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Abstract

This paper investigates the propreties of the persistence diagrams stemming from almost
surely continuous random processes on [0, t]. We focus our study on two variables which
together characterize the barcode : the number of points of the persistence diagram inside
a rectangle ]−∞, x] × [x + ε,∞[, Nx,x+ε and the number of bars of length ≥ ε, Nε. For
processes with the strong Markov property, we show both of these variables admit a moment
generating function and in particular moments of every order. Switching our attention to
semimartingales, we show the asymptotic behaviour of Nε and Nx,x+ε as ε → 0 and of Nε

as ε→∞. Finally, we study the repercussions of the classical stability theorem of barcodes
and illustrate our results with some examples, most notably Brownian motion and empirical
functions converging to the Brownian bridge.
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1 Introduction

1.1 State of the art

One of the questions of interest in the theory of persistent homology is the following: given a
random function on some topological space X, what can we say about the barcode B(X) of this
process? The study of the topology of (super)level-sets of random functions has been a subject
of interest in probability theory for a long time [1, 2, 13, 17, 19, 26]. Most prominently for this
paper, by Le Gall and Duquesne, who gave a construction of a tree from any continuous function
f : [0, 1] → R [10], and who interpreted different properties of these trees to give fine results
about Lévy processes [11]. Picard later linked the upper-box dimension of these trees to the
regularity of the function f [24]. In essence, these trees have proved to be a fruitful and natural
setting from which many results regarding the topology of the superlevel sets of the function f
stem [8,9, 12,20,22].

A natural question is whether, or indeed how, these results are applicable to the persistent
homology of stochastic processes. The answer turns out to be total: the study of barcodes and
trees are completely equivalent in degree 0 of homology. This has been established in [22], in
which a dictionary between H0-barcodes and the trees of Le Gall and Duquesne was constructed.

In this paper, we focus mainly on two barcode-related quantities, namely the number of bars
in the barcode of f of length ≥ ε, which we will denote N ε

f and the number of bars in the barcode

of f containing the interval [x, x + ε], which we will denote Nx,x+ε
f . Whenever the function is

implicit from the context, we may omit the subscript f .
With the dictionary established in [22], it is possible to interpret the results previously

obtained by Picard in the context of trees. Most notably, Picard showed that the regularity of
functions is closely related to their small-bar asymptotics.

Theorem 1.1 (Picard, §3 [24]). Given a continuous function f : [0, 1]→ R,

V(f) = dimTf = lim sup
ε→0

logN ε
f

log(1/ε)
∨ 1 (1.1)

where dim denotes the upper-box dimension, a ∨ b = max{a, b}, Tf denotes the tree constructed
from f (cf. equation 2.19) and

V(f) := inf{p ≥ 1 | ‖f‖p−var <∞} , (1.2)

where ‖·‖p−var denotes the (true) p-variation defined in definition 2.13.

Moreover, for processes which are self-similar in distribution, Picard [24] shows the almost
sure small-bar asymptotics is closely related to this self-similarity (the results are shown for trees,
but are immediately interpretable in terms of barcodes by the results of [22]). Throughout this
paper we will adhere to the following convention regarding asymptotic relations.

Definition 1.2. Let f and g be any two functions. We define ∼ to be the following equivalence
relation

f(x) ∼ g(x) as x→ a ⇐⇒ lim
x→a

f(x)

g(x)
= 1 . (1.3)

Theorem 1.3 (Picard, §3 [24]). Let X : [0, 1]→ R be Brownian motion, a Lévy α-stable process
or fractional Brownian motion, then, almost surely, there exists a constant CH such that

N ε
X ∼

CH

ε1/H
as ε→ 0 , (1.4)

where H is the self-similary index, i.e. the H for which X satisfies Xλt = λHXt for every λ > 0
and t ≥ 0 in distribution.
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Parallel to these developments, some results regarding the persistent homology of Brownian
motion have also been provided by the topological data analysis (TDA) community. In par-
ticular, for Brownian motion B Chazal and Divol gave a formula for the distribution of the
number of points Nx,y

B lying inside a given rectangle ]−∞, x]× [y,∞[ in the persistence diagram
of Brownian motion, Dgm(B) [7].

Proposition 1.4 (Chazal, Divol, [7]). For 0 < x < y, the distribution of Nx,y
B is

P(Nx,y
B ≥ k) =

∫
Σ2k−1

ψ(x, t1)ψ(y − x, s1)ψ(y − x, t2) · · ·ψ(y − x, tk)
k−1∏
i=1

dti

k−2∏
j=1

dsj , (1.5)

where Σ2k−1 denotes the domain bounded by the (2k−1)-simplex and we note a vector in R2k−1

by (t1, s1, · · · , sk−2, tk−1) and

ψ(x, t) :=
x√
2πt3

e−
x2

2t . (1.6)

Using this result Chazal and Divol established that E[Nx,y] was C1 in x and y. In the context
of our own results, we will show that this expectation is in fact an analytic function of x and y
and give an explicit expression for Nx,x+ε for x > 0 and ε > 0.

Other results regarding E[Nx,y] were obtained by Baryshnikov [3], who computed exactly
E
[
Nx,y
Bµ

]
for the Brownian motion with a strictly positive linear drift Bµ

t := µt + Bt for µ > 0
over the whole ray [0,∞[.

Proposition 1.5 (Baryshnikov, [3]). The expected value of Nx,x+ε
Bµ for x > 0 and µ > 0 over

the whole ray [0,∞[ is given by

E
[
Nx,x+ε
Bµ

]
=

1

e2µε − 1
. (1.7)

In particular, as ε→ 0, the following asymptotic relation holds

E
[
Nx,x+ε
Bµ

]
∼ 1

2µε
− 1

2
+

1

6
µε+O(µ3ε3) as ε→ 0 . (1.8)

In this paper, we will be concerned with almost surely C0 processes, but it is noteworthy
that the study of smooth random fields (and their topology) is currently an open field of research
in probability theory. A good introduction to the smooth setting is provided by the celebrated
books of Adler and Taylor [1], and that of Azäıs and Wschebor [2].

Whenever possible and necessary, we give the definitions and most important results neces-
sary to make the proofs in this paper self-contained. However, for the sake of brevity, we do
not introduce all the probabilistic concepts necessary for this paper (most notably, we do not
define Brownian motion or stochastic processes, filtrated probability spaces, nor stopping times
and the strong Markov property). We kindly refer the reader unfamiliar with these concepts
to Le Gall’s [17] and Revuz and Yor’s [25] books on stochastic calculus for a comprehensive
introduction to the subject.

1.2 Our contribution

Our contribution can be summarized along the following points.

Theorem 1. Let X be a non-constant stochastic process on [0, t] defined on the filtered proba-
bility space (Ω,F ,P) allowing an almost surely continuous modification and satisfying the strong
Markov property. If we denote

Rt := sup
[0,t]

X − inf
[0,t]

X , (1.9)

then,
P(N ε

X ≥ k) ≤ P(Rt ≥ ε)2(k−1) . (1.10)
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Denote ε∗ the infimal value such that for all ε > ε∗, P(Rt ≥ ε) < 1. Then, for every ε > ε∗

and every x ∈ R, all the moments of the random variables N ε and Nx,x+ε
X are finite and their

moment generating functions M(λ) converge uniformly and absolutely for every λ ∈ C such that
Re(λ) < −2 log(P(Rt ≥ ε)).

This theorem answers the question of the existence of moments (and their quantification) for
the quantities N ε and Nx,x+ε

X in the context of almost surely continuous Markov processes. It
also allows us to show the behaviour of large bars of the barcode of such a process in expectation.

Corollary 1. Under the same assumptions,

E[N ε
X ] ∼ P(Rt ≥ ε) as ε→∞ . (1.11)

Having partially answered the question of large bars in this very general context, we switch
our attention to the behaviour of small bars. Indeed, as the following result shows, the latter is
very regular and closely related to the nature of the noise at hand.

Theorem 2. Let X = M + A be a continuous semimartingale on [0, t] and suppose that for
s ≥ 1

E
[
[M ]

s/2
t +

(∫ t

0
|dA|τ

)s]
<∞ , (1.12)

where [M ]t denotes the quadratic variation of M (cf. definition 3.2) and
∫ t

0 |dA|τ the total
variation of A. Then, in Ls(Ω),

Nx,x+ε
X ∼

LxX(t)

2ε
+O(1) as ε→ 0

N ε
X ∼

[X]t
2ε2

+O(ε−3/2) as ε→ 0 ,

where LxX(t) denotes the local time of X on [0, t] at x.

Remark 1.6. The condition expressed in equation 1.12 is a technical one and is often employed in
the theory of stochastic integration (cf. [25]). It is noteworthy that this condition is satisfied for
a very wide range of processes. In fact, the space Ss of continuous semimartingales X = M +A
for which the quantity

‖X‖Ss :=

∥∥∥∥[M ]
1/2
t +

∫ t

0
|dA|τ

∥∥∥∥
Ls(Ω)

<∞ (1.13)

is a vector space that we may equip with the seminorm ‖·‖Ss . When s > 1, the quotient of Ss by
processes indistinguishable from zero is a Banach space which contains the space of continuous

martingales such that E
[
‖X‖sL∞([0,t])

]
<∞.

For particular instances of local martingales, we have a full description of the barcode of
these processes, which depends on their quadratic variation.

Theorem 3. For any continuous local martingale M on [0, t] having deterministic and strictly
increasing quadratic variation [M ]t such that [M ]∞ =∞,

E[N ε
M ] = 4

∑
k≥1

(2k − 1) erfc

(
(2k − 1)ε√

2[M ]t

)
− k erfc

(
2kε√
2[M ]t

)

=
[M ]t
2ε2

+
2

3
+ 2

∑
k≥1

(2(−1)k − 1)
e−π

2k2[M ]t/2ε2 [M ]t
ε2

[
1 +

ε2

π2k2[M ]t

]
.
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Moreover on [0, t] and for x > 0,

E
[
Nx,x+ε
M

]
=

∞∑
k=1

erfc

(
x+ (2k − 1)ε√

2[M ]t

)

∼ 1

2ε

∫ [M ]t

0
ϕ(x, s) ds+

∑
k≥0

4(−2)k
(
22k+1 − 1

)
ζ(2k + 2)

π2k+2

[
∂k

∂sk

∣∣∣
s=[M ]t

ϕ(x, s)

]
ε2k+1 as ε→ 0 ,

where ϕ(x, t) is the density of a centered Gaussian random variable of variance t and ζ denotes
the Riemann zeta function.

Remark 1.7. Both expressions for E[N ε
M ] in the above theorem converge (this can be easily

shown by recalling that erfc(x) ∼ e−x
2

x
√
π

as x → ∞ and applying the ratio test). The first

expression converges very fast for large ε (this is easily seen given the decay properties of the
complementary error function erfc) and the second one yields extremely fast convergence for

small ε. Similarly, the first expression for E
[
Nx,x+ε
M

]
converges quickly for large ε. On the other

hand, the second expression can only be considered as an asymptotic expansion for small ε.

This theorem allows us to explain exactly the experimental observations we made through
simulation regarding the barcode of Brownian motion (cf. figures 1 and 2).

0.005 0.010 0.050 0.100 0.500 1
ε

10-7

10-5

0.001

0.100

Nε

Figure 1: Numerical simulation of E[N ε
B]

using Rademacher walks.
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1000
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Figure 2: E[N ε
B] as calculated using theo-

rem 3.

We use the classical stability theorem of barcodes [6] and complete our description of random
processes by examining sequences converging to the processes above, which constitute universal
limits for many random processes (most notably, random walks and empirical processes).

Theorem 4. Let (M,d) be a compact Polish metric space and let X be an almost surely
continuous stochastic process on M , defined on a probability space (Ω,F ,P). Let (Xn)n∈N
be any sequence of continuous stochastic processes defined on the same probability space and
suppose there exists a 1 ≤ p ≤ ∞ such that

δn := ‖X −Xn‖Lp(Ω,L∞(M,R)) −−−→n→∞
0 . (1.14)

Then, for every ε ≥ 2aδn, ∣∣N ε
Xn −N

ε
X

∣∣ ≤ N ε−2aδn
X −N ε+2aδn

X , (1.15)

with probability ≥ 1− 1
ap . Suppose further that E[N ε

X ] is continuous in ε. Then,

E
[∣∣N ε

Xn −N
ε
X

∣∣ ∣∣∣ ‖X −Xn‖L∞(M,R) ≤ aδn
]
≤ ωε(2aδn) . (1.16)

where ωε(δ) := E
[
N ε−δ
X −N ε+δ

X

]
. Moreover,

P
(∣∣N ε

Xn −N
ε
X

∣∣ ≥ k) ≤ ωε(2aδn)

k
+

1

ap
and P

(∣∣N ε
Xn −N

ε
X

∣∣ ≥ k , ‖X −Xn‖L∞(M,R) ≤ aδn
)
≤ ωε(2aδn)

k
.

(1.17)
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If p =∞ and still assuming E[N ε
X ] <∞ and is continuous, for any ε ≥ 2δn,

N ε
Xn

L1

−−−→
n→∞

N ε
X and E

[∣∣N ε
X −N ε

Xn

∣∣] ≤ ωε(2δn) .

With analogous hypotheses, the same statement holds for Nx,x+ε
X .

Remark 1.8. The condition that E[N ε] is often satisfied. By virtue of theorem 1 and the dom-
inated convergence theorem, this continuity condition is satisfied if for all ε > ε∗ N ε

X almost
surely does not have a discontinuity at ε. That is, if the process ε 7→ N ε is continuous in prob-
ability. More concretely, the condition also holds as soon as the distributions of the stopping
times constructed in definition 2.11 are themselves continuous in ε. Some immediate examples
of processes where the continuity condition is satisfied are continuous local martingale M with
deterministic and strictly increasing quadratic variation with [M ]t <∞, as implied by theorem
3.

Finally, we use the previous results to give statements about well-known processes, such as
Brownian motion, Itô processes and some limiting processes (most notably the Fourier decompo-
sition of Brownian motion and the convergence of empirical processes to the Brownian bridge),
cf. section 5.

2 Some generalities about H0 homology and trees

Let us briefly recall the construction of a tree from a continuous function f : M → R detailed
in [22].

Definition 2.1. Let M denote a connected, locally path-connected, compact topological space,
f : M → R be a continuous function and let x, y ∈ X, then the function

df (x, y) := f(x) + f(y)− 2 sup
γ:x 7→y

min
s∈[0,t]

f(γ(s)) , (2.18)

where the supremum runs over all paths γ : [0, 1] → M is a pseudo-distance on M and the
quotient metric space

Tf := M/{x ∼ y ⇐⇒ df (x, y) = 0} (2.19)

equipped with the distance df is a rooted R-tree, whose root coincides with the image in Tf of
the point in [0, 1] at which f achieves its infimum.

Definition 2.2. Let M denote a connected, locally path-connected, compact topological space
and f : M → R be a continuous function. We denote πf : M → Tf the canonical projection.

The tree Tf has the particularity that its branches correspond to connected components of
the superlevel sets of f , as illustrated by figure 3. To define N ε on this tree, it is first necessary to
introduce the so-called ε-simplified or ε-trimmed tree of T εf . This object is obtained by “giving
a haircut” of length ε to Tf . More precisely, if we define a function h : Tf → R which to a point
τ ∈ Tf associates the distance from τ to the highest leaf above τ with respect to the filtration
on Tf induced by f , then

Definition 2.3. Let ε ≥ 0. An ε-trimming or ε-simplification of Tf is the metric subspace
of Tf defined by

T εf := {τ ∈ Tf |h(τ) ≥ ε} (2.20)

With this definition, we can interpret N ε geometrically as being equal to the number of
leaves of T εf . The reason for this is explicited in [22]. The idea is that, starting from Tf , we
can look at the longest branch (starting from the root) of Tf . This branch corresponds to the
longest bar of B(f), since branches of Tf correspond to connected components of the superlevel
sets of f . Next, we erase this longest branch and, on the remaning (rooted) forest, look for the
next longest branch. This will be the second longest bar of the barcode. Proceeding iteratively
in this way, we retrieve B(f). An illustration of this can be found in figure 4.
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Figure 3: A function f : [0, 1] → R and its associated tree Tf in dashed lines. Visually, Tf can
be obtained by imagining that we put glue everywhere along the bottom of the curve, and then
collapse the curve along the t-axis of the drawing above. Key quantities we have introduced
such as a typical node of the tree τ , the value of its height function h(τ) and the projection
π : [0, 1] → Tf are depicted, as well as the root of the tree O. Finally, some quantities relating
to the preimages of nodes τ ∈ Tf from definition 2.7 are also shown.

Figure 4: A depiction of the first steps of the algorithm which assigns a barcode B(f) to a tree
Tf . We start by picking the longest branch in the tree, starting from the root. Its endpoints
give us the endpoint values of the longest interval in the barcode (since this is the first bar and
the interval is connected, we may extend this bar to −∞). Next, we erase the branch on the
tree, so that we are left with a forest F and pick the largest branch in the remaining forest. We
retain its endpoints, yielding the second bar, and erase the corresponding branch. We repeat
this procedure for all subsequent branches until we have erased the entire tree.

Proposition 2.4. The number of bars containing x persisting through x + ε (i.e. the bars
containing the interval [x, x+ ε]),

Nx,x+ε
f := rank(H0({f ≥ x+ ε} → {f ≥ x})) = #{τ ∈ Tf | f(τ) = x and h(τ) ≥ ε} . (2.21)

Proof. By the results of [22], there is a correspondence between Tf and the barcode B(f). Every
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element of the set
{τ ∈ Tf | f(τ) = x and h(τ) ≥ ε} , (2.22)

has a corresponding image in one and only one bar of the barcode which contains the interval
[x, x + ε]. Conversely, for every bar in the barcode containing the interval [x, x + ε], there is
a unique image on the tree at height x, τ , and, since the bar persists a length ≥ ε after x,
h(τ) ≥ ε. �

Remark 2.5 (Link with traditional persistence diagrams and sublevel set filtrations). In the tree
formalism, it is typical to consider superlevel filtrations as opposed to sublevel ones, as is
typically done in traditional persistence theory. Considering one or the other poses no problem
for us, as one can pass from one filtration to the other by switching f into −f . Diagrams (in
the sense of collections of points (b, d) of moments of birth b and death d of bars of the barcode)
of a filtration by superlevel sets lie below the diagonal, as the moment of birth occurs higher
than the moment of death. Given the diagram of −f as computed with the superlevel filtration
(using for instance the tree), we can retrieve the diagram associated to sublevels of f by sending
each point in the diagram (of the superlevel filtration of −f)

(b, d) 7→ (−d,−b) . (2.23)

For most results, this subtlety makes little to no difference, as most of the examples considered
(typically Brownian motion B) are processes which are symmetric, i.e. Bt = −Bt in distribution
for all t. This is notably the case for the results obtained by Chazal and Divol [7]. However,
when considering asymetric processes and for results where specific formulæ are given (such as
in theorem 3), it is necessary to keep in mind the transformation above to correct the formulæ
accordingly wherever necessary if one is considering sublevel sets.
Finally, with respect to the superlevel (resp. sublevel) set filtration, we will henceforth always
consider that the infinite bars of the barcode are capped at inf(f) (resp. sup(f)). Equivalently,
in terms of barcodes we will always consider for any bar

b = b ∩ [inf f, sup f ] . (2.24)

On a tree Tf , we can define a notion of integration by defining the unique atomless Borel
measure λ which is characterized by the property that every geodesic segment on Tf has measure
equal to its length. Formally, we can express λ in two ways [24]

λ =

∫
R
dx

∑
τ∈Tf
f(τ)=x

δτ and λ =

∫ ∞
0

dε
∑
τ∈Tf
h(τ)=ε

δτ . (2.25)

Proposition 2.6.

λ(T εf ) =

∫ ∞
ε

Na
f da =

∫
R
Nx,x+ε
f dx (2.26)

Proof. By using the second identity for λ,

λ(T εf ) =

∫ ∞
ε

Na
f da , (2.27)

since every sum in the second expression is finite for all ε > 0 and has N ε terms. Writing it
using the first identity, we must restrict the sum in the identity to∑

τ∈Tf
f(τ)=x
h(τ)≥ε

δτ , (2.28)

which is finite for all ε > 0. There are exactly Nx,x+ε
f terms in this sum, therefore

λ(T εf ) =

∫
R
Nx,x+ε
f dx . (2.29)

�
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2.1 Persistent homology of processes on [0, t]

Consider now f : [0, t]→ R. Given the total order on R, the preimages of Tf by πf : [0, t]→
Tf inherit a natural order structure. This allows us to define

Definition 2.7. The right (resp. left) preimage of τ ∈ Tf by πf is

−→τ := supπ−1
f (τ) (resp. ←−τ := inf π−1

f (τ)) . (2.30)

See figure 3 for a depiction of these preimages.

Remark 2.8. One can have ←−τ = −→τ .

Whenever f : [0, t] → R, we can compute N ε
f is by counting the number of times we go up

by at least ε from a local minimum and down by at least ε from a local maximum. This idea
can be formalized by the following sequence, originally introduced by Neveu et al. [20].

Definition 2.9. Setting Sε0 = T ε0 = 0, we define a sequence of times by induction

T εi+1 := inf

{
s ≥ Sεi

∣∣∣∣∣ sup
[Sεi ,s]

f − f(s) > ε

}

Sεi+1 := inf

{
s ≥ T εi+1

∣∣∣∣∣ f(s)− inf
[T εi+1,s]

f > ε

}
Lemma 2.10. If k ≥ 2, and f : [0, t]→ R is continuous,

N ε
f ≥ k ⇐⇒ Sεk−1 ≤ t . (2.31)

Proof. (N ε ≥ k =⇒ Sεk−1 ≤ t): We start by selecting all bars of length ≥ ε, they are of the
form [bi, ai]. For each bar, pick the point ai − ε and look at its corresponding node τ ∈ Tf (this
is equivalent to considering the set of nodes τi on the tree such that h(τi) = ε). Next, let us
order the bars by the value of their left preimages of the τi by virtue of the total order on R.
By construction, since the τi all stem from different connected components of the superlevel set
the (←−τ i,−→τ i) satisfy

−→τ i ≤ −→τ j for i < j . (2.32)

Since N ε ≥ k, there are at least (k − 1) right preimages and left preimages by πf of leaves
of T εf stemming from the first (k − 1) bars, which we denote {(←−τ i,−→τ i)}1≤i≤k−1 satisfying

−→τ 1 = T ε1 ≤ Sε1 ≤ −→τ 2 = T ε2 ≤ · · · ≤ −→τ k−1 = T εk−1 . (2.33)

Note that −→τ 1 > 0 as soon as k ≥ 2 and ε > 0. Since N ε ≥ k, there at least an extra
bar unaccounted for. Consider taking the left preimages of the nodes in Tf corresponding to
the bottom and top of this bar and note these preimages tb and tt respectively. Note that
t ≥ tb ≥ T εk−1, as otherwise we would have tb <

−→τ i for some i ≤ k − 1, entailing that πf (tb)
belongs to the connected subtree πf ([0,−→τ i[), which contradicts that πf (tb) belongs to the kth
bar, as this bar is by construction disjoint from πf ([0,−→τ i[). Similarly t ≥ tt ≥ T εk−1. Moreover,
df (tt, tb) > ε, which shows that Sεk−1 ∈ [tb, tt] and in particular that Sεk−1 ≤ t.

(N ε ≥ k ⇐= Sεk−1 ≤ t): Since Sεk−1 > T εk−1 = −→τ k−1, there are at least (k − 1) distinct bars.
We easily check that, by definition, df (Sεk−1, T

ε
k−1) > 0, implying that πf (Sεk−1) and πf (T εk−1)

lie on different branches of Tf , and therefore Sεk−1 is a preimage of a distinct bar of length ≥ ε,
implying N ε ≥ k. �

Definition 2.11. Let f : [0, t] → R be a continuous function. Setting USx,ε0 = UT x,ε0 = 0, we
define a sequence of times recursively

UT x,εi+1 := inf

{
s ≥ USx,εi

∣∣∣∣∣ f(s) ≤ x

}

USx,εi+1 := inf

{
s ≥ UT x,εi+1

∣∣∣∣∣ f(s) ≥ x+ ε

}
.
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The maximum i for which USx,εi ≤ t is called the number of upcrossings by f from x to
x+ ε and we denote it Ux,x+ε

f . Similarly, setting DSx,ε0 = DT x,ε0 = 0 and defining

DT x,εi+1 := inf

{
s ≥ DSx,εi+1

∣∣∣∣∣ f(s) ≤ x

}

DSx,εi+1 := inf

{
s ≥ DT x,εi

∣∣∣∣∣ f(s) ≥ x+ ε

}
,

we can define the number of downcrossings by f from x to x+ ε and denote it Dx,x+ε
f as

the maximum i for which DT x,εi ≤ t.

Proposition 2.12. Let f : [0, t]→ R be a continuous function. Then,

Nx,x+ε
f = Ux,x+ε

f ∨Dx,x+ε
f ≤ Dx,x+ε

f + 1 . (2.34)

If x ≥ 0, and f(0) = 0, Nx,x+ε
f = Ux,x+ε

f .

Proof. Each bar alive at x+ ε persisting until x (seen as a branch of Tf ) admits a left and right
preimage (which can be sometimes equal), this shows Nx,x+ε ≥ Ux,x+ε

f ∨ Dx,x+ε
f . Conversely,

every downcrossing (resp. upcrossing) generates a distinct homology class alive at x+ε persisting
until x, which shows Ux,x+ε

f ∨Dx,x+ε
f ≥ Nx,x+ε. The last inequality is a consequence of the fact

that, by definition
∣∣∣Ux,x+ε

f −Dx,x+ε
f

∣∣∣ ≤ 1. Finally, if x ≥ 0, and f(0) = 0, by continuity of f ,

there is a bijective correspondence between upcrossings and the bars alive at x + ε persisting
until x. �

With the above, we are now ready to prove theorem 1.

Proof of theorem 1. For simplicity and without loss of generality, let us set t = 1. The proba-
bility P(N ε ≥ k) can be written in terms of the stopping times T εi and Sεi and their increments
by the (strong) Markov property of X. By lemma 2.10, P(N ε ≥ k) = P(Sεk−1 ≤ 1) for k ≥ 2, so

P(N ε ≥ k) =

∫
Σ2k−2

P(T ε1 = t1)P(S1 = s1 |T1 = t1) · · ·P(Sk−1 = sk−1 |Tk−1 = tk−1)
k−1∏
i=1

dsidti .

(2.35)
where, abusing the notation, the P(Si = si |Ti = ti) and P(Ti = ti |Si = si) denote the corre-
sponding conditional densities and where Σ2k−2 denotes the simplex

Σ2k−2 :=
{

(t1, s1, · · · , sk−1) ∈ R2k−1
∣∣ 0 ≤ t1 ≤ s2 ≤ · · · ≤ sk−1 ≤ 1

}
. (2.36)

By the definition of these stopping times we know that

P(s ≤ T εi ≤ t|Sεi−1 = s) = P

(
sup
τ∈[s,t]

[
sup
[s,τ ]

X −Xτ

]
≥ ε

)

P(t ≤ Sεi ≤ s|T εi = t) = P

(
sup
τ∈[t,s]

[
Xτ − inf

[t,τ ]
X

]
≥ ε

)
Both of these expressions are dominated by P(R1 ≥ ε). Indeed,

P

(
sup

τ∈[s,s′]

[
sup
[s,τ ]

X −Xτ

]
≥ ε

)
≤ P

(
sup
s∈[0,1]

[
sup
[0,s]

X −Xs

]
≥ ε

)
(2.37)

and the supremum on the right hand side is dominated by R1. Thus,

P

(
sup

τ∈[s,s′]

[
sup
[s,τ ]

X −Xτ

]
≥ ε

)
≤ P(R1 ≥ ε) . (2.38)
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Integrating the expression as a nested integral of P(N ε ≥ k), the variable sk−1 between tk−1 and
1

P(N ε ≥ k) =

∫
Σ2k−3

P(T ε1 = t1)P(Sε1 = s1 |T ε1 = t1) · · ·P(tk−1 ≤ Sεk−1 ≤ 1 |T εk−1 = tk−1) dtk−1

k−2∏
i=1

dsidti

≤ P(R ≥ ε)
∫

Σ2k−3

P(T ε1 = t1)P(Sε1 = s1 |T ε1 = t1) · · ·P(T εk−1 = tk−1 |Sεk−2 = sk−2)dtk−1

k−2∏
i=1

dsidti

Carrying out the subsequent 2k − 3 integrations and by repeated use of the inequality given in
equation 2.38, we obtain the result

P(N ε ≥ k) ≤ P(R1 ≥ ε)2k−2 . (2.39)

By the hypothesis of the theorem, for all ε ≥ ε∗, P(R1 ≥ ε) < 1 so the above condition guarantees
the summability (and absolute and uniform convergence) of the series E

[
eλN

ε]
on the half plane

Re(λ) < −2 log(P(R1 ≥ ε)). Moreover the same summability condition holds for Nx,x+ε, since
the latter is dominated by N ε. �

2.2 A priori estimates on the asymptotic behaviour of small and large bars

If f is a continuous function, the asymptotic behaviour of N ε is closely related to the regular-
ity of f . For functions f : [0, t]→ R, the correct notion of regularity to look at is the p-variation,
of which we recall the definition.

Definition 2.13. Let f : [0, t]→ R be a function. The (true) p-variation of f is defined as

‖f‖p-var := sup
P

∑
tk∈P
|f(tk)− f(tk−1)|p

1/p

(2.40)

where the supremum ranges over all finite partitions of [0, t].

The p-variation can be used to infer something about the asymptotic behaviour of N ε
f , as

shown by the following theorem.

Theorem 2.14 (Picard, §3 [24]). Given a continuous function f : [0, 1]→ R,

V(f) = dimTf = lim sup
ε→0

logN ε

log(1/ε)
∨ 1 (2.41)

where dim denotes the upper-box dimension, a ∨ b = max{a, b},

V(f) := inf{p ≥ 1 | ‖f‖p−var <∞} . (2.42)

Remark 2.15. A general version of this theorem, applicable on more general metric spaces
exists [22].

Corollary 2.16. For any deterministic function f : [0, 1]→ R and for every δ > 0,

N ε
f = O(ε−V(f)−δ) as ε→ 0 . (2.43)

Having characterized the behavious of N ε for small ε, we can characterize the behaviour of
large bars (in expectation) using theorem 1.

Proof of corollary 1. Note pε = P(Rt ≥ ε). From theorem 1, we deduce,

pε ≤ E[N ε] ≤ pε +
p2
ε

1− p2
ε

=⇒ E[N ε] ∼ pε as ε→∞ . (2.44)

�
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3 Continuous semimartingales, local times and asymptotic be-
haviour of barcodes

In the previous section, we quantified the asymptotics of Nx,x+ε an N ε solely based on
the regularity of the functions considered. For stochastic processes on [0, t], we can refine this
analysis by focusing on (continuous) semimartingales. Semimartingales constitute the largest
class of processes with respect to which the Itô and Stratonovich integrals can be defined. In
other words, they are a class of processes rich enough to be worthy of particular attention. For
a comprehensive introduction to these objects and the probabilistic concepts included in this
section, we kindly refer the reader to classical references on stochastic calculus [17,25].

Definition 3.1 (Local martingales and semimartingales). Let (Ω,F ,P) be a filtered probability
space and let F∗ := (Ft)t≥0 be the filtration of F . An F∗-adapted process M : [0,∞]× Ω→ R
is an F∗-local martingale if there exists a sequence of stopping times τk such that

1. The τk are a.s. increasing, i.e. P(τk < τk+1) = 1;

2. The τk are a.s. divergent, i.e. P(limk→∞ τk =∞) = 1;

3. The process Mt∧τk is an F∗-martingale, i.e. for all s < t,

E[Mt∧τk | Fs] = Ms∧τk . (3.45)

A process (Xt)t≥0 is a continuous semimartingale if it can be written in the form

Xt = Mt +At (3.46)

where At is a process of finite variation and Mt is a continuous local martingale.

Throughout this section, we will use two key concepts stemming from the theory of stochastic
integration: the local time of a (continuous) semimartingale and the quadratic variation. The
latter is the easiest to define, given our introduction of the true quadratic variation in the
previous section.

3.1 Quadratic variation and a priori bounds

Definition 3.2 (Quadratic variation, Theorem 4.9 [17]). Suppose that (Xt)t is a R-valued
stochastic process indexed by R+. The quadratic variation of X is the process defined as

[X]t := lim
‖P‖→0

n∑
k=1

(Xtk −Xtk−1
)2 , (3.47)

where P ranges over the set of finite partitions of the interval [0, t] and ‖P‖ the mesh of the
partition P. If it exists, the limit is taken in the sense of convergence in probability. Whenever
X is a continuous semimartingale, the quadratic variation always exists.

Remark 3.3. This definition is strictly weaker than the true 2-variation, which is defined as a
supremum over the set of all finite partitions (cf. definition 2.13). In fact, for Brownian motion
B, it is possible to show that [B]t = t, but on the interval [0, t], ‖B‖2−var =∞ almost surely.

Understanding the quadratic variation is in some sense enough to understand local martin-
gales, as the following theorem shows.

Theorem 3.4 (Dambis-Dubins-Schwarz). Let M be a continuous local martingale vanishing at
0 such that [M ]∞ =∞, then there exists a Brownian motion B such that, a.s. for all t ≥ 0,

Mt = B[M ]t . (3.48)
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This theorem allows us to give a priori bounds on the small bar asymptotics of the barcode
of a semimartingale. Since Brownian motion is a.s. (1

2 − δ)-Hölder continuous for every δ > 0,
the p-variation of any semimartingale is almost surely finite as soon as p > 2 (since p-variation
does not depend on parametrization). In particular we expect

N ε
X = O(ε−2−δ) as ε→ 0 . (3.49)

for every δ > 0, by virtue of Picard’s theorem. We may further refine this result by introducing
the local time.

3.2 The local time and sharp asymptotics

The local time of a continuous semimartingale on an interval [0, t] can be informally under-
stood as the “time spent” by the process X around a level x ∈ R, in an equation

LxX(t) =

∫ t

0
δ(x−Xs) d[X]s . (3.50)

The above equation is informal and ill-defined, but gives an intuitive insight on what the local
time represents and how it behaves. Formally, we define the local time as follows.

Proposition 3.5 (Proposition 9.2 [17]). Let X be a continuous semimartingale and x ∈ R.
There exists an increasing process (LxX(t))t≥0 such that the three following identities hold

|Xt − x| = |X0 − x|+
∫ t

0
sgn(Xs − x) dXs + LxX(t)

(Xt − x)+ = (X0 − x)+ +

∫ t

0
1Xs>x dXs +

1

2
LxX(t)

(Xt − x)− = (X0 − x)− −
∫ t

0
1Xs≤x dXs +

1

2
LxX(t)

Definition 3.6. The increasing process (LxX(t))t≥0 is called the local time of X at level x.
Furthermore, for every stopping time T , the local time at x of the stopped process X at T ,
Lx
XT (t) = LxX(t ∧ T ).

The local time of a process is useful, as it allows us to exchange time and space in integrations.
A first useful result in this direction, which we will later use, is the following proposition.

Proposition 3.7 (Density occupation formula, Corollary 9.7 [17]). Almost surely, for every
non-negative, measurable function φ on R,∫ t

0
φ(Xs) d[X]s =

∫
R
φ(a)LaX(t) da . (3.51)

This result can be informally derived using the informal definition of the local time we gave
earlier. For a rigorous proof, we refer the reader to the cited reference. From the informal
description we gave about the local time as the time spent by the process around a level x, we
could expect the local time to be related to Nx,x+ε

X for small ε. This turns out to be a well-known
fact.

Proposition 3.8 (Approximation of the local time by downcrossings, §VI, Theorem 1.10 [25]).
For every t ≥ 0 and s ≥ 1, if X = M + A is a continuous semimartingale on [0, t] defined on a
probability space (Ω,F ,P) and suppose that for s ≥ 1

E
[
[M ]

s/2
t +

(∫ t

0
|dA|s

)s]
<∞ . (3.52)
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Then, then number of downcrossings from x+ ε to x, Dx,x+ε
X satisfies

εDx,x+ε
X

Ls−−−→
ε→0

1

2
LxX(t) . (3.53)

Moreover, in Ls(Ω),

Dx,x+ε
X ∼

LxX(t))

2ε
+O(1) as ε→ 0 . (3.54)

Remark 3.9. An analogous statement can be proven for upcrossings.

With the above in mind, we proceed to prove theorem 2.

Proof of theorem 2. Since 0 ≤ Nx,x+ε
X −Dx,x+ε

X ≤ 1, the statement of proposition 3.8 is applicable

to Nx,x+ε
X yielding the first result. It follows that in Ls(Ω),∣∣∣∣2ελ(T εX)−

∫
R
LxX(t) dx

∣∣∣∣ = O(ε) . (3.55)

Note that while the integral carries over R, its support is contained within the compact interval
[inf X, supX]. We now use the density occupation formula for the local time where φ = 1, so

2ελ(T εX) = [X]t +O(ε) as ε→ 0 in Ls(Ω) (3.56)

We now use the fact that

λ(T εX) =

∫ ∞
ε

Na
X da . (3.57)

By monotonicity of N ε
X , for every δ > 0, almost surely,

N
ε(1+δ)
X ≤

λ(T εX)− λ(T
ε(1+δ)
X )

δε
=

1

δε

∫ ε(1+δ)

ε
Na
X da ≤ N ε

X . (3.58)

Thus, for δ > 0 small enough,

2ε

δ
[λ(T εX)− λ(T

ε(1+δ)
X )] ≤ 2ε2N ε ≤ 2ε

δ
[λ(T

ε(1−δ)
X )− λ(T εX)] (3.59)

1

δ
[2ελ(T εX)− 2ε(1 + δ)

1 + δ
λ(T

ε(1+δ)
X )] ≤ 2ε2N ε ≤ 1

δ
[
2ε(1− δ)

1− δ
λ(T

ε(1−δ)
X )− 2ελ(T εX)] (3.60)

It follows that in Ls(Ω), for every δ > 0 small enough,

1

δ

[
δ

1 + δ
[Xt] +O(ε)

]
≤ 2ε2N ε ≤ 1

δ

[
δ

1− δ
[X]t +O(ε)

]
as ε→ 0 (3.61)

[X]t
1 + δ

+O(ε/δ) ≤ 2ε2N ε
X ≤

[X]t
1− δ

+O(ε/δ) as ε→ 0 . (3.62)

Taking δ → 0 at a rate δ = O(ε1/2), we obtain the desired result. �

4 Limiting processes

An interesting point of view relative to these stability results and the results of this paper is
to consider these irregular processes as almost sure C0-limits of smooth processes, which have
traditionally been more difficult to study. In this way, we can make affirmations about the
barcodes of smooth processes up to some (small) error. This way of thinking is inspired by the
study of trees, ultralimits and asymptotic cones in geometric group theory [27].
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Lemma 4.1. Let (M,d) be a compact Polish metric space and let X be an almost surely
continuous stochastic process on M , defined on a probability space (Ω,F ,P). Let (Xn)n∈N
be any sequence of continuous stochastic processes defined on the same probability space and
suppose

δn := ‖X −Xn‖L∞(Ω,L∞(M,R)) −−−→n→∞
0 . (4.63)

If for all ε > 0, E[N ε
X ] <∞ and is continuous in ε, then for any ε ≥ 2δn,

N ε
Xn

L1

−−−→
n→∞

N ε
X ,

Morever,
E
[∣∣N ε

X −N ε
Xn

∣∣] ≤ ωε(δn) , (4.64)

where ωε(δ) := E
[
N ε−δ
X −N ε+δ

X

]
. With analogous hypotheses, the same statement holds for

Nx,x+ε
X .

Proof. The L∞-stability of barcodes with respect to the L∞-distance tells us that δn controls the
bottleneck distance between the two barcodes [6,21]. This implies that there exists a δn-matching
between the barcodes of Xn and that of X, therefore:

• If α ∈ B(X) has length |α| ≥ 2δn, then ∃!β ∈ B(Xn) such that (α, β) are matched and the
difference ||α| − |β|| ≤ 2δn;

• If β ∈ B(Xn) has length |β| ≥ 2δn, then ∃!α ∈ B(X) such that (α, β) are matched and the
difference ||α| − |β|| ≤ 2δn;

• If α ∈ B(X) or β ∈ B(Xn) in unmatched, then they have length ≤ 2δn.

It follows that for ε ≥ 2δn we have inequalities

N ε+2δn
Xn

≤ N ε
X

N ε+2δn
X ≤ N ε

Xn ,

from which we obtain bounds on N ε
Xn

N ε+2δn
X ≤ N ε

Xn ≤ N
ε−2δn
X . (4.65)

These inequalities imply∣∣N ε
Xn −N

ε
X

∣∣ ≤ ∣∣∣N ε+2δn
X −N ε

X

∣∣∣ ∨ ∣∣∣N ε−2δn
X −N ε

X

∣∣∣ .
Taking expectations of both sides, we have

E
[∣∣N ε

Xn −N
ε
X

∣∣] ≤ E
[∣∣∣N ε+2δn

X −N ε
X

∣∣∣ ∨ ∣∣∣N ε−2δn
X −N ε

X

∣∣∣]
≤ E

[∣∣∣N ε+2δn
X −N ε

X

∣∣∣]+ E
[∣∣∣N ε−2δn

X −N ε
X

∣∣∣]
= E

[
N ε
X −N ε+2δn

X

]
+ E

[
N ε−2δn
X −N ε

X

]
≤ ωε(2δn)

by monotonicity of N ε
X . The right hand side of the inequality tends to 0 as n→∞ by continuity

of E[N ε
X ], so N ε

Xn

L1

−−−→
n→∞

N ε
X . �

Remark 4.2. The condition of uniform convergence over Ω can be quite restrictive, but covers
some cases of distributions with compact supports in C0(X,R). Moreover, it covers the case
of processes derived from random point clouds P (the filtration function is given by d(−, P ))
stemming from a distribution with compact support on any Polish metric space M .
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We can adapt the proof of the above proposition to a setting relaxing the L∞(Ω, L∞(M,R))
convergence condition.

Proof of theorem 4. Notice lemma 4.1 shows the result for p =∞. The rest of the proof goes as
that of lemma 4.1 with a few exceptions. To obtain the probable bound on ‖X −Xn‖L∞(M,R),
we apply the Markov inequality. Doing so yields

P(‖Xn −X‖L∞(M,R) ≥ aδn) ≤ 1

ap
. (4.66)

The rest of the proof follows by first noticing that

P(A) = P(A ∩B) + P(A ∩Bc) ≤ P(A ∩B) + P(Bc) (4.67)

and taking the events A and B to be A = {
∣∣N ε

Xn
−N ε

X ≥ k
∣∣} and B = {‖Xn −X‖L∞(M,R) ≤

aδn} respectively, since

P(A ∩B) = P(A |B)P(B) ≤ P(A |B) ≤
E
[
‖X −Xn‖L∞(M,R)

∣∣B]
k

. (4.68)

�

Remark 4.3. By an application of the Borel-Cantelli lemma, ifXn tends toX in Lp(Ω, L∞(M,R))
for p > 1 at a rate O(r(n)) (where r is a function tending to 0 at infinity), then almost surely

Xn
L∞−−−→
n→∞

X at a rate O(r(n)) as well.

5 Applications

5.1 Brownian motion and local martingales with deterministic strictly in-
creasing quadratic variation

For Brownian motion, it is possible to compute our quantities of interest exactly.

Theorem 5.1 (Perez, Proposition 4.4 [23]). For Brownian motion B on [0, t], E[N ε
B] admits

the following series representations which converge quickly for large and small ε respectively

E[N ε
B] = 4

∑
k≥1

(2k − 1) erfc

(
(2k − 1)ε√

2t

)
− k erfc

(
2kε√

2t

)
(5.69)

=
t

2ε2
+

2

3
+ 2

∑
k≥1

(2(−1)k − 1)
e−π

2k2t/2ε2t

ε2

[
1 +

ε2

π2k2t

]
. (5.70)

Remark 5.2. In particular, E[N ε
B] is analytic in ε on an open wedge around the positive real axis

in the complex plane, and so in particular C∞ in ε, thereby confirming and extending Divol and
Chazal’s results.

Proof. We start by writing

E[N ε
B] =

∞∑
k=1

P(N ε
B ≥ k) = P(Rt ≥ ε) +

∞∑
k=2

P(Sεk−1 ≤ t) (5.71)

Using the scale invariance of Brownian motion,

E[N ε
B] = P(R1 ≥ t−

1
2 ε) +

∞∑
k=2

P(S1
k−1 ≤ t/ε2) (5.72)
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We now notice that the stopping times

Sεk−1 =
k−1∑
i=1

(Sεi − T εi ) + (T εi − Sεi−1) (5.73)

and that the increments (Sεi − T εi ) and (T εi − Sεi−1) are independent and identically distributed.
Moreover, in distribution,

sup
[0,t]

B −Bt = |Bt| , (5.74)

so that the (Sεi − T εi ) and (T εi − Sεi−1) are distributed like the first hitting time of ε by |Bt|. It
is a classical result [4, p.641] that this hitting time Hε satisfies

E
[
eλH

ε
]

= sech(ε
√

2λ) . (5.75)

Similarly, it is also well-known that the range of Brownian motion satisfies

Lt(P(Rt ≥ ε))(λ) =
sech2(ε

√
λ
2 )

λ
(5.76)

We now take the Laplace transform with respect to the time variable (which we will denote Lt)
of E[N ε

B]

Lt(E[N ε
B])(λ) =

sech2(ε
√

λ
2 )

λ
+

1

λ

∞∑
k=2

E
[
e−λε

2S1
k−1

]

=
sech2(ε

√
λ
2 )

λ
+

1

λ

∞∑
k=2

E
[
e−λε

2H1
]2(k−1)

,

where the last equality holds by virtue of i.i.d. character of the increments (Sεi − T εi ) and
(T εi − Sεi−1). Replacing the value of E

[
eλH

ε]
,

Lt(E[N ε
B])(λ) =

sech2(ε
√

λ
2 ) + csch2(ε

√
2λ)

λ

The result is obtained by taking the inverse Laplace transform. �

Proof of theorem 3. Persistent homology is invariant under reparametrization. In particular if
λ : [0, t]→ [0, λ(t)] is an increasing bijection, N ε

f◦λ as calculated on [0, λ(t)] is exactly equal to N ε
f

as calculated on [0, t]. Invoking the Dambis-Dubins-Schwarz theorem (theorem 3.4), for every
continuous local martingale M (such that M0 = 0) with deterministic and strictly increasing
quadratic variation [M ]t, almost surely,

N ε
M [0, t] = N ε

B[0, [M ]t] . (5.77)

We can perform a similar calculation for Nx,x+ε
B when x > 0,

Proposition 5.3 (Perez, Proposition 4.7 [23]). For Brownian motion on [0, t] and x > 0,

E
[
Nx,x+ε
B

]
=

∞∑
k=1

erfc

(
x+ (2k − 1)ε√

2t

)

∼ 1

2ε

∫ t

0
ϕ(x, s) ds+

∑
k≥0

4(−2)k
(
22k+1 − 1

)
ζ(2k + 2)

π2k+2

[
∂k

∂tk
ϕ(x, t)

]
ε2k+1 as ε→ 0 ,

where ϕ(x, t) is the density of a centered Gaussian random variable of variance t and ζ denotes
the Riemann zeta function.
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Remark 5.4. In the appropriate limits, we retrieve the results established for semimartingales.
By virtue of the Dambis-Dubins-Schwarz theorem and by the invariance under reparametrization
of persistent homology, we may also immediately extend the results and formulæ of [23] to local
martingales with deterministic and strictly increasing quadratic variation by replacing t 7→ [M ]t.

5.2 Itô processes

Definition 5.5. An Itô process is the solution to a stochastic differential equation of the form

dXt = µt dt+ σt dBt (5.78)

where µt and σt are adapted processes.

Every Itô process of this form has the strong Markov property and moreover, it is a semi-
martingale. We deduce that

N ε
X ∼

[X]t
2ε2

+O(ε−1) as ε→ 0 , (5.79)

and an analogous expression for Nx,x+ε
X in terms of the local time of X. In expectation, we may

always say something about Nx,x+ε
X by virtue of the following proposition.

Proposition 5.6. Let X be an Itô process with deterministic quadratic variation, then

E[LxX(t)] =

∫ t

0
ϕX(x, s) d[X]s , (5.80)

where ϕX(−, s) is the density function of the random variable Xs (which itself is a solution of
the Fokker-Planck PDE associated to the SDE).

Proof. We take the expectation of both sides of the occupation density formula with φ(a) =
e−iλa. ∫ t

0
E
[
e−iλXs

]
d[X]s =

∫
R
e−iλa E[LaX(t)] da (5.81)

The result follows from taking the inverse Fourier transform (with respect to λ) of both sides. �

Proposition 5.7 (Asymptotics of barcodes of Itô processes). Let X be an Itô process with
deterministic quadratic variation on [0, t], then,

E
[
Nx,x+ε
X

]
∼ 1

2ε

∫ t

0
ϕX(x, s) d[X]s +O(1) as ε→ 0 . (5.82)

where ϕX(−, s) is the density function of the random variable Xs.
�

As a Markov processes, Itô processes also satisfy

E[N ε
X ] ∼ P(Rt ≥ ε) as ε→∞ . (5.83)

Finally, when µt = 0 and σt > 0 for all t > 0 and is deterministic, an Itô process is a local
martingale with quadratic variation

[X]t =

∫ t

0
σ2
s ds , (5.84)

and, in particular, its barcode is then known completely.

18



5.3 Limiting processes

The Karhunen-Loève theorem [14,18] shows that many well-known C0-processes can be seen
as limits of smooth processes and that the logic of studying smooth objects with their more
irregular C0 limits is a logic which can also be applicable in higher dimensions. Brownian
motion itself can be seen as such a limit [17, 19]. Indeed, Paul Lévy showed that if (ξk)k∈N is a
sequence of i.i.d. standard normal variables, the series

ξ0t+

√
2

π

∞∑
k=1

ξk
sin(πkt)

k
(5.85)

almost surely uniformly converges to the standard Brownian motion on [0, 1]. Noting

SnB := ξ0t+

√
2

π

n−1∑
k=1

ξk
sin(πkt)

k
, (5.86)

it can be shown (for instance using [13, Chapter 15, Theorem 4]) that for p ≥ 1 there exists a
finite constant Cp such that

‖B − SnB‖Lp(Ω,L∞([0,1],R)) ≤ Cpn
− 1

2 log
1
2 (n) . (5.87)

Applying the results of theorem 4 and optimizing in a, we have

P
(∣∣N ε

SnB −N
ε
B

∣∣ ≥ k) = O

[Cp n− 1
2 log

1
2 (n)

p ε3k

] p
p+1

 as ε→ 0. (5.88)

In particular, we know that through this approximation yields a curve on the log-chart which
doesn’t stray far away from the Brownian motion’s for ε & (n−1 log(n))

1
2 . Brownian motion can

also be approximated by random walks. The Komlós–Major–Tusnády (KMT) theorem provides
a sharp estimate of the rate of convergence of these empirical processes to the Brownian bridge
(which we will denote Wt).

Definition 5.8. Let (Xn)n∈N∗ be a sequence of (reduced, centered) i.i.d random variables. The
empirical process defined by X is the process

αXn (t) :=

[
1

n

n∑
k=1

1]−∞,t](Xk)

]
− t . (5.89)

Theorem 5.9 (KMT Theorem, [15,16]). Let (Un)n∈N∗ be an i.i.d. sequence of uniform random
variables on [0, 1]. Then, there exists a Brownian bridge (Wt)1≥t≥0 such that for all n ∈ N∗ and
all x > 0

P
(∥∥αUn (t)−Wt

∥∥
L∞

> n−
1
2 (C log(n) + x)

)
≤ Le−λx (5.90)

for some universal positive constants C, L and λ which are explicitly known [5].

The process W is a semimartingale with quadratic variation [W ]t = t on [0, 1], as it can be
obtained as the solution to the SDE

dWt =
−Wt

1− t
dt+ dBt . (5.91)

We deduce that N ε
W ∼

1
2ε2

as ε→ 0. The KMT theorem and the same reasoning behind theorem
4 imply

P
(∣∣∣N ε

αUn
−N ε

W

∣∣∣ ≥ k) = O

(
n−

1
2 log(n)

ε3k

)
as ε→ 0 . (5.92)

In particular, this approximation yields the curve N ε
αUn

on the log-chart which doesn’t stray far

away from N ε
W ’s for ε & n−

1
2 log(n).

19



6 Acknowledgements

The author would like to thank Pierre Pansu and Claude Viterbo, without whom this work
would not have been possible. Many thanks are owed to Jean-François Le Gall and Nicolas
Curien, for numerous fruitful discussions relevant to this work as well to the reviewers of this
paper for their helpful comments.

References

[1] R. J. Adler and J. E. Taylor. Random Fields and Geometry. Springer New York, 2007.
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[18] M. Loève. Probability Theory II, volume 46 of Graduate Studies in Mathematics. Springer-
Verlag New York, 4th edition, 1978.

[19] P. Mörters and Y. Peres. Brownian Motion. Cambridge University Press, Jan 2001.

[20] J. Neveu and J. Pitman. Renewal property of the extrema and tree property of the excursion
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