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Abstract 

Three years after its first 2010 enactment, the French government proposed a timeline for the development of a new metro network providing 
new rapid transit lines in the Ile de France region. Implemented by the Société du Grand Paris (SGP), the Grand Paris Express (GPE) thus 
became the largest transport project in Europe. As in any new railway project, a safety record must be established by the SGP. Among all 
criteria that had to be investigated, the ability of the network manager to prevent and detect broken rails was a particularly sensitive point. 
Indeed, beyond the obvious consequences induced by a broken rail impacting the safety of passengers, such an event has a very strong 
impact on the availability of the infrastructure, which is a key point for all metro line automation projects. The SGP therefore required some 
decision support tools to enable us to evaluate the consequences of a broken rail on the network operating conditions and, moreover, to 
determine the best monitoring strategy and the adequacy of the maintenance policy to prevent broken rails. 
Based on a former study commissioned by RATP (the historic operator and infrastructure manager of the Paris metro network) dealing with 
the evaluation and optimization of detection and prevention of broken rails in a metro line automation context, the SGP wanted to possess 
an equivalent decision support tool customised to the needs and the characteristics of the GPE. Nevertheless, in the GPE context, the network 
that was considered does not yet exist. Moreover, no equivalent system exists in the world. No feedback databases are therefore available 
to estimate reliability parameters necessary for such decision support tools. Therefore, the present paper proposes an original approach 
combining physical modelling of rail deterioration with statistics to overcome this limitation. 
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1. Introduction 
 

Three years after its first 2010 enactment, the French government proposed a timeline for the development of a new metro 
network providing new rapid transit lines in the Ile de France region. Implemented by the Société du Grand Paris (SGP), the 
Grand Paris Express (GPE) thus became the largest transport project in Europe. The GPE consists of a fundamental redesign 
and focus on the public transport network of the whole metropolitan area around Paris, among which a ring route around Paris 
(line 15, named the “red line”) is being added. 

As in any new railway project, a safety record must be established by the SGP. Among all criteria that had to be 
investigated, the ability of the network manager to prevent and detect broken rails was a particularly sensitive point. Indeed, 
beyond the obvious consequences induced by a broken rail that can impact the safety of passengers (such as derailment or rail 
gauge commitment), such failures of the railway infrastructure have also very strong systematic impacts on the quality of 
service (in terms of availability, regularity, etc.). 

The SGP therefore required some decision support tools to enable us to evaluate the consequences of a broken rail on the 
network operating conditions and, moreover, to determine the best monitoring strategy and an adequate maintenance policy 
to prevent broken rails. 

Considering the earlier “StatAvaries” study, commissioned by RATP (the historic operator and infrastructure manager of 
the Paris metro network), dealing with the evaluation and optimisation of detection and prevention of broken rails in a metro 
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line automation context, the SGP wanted to possess an equivalent decision support tool customised to the needs and the 
characteristics of the GPE. 

As the developer of the StatAvaries tool [1], we were therefore invited by the SGP to conduct this new study named 
VirMaLab – Red line. Based on the VirMaLab (Virtual Maintenance Laboratory) generic approach [2], the StatAvaries tool 
has a modular structure for modelling the rail degradation processes (considering some contextual variables such as the 
position of the rail, its stiffness, the operating characteristics, etc.), the supervision strategy (considering the monitoring device 
properties such as good detection, false alarms and confusion rates, periodicity, detection framework, etc.), and the 
maintenance policy (with a range of maintenance actions from punctual repairs to preventive maintenance actions but also 
imperfect maintenance). The VirMaLab approach uses the Dynamic Bayesian Network (DBN) formalism [3] and, more 
specifically, a specific DBN structure, named the Graphical Duration Model (GDM) [4], which allows the Markovian 
assumption induced by the standard DBN to be overcome. Indeed, considering constant transition rates is particularly 
inappropriate in the railway field. 

For all stochastic approaches to reliability analysis, one of the key points of such modelling is the parameter learning 
process. In a VirMaLab tool context, learning is commonly performed using a feedback database. In many studies dealing 
with very efficient learning algorithms, the main point is to have a deep enough feedback database to avoid the problems of 
over- or underrepresentation induced by small data sets [5]. In the railway field, such return of experience is generally 
available. Indeed, the dynamic behaviour of train axles, the variability of support conditions and the presence of residual 
stresses from thermal treatments during the manufacturing process and welding all contribute to the complexity of rail 
mechanical behaviour. Accurately predicting the evolution of rail conditions based solely on physical models would thus 
require the processing of tremendous amounts of data regarding train movements and infrastructure conditions, much of this 
information being generally unavailable. Therefore, a stochastic approach is generally considered. 

Nevertheless, in the GPE context, this network does not yet exist. Moreover, no one equivalent system exists in the world. 
The VirMaLab – Red line project therefore had to consider a new approach for learning the parameters for its maintenance 
model. In the StatAvaries study, the rail deterioration module used experience records to bypass the uncertainty in the rail 
mechanical behaviour. Particularly, the Weibull distribution describing the different stages of the rail deterioration process 
has been obtained through machine learning on a set of measurements of the rail condition of the existing Line 7 of the Parisian 
Subway. However, such records cannot exist for an infrastructure that is still in the design phase, such as line 15. 

The present paper therefore proposes an original approach combining physical modelling of rail deterioration with 
statistics to overcome this limitation. 

After a first section dedicated to the generic approach considered for developing decision support tools for the evaluation 
of maintenance strategies and its scientific formalism, the industrial context of this study will be described in detail. Then, the 
“mecanico-stochastic” learning process will be described in detail in section 3, and some results will be introduced and 
discussed in section 4 before some conclusions and prospects. 

 
2. VirMaLab – a decision support tool for maintenance policy evaluation and optimisation 
 
2.1. Generalities and main properties of the approach 

 
The aim of our work is to propose models able to settle, for a predetermined context and for operating constraints, the 

optimal diagnosis parameters and the most adapted maintenance policy. The generic approach used for building a VirMaLab 
decision support tool for determining optimal maintenance strategies is divided into three modules: 

• The first module consists of the mathematical modelling of the physical state of the system and the time evolution 
of its various components. This strategy means being able to determine if the system is still fault-free after a given 
operating time, knowing its initial state and the operating parameters. In contrast, if a defect appears, it is 
necessary to determine, from a predefined list of possible defects, the state of damage to the system. Due to the 
variability of contexts and the system size, a probabilistic approach is adopted. In this way, the probability of 
facing a given state is estimated rather than its deterministic existence. One of the most commonly used 
approaches is based on Markov chains, frequently modelled by DBN. A Markov chain is a discrete sequence of 
states, taking their value in a discrete state space, that follows the Markov property (knowing the present, the past 
does not have any impact on what will happen in the future). Therefore, dwell times in each state must necessarily 
be exponentially distributed. If some systems confirm this assumption, most industrial applications exhibit non-
Markovian behaviours. In this case, Markovian degradation process modelling can introduce non-negligible 
biases. Then, the estimated maintenance parameters can be far from optimal results [6]. To overcome this 
drawback, the VirMaLab approach introduces semi-Markovian modelling of degradation processes that can fit 
all kinds of dwell time distributions: graphical duration models (GDMs) [4]. 
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• The second module consists of modelling diagnostic devices and their setting parameters. According to supervision 
results, each reference frame recommends the use of a maintenance action adapted to the current estimated state of 
the system. When a maintenance action is performed, the state of the system and its degradation process must be 
updated to consider the impact of the maintenance action. 

• Finally, the last phase consists of quantifying the maintenance policy in terms of safety, costs, availability, regularity, 
etc. 

Then, with such a tool, one can evaluate various maintenance strategies and determine, for a given cost function, the best 
set of maintenance and monitoring parameters. The learning of such modelling can be done with both expert advice and 
feedback databases. 

 
2.2. Dynamic Bayesian Networks: main properties 

 
Considering discrete and finite state space systems, all the modelling is based on the DBN formalism. Since the aim of this 

paper is not to detail once again the VirMaLab approach nor to justify the use of one formalism rather than another, the DBN 
will be very briefly introduced in this subsection. For more details on these points, the reader may refer to [2], [3] and [4]. 
Formally, a Bayesian network (BN), denoted by  is defined as a pair (,{pn}1≤ n ≤N) where: 

• =(X, ε) is a directed acyclic graph giving a qualitative description of the BN. The graph nodes and the associated 
random variables are both represented by X={X1, …, XN}, with values in = 1 x …x N. ε is the set of edges 
encoding the conditional independence relationships among these variables. 

• {pn}1≤n≤N is a set of conditional probability distributions (CPDs) associated with the random variables. These 
distributions aim to quantify the local stochastic behaviour of each variable. 

In addition, both qualitative (i.e., ) and quantitative (i.e., {pn}) parts of  can be learned automatically if some complete 
or incomplete data or experts’ opinions are available [7]. Using BN is also particularly interesting because of the ease of 
knowledge propagation through the network. Indeed, various inference algorithms allow computing the marginal distribution 
of any subset of variables. 

From a dynamic behaviour modelling point of view, the time extension of BN provides a convenient formalism to represent 
discrete sequential systems. Indeed, DBNs are dedicated to modelling data that are sequentially generated by some complex 
mechanisms (time-series data, biosequences, number of mechanical solicitations before failure, etc.). Therefore, DBNs are 
frequently used to model Markov chains. Formally, a DBN is defined by a pair of BNs (ini, →) where: 

• { }( )1
,ini ini

ini n n N
p

£ £
=   is a BN modelling the initial distribution of X, denoted pini. 

• { }( ), 2 ; 1
, t n t T n N

p  

£ £ £ £
=   defines the transition model of the considered process, which represents the 

distribution of Xt knowing Xt-1, denoted p, etc. 
Figure 1(a) introduces a DBN modelling the Markov chain of the sequence X=(X1, …, XN) taking its values in the set . 

This DBN is described by the pair( ) ( ) ( )( )1 1, , , , sys
ini X p Q =   where sys denotes the transition matrix of a Markov 

Chain, quantifying the probability of Xt knowing Xt-1. 
If this approach is perfectly adapted to model the dynamics of systems, it induces a strong assumption on the sojourn time 

distribution in each state of the system. Indeed, as in all Markovian approaches, transition rates are assumed to be constant 
and, therefore, sojourn times are necessarily geometrically distributed. In many industrial applications, such an assumption 
can introduce strong bias in degradation modelling that cannot be foreseen in the context of reliability based optimisation of 
maintenance. To overcome this drawback, a specific DBN, designated the graphical duration model, was proposed and will 
be introduced briefly in the next paragraphs. 

The graphical duration model is a specific DBN that uses a semi-Markov approach. The main idea is to deal with the 
couple (Xt, St) rather than the single variable {Xt}, where St denotes the time remaining in the current state denoted by Xt. 
Figure 1(b) introduces the structure of a DBN modelling a GDM. The solid lines define the basic structure of the GDM; dashed 
lines indicate optional items (detailed in [4]), and red bold edges characterise dependences between time slices. 

A GDM is therefore defined by the pair (ini, →) with: 
• ( )( )1 1, ,ini

ini Fa=  where α1 and F1 denote the initial distributions of X1 and S1, respectively. 
• ( )( ), ,Q F   =  is characterised by two transition distributions: Q→ is the natural state change distribution, 

and F→ is the dwell time distribution, both described by equations (1) and (2) and widely detailed in [4] [6]. 
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(a) 
 

(b) 
Figure 1. DBN modelling dynamic behaviour of random variables: (a) Markovian standard approach (b) Semi-Markovian MGD. 

 

            (1) 

            (2) 

In addition, the structure of a GDM, introduced in Figure 1(b), shows that processes (Xt) and (St) are not Markovian since 
Xt-1 ⊥⊥ Xt+1 | Xt and St-1 ⊥⊥  St+1 | St. where the notation ⊥⊥A B C  means that variables A and B are statistically dependent 
given C. However, the GDM structure leads to: 

( ) ( ) ( )1 1 1 1, , | ,t t t t t tX S X S X S− − + +⊥⊥              (3) 

Therefore, the set (Xt, St) engendered by a GDM is Markovian, despite (Xt) not being Markovian. 
From a practical point of view, this approach allows specifying arbitrary state dwell time distributions by contrast with a 

classic Markovian framework in which all dwell times must be exponentially distributed. This modelling is therefore 
particularly interesting as soon as the question is to capture the behaviour of a given system subjected to a particular context 
and a complex degradation distribution. More details on this GDM (quantitative description, optional context description, etc.) 
can be found in [4]. Finally, various costs can be considered using utility nodes, introduced in BN theory to provide decision 
support tools named influence diagrams [8]. 
 
3. A “mecanico-stochastic” learning process for the evaluation of rail degradation dynamics 
 
3.1. Introduction of the industrial context of the study 

 
In a former study commissioned by the Paris public transport network operator and infrastructure manager (RATP) ten 

years ago, the StatAvaries project aimed to propose a maintenance model for the evaluation of the ability of the RATP to 
detect and prevent broken rails in the context of the steel-wheel metro line automation. An original VirMaLab modelling of a 
maintenance strategy was therefore proposed. Finally, the multimodel extension introduced for this study considered multiple 
temporal sampling events, satisfying both the degradation dynamic and the accuracy required to correctly quantify the impact 
of broken rails and their related false alarms to support RATP in its decisions. All details of this study can be found in [1]. 

Due to the new GPE project, SGP found it necessary to address the difficult issue of the detection and prevention of broken 
rails in a steel-wheel automated train context. Indeed, the dynamic behaviour of train axles, the variability of support conditions 
and the presence of residual stresses from thermal treatments during the manufacturing process and welding all contribute to 
the complexity of rail mechanical behaviour [9]. 

The rail deterioration module of StatAvaries used experience records to bypass the uncertainty associated with the rail 
mechanical behaviour. In particular, Weibull distributions describing the different stages of the rail deterioration process were 
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learned from the REX database of the Parisian subway line 7 [1]. Obviously, such records cannot yet exist for the line 15 
infrastructure. The present paper proposes an approach combining physical modelling of rail deterioration with statistics to 
overcome this limitation. 

To simplify the analysis and according to the International Union of Railways standards, the rail states along the main 
deterioration process were clustered into four classes: Ok (the rail has no defect), X1 (internal cracks < 2.4 mm), X2 (internal 
cracks < 30 mm) and BR (broken rail). 

A metro line is composed of hundreds of elementary rail sections (generally between 5 and 18 metres long), with various 
ages, various states, etc. 

For reasons of complexity, the development of a degradation model of a complete line is, therefore, unrealistic. To tackle 
this issue, a given line (or portion of a line) was therefore assumed to be the sequence of a set of independent elementary rail 
sections (as illustrated in Figure 2), 18 metres long. 

The proposed model focusses on one of these elementary sections. Then, the results are extrapolated to larger line sections 
to obtain reliability indicators on the considered portion of the line. 

Figure 2: Discretization assumption for modelling a track section using an elementary rail section 
 
3.2. General methodology 

 
Adapting the StatA varies rail deterioration model to line 15 means adjusting the Weibull distributions describing the dwell 

time of a rail in the four deterioration states considered in this new context. Herein, a method by comparison is proposed to 
extend the experience acquired on line 7 to line 15 by using a physical model able to quantify the relative influence of physical 
parameters on rail conditions. 

The physical model provides an estimation of the stress level in the rails depending on their cross-section, the horizontal 
and vertical alignment of the track, the characteristics of the rolling stock and operations (volume of traffic, speed). Based on 
the principles of fracture mechanics [10], the dwell times of flaws in each deterioration state can then be computed. 

The rail deterioration model is used to calculate the evolution of a series of common flaws [11], successively subjected to 
the contexts of line 7 and line 15. In other words, the dwell times of several generic flaws are computed for every homogeneous 
track segment in terms of the type of rails, annual load level, track alignment and allowable speed. 

Based on the length of the homogeneous segments, the weighted average of the dwell times is computed for each line and 
each deterioration state. The values obtained are then used to adjust the expected values of the Weibull distributions to the 
context of line 15 as follows: 

 𝜇௑,௅ଵହ = ௧೉,ಽభఱ௧೉,ಽళ ∙ 𝜇௑,௅଻               (4) 

 
where: 

• µX,Li defines the expected value of the Weibull distribution for the dwell time of a rail in state X, on line i. 
• tX,Li is the average dwell time of an “average flaw” on line i as calculated by the rail deterioration model. 

 
The relative shape of the dwell time distribution around the expected value is assumed to be equivalent for both lines. As 

a consequence, the shape parameter of the Weibull distributions should remain constant. The scale parameter, however, is a 
function of the expected value and must be adjusted to the context of line 15 [12]. 
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where μX,L15, αX,L15 and βX,L15 are the expected value, the scale and the shape parameters of the Weibull distribution describing 
the dwell time of a rail in the deterioration state X, respectively, on line 15. 
 
3.3. Physical modelling of rail degradation 

 
The model is based on the principles of structural mechanics and fracture mechanics. Structural mechanics concentrates on 

analysing the behaviour of structural members subjected to loads, particularly their internal stresses and strains. Fracture 
mechanics [10] is concerned with the propagation of cracks inside structural members subjected to load cycles. The concept 
of load cycle can be understood as the complete process of loading and unloading a structural member. The concept of load 
cycles can be understood as the complete process of loading and unloading a structural member. Any increase in the tensile 
or shear stresses on the edge of a crack participates in its propagation. In the railway field, the moving train axles can be seen 
as cyclic loads stressing the rails. A schematic representation of the effect of a moving axle load on a flaw located in the head 
of a rail is provided in Figure 3 [13]. The development of rail defects under the influence of cyclic loading is composed of 
three phases: 

• the nucleation phase [14]: initiation of microcracks induced by the plastic movement of dislocations within the 
crystalline structure of the metal, 

• the propagation phase: controlled propagation of microcracks until a critical size is reached, 
• the failure phase: fast and uncontrolled propagation of cracks leading to the failure of the cross-section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Cyclic loading of a flaw located in the head of a rail by a moving train axle 
 
The nucleation phase depends mainly on dislocations initially present in the material and then on the manufacturing process. 

We assume here that the rails of both line 7 and line 15 comply with the same quality standards. Following this hypothesis, 
the probability of new flaws emerging from dislocations is the same on both lines. Therefore, the nucleation phase does not 
cause the expected value of the Weibull distributions to vary from one line to another. 

Furthermore, the failure phase is generally very short. The influence of the failure phase on the dwell time of a flaw in state 
X2 is thus negligible. Consequently, the physical model presented herein concentrates on the propagation phase, where the 
average duration is likely to change from line 7 to line 15. The physical model allows calculating the stress cycles inside the 
rails generated by the passing of trains, the propagation velocity of the cracks and then the corresponding dwell times in the 
states Ok, X1 and X2. The 4 stresses considered by the model are: 

• the Hertz contact stresses [15]: 𝜎ு௘௥௧௭ = ට గ∙ா଺ସ∙ሺଵିఔమሻ ∙ ொோ∙௕                  (6) 

where E is the modulus of elasticity of rail steel, 
ν: Poisson’s ratio of rail steel, on average equal to 0.3, 
Q: the load exerted by a train axle on the rail, 
R: the radius of the train wheel, 
b: half of the width of the contact surface between the rail and the wheel, on average equal to 6 mm. 
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For an adhesion coefficient of 0.3, the maximum shear stress is approximately 0.3 times the peak Hertzian contact 
stress [16].  In average this value is reached at a depth of 5mm under the surface of the rail [16]. 
 
The lateral position of the wheel on the rolling surface tends to vary due to the geometry of the track-axle system. 

Given that it would be almost impossible to calculate the level of stresses in every possible configuration and that the 
lateral positioning of the analysed defects is fully theoretical and could vary in real applications, it has been chosen to 
neglect this parameter in the mode 

 
• the vertical (7) and horizontal (8) bending stresses: 𝜎௕,௩ = ெ೥ூ೥ ∙ 𝑧              (7) 𝜎௕,௛ = ெ೤ூ೤ ∙ 𝑦              (8) 

with: Mz and My, respectively, the vertical and horizontal bending moment, Iz and Iy, respectively, the second moment of area of the rail cross-section about the vertical or horizontal axis, z and y, respectively, the vertical and horizontal distances between the bending neutral axis and the point of  
interest. 
 

• the residual stresses due to laminations and welding [17, 18]. 
 

Thermal stresses are neglected for two reasons: railways are mainly underground. Therefore, temperature does not vary 
much, and the average effect of temperature fluctuations over a year should be close to zero given that rails are welded at the 
average annual temperature. Finally, the stresses resulting from the bending of the rail head on the web are also neglected 
since they are very small. 

Rails are modelled as continuous beams supported by the sleepers. These supports are considered stiff. This simplifying 
assumption leads to a slightly pessimistic estimation of the bending stresses in the case of a ballasted track (line 7). However, 
the influence of bending stresses on the development of flaws located in the head of rails is relatively small in comparison to 
the influence of contact stresses. 

The propagation speed of a flaw depends on the difference in the stress intensity factor defined by (9) [10]. ∆𝐾 = 𝑌 ∙ 𝐾௧ ∙ ∆𝜎 ∙ √𝜋 ∙ 𝑎 (9) 

with: 𝑌 = 𝑌௘ ∙ 𝑌௙௔ ∙ 𝑌௦is the correction factor depending on the shape and the position of the crack and on the 
dimensions of the cross-section of rail 𝐾௧, the factor of stress concentration, ∆𝜎, the tensile stress difference induced by a load cycle at the front of the crack, 𝑎, the size of the crack. 

Paris’ law (10) relates the propagation speed of a crack to the difference in the stress intensity factor. ௗ௔ௗே = 𝐶 ∙ ሺ∆𝐾ሻ௠                          (10) 

where N is the number of load cycles, 𝐶 = 1.1 × 10ିଵଵ and 𝑚 = 3 (for steel). 
 
The axle loads are computed from: 

• the gross weight of the trains, 
• an estimation of the number of passengers. 

 
In the case of GPE line 15, forecasts of passenger flows are used to estimate the axle load during peak hours. During the 

slack period, a load of 0.5 passengers/m2 is considered. However, no data on the passenger flows were available for line 7 of 
the Paris suburban area. Therefore, a load of 4 passengers/m2 during the peak hours and of 0.5 passengers/m2 during the slack 
period was considered. A sensitivity analysis will be carried out to assess the influence of this assumption on the Weibull 
distributions. Static loads are multiplied by a dynamic amplification factor defined by (7) [19]. 𝛾ௗ௬௡ = 1 + 0.14 ∙ ௩[௞௠/௛]ଵଶ଴                          (11) 
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where v is the speed of the train. 
 
For every homogeneous track segment, the dwell times of a series of common flaws in the deterioration states OK, X1 and 

X2 are computed. The dwell times of what is referred to as an “average flaw” are obtained by averaging the dwell times of all 
the flaws that were considered in the corresponding deterioration state. These common flaws are listed below: 

• in tangents: internal cracks at mid-span between two sleepers, internal cracks above a sleeper, inclusion close to the 
rolling surface above a sleeper (weld) and inclusion in the gauge corner of the rail’s head above a sleeper (weld) 

• in curves: internal cracks on the field side of the head of the high rail at mid-span between two sleepers, internal 
cracks on the gauge side of the low rail above a sleeper, inclusion in the field-side corner of the high rail’s head 
(weld) and inclusion in the gauge side corner of the low rail. 

 
The size of the initial cracks is assumed to be 0.1 mm in the case of inner cracks and 0.4 mm in the case of welding defects 

while Inner cracks are also considered to initiate 12.5 mm under the rolling surface [20]. 
 
4. Some illustrative results 
 
4.1. Dwell time generalities 

 
Figure 4 shows the propagation curve of a welding defect located on a segment of line 7. Table 1 shows the average dwell 

times of a rail presenting an average flaw in the deterioration states Ok, X1 and X2, as calculated by the physical model. 
 

 
Figure 4: Propagation of a welding defect on a homogeneous track segment of line 7 (central part of the line subjected to dense traffic, tangent, v = 60 

km/h, rail V52N900). 
 
The sum of the average dwell times in the deterioration states OK, X1 and X2 corresponds to the average lifetime of a rail 

presenting a flaw. According to the physical model, this lifetime is equal to 30.8 years on line 7 and to 16.3 years on GPE line 
15. This difference can be explained because the axle loads are 25 % heavier on line 15 than on line 7. Additionally, trains 
travel at higher speeds on line 15, which further increases the load due to dynamic amplification. 

 
Table 1: Average dwell times of a flawed rail in the deterioration states considered as calculated by the physical model. 

 
4.2. Weibull distributions of dwell times  

 
Table 2 presents the expected value of the Weibull distributions describing the dwell time in Ok, X1 and X2 on lines 7 and 

15 and their scale and shape parameters, learnt by maximisation of log-likelihood on the feedback database provided by RATP 
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for line 7 and using the methodology introduced in the previous sections for line 15. Figure 5 gives a representation of these 
Weibull distributions. 

Table 2: Expected values scale and shape parameters of the Weibull distributions describing the dwell time of a rail in the considered deterioration states. 
 
Intuitively, the dwell time in X2 is expected to be shorter than the dwell time in X1, which would result in a distribution of 

X2 more to the left than the distribution of X1. Surprisingly, this expectation is not the case here. Finally, discussions with the 
RATP infrastructure managers underline that the available monitoring database deals with a period with mixed quality rails. 
Indeed, due to a change in rail suppliers, many poor-quality rail sections have been introduced. This point was quickly detected 
by monitoring services, and sections were replaced. Nevertheless, the activity of this rail supplier induced many events 
concerning short dwell time in state X1 before a replacement for a better-quality rail. 

 

 
 

Figure 5: Weibull distributions describing the dwell time (in months) of a rail on line 15 in the deterioration states Ok, X1 and X2. 
 

4.3. Sensitivity analysis 
 
As a remainder, a 4 passenger/m2 load was considered on line 7 during the peak hours and 0.5 during the slack period. In 

Figure 6, the sensitivity to this assumption in the Weibull rail degradation process on line 15 is assessed. 

 
 

Figure 6: Sensitivity of the Weibull distributions describing the rail deterioration process on line 15 to the assumption concerning  
the passenger load on line 7. 
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A variation of ±1 passenger/m2 during the peak hours and of ± 0.5 passenger/m2 during the slack period induces at most a 

variation of 8.5 % of the scale parameter of the Weibull distributions. Therefore, we can conclude that the results are relatively 
robust with regard to the uncertainty of the passenger load on line 7. 

 
4.4. Some indicator estimation and discussion 

As a conclusion to this section, two experiments will be introduced to underline the kind of learning such an approach can 
provide. First, the impact of the ultrasonic vehicle (USV) monitoring period on both preventive maintenance actions and the 
annual number of broken rails will be investigated through Figure 7, introducing the percentage of evolution of these two 
indicators with respect to the USV period and in comparison with the “standard” scenario considered with a T0 monitoring 
period. The more frequently tracks are inspected, the earlier preventive actions can be planned and then that fewer broken 
rails occur is obvious. Nevertheless, with Figure 7, one can evaluate both the necessary “optimal” USV period to decrease the 
annual number of broken rails by x% and the impact on the number of preventive maintenance actions. Conversely, knowing 
the monitoring demand for the whole network, one can estimate the consequence of the induced monitoring period change on 
the annual number of broken rails. 

Then, during this study, one of the expectations of SGP was both to characterise new monitoring devices according to their 
needs in terms of infrastructure availability and to determine if a “low detection rate” monitoring device installed on 
commercial coaches could provide better preventive monitoring of the rails than the USV process. 

 

 
Figure 7: Impact of USV period changes on the annual number of broken rails and preventive maintenance actions. Comparison with a “standard” scenario 

 
Figure 8 introduces the impact of the monitoring period of this “virtual” sensor according to its preventive detection rate 

on the broken rail index (ratio of annual number of broken rails with the scenario considering the only USV with its “optimal” 
period estimated through Figure 7). Only scenarios with either the single virtual sensor or the single USV are considered. 
Scenarios with both sensors were also computed, providing better results than the scenarios introduced in Figure 8, but the 
aim is here to demonstrate the eventual benefits of onboard “average” monitoring sensors compared with high-level 
monitoring devices such as the USV. Of course, both approaches will be jointly considered for the final SGP decision. 

Finally, we would like to focus on onboard sensors detecting only 5 % of X2 but monitoring infrastructure every day to 
provide a significant decrease in the annual number of broken rails compared with the standard scenario with only the USV 
(monitoring rails usually twice a year or every 3 months). 

In conclusion, many other results could be introduced in this section, but the aim of this paper is not to detail what SGP 
did with this decision support tool during the constitution of its safety report but to underline that, even without feedback data, 
some hybrid approaches considering that the accuracy of a mechanical model with flexible stochastic approaches could be 
helpful for decision makers to optimise maintenance and monitoring strategies. 
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Figure 8: Comparison of broken rail index behaviour for several parameterisations of the “virtual” sensor in comparison with a monitoring strategy limited 
to the use of a USV. 

 
5. Conclusions and prospects 
 

In this paper, an original approach was proposed for the implementation of a decision support tool for evaluating, 
comparing and optimising several maintenance and monitoring strategies for rails in the context of the upcoming Grand Paris 
Express network. 

Indeed, if reliability analysis tools are generally based on either physical consideration (with analytical models) or, more 
commonly, stochastic modelling, this second approach needs feedback data for learning parameters, whereas analytical 
models must be validated by laboratory tests and are therefore applicable for only a very strict set of contextual parameters. 
This limitation is the reason why previous studies on rail maintenance optimisation, detailed in the literature review, 
considered stochastic approaches learned on feedback databases provided by infrastructure managers. 

In the specific context of the Grand Paris Express, no database was available since such a railway network does not yet 
exist. To overcome this limitation of the study, an original approach was proposed for combining physical modelling of rail 
deterioration with reliability statistical approaches. A multibody model of rail degradation was therefore proposed for both a 
reference Paris metro line and GPE line 15 (considering the specifications of track laying and constitution). Then, adjustment 
rates were estimated on the mean and variance characterising the time spent in each rail degradation state defined by the UIC 
standard (No flaw, X1 and X2). These rates were finally used to adjust the dwell time distribution parameters introduced in a 
Bayesian network-based decision support tool. 

Finally, this study enables SGP to evaluate the consequences (in terms of safety, availability, maintainability, etc.) of some 
of its major decisions such as having a “track circuit free network” as well as to quantify technical recommendations to help 
infrastructure managers (evaluation of minimal detection threshold for preventive devices, optimal monitoring frequencies, 
etc.). 

The aim of this paper was to introduce a general methodology that accommodates the lack of feedback data for reliability 
analysis rather than to present results obtained by the SGP during this project. Nevertheless, as an illustration of the 
opportunities provided by such a decision support tool, several simulations were introduced underlying the ability of the 
approach to evaluate the optimal ultrasonic monitoring strategy and satisfy the expected availability, safety, and reliability 
indicators. Finally, considering that, in the model, a “virtual” sensor enables the SGP to determine what should be the features 
of a new onboard monitoring device, able to provide frequent estimations of the rail state even if its detection abilities are 
more capable than those of standard ultrasonic vehicles. 
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To conclude, the proposed hybrid “mechanico-statistic” approach appears to be a good solution to overcome the lack of 
feedback data and to evaluate monitoring and maintenance strategies. If the application introduced in this paper was limited 
to rail maintenance, the proposed approach is, to our mind, perfectly generic and could be applied to several industrial fields. 
 
Acknowledgments 
 
The authors want to thank the SGP for the trust they placed is us for this sensitive study. We also thank the RATP infrastructure 
management department for providing extracts of their feedback database, which is required to successfully complete this 
project. 
 
References 
 

1. L. Bouillaut, O. François and S. Dubois, “A Bayesian network to evaluate underground rails maintenance strategies in an 
automation context” Proc IMechE Part O: Journal of Risk and Reliability, vol. 227(4), pp.411–424, 2013, (DOI 
10.1177/1748006X13481306) 

2. L. Bouillaut, P. Aknin and R. Donat, “VirMaLab – A generic approach for optimizing maintenance policies of complex systems”, 
9th World Congress on Railway Research (WCRR), Lille, France, September 2011. 

3. K.P. Murphy, “Dynamic Bayesian networks: representation, inference and learning”. PhD thesis, University of California, 
Berkeley, 2002 

4. R. Donat, P. Leray, L. Bouillaut, P. Aknin, and S. Bondeux, “A dynamic Bayesian network to represent discrete duration models”, 
Neurocomputing, Vol. 73, pp. 570-577, 2009 

5. T. Bendell, "An overview of collection, analysis, and application of reliability data in the process industries", IEEE Transactions 
on Reliability, Vol. 37(2), pp. 132-137, 1988. 

6. L. Bouillaut, R. Donat, A. Neji and P. Aknin, “Estimation of Multi-Components System’s reliability: Comparison of two 
Graphical Model Approaches”, 13th IFAC Symposium on Information Control Problems in Manufacturing (INCOM), Moscow, 
Russia, March 2009. 

7. F.V. Jensen, “An introduction to Bayesian networks”. UCL Press, 1996. 
8. M. Jordan, “Learning in graphical models”. Cambridge, MA:MIT Press, 1999. 
9. C. Esveld, “Modern Railway Track”, MRT Productions, Second Edition, 2001. 
10. L.P. Lebet, M. Hirt, “Steel Bridges - Conceptual and Structural Design of Steel and Steel-Concrete Composite Bridges”, EPFL 

Press, Ed. Eyrolles, Paris, 2013. 
11. Australian Rail Track Corporation Ltd, “Rails Defects Handbook – Some rail defects, their characteristics causes and control”, 

Engineering practices manual, Civil Engineering, RC 2400, 2006. 
12. W. Weibull, “A statistical distribution function of wide applicability”, Journal of Applied Mechanics, vol. 18(3), 1958. 
13. B. Eickhoff, L. Mazzola, Y. Bezin, G. Tucker, H. Stradtmann, A. Haigermoser, H. Chollet, J. Landais, “Trackloading limits and 

cross acceptance of vehicle approvals”.  Proc IMechE Part F: Journal of Rail and Rapid Transit, vol. 229(6), 2015. 
14. T. H. Lin and Y. M. Ito, “Fatigue crack nucleation in metals”, Proceedings of the National Academy of Sciences, vol. 62, 1969. 
15. V. A. Profillidis, “Railway engineering”, Second edition, pp. 94-95, Ashgate publishing, Aldershot UK, 2000. 
16. Y. Zhu, “Adhesion in the wheel-rail contact”, Doctoral thesis, Royal Institute of Technology of Stockholm, ISBN 978-91-7501-

896-6. 
17. S. Takahashi, T. Sasaki, Y. Kondoh and Y. Hirose, “Residual stress evaluation of railway rails”, JCPDS – International centre 

for diffraction data, ISSN 1097-002, pp. 240-247, 2009. 
18. Z. Cai, M. Nawafune, N. Ma, Y. Qu, B. Cao and H. Murakawa, “Residual stresses in flash butt welded rail”, Transactions of 

Joining and Welding Research Institute, vol. 40(1), 2011. 
19. R. Ferrara, “A numerical model to predict train induced vibrations and dynamic overloads”, Doctoral thesis, University 

Montpellier II – Sciences et Techniques du Languedoc, 2013. 
20. S. Kumar, Study on rail breaks: Associated risks and maintenance strategies”, Technical report, Lulea University of Technology, 

Sweden, 2006. 


