conductivity due to the presence of the electrically isolating rockmatrix. As
described inMonachesi et al. (2018b), for water containing just dissolved NaCl, we can use σw = ∑

l=N a+,C l− (ez l )2b l N l ,
where e = 1.6 × 10−19 C is the electron electric charge, and z l is the ions’ valence; we used z l = 1 for both species.
The ions’ mobility b l and concentration N l , both dependent on the salinityC0, are calculated following Carcione et al.
(2003). Notice that the way in which we compute the bulk electric conductivity implies that the basement rockmatrix is
assumed to be clean, i.e., it does not contain a significant amount of clay. Hadwe considered otherwise, wewould have
used a corrected version, including the surface conductivity (Schön, 1996), for which several models exist (a couple of
them are discussed in Zyserman et al. (2017b)).
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To finish with, we analyze the electrokinetic coupling coefficient L0 in eq.(8), which depends on the non free
parameters ζ, d and Λ. We follow Pride (1994) and Santos (2009) for the treatment of their dependence on the free
model parameters. For the ζ potential we use

ζ = (0.008 + 0.26 log10(C0))
(
pH − 5
2

)
. (10)

In this work pH = 7 is employed. The parameter d , as wementioned above, is the Debye length, computed as

d−1 =

√√ ∑
l=N a+,C l−

N l (ez l )2
εwkT . (11)

Here k = 1.3807 × 10−23 J/K is the Boltzmann’s constant andT , the temperature; we use for z l and N l the same values
as for the water conductivity σb. Finally, the parameter Λ, which can be seen as a pore surface to volume ratio (Johnson
et al., 1987; Pride, 1994) is computed as

Λ = 2
√
F κ . (12)

4 | COMPUTATION OF THE SYNTHETIC DATA
The values of themodel parameters used to compute the synthetic data are listed in Table 1. Those not shown in the
table can be obtained from them using the formulas given or referenced above. Of course, at this stage we also need to
choose values for the free parameters, i.e. the ones we use in next sections in the inversion study. The chosen values
are referred to as the ”true values” and they are displayed between round brackets. Notice that when computing the
synthetic data we decided instead of assigning arbitrary values to the basement permeability κ and shear modulus
Gb, to use a rock physics model to obtain them. For the estimation of the basement solid matrix shear modulusGb we
useWalton’s model (Mavko et al., 2009), appropriate tomodel unconsolidatedmedia (Pride, 2005; Bordes et al., 2015;
Dupuy et al., 2016):

Gb =
1

10

[
3(1 − φ)2Ĉ 2P

πB2

]
, with B = 1

4π

(
1

Gs
+

1

Gs + λc

)
. (13)

In this equation, Ĉ is the coordination number, related to the packing of the spheres building the solid aggregate, P is
the hydrostatic pressure and λc is Lamé’s coefficient of the effective grain material, and is computed as λc = Ks − 2

3Gs ,
where Ks is the bulk modulus of the solid grains. In this work we consider Ĉ = 9. The hydrostatic pressure can be
computed as P = P0 + ρicegzb, being P0 = 101325 Pa the air pressure at the surface of the Earth and g = 9.81m s−2 the
gravity of Earth. TakingGs = 45GPa and Ks = 36GPa, representative for the shear and bulk moduli of quartz grains,
respectively (Mavko et al., 2009), we obtain, as displayed in Table 1, Gb = 0.477 GPa. To compute the value for the
basement permeability to be employed in the computation of the synthetic field data we use (Mavko et al., 2009)

κ =
1

72

(
Dq

φF

)2 φ3

(1 − φ)2
; (14)

in this model, referred to as Kozeny-Carman equation,Dq = 8× 10−5 m is the diameter of the quartz grains. Usingφ=0.3,
one obtains κ = 2.11 × 10−12 m2, as displayed in Table 1.
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Having all the model parameters set, we can turn our attention to the SH seismic source and the simulation of noisy
data. To calculate the time signature of the source F s (t ), we use a Ricker wavelet with peak frequency fpeak = 120Hz; its
peak amplitude, located at t = 8 × 10−3 s, is set so that themaximum amplitude of the force per unit area at the surface
is 1 Nm−2. Monachesi et al. (2018b) followed previous studies of shear wave sources (Krawczyk et al., 2013; Bordes,
2005) to compute a source amplitude close to actual field values. In that case the aimwas to test the feasibility of the
seismoelectric method by estimating theminimum amplitude that would be recorded at the surface, for which a realistic
amplitude value is crucial. In the present studywe focus on testing the feasibility of retrieving themodel parameters
from the data. We set a recording time of 1.024 s, and Fourier transform the source using a sampling period of 0.5
×10−3s to take Nt =2048 samples in the frequency domain. The seismic and electromagnetic responses are computed
in the frequency domain, and inverse Fourier transformed to recover them back in the time domain (see Appendix). The
number of samples is chosen as a power of 2 in order to efficiently employ the Fast Fourier Transform (FFT) when going
to the frequency domain and its inverse tomove backwards to the time domain. In Fig. 2 we show the time signature
of the source, and the computed time traces for solid displacement and electric field at the surface. We set z = 0 and
for each frequency, we use eq.(31) to get ux (0) and eq. (36) to get Ex (0). Afterwards, we inverse Fourier transform
them and obtain the traces displayed in the figure. We do not employ themagnetic field in the inversion because, as
stated inMonachesi et al. (2018b), its amplitude at the surface is very small compared to its amplitude below the glacier
basement, and thus very difficult to bemeasured.

The synthetic data d = (dE , dS ) are computed according to the following expressions

dE ,i = (1 + pE ri )d̂E ,i , (15)
dS ,i = d̂S ,i + pS ri . (16)

In this equations, d̂E ,i is the i -th component of the vector containing theNt time samples of the noise-free computed
electric field and d̂S ,i the corresponding component for the noise-free computed solid displacements. ri is the i -th
component of a Nt -dimension random noise vector following a zero mean normal distribution, while pE and pS are
positive factors controlling the amplitude of the noise we want to add to the noiseless electric and seismic signals,
respectively. Note that the noise added to the electric and seismic noise-free data, nE ,i and nS ,i , are different. For the
electric case we assume nE ,i = pE ri d̂E ,i , i.e, the noise is proportional to the signal so its amplitude is controlled by d̂E ,i
and pE , while for the seismic case nS ,i = pS ri , i.e, the noise is independent from the signal (Chen et al., 2007). Oneway
to quantify the noise level in the seismic case is bymeans of the signal-to-noise ratio (SNR) (Robinson and Treitel, 2000)
which can be defined as the ratio of the squared l2- norms of the clean data and the noise, i.e,

SNR = | |d̂S | |
2
2

| |nS | |22
=
| |d̂S | |22
p2
S
| |r̂ | |22

, (17)

whichmeans that pS can be chosen to yield a predefined value for SNR. The noise term corresponding to both electric
and seismic signals can be thought as the error of themeasurements simulated by the synthetic data set. Given the way
these are calculated, the errors result to be uncorrelated.

5 | BAYESIAN INFERENCE OF RELEVANT MODEL PARAMETERS
The resolution of the inverse problem aims at determining the model parameters presented before, together with
their uncertainties. Following a probabilistic approach implies that, instead of searching an exact model, we intend to
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characterize the full posterior pdf of themodel parameters. This function is related to the previous knowledge about
themodel, and to the pdf of the data set given a certain model through Bayes’ theorem:

p(m |d) = p(m)p(d |m)
p(d) , (18)

where p(m|d) is the posterior pdf of the model parameters conditioned on the data set; p(m) is the prior pdf, which
accounts for the a priori information of themodel parameters; p(d |m) is the probability of the data conditioned on the
model parameters, which also appears in the literature as the likelihood function; and p(d) is the pdf of the data, also
known as evidence, which is constant for a fixedmodel parametrization. Since the present work involves such type of
parametrization, we can dismiss the evidence and, instead of using the equality in eq. (18), we employ a proportional
relationship to obtain the posterior pdf:

p(m |d) ∝ p(m)p(d |m). (19)

5.1 | Marginal distributions via numerical integration
As a first approach to characterize the uncertainty of themodel parametersm in a Bayesian framework, we attempt to
calculate their marginal posterior distributions. Following Brandt (1989), let f (m) be the joint probability density ofM
variablesm = (m1,m2, ...,mM ). Themarginal distribution of a single parametermr is given by:

gr (mr ) =
∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

f (m) dm1 dm2 · · · dmr−1dmr+1 · · · dmM (20)

and it can be interpreted as the probability density of mr , accounting for the uncertainty of the remaining model
parameters. Then themarginal distribution gr (mr ) can be used to compute themean µr and variance σ2r ofmr as

µr =

∞∫
−∞

mr gr (mr )dmr , σ2r =

∞∫
−∞

(mr − µr )2gr (mr )dmr . (21)

In our case the vector of model parameters, which refers to the glacier depth and basement properties, is characterized
as follows:

m = (φ, zb, log10(Gb), log10(κ), log10(C0)). (22)

Instead of working with the proper values for the bulk modulus, the permeability and the salinity, the inversion and the
previous sensitivity analysis are performed in log10 scale. This is because these parameters present order-of-magnitude
variations in nature, and so it is more reasonable to explore the space of model parameters using a log10 scale (Tarantola,
2005).

We assume aGaussian behaviour of the data errors and uniform prior distributions for themodel parameters (i.e.
Jeffreys priors for log10 variables, Tarantola (2005)). Thus, p(m |d) has the form:

p(m |d) =V exp(−Φ
2
), (23)
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whereV is a normalization factor andΦ is the datamisfit, whose explicit formwill be given in Section 6.2.
In this way, if we consider for example the porosity, its marginal distribution can be obtained according to the eq.(21) as

gφ (φ) =

zb,max∫
zb,min

Gb,max∫
Gb,min

κmax∫
κmin

C0,max∫
C0,min

p(m |d) dzb dGb dκ dC0, (24)

where theminimum andmaximum values of the integrals result from the non-zero limits of the corresponding prior
distributions. Notice that we can compute the coefficientV appearing in eq. (23) by employing the condition that the
integration of p(m |d) over the whole parametric space is equal to one. Therefore,

V −1 =

φmax∫
φmin

zb,max∫
zb,min

Gb,max∫
Gb,min

κmax∫
κmin

C0,max∫
C0,min

exp
(
−Φ
2

)
dzb dGb dκ dC0 dφ, (25)

and themean value and variance are given by

µφ =V
−1

φmax∫
φmin

φgφ (φ)dφ, σ2φ =V
−1

φmax∫
φmin
(φ − µφ )2gφ (φ)dφ. (26)

Themean values and variances of the other model parameters are obtained in the sameway.

To accomplish this task, we resort to multidimensional numerical integration, which is not easy to implement (Press
et al., 2007). A straightforward generalization of one dimensional numerical integration leads to very long computing
times even for integrals in low dimensions as the ones we are dealing with. We therefore employ themultidimensional
integration library Cuba (Hahn, 2005), which offers four different approximationmethods to compute the integrals. We
tested all of them, and because of its better performance we decided to work with the Divonne routine.

5.2 | MCMC inversion

Analytical solutions to eq. (18) are seldom possible. MCMC algorithms can be used to sample the posterior pdf by
searching through the parameter space (Tarantola and Valette, 1982; Mosegaard and Tarantola, 1995; Sambdridge
andMosegaard, 2002; Ter Braak, 2006; Vrugt et al., 2009; Rosas-Carbajal et al., 2015). Monte Carlo methods draw
samples of the desired distribution andMarkov chains guide properly this sampling in an efficientmanner. Under certain
conditions, Markov chains become independent from the initial state and, after a burn in period, they converge to its
stationary distribution (Gilks et al., 1995). Therefore, we have to construct a Markov chain such that its stationary
distribution is the one we are seeking. There are many ways to accomplish this task, but in general the Metropolis-
Hastings algorithm is used. Briefly, given the current state of the chainmt , a candidate pointm∗ is drawn from a proposal
distribution which then is acceptedwith probability α :

α(mt |m*) = min
{
1,
π(m*)q (mt |m*)
π(mt)q (m* |mt)

}
, (27)
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where π(·) is the target distribution and q (·) is the proposal distribution. If the candidate point is accepted, thenmt+1 =
m∗ . Otherwise, the chain remains in the current state (Gilks et al., 1995). We employ an AdaptiveMetropolis scheme, in
which the proposal distribution is updated according to the samples that are continuously drawn from the posterior
(Hassan et al., 2009). This scheme, after a certain amount of iterations, will produce samples that follow the posterior
distribution we are looking for. Since we are using uniform priors, the acceptance rule can be calculated in terms of the
ratio of the likelihoods of two states (Mosegaard and Tarantola, 1995).

TheMCMC algorithm is implemented through the DiffeRential Evolution AdaptiveMetropolis (DREAM) algorithm
(Vrugt et al., 2009), which efficiently copes with non-linear problems. A remarkable feature of this algorithm is that it
uses several Markov chains in parallel to converge to the target distribution. The information recovered by the chains is
mixed using a formulation that incorporates properties of genetic algorithms. The following equation describes such
behaviour:

zi = xit−1 + γ
(Xrj
t−1 − Xr2t−1

)
+ ε, r1 , r2 , i , (28)

where zi is a sample of the i-th chain, which combines a sample of the previous iteration of the same chain xit−1 with a
linear combination of members of the rest of the chainsXr1

t−1. The constant γ sets the jump rate with which the chains
sample different regions of the parameter space. This allows to automatically tune the scale and orientation of the
proposal distribution. ε is the perturbation of ergodicity, which controls howmuch a state of the chain depends on the
previous one. The choice of the different values follows the criterion stated in Vrugt et al. (2009), where the optimal
value is given by the expression γ = 2.38/√2δ,where δ is the dimensionality of the problem, which refers to the number
of parameters desired to be constrained in the inversion. This quotient comes from the properties of RandomWalk
Metropolis and this factor is appropriate for Gaussian distributions. Finally, the convergence of the chains to the target
distribution is expected to be reachedwhen the Gelman-Rubin factor (R̂ ) is less than 1.2 (Gelman et al., 1992).

6 | RESULTS

We start by briefly describing the synthetic seismic and electric signals produced or electrokinetically induced respec-
tively by the seismic source. We follow by studying the sensitivity of the data to themodel parameters andwe end this
section by analyzing the outcome of the chosen inversionmethods.

6.1 | Forwardmodel: Seismic and electric data
The time signature of the noiseless solid displacement computed at the surface (Fig. 2) exhibits four events evenly
spaced in time; three of them are clearly observable in the figure and the last one is a tiny hump. The first signal arrives at
the verymoment the source energy is released, because it corresponds to the direct wave. A second arrival occurs 0.22
s after the detonation of the source. This is the time needed by the wave in its way forth and back between the surface
and the glacier-basement interface (the velocity of the seismic wave is 1800m/s and zb = 200m), corresponding to a
first reflection at the interface. The third event arrives at twice the time of the second one, corresponding to a second
reflection at the glacier-basement interface. Finally, the fourth arrival is recorded at a time 0.66 s, and corresponds to a
third reflection. Note that the amplitudes of the consecutive events are diminishing with time. This is because when the
wave hits the interface, part of its energy is released to the basement as a transmitted wave, while the remaining energy
travels back to the surface as a reflected wave. The amplitudes of both reflected and transmitted waves at the n-th
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incidence at z = zb are given by eqs. (10) and (12), respectively.
Turning now the attention to the electric field (Fig. 2(c)), it can be noticed that three events are recordedwithin

the considered timewindow. The first one arrives at 0.11 s, which is half the arrival time of the second seismic event.
This recorded arrival is due to an interface response (IR) producedwhen the seismic wave hits the interface. As it was
studied in Monachesi et al. (2018b) the source of this IR is the jump in the electric current density occurring at the
interface between the glacier and its basement (the current density is zero at the ice because of the absence of fluids,
and is different from zero at the glacier basement). Once the seismic wave hits the interface, the produced IR travels to
the surface at a speed given by√

2ω/(µ0σ); this is approximately 105 m/s at the source peak frequency, much higher than
that of the seismicwave. This explainswhy the observed arrival time for the first event is half the time of the first seismic
arrival. Regarding the second and third events, it is now clear from simple inspection of Fig. 2 that they respectively
correspond to IR’s produced by the second and third incidences of the seismic wave over the interface. Note that as
in the case of the solid displacement, the electric field shows an amplitude decay for the consecutive events. This is
because the amplitude of the electric field is proportional to the amplitude of the electric current density (see eqs. (36)
and (40)) which in turn is proportional to the amplitude of the solid displacement.

6.2 | Sensitivity analysis in terms of datamisfits
To evaluate the possibility of retrieving the relevant model parameters through data inversion, we study their influence
on the seismic and electric datamisfits. We choose an l2-normmeasure for the electric field and solid displacements
data misfits, which is adequate for Gaussian errors (Rosas-Carbajal et al., 2014, 2015). The seismic and electric misfits
are:

ΦE =

Nt∑
i=1

(
dE ,i − d̂E ,i
pE dE ,i

)2
, ΦS =

Nt∑
i=1

(
dS ,i − d̂S ,i

pS

)2
, (29)

respectively. The denominators inΦE (Φs ) are their corresponding standard deviations of the i−th electric field (solid
displacements) errors. Themisfit for the joint problem is

Φ = ΦE + ΦS , (30)

which is replaced in eq. 23 to calculate p(m|d). To study the sensitivity of each relevant parameter, we calculate the
misfit between the synthetic data and the forwardmodel response computed using the truemodel parameters, except
for the parameter chosen to perform the analysis.

First of all, we evaluate howmany events are appropriate to be considered in the sensitivity analysis and conse-
quently in the inversion study. It is clear that n cannot be higher than 3, because the third event has already a very small
amplitude (Fig. 2(b)). Moreover, the seismic and electric traces with n = 1 have already all the physical information we
want to recover. However, increasing the number of events provides a larger data set, which from a statistical point
of view reinforces the probabilistic approach, according to the law of large numbers (Jeffreys, 1998). This is why, we
choose to use the traces with three events, which leads to a data set of N = 2Nt = 4096.

We now determine through amisfit analysis whether the seismic and electric data are sensitive or not to changes in
themodel parameters. We perform this study by varying each one of them at a time over a predefined prior domain,
while leaving the others fixed and equal to the true values. The best scenario is that the log-misfits exhibit a clear and
sharp minimum around the true value for each parameter. For the electric data, we employed three percentages of
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error to corrupt the true model response: 5%, 10% and 15%. In the seismic case, we generated synthetic data sets
using SNR=10, 20 and 50. The electric misfit exhibits a sharpminimum near the true value for the porosity parameter,
whereas the seismic data misfits present smoothminima near the true value of porosity for the three SNR cases (Fig. 3).
Both the electric and seismic misfit show a sharpminimum near the true value of the depth (Fig. 4), though the curves
differ considerably from the behavior as a function of the porosity, presenting an oscillatory behaviour. The electric and
seismicmisfits also present sharpminima as a function of the shearmodulus in all cases (Fig. 5). The seismic caseminima
are a little bit smoother than the electric ones, but are still very distinctive. The electric misfit show sharpminima near
the true value of the permeability, while the seismic misfit remain constant for permeabilities lower than 10−10 m2 (Fig.
6). This fact is correlated with the results of the inversion of seismic data (Section 6.4). Finally, themisfit analysis of the
salinity is only referred to the electric data because the physics of the problem do not relate the seismic response to this
parameter. There are also sharpminima near the true value of the concentration (Fig. 7).

We can conclude that the synthetic data are sensitive to thewhole parameter set. In general, themisfits become
larger for the lowest percentage of error in the electric data and the highest SNR in the seismic data (both cases
represent the less realistic synthetics). This fact is key for the election of the synthetic set for the inversion, since the
numerical computation of themarginal distributions have problems dealing with largemisfits. We select the electric
data with an error of 10% of the amplitude of the response of the truemodel and the seismic data with an SNR=20..

6.3 | Multidimensional numerical integration
Wefirst attempt to obtain the posterior marginal distribution of eachmodel parameter by integration, and from them
the resulting means and standard deviations. The computation of themarginal pdfs (see eq. (24) for the porosity case) is
a numerically challenging task, evenwith a dedicated software as the onewe employ.

Due to the large values of themisfitΦ, the computation has to be performed in quadruple precision in order to avoid
the integrand to be identically zero. Indeed, as theminimummisfit value isΦ = 4096, the highest value the integrand of
themarginal pdfs can take is exp(−2048), i.e., approximately 3.7 × 10−890, a much lower value than the inferior limit the
double precision allows to represent. Furthermore, a simple inspection of Fig. 3 to Fig. 7 shows that themisfit takes
values higher than 104 but for a small interval enclosing the true values. Wemention this because beyond this value the
integrand is taken as zero, even in quadruple precision. Thus, in order to be able to compute themarginal pdfs, i.e., the
numerical algorithm perform an appropriate sampling near the true values, wewere forced to restrict the integration
limits to rather small intervals around them, which is equivalent to considering small prior pdf ranges for p(m).

Having clarified this point, we show in Fig. 8 the obtained posterior marginal pdfs of themodel parameters. They
were obtained following a procedure that we here describe for the porosity, but is similar for the whole parameter
set. The calculations follow this scheme: we choose 20 porosity values equally distributed among the prior limits. We
compute the integral given in eq. (24), i.e. a four dimensional integral, using the Divonne routine from the Cuba library.
Afterwards, we estimate the reciprocal of the normalization factorV , by simply applying a one dimensional Simpson’s
rule using the obtained discrete marginal distribution values as ordinates, and the chosen values as abscissae. This
result is used to normalize the set of calculated gφ (φi ), i = 1, . . . , 20, which we display in Fig. 8(a). Finally, the mean
value µφ and the variance σ2φ (see eq.(26)) are in turn computed by again applying Simpson’s rule in one dimension.
In Table 2 we display the mean values and standard deviations obtained for all the model parameters. The results
obtained by this methodology are, we deem, deceptively promising. Themarginal distributions are very narrow and
their peaks are very close to the respective true values, which is reflected in the computed standard deviations. This is
particularly true for zb ,, for which just one value of gzb (zb,i ), i = 1, . . . , 20 is not zero. However, these results are at least
a consequence of having reduced the integration limits to small intervals around the true values. We consider that this
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fact alone is enough to explore another methodology to characterize themodel parameters uncertainty. In addition, the
computational cost of the discussed numerical integrationmethod is not low, because to compute eachmarginal at least
106 forward problem computations are needed.

6.4 | Inversion via the DREAMalgorithm
Wenow evaluate the possibility of retrieving the full posterior pdf of themodel parameters using theDREAMalgorithm.
We perform the inversion of both seismic and electric data sets separately and jointly. For all cases, we use three parallel
Markov chains, such that the model proposals of each chain are created accounting for the current state of the two
others (see eq. 28). The outcome of this process is a set of models that follow the posterior pdf. To represent this pdf, we
display histograms of the last 50% of the chains states, once convergence has been achieved. For all cases, we employed
uniform priors: [0.15,0.45] forφ, [150,250] for zb , [6,9] for log10(Gb ), [-14,-9] for log10(κ) and [-4,-1] for log10(C0). The
last parameter is only considered in the inversion of the electric and the seismoelectric data, as referred in Section 6.2.

We first present the results concerning the inversion of seismic data alone. Figs. 9(a)-(d) display how the chains
sample the parameter space (to clarify the curves, we only display a single chain but the behaviour is similar to the
remaining two chains). The expected result is that the process of sampling eventually converges near the true value of
each parameter. We tested different values of γ, around the optimal value of 0.85 (corresponding to δ = 4, the number
of parameters involved) in order to improve the exploration of the parameter space. In the case ofφ, the chains sample
the complete model space defined by the prior distribution without converging to a smaller uncertainty range (Fig.
9(a)), despite the relatively high number of iterations employed (8×105 iterations). A straightforward convergence of
the chains near the true value can be observed for zb (Fig. 9(b)), and the path of the chains forGb has a fairly similar
behaviour (Fig. 9 (c)), except that the chains oscillate around the true value in the end, but with a small amplitude. Finally,
the behaviour of κ is similar to that ofφ (Fig. 9(d)), that is, the inversion of seismic data is not able to constrain this value
further than the uniform prior pdf established. Besides collecting the sets of model parameters accepted, the algorithm
stores the value of p(m |d) of each accepted set of parameters (see eq.23). This value is expected to be approximately
−Nt /2 (-1024 in this case) for models that reproduce statistically the data inverted. The chains indeedmove around this
value (Fig. 9(e)).

We evaluate the results of the inversion through histograms of themarginal distributions of themodel parameters
(Fig. 10). These histograms are built using the last 50% of the chains shown in Fig. 9, that is, only after the chains are
considered to have converged according to the criteria by Gelman & Rubin (Gelman et al., 1992). In this way, histograms
are representative of the marginal posterior pdf of each parameter, accounting for the uncertainty of all the other
parameters considered (see Eq 20). zb andGb are the best resolved parameters of this inversion (Figs. 10(b) and (c)
respectively). Their histograms are rather bell-shaped, with peaks near the truemodel values. Unlike the previously
mentioned parameters, φ and κ are not well resolved (Figs. 10(a) and (d) respectively). This is evident from their
respective histograms, nearly flat and with maxima far from the true values. In conclusion, the only reliable parameters
in this inversion case are zb andGb .

The inversion of the electric data led to significantly improved results. In this case, the optimal value of γ is 0.75
(corresponding to δ = 5), but the inversion worked with γ = 2, using 8×105 iterations as in the seismic case. Since
the results of the inversion of the electric data set do not differ significantly from the joint case, we only display the
histograms of themodel parameters. These parameters were all constrained in this inversion case (Figs. 12(a)-(e)). All of
them are fairly bell-shaped and their maxima are very close to the true values. In Table 2 we compare the parameters’
estimates values and uncertainties to the true values used to build the synthetic data. Here it can be clearly observed
how the inversion of electric data alone performs better that the corresponding of seismic data alone. Besides being
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able to retrieve onemoremodel parameter, themean values estimated are closer to the true values, and the uncertainty
ranges systematically smaller. For example, the true value of the permeability expressed as log10(k[m2]) is -11.68. The
inversion of seismic data results in the range of [-12.49,-9.69] of 68% probability (i.e., one standard deviation), whereas
in the electric case the range is [-11.76,-11.58].

Finally, we consider the joint inversion of seismic and electric data. This case required 9×105 iterations and a γ value
of 0.5, smaller than in the electric case and closer to the optimal value of 0.75mentioned above. Figs. 11(a)-(e) show the
chains searching through the parameter space. In the case ofφ, the chains oscillate around the true value with a high
amplitude but without covering the entire range defined in the prior distribution (Fig. 11(a)). The chains for zb exhibit,
as in the seismic case, an immediate convergence to the true value (Fig. 11(b)). Gb , κ and C0 display tiny oscillations
around the true value (Figs. 11(c), (d) and (e)), which implies that the chains managed to constrain the parameter space
into a small range within the prior pdf. The values of p(m |d) end up being close to -2048, which is half the amount of
data points (Fig. 11(f)), as expected.

The histograms that represent the marginal distributions of the model parameters are, as in the electric case
inversion, fairly bell-shaped andwithmaxima almost coincident with the true values (Fig. 13). Taking a look at Table
2, themean values of all themodel parameters match the true values. Interestingly, adding the seismic data in a joint
inversion scheme contributes to further constraining the uncertainty ranges of themodel parameters. The uncertainty
range of the permeability, following the analysis of the separate inversions, is further reduced in the joint case, reaching
the interval [-11.76,-11.6] for the uncertainty ranges of the whole parameters). This result reinforces the advantages of
seismoelectric data over seismic data stated in Section 1 (Mahardika et al., 2012;Mahardika, 2013). It is clear that the
electric data alone already provide a great improvement in the inversion results, but the joint case is able to slightly
improve the determination of the uncertainties of the parameters.

7 | CONCLUSIONS

Wehave studied the seismoelectric response to a SH seismic source deployed on top of a glacier, and by solving the
inverse problemwith a probabilistic approach, wewere able to analyze the feasibility of recovering relevant geophysical
and hydrogeophysical information, such as glacier depth, along with porosity, permeability, and bulk shearmodulus of
the basement, as well as the salinity of the water saturating the rock. We performed a response sensitivity analysis to
these relevant parameters by studying the datamisfits, and observed that they were good candidates to be employed as
free parameters in an inversion study.

The first attempt to perform the inversion was carried out bymeans of multidimensional integration, which allowed
us to obtain marginal distributions of the model parameters. This was successful to a certain extent, because the
integration range does not reflect a prior able to properly explore the parameter space. This is related to the value
of the misfits, which have at least an order of magnitude of 103. The exponential of such numbers is very difficult to
calculate even in quadruple precision without obtaining a null result. Another drawback is that obtaining amarginal
distribution curve in a very small portion of the prior demands a huge number of computations of the forwardmodel
(106 for each parameter).

Given the limitations encountered with numerical integration, we performed a Bayesian inversion applying an
MCMC algorithm. This allowed us to work with the electric and seismic set separately and jointly and to obtain
histograms of themarginal distributions of themodel parameters in each case. In accordance towhat was observed
in the sensitivity analysis, the inversions were able to retrieve the relevant model parameters (with exception of the
porosity and the permeability in the seismic case). The inversion of electric data alone performed better than that of the
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seismic data alone, and the joint inversion of both data sets resulted in the best estimates of all model parameters, in
terms of mean values closer to the true ones and also in uncertainty ranges that were smaller. Each case demanded
nomore than 9 × 105 iterations (forward computations), which comparedwith the total of 5 × 106 evaluations of the
forwardmodel of the numerical integrationmakes it a valuable tool to characterize glacier basement properties, with a
priori information that does not require a significant closeness to the true values. Therefore, wewere able to retrieve the
parameters that characterize the basement properties of a glacier environment with BayesianMonte Carlo inversion,
and the uncertainty estimates are reasonable to encourage field work in this direction. This is a promising result that
ratifies the importance of combining geophysical methods to study improve the geophysical and hydrogeophysical
characterization of glacial areas.
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TABLE 1 Values of model parameters used in the present study. Those not shown in this table can be obtained from them
using the formulas given or referenced in this work. Parameters displayed in boldface are the inversion study free ones, their
constant values between round brackets -the referred to as "true values"- are the ones used to compute the noiseless synthetic
field data. Notice that, as explained in Section 3, the true values for κ andGb are computed in terms ofφ from rock physicsmodels. Values marked with a ? symbol are taken from Collins et al. (2016), those marked with a ‡ symbol are given in Petrenko
andWhitworth (1999). The vacuum permittivity is taken to be ε0 = 8.85 × 10−12 Fm−1.

Model parameters
Glacier ice

Density, ρice [kg m−3] 900? S-wave phase velocity, vice [m s−1] 1800?
Electric conductivity, σice [S m−1] 10−5‡

Glacier basement
Porosity,φ (0.3) Water mass density, ρw [kg m−3] 1000
Cementation exponent, m̂ 1.35 Water viscosity, ηw [Pa s] 1.7×10−3
Mass density of the solid grains, ρs [kg m−3] 2600 Salinity,C0 [Mol/l] (5 ×10−3)
Permeability,κ [m2] (2.11 × 10−12) Permitivity of water, εw [F m−1] 85 ε0
Matrix shearmodulus,Gb [Pa] (4.77 × 108) Temperature,T [K] 273
Top depth, zb [m] (200)
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TABLE 2 Mean value µ and standard deviation σ for the five random variables considered, obtained by means of numerical
computation of the integrals in eq. (26), columns three and four, and using the DREAM algorithm, single seismic inversion
-columns five and six-, single electromagnetic inversion -columns seven and eight- and joint inversion -columns nine and ten.

Numerical integration DREAM
Seismic inversion Electric inversion Joint inversion

Variable True value µ ± σ µ ± σ µ ± σ µ ± σ

φ 0.3 0.3±8 × 10−4 0.29±0.093 0.31± 0.046 0.3 ± 0.038
zb [m] 200 200± 0.0 200± 0.004 200 ± 0.0001 200 ± 0.0001
log10(Gb[Pa]) 8.68 8.7±3 × 10−39 8.67 ± 0.031 8.68 ± 0.015 8.68 ± 0.012
log10(κ [m2]) -11.68 11.78± 5 × 10−12 -11.09 ± 1.4 -11.67 ± 0.09 -11.68 ± 0.076
log10(C0 [Mol/l]) -2.3 -2.29± 2×10−10 — -2.28 ± 0.08 -2.295 ± 0.072
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ice

F s

z

0

zb

x

basement

F IGURE 1 Schematic representation of the one-dimensional system considered in this study. The ice body is
assumed to be an elastic medium, while the porous basement is treated as a poroelastic medium.
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F IGURE 2 (a) Time signature of the shearing force F s (t ) employed as source, (b) the solid displacement ux (t ) and
the electric field response Ex (t ), both computed at the surface (both (b) and (c) are the noiseless data with which the
synthetic data are computed).

Page 20 of 38

EAGE Publications B.V., PO Box 59, 3990 DB, Houten, The Netherlands

Geophysical Prospecting Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Geophysical Prospecting Proof for Review
MACCHIOLI-GRANDE ET AL. 21

F IGURE 3 Misfits computed as a function of the porosityφ. Fig. (a) displays the electric contribution to the total
misfit, for three percentages of error in the electric data. Fig. (b) shows the seismic misfits due to three signal-to-noise
ratios in the seismic data. Both the seismic and electric traces comprise all time samples, Nt=2048
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F IGURE 4 Misfits computed as a function of the depth of the top of the basement zb. Fig. (a) displays the electric
contribution to the total misfit, for three percentages of error in the electric data. Fig. (b) shows the seismic misfits due
to three signal-to-noise ratios in the seismic data. Both the seismic and electric traces comprise all time samples,
Nt=2048
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F IGURE 5 Misfits computed as a function of the basement rockmatrix shear modulusGb. Fig. (a) displays the
electric contribution to the total misfit, for three percentages of error in the electric data. Fig. (b) shows the seismic
misfits due to three signal-to-noise ratios in the seismic data. Both the seismic and electric traces comprise all time
samples, Nt=2048
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F IGURE 6 Misfits computed as a function of the permeability κ . Fig. (a) displays the electric contribution to the
total misfit, for three percentages of error in the electric data. Fig. (b) shows the seismic misfits due to three
signal-to-noise ratios in the seismic data. Both the seismic and electric traces comprise all time samples, Nt=2048
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F IGURE 7 Electric misfit computed as a function of the water salinity, for three percentages of error in the electric
data. We don’t display the seismic misfits, because they are just constants, as expected. The electric trace comprises all
time samples, Nt=2048.
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F IGURE 8 Marginal pdf, computed following the procedure described in Section 6.3 for (a) porosity, (b) glacier
depth zb , (c) log10 of basement shear modulus, log10 of saturating water salinity, log10 of permeability. Notice that the
considered integration intervals are: [.28,.32] forφ, [195,205] for zb , [8.2,9.2] for log10(Gb ), [-2.6,-1.9]for log10(C0) and
[-12.2,-11.3] for log10(κ).
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F IGURE 9 A single chain represent the search through the prior of the porosity (a), the depth (b), the bulk modulus
(c) and the permeability (d) for the inversion of seismic data. Figure (e) shows the convergence of log(p(m|d)) (for the
three chains in color blue, red and green) to the expected value −Nt /2, denoted by the solid horizontal black line.
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F IGURE 10 Histograms of the basement porosity (a), the depth (b), the bulkmodulus (c) and the permeability (d) for
the inversion of seismic data. The red cross indicates the true value for each parameter.
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F IGURE 11 Figures (a) - (e) display the convergence of the chains for each parameter, for the joint inversion (each
chain is represented by the colors blue, red and green). The chains move around the prior defined for each parameter.
Figure (f) shows the convergence of log(p(m|d)) to the expected value −N /2, denoted by the solid horizontal black line.
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F IGURE 12 Histograms of the basement porosity (a), the depth (b), the bulk modulus (c), the permeability (d) and
the salinity (e) for the inversion of electric data. The red cross indicates the true value for each parameter.
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F IGURE 13 Histograms of the basement porosity (a), the depth (b), the bulk modulus (c), the permeability (d) and
the salinity (e) for the inversion of seismoelectric data. The red cross indicates the true value for each parameter.
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APPEND IX : F I NAL SOLUT IONS FOR u x , E x AND H y .

The final solution for the solid displacement ux is given by (Monachesi et al., 2018b):

ux (z ) =

− F s

i λiceGice e
i λicez +∑∞

n=1U
R ,zb,(n)
x e−i λice(z−zb) +∑∞

n=1U
R ,0,(n)
x e i λicez , 0 ≤ z ≤ zb,∑∞

n=1U
(n)
s,x e

i λb(z−zb), z ≥ zb,
(31)

where:

U
R ,zb,(n)
x =

i F s (λiceG ice − λbGb)ne i (2n−1)λbzb
λiceG ice(λiceG ice + λbGb)n

, (32)

U
R ,0,(n)
x =

i F s (λiceG ice − λbGb)ne i2nλicezb
λiceG ice(λiceG ice + λbGb)n

. (33)

U
(n)
s,x =

2i F s (λiceG ice − λbGb)(n−1)e i (2n−1)λicezb
(λiceG ice + λbGb)n

, (34)

In these equations, λice and λb are the S-wave seismic wave numbers of the glacier and basement, respectively, and are
given by:

λice = ω
√
ρice
G ice
, λb = ω

√
1

Gb

(
ρb −

ρ2w
g0 − i ηw/(κω)

)
, (35)

The summation appearing in eq.(31) is made over the n-th reflection/transmission of the seismic wave at z = zb.
The electric andmagnetic fields are given by:

Ex (z ) =


Aicee−i k icez + B icee i k icez 0 ≤ z ≤ zb,

Abe−i kbz + Bbe i kbz −
k 2be i λb(z−zb)
(k 2b−λ2b)σb

∑∞
n=1 J

(n)
v z ≥ zb .

(36)

Hy (z ) =


k ice
ωµ0

Aicee−i k icez − k ice
ωµ0

B icee i k icez 0 ≤ z ≤ zb,
kb
ωµ0

Abe−i kbz − kb
ωµ0

Bbe i kbz − i λbe i λb(z−zb)
k 2b−λ2b

∑∞
n=1 J

(n)
v z ≥ zb .

(37)

The coefficients k ice = √
−i ωµ0σice and kb = √

−i ωµ0σb are the electromagnetic wave numbers of ice and basement,
respectively. J (n)v is the amplitude of the n-th current density originated at the n-th transmission of the seismic shear
wave at z = zb, and is given by:

J
(n)
v =

ω
ηw
κ L0ρw(

g0 − i ηw
ωκ

) 2F s (λiceG ice − λbGb)(n−1)e i (2n−1)λicezb(λiceG ice + λbGb)n
, (38)
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Finally, the coefficientsAice ,B ice ,Ab , andBb are complex constantswhich are determined by imposing proper conditions
for the fields at the contact between bothmediums and at the boundaries of the system. These constants are given by:

Aice = B ice =
k 2b(λb − kb)−1

2 [k ice sinh(i k icezb) + kb cosh(i k icezb)]σb
∞∑
n=1

J
(n)
v , (39)

Ab =
k 2b [k ice sinh(i k icezb) − λb cosh(i k icezb)] e i kbzb
(k 22 − λ

2
2) [k ice sinh(i k icezb) + kb cosh(i k icezb)]σb

∞∑
n=1

J
(n)
v , (40)

Bb = 0. (41)

Once the fields ux (z ,ω), Ex (z ,ω) and Hy (z ,ω) are computed for a given depth z , the time variation of these fields is
obtained by the inverse Fourier transform.
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