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Finite-dimensional, inviscid equations of hydrodynamics, obtained through a Fourier-Galerkin projection,
thermalize with an energy equipartition. Hence, numerical solutions of such inviscid equations, which typically
must be Galerkin-truncated, show a behavior at odds with the parent equation. An important consequence of this
is an uncertainty in the measurement of the temporal evolution of the distance of the complex singularity from
the real domain leading to a lack of a firm conjecture on the finite-time blow-up problem in the incompressible,
three-dimensional Euler equation. We now propose, by using the one-dimensional Burgers equation as a testing

ground, a numerical recipe, named fyger purging, to arrest the onset of thermalization and hence recover the
true dissipative solution. Our method, easily adapted for higher dimensions, provides a tool to not only tackle
the celebrated blow-up problem but also to obtain weak and dissipative solutions—conjectured by Onsager and

numerically elusive thus far—of the Euler equation.

DOI: 10.1103/PhysRevResearch.2.033202

Introduction. Nonlinear, partial differential equations of
hydrodynamics, such as the inviscid one-dimensional Burgers
or three-dimensional Euler equations, are often studied, nu-
merically and theoretically, by projecting them onto a Fourier
subspace with a finite number of modes bounded by a (large)
wave number Kg. This projection (defined precisely later),
known as a Galerkin projection, ensures that unlike the parent
partial differential equation (PDE) which has an infinite num-
ber of degrees of freedom, the Galerkin-truncated equation
is constrained to have only finitely many Fourier modes.
Consequently, the resulting finite-dimensional, inviscid equa-
tions of hydrodynamics, such as the three-dimensional (3D)
incompressible Euler equations or the one-dimensional (1D)
Burgers equation, conserve both energy and phase space,
leading to solutions which thermalize in a finite time. These
solutions are thus completely different from the solutions
of the actual partial differential equation, from which they
derive, with infinite degrees of freedom [1,2].

In recent years however, this area has received renewed
interest [3]—spanning studies in turbulence [4-9] and bot-
tlenecks and hyperviscosity [10-12] to problems of cross
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correlators in condensed matter physics [13]—beginning with
the work of Majda and Timofeyev [14] on the thermaliza-
tion of the Galerkin-truncated, 1D inviscid Burgers equation.
Subsequently, Cichowlas et al. [15], through state-of-the-art
direct numerical simulations (DNSs), showed the existence
of similar thermalized states in the Galerkin-truncated 3D
incompressible Euler equation (see, also, Ref. [16]). How-
ever the precise mechanism by which solutions thermalize
was discovered later by Ray er al. [17], who showed that
thermalization was triggered through a resonant-wave-like
interaction leading to localized structures christened tygers
(see also Refs. [18-20]).

Understanding Galerkin-truncated systems assumes a spe-
cial importance when numerically studying inviscid equations
for the problem of finite-time blow-up of the incompressible
Euler equation (under suitable conditions). A way to con-
jecture for or against a finite-time singularity is to numeri-
cally solve the Euler equation and measure the width of the
analyticity strip 6 [21], i.e., the distance to the real domain
of the nearest complex singularity. By assuming analyticity,
at least up to a hypothetical time of blow-up #,, this proce-
dure reduces to measuring the Fourier modes of the velocity
field i ~ exp[—4&(¢)k] (ignoring vectors for convenience),
for large wave numbers k, and thence, § as a function of time
t. Therefore, a numerically compelling proof for finite-time
blow-up is to show §(¢) — 0 in a finite time.

Simple as it sounds, such an approach unfortunately runs
into a severe problem in its implementation. To solve such
equations on the computer, one has to make them finite-
dimensional through a Galerkin truncation. Solutions to such
truncated equations thermalize, beginning at small scales (or
large wave numbers k) in a finite time. Hence, asymptotically
at large wave numbers the Fourier modes of the velocity field

Published by the American Physical Society
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grow as a power law i ~ k¢~ (energy equipartition), where
d is the spatial dimension, and not fall off exponentially,
from which the width of the analyticity strip can be extracted.
Hence, the measurement of §(¢) becomes unreliable soon
enough to prevent us from making a reasonable conjecture
of if and when §(¢) might vanish [22]. Therefore, in order
to have a more reliable measurement of §(¢) for times long
enough to conjecture on whether there is a finite-time blow-up
of, e.g., the 3D, incompressible Euler equation, it is vital to
have a (numerical) prescription—without resorting to viscous
damping—which prevents the solutions from thermalizing.

We now propose such a recipe and show how the Galerkin-
truncated equation can be modified mildly to obtain solutions
which do not thermalize. This allows us to obtain numerically
(a) more reliable estimates of the widths of the analyticity strip
and (b) weak, but dissipative, solutions (henceforth called
weak-dissipative, for convenience) of inviscid equations.

The reasons which motivates this study are of course
fundamentally important for the 3D Euler equations and less
so for the 1D Burgers equation. However the process and
mechanisms of thermalization was best understood by resort-
ing to the 1D Burgers equation [3,14,17,20]; in the same spirit,
we now outline and present results for the efficacy of the tyger
purging method. At the end of this paper, we will return briefly
to its applicability to the problem of the 3D Euler equation
as well as contrast our approach with wavelet-based filtering
techniques [18].

Thermalization. Let us begin with the 1D inviscid Burgers
equation on a 27w -periodic line

ou 10u?

ot + 2 ox
augmented by the initial condition uy(x) which is typically
a combination of trigonometric functions containing a few
Fourier modes. Since we work in the space of 2w -periodic
solutions, we can expand the solution of Eq. (1) in a Fourier
series allowing us to define the Galerkin projector B as
a low-pass filter which sets all modes with wave numbers
|k| > Kg, where Kg is a positive (large) integer, to zero via
v(x) =R u(x) = Z‘kngG ey

These definitions allow us to write the Galerkin-truncated

inviscid Burgers equation
av p 1 9v?
ot e 2 dx
the initial conditions vo = B_uo are similarly projected onto
the subspace spanned by K.

The solution of the inviscid Burgers equation (1) shows
one or more shocks [determined by uy(x)], after an initial-
condition-dependent finite time ¢, through which energy is
dissipated for ¢t > t,. Theoretically, the solution to (1), for
t > t,, is obtained by adding a viscous dissipation term v%
with v — O (the inviscid limit), which preserves the finitely
many shocks of the true solution. This generalized solution,
in the limit of vanishing viscosity, converges weakly to the
inviscid Burgers equation and is characterized by a dissipative
anomaly: energy dissipation € remains finite as v — 0.

In contrast, the Galerkin-truncated equation (2) conserves
energy for all times. For initial conditions with a finite number
of nonvanishing Fourier harmonic, the solution v mimics

=0 (1

=0; 2)

rather well that of the inviscid PDE up to time ¢ < ¢,. Indeed,
for ¢t < t,, the two solutions are essentially indistinguishable.
However, when the distance of the nearest (complex) singu-
larity of the untruncated equation (1) is within one Galerkin
wavelength (~2m /Kg) of the real domain (at time ¢t ~ t, —
Kg~™'/3), the effect of truncation becomes important.

For t > t,, the solutions of the truncated equation and the
PDE are dramatically different: Whereas the former stays
smooth, conserves energy, and starts thermalizing (begin-
ning at small scales) with an (equipartition) energy spectrum
(|19%)?) ~ kO [14], the latter shows a monotonic decrease in
its kinetic energy [dissipated through the shock(s)] and an
associated scaling (|f;|?) ~ k2. (The angular brackets used
in calculating the energy spectrum denote suitable ensemble
averages.) Thus thermalized solutions, inevitable in numerical
solutions of the Galerkin-truncated inviscid equations, are
fundamentally different from—and hence do not converge
to—the untruncated parent PDE.

We illustrate this phenomenon in Fig. 1 by showing the
solutions of the Galerkin-truncated equation v (in blue), with
Kg = 1000, and the entropy solution u (in black) for (a)
an early time t = 0.24 (2t,) and (b) at a later time ¢ =
5.0 (¢ > t,); the details of such numerical simulations are
given later. As discussed above, even at times very close
to t, &~ 0.23 [Fig. 1(a)], the two solutions show a marked
difference—tygers—at points which have the same velocity as
the shock (and a positive fluid velocity gradient). At even later
times [Fig. 1(b)], we see clear signatures of thermalization in
the truncated solution having no resemblance to the entropy
solution which, as a consequence of shocks merging in time,
has a sawtooth structure with a single shock. We refer the
reader to Refs. [3,14,17-20] for more details and the theory
of this process of thermalization.

Tyger purging. All of this leads us to ask whether we
can, without resorting to viscous dissipation, actually suppress
thermalization setting in in such truncated equations and
obtain the entropy solution. The short answer is yes as we
now report an approach—tyger purging—which, through the
selective removal of a narrow, Fourier-space, boundary layer
near Kg (see below), at discrete time intervals, results in the
suppression of thermalization.

The equation of motion for the purged solution w is, of
course, the same as that of the Galerkin-truncated equation
(with the truncation wave number Kg)

ow 1 dw?
— —— =0 3
ot e 2 ox )
augmented by an additional constraint imposed at discrete
timest, =t,+nt (n=0,1,2,3,...):

K, <k < Kg. @)

We call this truncated equation, along with the additional
purging constraint, simply the purged equation. We note that
without the additional constraint, by definition, the solution
w is the same as v obtained from the truncated equation and
hence if purging is done continuously, and not discretely,
in time, we would end up solving the Galerkin-truncated
equation (2) but with a truncation wave number K,,.
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FIG. 1. Representative plots, for Kg = 1000, of the Galerkin-truncated v (blue) and entropy u (black) solutions of the Burgers equation at
(a)t =0.24 2 ¢, and (b) t = 5.0 > t,. For the Galerkin-truncated solution, panel (a) shows signatures of impending thermalization through
the birth of rygers while panel (b) shows the fully thermalized solutions. A movie of the time evolution of the Galerkin-truncated equation (and
the entropy solution) with a single-mode initial condition for clarity is available [33].

We now make the following Ansditze about the interpurging
time 7 and the purging wave number K,

t=Ks* K,=Ks—Ks”, ®)

with real, positive exponents « and B and the immediate
constraint that 8 < 1.

Before we engage in a detailed numerical analysis, let us
estimate, heuristically, optimal choices of « and 8 keeping in
mind that the purged solution w must converge to the entropy
solution u as Kg — 00.

For t > t,, the entropy solution, unlike the truncated solu-
tion, is dissipative: ¢ = ‘fi—f < 0, where E = %Z,fil i |? is
the total energy. Indeed, for times ¢t ~ t, (when tygers are
just born), the Galerkin-truncated Burgers equation remains
conservative by the transfer—and subsequent accumulation—
of kinetic energy oKg>/? from the “shock” to the
tygers [17].

By construction, however, purging allows for a finite en-
ergy loss AE? = % ,[fikp |W|? at intervals of 7 resulting

. P P
in a rate of loss of energy &f = ddiz ~ %, where EP =

%ZkKil |t |? is the total energy of the purged system. The
choice of @ and B should ensure that in the limit Kg —
0o, this rate of energy loss should be Kg-independent and
comparable to the rate of energy loss of the entropy solution,
ie., ef = ¢.

It is hard to estimate AE? theoretically without making
suitable assumptions. Since in between two purges, Eq. (3) is
identical to the Galerkin-truncated equation, it is reasonable
to assume that at the time of purging the solution |%g| is a
combination of the one coming from the entropy solution i
and a contribution from the nascent tyger. The latter, which is
the deviation of the truncated from the entropy solution, was
shown in Ref. [17] to be confined to a narrow Fourier-space
boundary layer close to and up to Kg with a form [ignoring
O(1) constants in the prefactors as well as the argument of the

exponential] KLGexp(— ',27/5 ). Keeping these factors in mind, it

is easy to show that eP ~ —Kg*t#=2. If we now demand, for
convergence, that this rate be independent of Kg, we obtain
the constraint o + 8 = 2.

The constraint derived above is useful but it still allows
considerable freedom in choosing « and 8. However, since in
between purgings the solution develops only nascent tygers,
we can estimate B independently by asking whether an op-
timal choice of K, (thence, B) leads to an elimination of
the boundary layer (and hence the energy content SE¥ of
the boundary layer) such that tygers are suppressed. In other
words, since Galerkin truncation leads to a transfer of energy
~Kg ™/ from the shock to the tygers resulting in an overall
conservation of kinetic energy in the truncated problem, a
successful purging strategy must constraint SE¥ ~ Kg~>/3
thus precisely eliminating the tygers which trigger thermal-
ization and hence leading to dissipative solutions. By using
the functional form for the boundary layer for incipient tygers
[17], it is easy to show that

Kg

SE” = i |y — i ~ Y %exp[—KG—l_k}
k=K, k=K, Ko Kg'?
KGﬂ_z, for B < 1/3,
- !KGS/3, for B > 1/3. ©

Equation (6) leads to the inevitable conclusion that the
optimal choice of the purging wave number is one where
B € [1/3,1) and the energy loss then is actually independent
of B and exactly the same as that which would have triggered
thermalization in the absence of purging as long as § > 1/3.
Thus, we obtain an independent (theoretical) bound on g €
[1/3, 1) for a successful purging.

Before we turn to detailed numerical simulations to val-
idate these ideas, we make one final remark. In numerical
simulations, 87 is typically set by the resolution Kg such that
8t ~ O(Kg™"). As we have noted before, purging if done too
frequently would be akin to solving the Galerkin-truncated
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Burgers equation with Kg = K),. This implies that 7 /67 >> 1
which, trivially, leads to o < 1. Hence, with these insights
for « and B, we revise the constraint, estimated heuristically
before, to o + 8 < 2.

Direct numerical simulations. So how effective is purging
in obtaining solutions w which resemble the entropy solution
u? We answer this by resorting to extensive and detailed
numerical simulation of the purged model (3) as well the
Galerkin-truncated equation (2) for comparison.

For the truncated and purged equations, we perform ex-
tensive direct numerical simulations, by using a standard
pseudospectral method and a 4th-order Runge-Kutta scheme
for time marching, on a 2m-periodic line. We use two dif-
ferent sets of collocation points, namely, N = 16384 and
N = 65536, to obtain results for Kg = 500, 1000, 3000, and
5000 (for N =16384) and Kg = 8000 and 10000 (for
N = 65536). For the purged simulations, additionally, the
theoretical estimates obtained lead us to a choice of g =
0.4,0.6, and 0.8, and for each value of B, the interpurg-
ing time was obtained with o = 0.4, 0.6, 0.8, 0.9, and 1.2.
(The simulations with ¢ = 0.9 and 1.2 were performed
to confirm that too frequent purgings lead to thermalized
solutions once more with the effective truncation wave
number K),.)

The choice of time steps in such simulations require some
delicacy. For the truncated problem, since the maximum prin-
ciple is violated, individual realizations of the velocity field
can have excursions which are large [see Fig. 1(b)]. Hence for
the truncated simulations, as well as those where purging is
ineffective in preventing thermalization, the time step 8¢ has
to be kept very small. However, for the cases of successful
purging, the maximum principle is no longer violated. Hence
for these cases we are able to choose §t = 107> (N = 16384)
and 8t = 107% (N = 65536); for the analogous truncated
problem (and the ones where the «-f combination fails to
prevent thermalization), ¢ was taken to be at least two orders
of magnitude smaller.

In numerical simulations, §¢ is typically set by the resolu-
tion Kg such that 8t ~ O(Kg™'). As we have noted before,
purging if done too frequently would be akin to solving
the Galerkin-truncated Burgers equation with Kg = K,. This
implies that /8¢ >> 1 which, trivially, leads to o < 1. (We
have confirmed these conjectures through several, detailed
numerical simulations.)

To obtain the entropy solution u, we use the fast Legendre
transform as discussed in Refs. [23] (see also Ref. [24]) to
solve the viscous Burgers equation in the vanishing viscosity
v — 0 limit. We solve the equation on a 27 line with periodic
boundary conditions and choose N = 16384 and N = 65536
collocation points (for easy comparison with the truncated and
purged solutions; see below). The velocity field is evolved
keeping in mind that the velocity potential ¥ (related to the

velocity field via u = —9,1) obeys a maximum principle:
(x—y)?
I/I(X,t/) :maxy|:1/f(y,t)— m . (7)

Finally, we have studied the problem for several dif-
ferent initial conditions [all of which consist of lin-

ear combinations of trigonometric polynomials includ-
ing the simplest single-mode case sin(x)]; we have
checked that our results and conclusions are consistent
for all such initial conditions. In this paper, for brevity,
we present results only for the case wy= vy =uy=
sin(x) + sin(2x + 0.9) + sin(3x).

In Fig. 2 we show representative plots, at = 5.0, of the
Galerkin-truncated v (in blue and thermalized), the entropy u
(in black with a prominent shock), and the purged solutions w
(inred) for (@)a = 0.6, 8 =0.4and (b)) = 0.8, 8 = 0.8; we
set the truncation wave number Kg = 1000. We immediately
see that for « = 0.6 and 8 = 0.4 [Fig. 2(a)], the solution w
approximates the entropy solution much better—in so far as
picking out the ramp structure and a jump near the shock—
though far from perfectly.

Remarkably, if we choose o = 8 = 0.8 [Fig. 2(b)]—
and hence much closer to satisfying the heuristic estimate
a + B < 2—the agreement between the purged and entropy
solutions is near-perfect. Indeed the main point of depar-
ture between the two solutions seems to be close to the
shock because of the ubiquitous Gibbs-type oscillations
[25] associated with Fourier transforms of functions near
discontinuities.

We have checked that for « 2 0.9, since 7 /8¢ ~ O(1), the
purged solutions thermalize once again as we conjectured.
Hence, empirically, our extensive numerical simulations show
that within the range of « that we study, the optimal choice is
o = 0.8. Furthermore, we have confirmed that our results are
largely insensitive to the choice of 8 as long as it is greater
than 1/3.

The fact that the purged and entropy solutions seem to
be in agreement, visually, suggests that the purged solution
is dissipative as was anticipated, by construction, earlier.
However, for this solution to actually converge to the entropy
solution, the rate of dissipation should be arbitrarily close to
the dissipation rate % of the entropy solution. The most direct
way to see this is to compare the total energies of the entropy
E and the purged EPF solutions, as a function of time, for
different values of « and B: In Fig. 3(a) we show these results
for Kg = 1000. We find, as was already suggested in Fig. 2,
that for the optimal choice o = B = 0.8, the behavior of the
total energy versus time for the purged solution is identical
to the one obtained from the entropy solution. The purged
solutions for other a-f combinations are dissipative as well;
however they dissipate energy at rates much slower than the
entropy solution. Moreover, shock mergers, as indicated by
the vertical lines in the plot, and which lead to tiny kinks in
the energy versus time profile, are faithfully reproduced by
purged solutions for« = 8 = 0.8.

A measure of how accurately the purged solution mimics
the dissipation of the entropy one is the percentage relative
error e = % x 100 at ¢t = 5.0. In the inset of Fig. 3(a), we
plot e as a function of Kg for the most optimal purging choice
(¢ = B = 0.8). Remarkably, this error e decreases rapidly
with Kg and for Kg = 5000, ¢ ~ 0.01%.

All of this leads us inevitably to the important question:
For « = B = 0.8, does the purged solution indeed converge
to the entropy one as Kg — 00? A precise way to answer this
is to measure the percentage relative error (or the L, norm)
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FIG. 2. Representative plots, for K5 = 1000, of the Galerkin-truncated v (blue), the entropy u (black), and the purged w (red) solutions of
the Burgers equation att = 5.0 for (a) « = 0.6, 8 = 0.4 and (b) « = B = 0.8. In panel (b), the purged and entropy solutions are quite close to
being identical. A movie of the full evolution in time of the solutions shown in panel (b) is available [34].

T ) —w(x)P?
TV )P
the solutions u# and w. Given that this is a pointwise measure,
unlike the global energy measurements shown in Fig. 3(a), a
sharp decrease in ¢ with Kg should be clinching evidence of
the efficacy of our scheme. In Fig. 3(b), we show a log-log plot
of ¢ as a function of K¢ and find a steep decrease (¢ ~ K3 !
indicated by the dashed line) in the relative error as a function
of K. For the large values of Kg, the relative error ¢ < 1%,
reaching a value of ¢ ~ 0.5% for Kg = 10000.

These results show that purging leads to weak-dissipative
solutions which converge to the entropy solution of the parent
PDE as Kg — oo. Importantly, the discrepancy between the
two solutions is already minute for values of Kg which are

x 100 of the discrepancies between
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1 2 109
/_\1 .0 HT !
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04l v v 5-06 a=04
0.2 " m =04 0=06
=== Entropy E(t)

01(.())*2 1071 10°

t

easily accessible. From the point of view of numerical sim-
ulations, the B > 1/3 condition is extremely helpful because
it allows us to choose values of B small enough such that for
a given Kg, the loss in resolution Kg — K, through purging
is insignificantly small. As an example, for K = 10000 and
B = 0.4, the fraction of resolution lost is about 0.3%.
Summary and outlook. Our results, if seen in isolation
for the Burgers equation, are admittedly academic. This is
because for the 1D Burgers equation, we have other ways to
obtain weak-dissipative solutions as well as the widths of the
analyticity strip § analytically and numerically. Also, since for
the Burgers equation the effects of truncation are felt at times
very close to t,, the § obtained for the Burgers equation with
and without purging agree equally well with the theoretical

10?

(b)

10!

100

10!

10° 107

K¢

FIG. 3. (a) A plot of the total energy E¥ versus time, from our purged solutions (3), for different combinations of & and 8 and Kg = 1000.
We also show, in black, the energy versus time plot for the entropy solution for comparison. The dashed vertical lines correspond to the times
at which the shocks, three in all because of the three-mode initial conditions, form. In the inset, we plot the relative percentage error e (see text)
between the purged and entropy solution, for« = 8 = 0.8, atr = 5.0, as a function of Kg. (b) A plot of the L, norm of the percentage relative
error ¢ (see text) for @« = B = 0.8 as a function of Kg; the dashed line shows a power-law K 1 scaling consistent with the measured error.
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estimate up to times very close to #,. This is pathological to
the Burgers equation and it is reasonable to conjecture that
purging in the 3D Euler equation will yield more dividends.
Furthermore, there is no analog of the fast Legendre method
for the 3D Euler equations.

It is in light of the 3D Euler equations that this approach
assumes special importance. To the best of our knowledge,
to date there has been no algorithm which allows us, nu-
merically, to obtain weak-dissipative solutions of the 3D
Euler equation. This algorithm allows us to do exactly that.
Numerically, our algorithm is trivial to implement in codes
which solve the 3D Galerkin-truncated Euler equation. From
earlier studies we know that the onset of thermalization in the
3D Galerkin-truncated Euler equation is formally similar to
that in the Burgers equation. Hence, the approach outlined
in this paper should allow us to implement it for the 3D
Euler equations and study, numerically, dissipative solutions
as well as, and possibly most importantly, take advantage
of the suppression of thermalization to finally have a firm,
albeit numerical, answer for the celebrated blow-up problem.
While it is true that for the 3D Euler equation, we are
handicapped by a much poorer understanding of what the
appropriate weak-dissipative solution ought to be, there are
indeed several candidates against which our purged solutions
may be benchmarked, including the existing solutions of
the incompressible Navier-Stokes equation for the largest
Reynolds numbers currently attainable. We hope that our
work will provide a stimulus for analogous (and important)
studies of the truncated Euler equation.

Given the potential usefulness of our approach to revisit
the analyticity-strip method to numerically investigate the
question of blow-up of the Euler equation, it might be useful to
comment on recent studies of this problem. In brief, although
there is some evidence that the Euler equations could avoid
singularities through the formation of vortex sheets [26—28],
other results [29-31] suggests that this question is far from
settled. Therefore, our work, although demonstrated here for
the Burgers equation, could play a role in revisiting this

issue from the point of view of the width of the analyticity
strip. In this context, it may be worth recalling that one of
the earliest demonstrations of the analyticity-strip method for
the Galerkin-truncated inviscid hydrodynamics was for the
Burgers equation [21].

Before we conclude, it is important to ask whether thermal-
ization can be suppressed by other means (without resorting
to viscosity). Purging attempts in physical space—which con-
sists of smoothening out the tygers in physical space through
local averaging—does not result in any significant suppres-
sion of thermalization and lacks easy adaptability to different
initial conditions and higher-dimensional equations. A second
possibility is of course the use of a hyperviscous term. This
however has the drawback that we would end up solving not
the inviscid equation but its viscous form and for higher orders
of the hyperviscosity—which is similar in spirit to the idea
of purging—the solutions thermalize [10,12,32]. Another ap-
proach is due to Pereira et al. [18] who showed that a wavelet-
based filtering technique also leads to a suppression of the
resonances leading to tygers. However, such an approach has
the limitation, as mentioned by the authors themselves, that
the dual operations of filtering and truncation at every time
step do not commute. Hence the weak dissipation introduced
in this approach is somewhat uncontrolled. To this extent we
feel that the prescription we present here is most suited for
generating weak-dissipative solutions and, importantly, more
easily adaptable to higher-dimensional systems such as the 3D
Euler equations.
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