
HAL Id: hal-03079127
https://hal.science/hal-03079127v1

Submitted on 17 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thermodynamics-based Artificial Neural Networks for
constitutive modeling

Filippo Masi, Ioannis Stefanou, Paolo Vannucci, Victor Maffi-Berthier

To cite this version:
Filippo Masi, Ioannis Stefanou, Paolo Vannucci, Victor Maffi-Berthier. Thermodynamics-based Ar-
tificial Neural Networks for constitutive modeling. Journal of the Mechanics and Physics of Solids,
2021, 147, pp.104277. �10.1016/j.jmps.2020.104277�. �hal-03079127�

https://hal.science/hal-03079127v1
https://hal.archives-ouvertes.fr


Thermodynamics-based Artificial Neural Networks for constitutive
modeling

Filippo Masia,b, Ioannis Stefanoua,∗, Paolo Vannuccic, Victor Maffi-Berthierb

aInstitut de Recherche en Génie Civil et Mécanique,
UMR 6183, CNRS, Ecole Centrale de Nantes, Université de Nantes,

1 rue de la Nöe, F-44300, Nantes, France.
bIngérop Conseil et Ingénierie,

18 rue des Deux Gares, F-92500, Rueil-Malmaison, France.
cLMV, UMR 8100, Université de Versailles et Saint-Quentin,

55 avenue de Paris, F-78035, Versailles, France.

Abstract
Machine Learning methods and, in particular, Artificial Neural Networks (ANNs) have demonstrated
promising capabilities in material constitutive modeling. One of the main drawbacks of such
approaches is the lack of a rigorous frame based on the laws of physics. This may render physically
inconsistent the predictions of a trained network, which can be even dangerous for real applications.

Here we propose a new class of data-driven, physics-based, neural networks for constitutive
modeling of strain rate independent processes at the material point level, which we define as
Thermodynamics-based Artificial Neural Networks (TANNs). The two basic principles of thermo-
dynamics are encoded in the network’s architecture by taking advantage of automatic differentiation
to compute the numerical derivatives of a network with respect to its inputs. In this way, derivatives
of the free-energy, the dissipation rate and their relation with the stress and internal state variables
are hardwired in the architecture of TANNs. Consequently, our approach does not have to identify
the underlying pattern of thermodynamic laws during training, reducing the need of large data-
sets. Moreover the training is more efficient and robust, and the predictions more accurate. Finally
and more important, the predictions remain thermodynamically consistent, even for unseen data.
Based on these features, TANNs are a starting point for data-driven, physics-based constitutive
modeling with neural networks.

We demonstrate the wide applicability of TANNs for modeling elasto-plastic materials, using
both hyper- and hypo-plasticity models. Strain hardening and softening are also considered for
the hyper-plastic scenario. Detailed comparisons show that the predictions of TANNs outperform
those of standard ANNs.
Finally, we demonstrate that the implementation of the laws of thermodynamics confers to TANNs
high degrees of robustness to the presence of noise in the training data, compared to standard
approaches.
TANNs ’ architecture is general, enabling applications to materials with different or more complex
behavior, without any modification.

Keywords: Data-driven modeling; Machine learning; Artificial neural network;
Thermodynamics; Constitutive model.
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1. Introduction

A large spectrum of constitutive models have been proposed in the literature, based on
observations and experimental testing. Existing constitutive laws can account for phenomena
taking place at various length scales. This is achieved either through heuristic approaches
and assumptions or through asymptotic approximations and averaging (e.g. Lloberas Valls
et al., 2019; Nitka et al., 2011; Feyel, 2003; Bakhvalov and Panasenko, 1989). The history and
the state of a material is commonly taken into account through ad hoc enrichment of simpler
constitutive laws and extensive calibration. For this purpose, the laws of thermodynamics
offer a useful framework for deriving more sophisticated laws, by intrinsically respecting the
energy balance and the entropy production requirements (see e.g. Houlsby and Puzrin,
2000; Einav et al., 2007; Houlsby and Puzrin, 2007; Einav, 2012, among others).

An important limitation in constitutive modeling is the availability of data at different
time- and length-scales. However, with the increase of computational power, it is nowadays
possible to foresee micromechanical simulations that can account for realistic physics and
explore stress paths and non-linear phenomena, which are experimentally inaccessible with
the current methods. Of course, some constitutive assumptions will be always necessary,
but these might be at a smaller scale, where the material properties are measurable and
easier to identify. This scale is for instance the scale of the microstructure of a material
(e.g. the scale of sand grains, crystals, alloys’ grains, composites’ fibers, masonry bricks’
etc. including their topological configuration).

However, it is likely that the existing constitutive models might not be sufficient for
describing complex material behaviors emerging from the microstructure. Therefore, calibration
(parameter fitting) of known constitutive descriptors might be insufficient for representing
the full space of material response, provided by sophisticated micromechanical simulations.
Moreover, micromechanical simulations have currently a tremendous calculation cost, which
is impossible to afford in large-scale, non-linear, incremental simulations (e.g. Finite Elements)
that are usually needed in applications (cf. Masi et al., 2020, 2018; Rattez et al., 2018a,b;
Collins-Craft et al., 2020; Lloberas Valls et al., 2019; Nitka et al., 2011; Eijnden et al., 2016;
Feyel, 2003).

A promising solution to this issue seems to be Machine Learning. According to Geron
(2015), “Machine Learning is the science (and art) of programming computers so they can
learn from data”. In the context of computer programming, learning is defined by Mitchell
et al. (1997) as follows: “A computer program is said to learn from experience E with respect
to some task T and some performance measure P, if its performance on T , as measured by
P, improves with experience”. In the frame of constitutive modeling, a Machine Learning
program can learn the stress-strain behavior of a material, given examples of stress-strain
increments, which are either determined experimentally or through detailed micromechanical
simulations. The data that the system uses to learn are called the training data-set and
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each training example is called a training instance (or sample). In our case, the task T , for
instance, can be the prediction of the stress for a given strain increment and internal state of
the material. The experience E is the training data-set and the performance measure P can
be the prediction error. Machine Learning is a general term to describe a large spectrum
of numerical methods. Some of them offer very rich interpolation spaces, which, in theory,
could be used for approximating complicated functions belonging to uncommon spaces. Here
we focus on the method of Artificial Neural Networks (ANNs), which is considered to be a
sub-class of Machine Learning methods. According to Cybenko (1989) and Chen and Chen
(1995), ANNs have proved to be universal approximators, due to their rich interpolation
space. Therefore, they seem to be a useful and promising tool for approximating constitutive
laws of many materials (e.g. sand, masonry, alloys, ceramics, composites etc.).

Recognizing this potential, there is an increasing amount of new literature employing
ANNs successfully in constitutive modeling of non-linear materials from model identification
based on experiments and detailed numerical simulations. Starting form the seminal work
of Ghaboussi et al. (1991) and without being exhaustive, we refer to Ghaboussi and Sidarta
(1998); Lefik and Schrefler (2003); Jung and Ghaboussi (2006); Settgast et al. (2019); Liu
and Wu (2019); Lu et al. (2019); Xu et al. (2020); Huang et al. (2020); Liu and Wu (2019);
Gajek et al. (2020); Gorji et al. (2020) and references therein. The main idea in these works
is to appropriately train ANNs, feeding them with material data, and predict the material
response at the material point level. In this sense ANNs can be seen as rich interpolation
spaces, able to represent complex material behavior. For instance, we record the works of
Heider et al. (2020); Ghavamian and Simone (2019); Mozaffar et al. (2019); Frankel et al.
(2019); González et al. (2019); Gorji et al. (2020), who demonstrated that Recurrent Neural
Networks (RNNs), an extension of neural networks, can be particularly useful for modeling
path-dependent plasticity models. RNNs, differently from ANNs, process time sequences.
As suggested by Gorji et al. (2020), the history-dependent variables of RNNs can potentially
mimic the role of physical quantities.
The Boundary Value Problem (BVP), set to determine the behavior of a solid under mechanical
and/or multiphysics couplings, is then solved by replacing the standard constitutive equations
or algorithms by the trained ANN. This replacement is straightforward and non-intrusive in
Finite Element (FE) codes. We record, without being exhaustive, the successful embedding
of ANNs as material description subroutines in FE codes by Lefik and Schrefler (2003);
Jung and Ghaboussi (2006); Lefik et al. (2009); Settgast et al. (2019). Ghavamian and
Simone (2019) further implemented ANNs in a FE2 scheme for accelerating multiscale FE
simulations for materials displaying strain softening, with Perzyna viscoplaticity model.
It is worth emphasizing that the aforementioned data-driven approaches are different from
another promising data-driven method (i.e., data driven computing Kirchdoerfer and Ortiz,
2016) in which the BVP is solved directly from experimental material data (measurements),
bypassing the empirical material modeling step, involving the calibration of constitutive
parameters (Kirchdoerfer and Ortiz, 2016; Ibañez et al., 2017; Kirchdoerfer and Ortiz,
2018,?; Ibanez et al., 2018; Eggersmann et al., 2019). While data-driven computing can
be extremely powerful in many applications (Eggersmann et al., 2019), the first class of
methods above-mentioned (based on the constitutive behavior at the material point level)
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can be advantageous when modeling complex and abstract constitutive behaviors, which are
not a priori known. Moreover, they can be used even if the BVP does not have a unique
solution due to important non-linearities and bifurcation phenomena (e.g. loss of uniqueness,
strain localization at the length of interest, multiphysics, runway instabilities etc.).

Nevertheless, until now ANNs for constitutive modeling are mainly used as a ‘black-box’
mathematical operator, which once trained on available data-sets, does not embody the basic
laws of thermodynamics. As a result, vast amount of high quality data (e.g. with reduced
noise and free of outliers) are needed to enable ANNs to identify and learn the underlying
thermodynamic laws. Moreover, nothing guarantees that the predictions of trained ANNs
will be thermodynamically consistent, especially for unseen data.

In this paper, we encode the two basic laws of thermodynamics in the architecture
of neural networks. This assures thermodynamically consistent predictions, even for unseen
data (which can exceed the range of training data-sets). Therefore, we assure thermodynamically
consistent network’s predictions, both for seen and unseen data (which can exceed the
range of the training data-sets). Moreover, our network does not have to identify/learn the
underlying pattern of thermodynamical laws. Consequently, smaller data-sets are needed
in principle, the training is more efficient and the accuracy of the predictions higher. The
price to pay, in comparison with existing approaches, is the need of two additional scalar
functions (outputs) in the training data-set. These are the free-energy and the dissipation
rate. However, these quantities are easily accessible in micromechanical simulations (e.g.
Nitka et al., 2011; Eijnden et al., 2016; Feyel, 2003) and can also be obtained experimentally
in some cases. Then, based on classical derivations in thermodynamics (e.g. Houlsby
and Puzrin, 2007; Einav, 2012) specific interconnections are programmed inside our ANN
architecture to impose the necessary thermodynamic restrictions. These thermodynamic
restrictions concern the stresses and internal state variables and their relation with the free-
energy and the dissipation rate. Our approach is inspired by the so-called Physics-Informed
Neural Networks (PINNs) (Raissi et al., 2019), in which reverse-mode autodiff (Baydin et al.,
2017) is used, allowing the numerical calculation of the derivatives of an ANN with respect
to its inputs.

The calculation of these derivatives, imposes some numerical requirements regarding
the mathematical class of the activation functions to be used. More specifically, the internal
ANN restrictions, derived from the first law of thermodynamics, require activation functions
whose second gradient does not vanish. Otherwise, the problem of second-order vanishing
gradients, as it is called here (cf. classical vanishing gradients problem in ANNs, e.g. Geron,
2015), can inhibit back-propagation and make training to fail. This new problem and its
remedy is extensively explored and discussed herein.

For the sake of simplicity and for distinguishing our approach from existing ones, we call
the proposed ANN architecture Thermodynamics-based Artificial Neural Networks (TANNs).
In our opinion TANNs should be the starting point for data-driven and physics-based
constitutive modeling at the material point level.

The paper is structured as follows. Section 2 presents a brief summary of the theoretical
background of thermodynamics. In Section 3 an overview of the methodology proposed and
architecture of TANNs is given. The main differences with classical, standard ANNs for
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material constitutive modeling are also discussed. Particular attention is given to the choice
of activation functions and the issue of second-order vanishing gradient is investigated in
detail. Generation of material data-sets, with which the training of ANNs is performed, is
presented in Section 4. In a first phase, we apply TANNs for the constitutive modeling of
three-dimensional elasto-plastic material models, Section 5. In particular, we consider both
hyper-plasticity models and smoother hypo-plasticity ones. Extensive comparisons with
standard ANNs, which are not based on thermodynamics, are also presented. In a second
phase, we investigate the performance and robustness of TANNs with the presence of noise
in the training data, Section 6. This is achieved by generating a set of pseudo-experimental
data, adding several levels of artificial noise. Supplementary figures and data are available
in Supplementary data file. For the implementation of Artificial Neural Networks and
Thermodynamics-based Artificial Neural Networks, we leverage Tensorflow v2.0. All code
accompanying this manuscript is available upon request.

2. Thermodynamics principles: energy conservation and dissipation inequality

2.1. Energy conservation
A convenient way to express the (local) energy conservation is

ρė = σ · ∇Symv − divq + ρh, (1)

with ρ being the material density; e the specific internal energy (per unit mass); σ the
Cauchy stress tensor; ∇v the spatial velocity gradient tensor; q the rate of heat flux per
unit area; h the specific energy source (supply) per unit mass, and ”·” denotes contraction
of adjacent indices.

2.2. Second principle
The second law of thermodynamics can be formulated in terms of the local Clausius-

Duhem inequality
ρṡ ≥ ρh

θ
− div

(q · n
θ

)
, (2)

with s being the specific (per unit mass) entropy; h/θ and −(q · n)/θ the rate of entropy
supply and flux, respectively. By removing the heat supply h between the energy equation
(1) and the entropy inequality (2) leads to

ρ (θṡ − ė) + σ · ∇Symv − q · ∇θ
θ
≥ 0, (3)

where the first two terms represent the rate of mechanical dissipation D = ρ (θṡ − ė) +
σ · ∇Symv and the latter the thermal dissipation rate, i.e., Dth = −q·∇θ

θ
. The thermal

dissipation is non-negative because heat only flows from regions of higher temperature to
lower temperature−that is, the heat flux q is always in the direction of the negative thermal
gradient. As it follows we argue that the mechanical dissipation rate must itself be non-
negative (point-wise), i.e., D ≥ 0.
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2.3. Dissipation function
The definition of the (mechanical) dissipation rate D leads to

ρė = ρθṡ + σ · ∇Symv −D. (4)
Let us define the specific (per unit volume) internal energy E = ρe and entropy S = ρs and
further assume constant material density, i.e., d

dtρ = 0−that is, Ė = ρė and Ṡ = ρṡ. We shall
assume a small strain regime, i.e., ∇u ≪ 1, with ε := ∇Symu the small strain tensor, where
u is the displacement vector field, and ε̇ := ∇Symv its rate of change. Equation (4) hence
becomes

Ė = θṠ + σ · ε̇ −D. (5)
Let assume a strain-rate independent material such that the energy potential is

E := Ẽ (S, ε,Z) , (6)
and the dissipation rate, being a first-order homogeneous function of Ż, is

D := D̃
(
S, ε,Z, Ż

)
, (7)

where Z = (ζi, . . . , ζN) denotes a set of N (additional) internal state variables, ζi, i =
1, . . . ,N. We define here (thermodynamic) state variables those macroscopic quantities
characterizing the state of a system, see e.g. Maugin and Muschik (1994). The physical
representation of ζi is not a priori prescribed. For instance, in the case of isotropic damage,
ζ is a scalar; in anistotropic damage, a tensor; in the case of elasto-plasticity, a second
order tensor, etc. The generalization to a finite-strain formulation can be achieved by
considering the deformation gradient, F, and the first Piola-Kirchhoff tensor, P, as strain
and stress measures, respectively (see e.g. Mariano and Galano, 2015; Anand et al., 2012).
Nevertheless, as it would presented in Section 3, an incremental formulation of the material
response is herein adopted. Therefore, the hypothesis of a small strain regime is usually
realistic, at least for a large class of materials and an updated Lagrangian scheme.
Time differentiation of the internal energy gives

Ė = ∂E
∂S · Ṡ +

∂E
∂ε
· ε̇ +

N∑
i=1

∂E
∂ζ i
· ζ̇i, (8)

which is equal to (5) and, grouping terms, it leads to(
∂E
∂S − θ

)
Ṡ +

(
∂E
∂ε
− σ

)
· ε̇ −

 N∑
i=1

∂E
∂ζ i
· ζ̇i +D

 = 0. (9)

The arbitrariness of Ṡ, ε̇, and ζ̇ leads to the following relations

θ =
∂E
∂S , (10a)

σ =
∂E
∂ε
, (10b)

N∑
i=1

∂E
∂ζ i
· ζ̇i +D = 0. (10c)
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Further introducing the thermodynamic stress, conjugate to ζi, X = (χ1, . . . , χN), with

χi := −∂E
∂ζi

∀ i ∈ [1,N] , (11)

we obtain the following, alternative definition of the dissipation

D =
N∑

i=1

χi · ζ̇i (12)

2.4. Isothermal processes
In the case of isothermal process, the (specific) Helmholtz free-energy, F := E − Sθ =

F̃(θ, ε,Z), which is the Legendre transform conjugate of e, is preferable. In this case, the
dissipation rate is such that D := D̃(θ, ε,Z, Ż). The equations presented above (9-30) still
hold (by replacing E with F)

S = −∂F
∂θ
, σ =

∂F
∂ε
, D = −

∑
i

∂F
∂ζi
· ζ̇i =

∑
i

χi · ζ̇i. (13)

3. Thermodynamics-based Artificial Neural Networks

Within the framework of ANN or RNN material models, we can distinguish two main
classes. The first consists of direct, so-called “black-box”, approaches, where the information
flow passes through the machine learning tool which operates as a mere regression operator,
see e.g. Ghaboussi et al. (1991); Lefik and Schrefler (2003). The second class coincides
with ANN and/or RNN models incorporating some knowledge in an informed, guided graph
with intermediate history-dependent variables or detecting history-dependent features, see
Heider et al. (2020); Mozaffar et al. (2019); Gorji et al. (2020), among others. Whilst
the latter case has demonstrated to be extremely successful for path-dependent plasticity
models, both classes are affected by the lack of physics, being the predictions not always
compatible with thermodynamic principles (at least). Figure 1a depicts the direct approach

(a) black-box (BB) network.
(b) informed neural network (i-
NN1).

(c) informed neural network (i-
NN2).

Figure 1: Examples of direct, black-box (BB) (a) and informed (b, c) neural networks for material laws
modeling. Inputs are highlighted in gray ( ), outputs in black ( ).
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(BB), in which ANNs, usually Feed-Forward Neural Networks (FFNNs), are used to predict
the stress increment, (output, O) O = ∆σ = σt+∆t − σt, from the input I = (εt,∆ε), being εt

the precedent strain and ∆ε its increment. In concise form, we write O = BB@I. In this
scheme, εt and ∆ε can be regarded as the state variables, namely the ANN state variables
(not necessarily coinciding with those introduced in Sect. 2), on which the updated material
stress depends on. Two examples of guided, informed ANNs, either FFNNs or RNNs, are
illustrated in Figures 1b and 1c. In both cases, the neural network intrinsically accounts
for path-dependency, see e.g. Heider et al. (2020), making sequence of predictions of the
main output. The network i-NN1 makes use of the last predicted output, i.e., σt, to make
predictions of the next output, O = ∆σ. The inputs are hence I = (εt,∆ε, σt). We shall
notice that, differently from BB, the stress at the precedent state, σt, is also considered to
be an ANN state variable. Other alternatives exist in the selection of the ANN variables of
state. One may chose, as we shall see in Section 5, (thermodynamic) state variables to be
ANN state variables.
In the case of temperature-dependent material response, the second case (i-NN2) allows to
make predictions that depend on the precedent temperature state, θt, namely O = i-NN2@I,
with I = (εt,∆ε, σt, θt) and O = (∆σ,∆θ).

The main aim of this work is to change the classical paradigm of data-driven ANN
material modeling into physics-based ANN material modeling. We propose a new class
of ANNs based on thermodynamics, which are Thermodynamics-based Artificial Neural
Networks (TANNs). By exploiting the theoretical background presented in Section 2,
we propose neural networks which, by definition, respect the thermodynamic principles,
holding true for any class of material. In this framework, TANNs posses the special feature
that the entire constitutive response of a material can be derived from definition of only
two (pseudo-) potential functions: an energy potential and a dissipation pseudo-potential
(Houlsby and Puzrin, 2007). TANNs are fed with thermodynamics ”information” by relying
on the automatic differentiation technique (Baydin et al., 2017) to differentiate neural
networks outputs with respect to their inputs. This strategy allows to construct a general
framework of neural networks material models which, in principle, can be exploited to
predict the behavior of any material and assure that the predictions of TANNs will be
thermodynamically consistent even for inputs that exceed the training range of data. In
this paper, we only focus on strain-rate independent processes. Moreover, our approach can
be extended, following the developments in Houlsby and Puzrin (2000), to materials showing
viscosity and strain-rate dependency.
The model relies on an incremental formulation and can be used in existing Finite Element
formulations (among others), see e.g. Lefik and Schrefler (2003). Figure 2 illustrates the
scheme of TANNs. The model inputs are the strain increment, the previous material state
at time t, which is identified herein through the material stress, σt, temperature, θt, and the
internal state variables, ζ t

i , as well as the time increment ∆t, namely I = (εt,∆ε, σt, θt, ζ t
i ,∆t).

The primary outputs, O1, are internal variables increment, ∆ζi, the temperature increment,
∆θ, and the energy potential at time t+∆t, Ft+∆t, i.e. O1 = (∆ζi,∆θ,Ft+∆t). Secondary outputs,
O2−that is, outputs computed by differentiation of the neural network with respect to the
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inputs−are the stress increment, ∆σ, and the dissipation rate, Dt+∆t, which we denote as
O2 = ∇IO1 = (∆σ,Dt+∆t).
The class of neural networks we propose differs from the previous ones by the fact that
the quantity of main interest, i.e., the stress increment, is obtained as a derived one, which
intrinsically satisfies the first principle of thermodynamics (and, as we shall see, the second
principle, as well). In the following, we briefly recall the basic concepts of artificial neural
networks (paragraph 3.1), we then focus on the issue of the second-order vanishing gradients
that may afflict the training and the performance of an ANN model (paragraph 3.2). In
particular, it is shown that, in the framework of Thermodynamics-based Artificial Neural
Networks, particular attention has to be paid to the selection of activation functions. Finally,
we present in detail the architecture of our model (paragraph 3.3).

Figure 2: Schematic architecture of TANN. Inputs are highlighted in gray ( ); outputs in black, ( ) and
( ); and intermediate quantities in white ( ). Dashed lines represent definitions, while arrows are used to
denote neural network links.

3.1. Artificial neural networks overview
We give herein a brief overview of the basic concepts of ANNs and in particular FFNNs.

For more details, we refer to Hu and Hwang (2002) and Géron (2019). ANNs can be
regarded as non-linear operators, composed of an assembly of mutually connected processing
units−nodes−, which take an input signal I and return the output O, namely

O = ANN@I. (14)

ANNs consist of at least three types of layers: input, output and hidden layers, with equal
or different number of nodes. Figure 3 depicts a network composed of one hidden layer, with
3 nodes, an input layer with 2 inputs, and an output layer with 1 node. When an ANN has
two or more hidden layers, it is called a deep neural network (Géron, 2019). Denoting the
input array with I = (it), with t = 1, 2 . . . , nI (nI is the number of inputs), and the outputs
with O =

(
o j

)
, with j = 1, 2 . . . , nO (nO is the number of outputs), the signal flows from layer

(l − 1) to layer (l) according to

p(l)
k = A

(l)
(
z(l)

k

)
, with z(l)

k =

n(l−1)
N∑
s

(
w(l)

ks p(l−1)
s

)
+ b(l)

k , (15)
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where p(l)
k are the outputs of node k, at layer (l); A(l) is the activation function of layer (l);

n(l−1)
N is the number of neurons in layer (l − 1); w(l)

ks are the weights between the s-th node in
layer (l − 1) and the k-th node in layer (l); and b(l)

k are the biases of layer (l). With reference
to Figure 3, the output is given by

O = A(o)
(
z(o)

)
with z(o) =

∑
r w(2)

r p(1)
r + b(2)

p(1)
r = A(1)

(
z(1)

r

)
with z(1)

r =
∑

t w(1)
rt it + b(1)

r ,

where the activation function of the output layer, A(out), is a linear function, as in most of
the cases for regression problems. The weights and biases of interconnections are adjusted,
in an iterative procedure (gradient descent algorithm Géron, 2019), to minimize the error
between the benchmark, O, and prediction, O, that is measured by a loss function, L. In
the following, the Mean (over a set of N samples) Absolute Error (MAE) is used as loss
function, i.e.,

L =
∑N

i=1 |Oi − Oi|
N

, (16)

where i = 1, 2, . . .N. The errors related to each node of the output layer are hence back-
propagated to the nodes in the hidden layers and used to calculate the gradients of the loss
function, namely

∂L
∂w(l−m)

ks

=
∂z(l−m+1)

k

∂w(l−m)
ks

∂p(l−m+1)
k

∂z(l−m+1)
k

∂L
∂p(l−m+1)

k

∂L
∂p(l−m)

k

=

n(l−m+1)
N∑
j=1

∂z(l−m+1)
j

∂p(l−m)
k

∂p(l−m+1)
j

∂z(l−m+1)
j

∂L
∂p(l−m+1)

j

(17)

which are then used to update weights and biases, and force the minimization of the loss
function values, i.e.

w(l)−new
ks := w(l)

ks − ϵ
∂L
∂w(l)

ks

, (18)

where ϵ is the so-called learning rate. The weights and biases updating, the so-called training
process, is performed on a subset of the input-output data-set, defined as training set, known
from experimental tests or numerical simulations of the phenomenon investigated. The ANN
is trained. The training process is stopped as the loss function is below a specific tolerance.
Then a test set, a subset of the input-output data-set different to the training set, is used
to check the error of the network predictions. Once the ANN is trained, it is used in recall
mode to obtain the output of the problem at hand.
Due to their rich interpolation space, ANNs have proved to be universal approximators, see
e.g. Cybenko (1989); Chen and Chen (1995), although the choice of hyper-parameters, such
as the number of neurons, the network topology, the weights, etc. are problem-dependent.
The same stands for the activation functions, which may be chosen to have some desirable
properties of non-linearity, differentiation, monotonicity, etc. Most of these properties stem
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Figure 3: Graph illustration of an ANN structure with two inputs, one output, and one hidden layer with
three nodes.

from issues related to the gradient descent algorithm and the so-called (first-order) vanishing
gradient problem. As it follows, we briefly present this well-known issue and we further give
insights in a variation of it: the second-order vanishing gradient.

3.2. First- and second-order vanishing gradients
During the training process, if the gradient of the loss function with respect to a certain

weight tends to zero−that is, see Eq. (18), when A′(l) = ∂p(l)
j /∂z

(l)
j ≈ 0 (with A′ the first-

derivative of the activation function with respect to its arguments)−the update operation can
fail, and weights and biases are not updated. In this case, we have the so-called first-order
vanishing gradient (Géron, 2019). Figure 4 displays some of the most common activation

Figure 4: Some of the most common activation functions and their first-order gradient. From left to right: the
logistic (sigmoid) function, the hyperbolic tangent, the Rectified Linear Unit (ReLU), and the Exponential
Linear Unit (ELU).

functions and their derivatives−that is, the logistic (sigmoid) function, the hyperbolic tangent,
the Rectified Linear Unit (ReLU), and the Exponential Linear Unit (ELU). The sigmoid
function is S-shaped, continuous, differentiable, its output values range from 0 to 1, and its
first-order gradient (derivative) assumes values much smaller than 1. When inputs become
large (negative or positive), the function saturates at 0 or 1, with a derivative extremely close
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to 0. Thus when backpropagation kicks in, it has virtually no gradient to propagate back
through the network, which is problematic for training. The hyperbolic tangent activation
function is very similar to the sigmoid, but it is centered at zero allowing to maintain
the output values within a normalized range (between -1 and 1). Nevertheless, it suffers
from saturated gradients (at z = 0, for z << −1 and z >> 1). ReLU is continuous but
not differentiable at z = 0. Nevertheless it is an unsaturated activation function for positive
values of z (its gradient has no maximum) and, therefore, it allows to avoid vanishing gradient
issues for z > 0. Nevertheless, it suffers from a problem known as the dying ReLUs: during
training, some neurons are effectively deactivated, meaning they stop outputting anything
other than 0 (for z < 0). To this purpose many variants exist. The ELU activation, for
instance, takes on negative values when z < 0, which allows the unit to have an average
output closer to 0. This helps alleviate the vanishing gradient problem, as discussed earlier.
Second, it has a nonzero gradient for z < 0, which avoids the dying units issue. Finally, the
function is smooth everywhere, including z = 0, which helps speed up gradient descent.

When dealing with TANNs, second-order vanishing gradients can appear. This is a new
concept and, in order to illustrate it, we will use a simple example. Assume an ANN which
takes as input some I = x and returns (a) O1 = x2 and (b) its derivative with respect to the
input, i.e., O2 = ∇IO1 = 2x (see Figure 5). Let us consider one hidden layer, with activation
function A and Nn nodes. The activation function of the single output layer, which returns
x2, is assumed to be linear. In this case, the output (a) is given by

O1 = p(o) = A(o)
(
z(o)

k

)
O1 =

∑
j

w(o)
j p(1)

j + b(o)

O1 =
∑

j

w(o)
j A

(
w(1)

j i + b(1)
j

)
+ b(o).

(19)

The derivatives of the outputs with respect to the inputs can be easily computed, in this
simple example, by taking advantage of the automatic (numerical) differentiation (Baydin
et al., 2017). Output (b) is hence computed by the ANN as

O2 = ∇IO1 =
∂O1

∂I =
∑

j

∂p(o)

∂z(o)

∂z(o)

∂p(1)
j

∂p(1)
j

∂z(1)
j

∂z(1)
j

∂I
∂O1

∂I =
∑

j

w(o)
j w(1)

j A′
(
z(1)

j

)
.

(20)

Consider the following loss function

L = woLo + w∇IOL∇IO,

where Lo and L∇IO are the loss functions corresponding to output O1 and O2 = ∇IO1,
respectively. Regularized weights, wo and w∇I , can be used to obtain comparable order
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Figure 5: ANN which takes as input x and returns (a) O1 = x2 and (b) its derivative with respect to the
input, i.e., ∇IO1 = 2x, with one hidden layer whose activation function is A.

of magnitude of the two loss functions. During training, weights and biases are updated
according to Eq. (18) where the computed gradients are

∂L
∂w(o)

j

=AL′o + w(1)
j A′L′∇IO (21a)

∂L
∂w(1)

j

= iw(o)
j A′L′o +

(
w(o)

j A′ + iw(1)
j A′′

)
L′∇IO (21b)

∂L
∂b(o) =L

′
o (21c)

∂L
∂b(1)

j

= w(o)
j A′L′o + w(o)

j w(1)
j A′′L′∇IO. (21d)

It follows, from relations (21b) and (21d), that the gradient descent algorithm needs the
computation of both first- and second-order gradients of the activation function A. This
particular result is a direct consequence of the minimization of the error between the gradient
of the outputs with respect to the inputs, i.e. O2 = ∇IO1, and the corresponding benchmark
values, 2x. This is what we call second-order vanishing gradient problem. It is tantamount
to the first-order variant, but it involves the second derivatives (and not only the first) of the
activation functions in an ANN. With reference to Figure 4, none of the depicted, classical
activation functions is suitable for such class of problems. Consequently, care must be taken
in selecting activation functions that do not have second-order vanishing gradients. To this
purpose, Appendix A presents an example illustrating the issue of second-order vanishing
gradients and proper solutions are given to this problem.

3.3. Architecture of Thermodynamics-based Artificial Neural Networks
Herein we detail the architecture and the internal steps/definitions TANNs are relying

on. The architecture is detailed in Figure 6. The input vector is I = (εt,∆ε, σt, θt, ζ t
i ,∆t), the

primary and secondary outputs are O = (∆ζi,∆θ,Ft+∆t) and ∇IO = (∆σ,Dt+∆t), respectively.
TANN involves the following steps:

1. computation of the updated strain (definition): εt+∆t := εt + ∆ε

2. prediction of the kinematic variables and temperature increments with two sub-ANNs:

∆ζ = sNNζ@
(
εt+∆t,∆εt, σt, θt, ζ t

)
and

∆θ = sNNθ@
(
εt+∆t,∆ε, σt, θt, ζ t

)
13



3. computation of

(a) the updated kinematic variables rates (backward finite difference approximation):
ζ̇ t+1 ≈ ∆ζ

∆t

(b) the updated kinematic variables (definition): ζ t+1 := ζ t + ∆ζ t

(c) the updated temperature (definition): θt+1 := θt + ∆θ

4. prediction of the updated energy potential:

Ft+∆t = sNNF@{εt+∆t ζ t+∆t θt+∆t}

5. computation of the updated dissipation rate (definition, Eq. (13)): Dt+∆t := −∂Ft+∆t

∂ζt+∆t ·ζ̇ t+∆t

6. computation of

(a) the updated stress (definition, Eq. (13)): σt+∆t := ∂F
t+∆t

∂εt+∆t

(b) the stress increment (definition): ∆σ := σt+∆t − σt

sNN

sNN

sNN

(a) non-isothermal processes.

sNN
sNN

(b) isothermal processes.

Figure 6: Architecture of TANNs: general case (a) and for isothermal processes (b). Inputs are highlighted
in gray ( ); outputs in black, ( ) for direct ANN predictions and ( ) for derived outputs; and intermediate
quantities (definitions) are in white ( ) and ( ). Relationships obtained from definitions are represented
with dashed lines, while arrows denote ANNs.

TANNs are thus composed of three sub-ANNs; sNNζ predicts the internal variables
increment, sNNθ predicts the temperature increment (note that in case of the isothermal
conditions, this component can be removed from the architecture, see Fig. 6b), and sNNF
predicts the Helmholtz free-energy. The main output, the increment in stress, is computed
according to expression (13), which stems from thermodynamic requirements. By virtue of
the fact that the entire constitutive response of a material can be derived from definition of
only two (pseudo-)potential functions, the model is able to predict the stress increment from
the knowledge of the energy potential (and the internal variables ζi). It is worth noticing
that, differently from common approaches (cf. Sect. 3), the sub-network sNNF is required to
learn a scalar quantity−that is, the Helmholtz free-energy potential. This offer compelling
advantages. When dealing with ANNs, the curse of dimensions (increasing effort in training
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and large amount of training data required) is an important issue when the studied problem
passes to higher dimensions, see e.g. Bessa et al. (2017). Passing from 1D to 3D, for instance,
increases the number of variables the ANNs need to learn. For stresses, from one single scalar
value, in 1D, we pass to a vector with six-components, in 3D. The computational effort is
thus not trivial. Nevertheless, TANNs are, in principle, less affected by these issues as the
two (pseudo-)potentials, on which the entire set of predictions relies on, are scalar functions.
The computation of dissipation, from expression (13), plays a double role. First, it assures
thermodynamic consistency of the predictions of TANNs (first law). Second, it brings the
information to distinguish between reversible and irreversible processes, e.g. elasticity from
plasticity/damage, etc., and it is trained to be positive or zero (second law).
It is worth noticing that further improvements of the performance of TANNs may be
obtained, as suggested in the work of Karpatne et al. (2017), by adding a physical inconsistency
term to the loss functions (e.g., with respect to dissipation).

4. Generation of data

We present the procedures used to generate material data TANNs are trained with
in the following applications (see Sect. 5). We distinguish two different strategies. The
first one, based on the numerical integration of an incremental form of the constitutive
relations, is used to generate data for an hyper-plastic von Mises constitutive model with
kinematic hardening (Houlsby and Puzrin, 2000, 2007). A different procedure is instead
used to generate data for von Mises hypo-plasticity (Einav, 2012).

In the case of hyper-plasticity models, we assume the Ziegler’s orthogonality condition
(see paragraph 4.1 and Ziegler, 2012; Houlsby and Puzrin, 2000, 2007), which, in general,
it is not a strict requirement. Nevertheless, it is worth noticing that this restriction applies
only on the generated data, and not on the ANN class here proposed. More precisely, TANN
architecture still holds even for materials for which the Ziegler’s normality condition does not
apply. We shall recall that the aim is to demonstrate the advantages of thermodynamics-
based neural networks with respect to classical approaches. Hence the restrictions, imposed
by the orthogonality hypothesis for the generation of data, are expected not to affect the
comparisons presented in Section 5.

Hypo-plasticity is here used to show that the framework of thermodynamics encoded
in TANNs is general and does not depend on restrictive assumptions such as the Ziegler’s
orthogonality condition afflicting hyper-plasticity. Furthermore, we consider the hypo-plastic
material case to test TANNs against materials with a smooth response, which is more
representative of realistic materials.

4.1. Incremental formulation
4.1.1. Hyper-plasticity

Following the hyper-plasticity framework proposed in Einav et al. (2007), the thermo-
mechanical, non-linear, incremental constitutive relation for strain-rate independent materials,
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undergoing infinitesimal strains, is here derived in the framework of isothermal processes
(θ = cost). By differentiating the energy expressions (13) and rearranging the terms, we
obtain the following non-linear incremental relations

σ̇ = ∂εεF · ε̇ +
∑

k

∂εζkF · ζ̇k, (22a)

−χ̇i = ∂ζiεF · ε̇ +
∑

k

∂ζiζkF · ζ̇k. (22b)

where the following notation is adopted

∂εεF =
∂2F
∂εi j∂εkl

, ∂εζkF =
∂2F
∂εi j∂ζk

, ∂ζiζkF =
∂2F
∂ζi∂ζk

.

Further, introducing the thermodynamic dissipative stresses X† = (X1, . . . , XN) and assuming
the Ziegler’s orthogonality condition (Ziegler, 2012), the following non-linear, incremental
constitutive relation can be found

Ξ̇ =

M|y=0 · ε̇ if y = 0
M|y<0 · ε̇ else

(23)

with

Ξ̇ =


σ̇
−Ẋi

ζ̇i
λ

 , M|y=0 =



∂εεF −
∑

k ∂εζkF ·
(
Cε
B ·

∂y
∂Xk

)
∂ζiεF −

∑
k ∂ζiζkF ·

(
Cε
B ·

∂y
∂Xk

)
−Cε

B
· ∂y
∂Xi

−Cε
B


, and M|y<0 =


∂εεF
∂ζiεF
∅
∅

 , (24)

and · denotes the contraction of adjacent indices. In the above relations (23-24), whose
derivation is presented in Appendix B, y = ỹ(ε,Z,X†) is the yield function, ∅ denotes a
quantity (scalar or tensorial, depending on the dimensionality of the internal variable set)
equal to zero, and

Cε =
∂y
∂ε
−

N∑
i=1

∂y
∂Xi
· ∂ζiεF,

B =
N∑

i=1

∂y
∂ζi
· ∂y
∂Xi
−

N∑
i=1

∂y
∂Xi

 N∑
k=1

∂ζkεF ·
∂y
∂Xk

 .
4.1.2. Hypo-plasticity

The theoretical framework used here to generate the hypo-plastic data can be found in
Einav (2012). Einav (2012) proposed a new theoretical model, called h2plastic, unifying
hypo- and hyper-plasticity models. In particular, compared to standard hypo-plasticity, the
incremental material formulation can be derived from (pseudo-) potentials. The h2plastic
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model allows ease integration of the incremental constitutive equations, i.e., Eq. (5.15a) in
Einav (2012).

Here we use the following incremental equations (Eq.s 7.14 and 7.15 in Einav, 2012) for
the relaxation strain rate (ż) and stress increment (σ̇), according to von Mises model:

ż =
|σ′ · ė|

2k2

1
k

√
σ′ · σ′

2

s−2

· σ′ (25a)

σ̇ = Kε̇p + 2G

ė − 1
k

√
σ′ · σ′

2

s−2

· σ′ (25b)

where k represents the elastic limit in simple shear; s is a material parameter (s > 0); K
and G are, respectively, the bulk and shear moduli; ε̇p is the mean strain rate; ė and ż are,
respectively, the deviatoric total and relaxation strain rate tensors; and σ′ is the deviatoric
stress.

4.2. Data generation
Data are generated in a Python environment, where SymPy and SciPy libraries are used

for symbolic calculations and numerical integration. The accuracy of the generation process
is 10−6 for strains and 10−4 MPa for stresses.

For the case of hyer-plasticity, data are generated by identifying an initial state for the
material at time t,

state at time t : Ξt =


σt

−Xt
i
ζ t

i
0

 and εt,

and a given strain increment ε̇, assuming constant and unitary time increment ∆t = 1
(ε̇t = ∆εt). Numerical integration of the ordinary differential equations (23) is performed
with an explicit solver (Bogacki and Shampine, 1989) to obtain the state at the new time
t + ∆t, i.e.,

state at time t + ∆t : Ξt+∆t =


σt+∆t

−Xt+∆t
i
ζ t+∆t

i
λt+∆t


For hypo-plasticity, data are generated similarly but only internal variables ζi, deformation

ε, and stress σ are used to represent the material state at time t and t+∆t, through numerical
resolution of Eq.s (25a) and (25b).

The training data play a crucial role for both the accuracy of the predictions and
the generalization with respect to the ANN state variables, e.g., strain increments. The
generalization capability of a network is here defined as the ability to make predictions for
loading paths different from those used in the training operation. Nevertheless, a significant
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dependency on the ANN state variables is usually observed. This may result in a poor
network generalization. In Lefik and Schrefler (2003), an improvement of the generalization
capability of ANNs is proposed. Artificial sub-sets of data, with zero strain increments,
are added in the set of training data to force the network in learning that to zero input
increments correspond zero output increments.
In the available literature, strain-stress loading paths are commonly used in training. If
recursive neural networks are used, feeding them with history variables (loading paths) is
the only possible solution (see e.g. Mozaffar et al., 2019). Nevertheless, ANNs do not
necessary need the data-sets to be (historical) paths.

Herein, we generate data randomly. Conversely, this allows us to (1) improve the
representativeness of the material data and (2) improve the generalization of the network on
the strain increments. For the hyper-plastic material model, the initial state, Ξt and εt, and
the strain increment, ∆ε, are randomly generated from standard distributions with mean
value equal to zero and standard deviation equal to Ξmax, εt

max, and ∆εmax, respectively. The
Cauchy and thermodynamic stresses, σt and Xt

i , as well as the internal variables ζ t
i are then

calculated to satisfy the constraint yt ≤ 0. This incremental procedure is repeated for Nsamples,
resulting in a set of Nsamples ordered pairs {Ξt, εt,∆ε;Ξt+∆t}, from which the corresponding
energy potential and dissipation rate at time t + ∆t are evaluated. For the case of hypo-
plasticity, data are generated by random loading paths as the procedure aforementioned
for hyper-plasticity is not applicable to the theoretical framework in Einav (2012), as no
definition of yield surface is needed for the derivation of the incremental material constitutive
law. Figure 7 depicts the sampling for one of the investigated applications (see paragraph
5.1).
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Figure 7: Sampling for material case H-1 (cf. Table 1). From top to bottom: mean and deviatoric stress (p
and q); mean and deviatoric total deformation (εp and e); mean and deviatoric plastic deformation (ζp and
z); energy (F) and dissipation rate (D). Training and validation data-sets are also distinguished.
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5. Applications

Herein we use TANNs to the modeling of multi-dimensional elasto-plastic materials and
demonstrate their wide applicability and effectiveness. It is worth noticing that, even though
the applications here investigated consist of elasto-plastic materials, the proposed class of
neural networks can be successfully applied (without any modification) to materials with
different or more complex behavior, accounting e.g. for damage and/or other non-linearities
(in the framework of strain-rate independent processes). In paragraph 5.1, von Mises hyper-
plasticity is accounted for, considering perfect-plasticity, hardening and softening behaviors.
In paragraph 5.1, we further investigate hypo-plastic material models.
In the examples presented herein, reference dependent variables, such as the total plastic
strain, were considered. However, the internal state variables set Z, see Eq. (7), and,
consequently, our approach are not limited to this kind of state variables.

As it follows, the hyper-parameters (i.e., number of hidden layers, neurons, activation
functions, etc.) of the networks are selected to give the best predictions, while requiring
minimum number of hidden layers and nodes per layer. This is accomplished by comparing
the learning error on the set of test patterns, per each trial choice of the hyper-parameters.
In each training process, we use early-stopping. In other words, training is stopped as the
error of a validation set starts to increase while the learning error still decreases (Géron,
2019). The validation set is used to avoid over-fitting of the training data.
Throughout this Section relatively simple deep feed-forward neural networks architectures
are used (with, at maximum, two hidden layers) and no additional regularization techniques
are employed (e.g., L1/L2 penalties, dropout, etc.). Each numerical example is accompanied
with a detailed discussion about the network architecture.

5.1. von Mises hyper-plasticity
In order to illustrate the performance of TANNs, we use the simple von Mises elasto-

plastic model with kinematic hardening and softening. The model can be derived from the
following expressions of the energy potential and dissipation rate

F = 9K
2

(
εp − ζp

)
·
(
εp − ζp

)
+

+G (e − z) · (e − z) +
H
2

z · z,

D = k
√

2
√

ż · ż,
where k represents the elastic limit in simple shear; K and G are the bulk and shear moduli;
H the hardening (softening) parameter; εp and ζp are, respectively, the mean total and
plastic deformation; and e and z are, respectively, the total and plastic deviatoric strain
tensors. The yield surface can be derived as shown in Appendix B (Houlsby and Puzrin,
2007) and is defined as

y = D − X′ · z =
√

X′ · X′ −
√

2k ≤ 0, (26)

with X′i j = 2G
(
ei j − zi j

)
+ Hzi j.
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Table 1: Material parameters for 3D elasto-plastic von Mises material.

case K G k H
(GPa) (GPa) (MPa) (GPa)

H-1 167 77 140 0
H-2 167 77 140 -10
H-3 167 77 140 10

5.1.1. Training
Data are generated as detailed in Section 4. A total of 6000 data with random increments

of deformation are generated. In order to improve the performance of the network in recall
mode, additional sampling with random uni-axial and bi-axial loading paths are also used.
The samples are split into training (50%), validation (25%), and test (25%) sets. The
sampling in terms of the mean and deviatoric stresses, p and q, and deformations, εp and e,
is presented in Figure 7 for material case H-1 (perfect plasticity). We distinguish between
training and validation sets. For the sake of simplicity, stress and deformation are converted
in the principal axes frame of reference. Table 2 shows the mean, standard deviation, and
maximum values of the training data-sets. Adam optimizer with Nesterov’s acceleration
gradient (Dozat, 2016) is selected and a batch size of 10 samples is used. Data are normalized
between -1 and 1.
We use the Mean Absolute Error (MAE), and not the Mean Square Error (MSE), as loss
function for each output in order to assure the same precision between data of low and high
numerical values. Regularized weights are used to have consistent order of magnitude of
different quantities involved in the loss functions.
The network architecture is adapted to the size of the inputs and outputs, with respect to the
mono-dimensional case. In particular, the sub-network sNNζ consists of two hidden layers,
with 48 neurons (leaky ReLU activation function), and three output layers, one per each
(principal) component of (increment of) ζ. The sub-network s-NNF has one hidden layer
with 36 neurons (activation ELUz2). The output layers for both sub-networks have linear
activation functions and biases set to zero. The resulting number of hyper-parameters is
≈ 3000 (cf. Ghaboussi and Sidarta, 1998; ?; Lefik et al., 2009; Mozaffar et al., 2019).. Figure
8 displays the loss functions of each output as the training is performed, for material case
H-1 (perfect plasticity). The early stopping rule assures convergence, after approximately
1000 epochs, with MAEs of the same order of magnitude for the 4 outputs, ∆ζ, Ft+∆t, ∆σ,
and Dt+∆t. The adimensional MAE is approximately equal to 1 × 10−4 for all outputs at
the end of the training. Similar behaviors are also recovered for cases H-2 (softening), H-3
(hardening).

5.1.2. Predictions in recall mode
Once the network has been trained, it is used, in recall mode, to make predictions. We

briefly present the performance of TANNs in predicting the material response for a random
loading path. Figure 9 depicts the comparison with the target material model for material
case H-1. The network displays extremely good performance and the ability to predict
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Table 2: Mean (µ), standard deviation (st), and maximum values of the training data-sets.

data µ st max
εt

i (-) 8 × 10−5 0.010 0.041
∆εi (-) 2 × 10−5 0.003 0.014
ζ t

i (-) 8 × 10−5 0.010 0.041
∆ζi (-) 0 1 × 10−4 0.0011
σt

i (MPa) -1.4 143 544
∆σi (MPa) 123 7577 36744
Ft+∆t (N-mm) 1.82 2.72 37.9
Dt+∆t (N-mm/s) 0.41 0.38 2.61

epochs

M
A

E

10 100 1000

1e-3

1e-2

1

1e-1

1e-4
Dval

∆ζi,train
∆ζi,val
Ftrain
Fval
∆σi,train
∆σi,val
Dtrain

Figure 8: Errors in terms of the adimensional Mean Absolute Error (MAE) of the predictions of TANN (loss
functions), as the training is being performed, evaluated with respect to the training (train) and validation
(val) sets. Weights and biases update are computed only on the training set.

random loading path.

5.1.3. TANN vs standard ANN. Generalization of the network
Herein we investigate the performance of TANNs with respect to the classical approach

of ANNs (Ghaboussi et al., 1991; Lefik and Schrefler, 2003), as well as the sensitivity with
respect to the input variables range. Figure 10 displays the architecture of the network,
ANN, with inputs I = (εt

i,∆εi, σ
t
i, ζ

t
i ) and output O = (∆ζi,∆σi), with i = 1, 2, 3 denoting the

principal components. The architecture is selected to give the best performance, preserving
the same number of hyper-parameters between TANN and standard ANN. The network,
ANN, consists of the two sub-networks, aNNζ and aNNσ, with two hidden layers, each one,
leaky ReLU activation functions, and number of neurons per layer equal to 48. As for sNNζ
and sNNσ, in aNNζ and aNNσ three output layers (1 neuron each) are used, with linear
activation functions and zero biases.
In Figure 11 we present the comparison of the MAE of the network predictions with respect
to the target values (training and validation data-sets).

It is worth emphasizing that both ANNs and TANNs are dependent on the choice of the
user, concerning, for instance, the hyper-parameters. Moreover, the actual configurations
of both networks may benefit of alternatives/extensions, such as RNNs. Nevertheless, the
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Figure 9: Predictions of TANN for a uni-axial random loading path, compared with the target constitutive
model, case H-1, perfect plasticity: (a) loading path; (b) principal stress, σ1, and internal variable, ζ1,
predictions; (c) energy and dissipation rate predictions.

following comparisons show the added value of our approach compared to standard ones
that do not explicitly contain physics, as TANNs.

We first compare the performance of both networks, TANNs and standard ANNs, in
predicting the material response for cyclic isotropic loading paths (material case H-1, cf.
Table 1). A linear elastic material response is expected and retrieved. Figure 12 displays the
stress predictions of TANNs and ANNs, compared with the target values, for different strain
increments. It is worth mentioning that the standard approach of ANNs does not succeed
in accurately predicting the elastic deformation range. Moreover, contrary to TANNs, the
stress predictions of standard ANNs, depend strongly on the cyclic loading. As the network
is used recursively, in recall mode, the stress predictions rapidly become less and less precise,
due to error accumulation.

The performance of both networks is further compared for the following tri-axial loading
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(a) ANN scheme.

aNN

aNN

(b) ANN architecture.

Figure 10: Schematic (a) and full architecture (b) of the network, not based on thermodynamics, standard
ANNs. Inputs are highlighted in gray ( ), outputs in black ( ).
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Figure 11: Training of ANNs compared with TANNs evaluated with respect to the training (train) and
validation (val) sets.

path
∆εn

1 = ∆ε sgn
(
cos

nπ
2N

)
, ∆εn

2 = ∆ε
n
3 = ∆ε sgn

(
sin

nπ
2N

)
, (27)

with N = εmax/∆ε, εmax = 2 × 10−3 ÷ 1, and ∆ε = 1 × 10−5 ÷ 1 × 10−1.
Figures 13 and 14 display the material response in terms of the principal stresses, σ1 and
σ3, and inelastic strains, ζ1 and ζ3, respectively. We show in Figure 15 the energy and
dissipation rate predicted by TANNs with those computed, with standard ANNs, directly
using the corresponding definitions for the free-energy and dissipation rate, Eq. (5.1). The
predictions of TANNs are in good agreement with the constitutive model, independently
from the strain increment, which exceeds considerably the training range. Nevertheless,
the performance of ANNs is found to be strongly affected by the values of ∆ε. For strain
increments well inside the training range, i.e., ∆ε = 1 × 10−3, standard ANNs are well
predict the material response. In particular, computing, through Eq. (5.1, the dissipation
rate and energy from the ANNs’ predictions reveals that ANNs can successfully predict
output respecting the requirements of the thermodynamics. The first and second principles
of thermodynamics are indirectly learned during training (on thermodynamic consistent
data). However, standard ANNs perform poorly for strain increments smaller and larger
than the ones at which it was trained (∆ε = 1 × 103, cf. Table 2). And in these cases,
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standard ANNs predict thermodynamically inconsistent outputs.
The predictions of TANNs are, instead, always thermodynamically consistent. Moreover,
the quantities of primary interest, such as the stress, the internal state variable, and the
energy are in extremely good agreement with the reference model. The same stands also for
the dissipation rate. We notice, once more, that its values are always positive, even when
the network is used for predictions beyond the training range.
Figure S3 displays the predictions for very small strain increments, i.e. ∆ε = 1×10−5. TANNs
successfully still predict the response in this limiting case, while ANNs do not. Indeed, the
training data were generated guaranteeing an accuracy of the order of 10−6 in terms of strains
and such small strain increments are at the margin of the computing precision.

In the Supplementary Material, we present the results of a uni-axial loading scenario,
in Figures S1 and S2, for material case H-1 (perfect plasticity). Kinematic hardening and
softening material cases and the predictions of TANNs and ANNs are shown in Figures S4-S9.

It is worth noticing that in all the cases, even for very large strain increments−for which
the predictions of the network in terms of dissipation rate differ from the target values−,
TANNs successfully predict the Jacobian, i.e., ∂σi

∂ϵ j
(i, j = 1, 2, 3), in very good agreement with

the reference model. This is of particular importance for numerical simulations with implicit
algorithms. Therefore, TANNs can successfully replace complicated constitutive models or
multiscale approaches, but considerably and safely decreasing the calculation cost, even
when the requested increments are outside the training range.

We emphasize that the performance of TANNs and standard ANNs can be improved
by increasing the dimension of the training data-sets, the number of the hyper-parameters
(e.g. numbers of hidden layers, etc.). Nevertheless, the fundamental gap between the two
approaches in assuring thermodynamically consistent quantities still persist.
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Figure 12: Comparison of the stress, energy, and dissipation predictions of TANNs and standard ANNs.
Energy and dissipation for ANNs are computed according to Eq. (5.1), for the cyclic, isotropic loading path
∆εn

1 = ∆ε
n
2 = ∆ε

n
3 = ∆ε sgn

(
cos nπ

2N

)
−with N = εmax/∆ε, εmax = 2 × 10−3 (a), εmax = ×10−1 (b), and εmax = 1

(c), for material case H-1 (perfect plasticity). Each row represents the prediction at different ∆ε increments.
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Figure 13: Comparison of the stress predictions of TANNs and standard ANNs with respect to the target
values, for the tri-axial cyclic loading path, Eq. (27), for material case H-1 (perfect plasticity). Each row
represents the prediction at different ∆ε increments.
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Figure 14: Comparison of the internal variable predictions of TANNs and standard ANNs with respect to
the target values, for the tri-axial cyclic loading path, Eq. (27), for material case H-1 (perfect plasticity).
Each row represents the prediction at different ∆ε increments.
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Figure 15: Comparison of the energy and dissipation rate predictions of TANNs and computation according
to Eq. (5.1) for standard ANNs with respect to the target values, for the tri-axial cyclic loading path, Eq.
(27), for material case H-1 (perfect plasticity). Each row represents the prediction at different ∆ε increments.
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5.2. von Mises hypo-plasticity
We illustrate the performance of TANNs in predicting smooth material behaviors as well,

modeled here using the hypo-plasticity model, presented in Einav (2012) and paragraph
4.1.2. The energy potential and dissipation rate are given by

F = 9K
2

(
εp − ζp

)
·
(
εp − ζp

)
+

+G (e − z) · (e − z) ,
D = σ′ · ż,

with ż being defined in Eq. (25a). We consider K = 167 GPa, G = 77 GPa, and s = 1, see
Eq.s (25a) and (25b).

Data are generated as detailed in Section 4. 8000 are data generated through random
loading paths. As in the case of hyper-plasticity, additional sampling with random uni-axial
and bi-axial random loading paths are also used. The samples are split into training (50%),
validation (25%), and test (25%) sets. The sampling in terms of the mean and deviatoric
stresses, p and q, and deformations, εp and e, is presented in Figure S10.

The architecture and hyper-parameters of TANNs are maintained equal to the hyper-
plastic case (see paragraph 5.1). The internal variables ζi are selected to coincide with
the inelastic strain. We emphasize that this particular choice does not affect the results of
TANNs. As extensively discussed in Einav (2012), an alternative choice to the selection of
the inelastic strain as internal variable can be the material porosity.

The early stopping rule assures convergence, after approximately 1000 epochs, with
MAEs of the same order of magnitude for the 4 outputs, ∆ζ, Ft+∆t, ∆σ, and Dt+∆t. The
(adimensional) MAE is approximately equal to 1 × 10−4 for all outputs at the end of the
training.

5.2.1. TANN vs standard ANN. Generalization of the network
As for the hyper-plastic cases, we investigate the performance of TANNs with respect

to standard ANNs through illustrative examples. The architecture and hyper-parameters of
ANNs are maintained equal to the hyper-plastic case (see paragraph 5.1.3).
Figure 16 shows the predictions of both networks for the following bi-axial loading path

∆εn
1 = −∆εn

2 = ∆ε sgn
(
cos

nπ
2N

)
, ∆εn

3 = 0,

with N = εmax/∆ε, εmax = 2 × 10−3 ÷ 1, and ∆ε = 2 × 10−4, 2 × 10−3. TANNs’ predictions
are in excellent agreement with the target model. The smoother material response, with
respect to the hyper-plastic scenario, is well captured by the networks. Standard ANNs
clearly underperform.
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Figure 16: Comparison of the stress and internal variable predictions of TANNs and standard ANNs with
respect to the target values, for a bi-axial cyclic loading path, ∆ε2 = −∆ε1, with ∆ε1 as in Eq. (5.2.1), for a
perfect hypo-plastic material. Each row represents the predictions at different ∆ε increments.

Additional demonstration of the performance of TANNs is given in Figure 17, for a bi-
axial loading path with strain-controlled ratcheting. Ratcheting is a well known phenomenon
shown by many materials during cyclic loading, which has been modeled here with the
h2plasticity framework (Einav, 2012). In particular, we show that TANNs, contrary to
ANNs, successfully predict principal stresses, inelastic strains, energy potential, and dissipation
rate.
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Figure 17: Comparison of the predictions of TANNs and standard ANNs with respect to the target values,
for the bi-axial loading path with strain-controlled ratcheting, for a perfect hypo-plastic material.
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6. Noise in training data and robustness of predictions

After having demonstrated the performance of TANNs and their superiority to standard
approaches in modeling path-dependent material behaviors, we investigate the effect of noise
in the measurements of the data used to train artificial neural networks. This is achieved
by training TANNs (and ANNs) using the previously generated data and adding, in the
training and validation sets, artificial noise. For sake of clarity, we consider a perfectly
plastic material (case H-1, cf. Tab. 1). The additive noise, ns, is based on a normal
distribution with standard deviation (sd) equal to 10% of the mean value of the clean data.
In particular, we consider the following scenarios, independently:

(1) noise in ζ t+∆t
i , i.e., nsζ , with sd = 10% of the mean value of ζ t+∆t

i ;

(2) noise in σt+∆t
i , i.e., nsσ, with sd = 10% of the mean value of σt+∆t

i ;

(3) noise in Ft+∆t, i.e., nsF, with sd = 10% of the mean value of Ft+∆t; and

(4) noise in Dt+∆t, i.e., nsF, with sd = 10% of the mean value of Dt+∆t.

We emphasize that the aforementioned noise levels were chosen to demonstrate the performance
of TANNs and generally lower levels of noise are expected in practical applications. However,
we examine each scenario independently in order to explore better the effect of noise on
training and on the accuracy of the predictions. In cases (1) and (2), once the noised
quantities are computed (denoted with σ̄t+∆t

i and ζ̄ t+∆t
i ), the increments, i.e., ∆σ̄i and ∆ζ̄i, are

re-evaluated as ∆σ̄i = σ̄
t+∆t
i − σt

i and ∆ζ̄i = ζ̄ t+∆t
i − ζ t

i , respectively.
The architecture and hyper-parameters of the neural networks, both TANNs and ANNs,
designated in this study are the same as those used in Section 5. It should be noticed that, for
each case (1-4), the data used to train the networks are not respecting the thermodynamics
requirements due to the added noise, i.e., Eq. (13).

The addition of noise can have an impact on the training of the networks and their
predictions. We first focus on the former. Figure 18 displays the loss functions of each output
as the training of TANNs is performed, for noise added in stresses, case (2). The MAE is
evaluated between the TANNs’ predictions and the (noised) training and validation data-
sets. Table 3 shows the MAEs of the predictions of TANNs with respect to the validation
data-sets, for each level of noise, at the end of the training. Although the earlystopping
technique is used, training is accomplished, in all cases of noise, after approximately 1000
epochs.

By comparing the training using the original, un-noised data (Fig. 8) and that using the
noised ones (Fig. 18), we can observe that TANNs are unable to learn the noised signal, i.e.,
∆σ̄i. This is a direct consequence of the fact that the network evaluates the stress increments
from the knowledge of the stress state at time t and the energy potential predictions. When
noise is added, the first law of thermodynamics is violated and the training operation with
noised data is unsuccessful, with respect to the noised training and validation data-sets.
However this is not a drawback of our approach. On the contrary, it is an indication of the
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Figure 18: Errors of the predictions of TANN, as the training is being performed, evaluated with respect
to the training (train) and validation (val) sets. Noise is added in stress to both training and validation
data-sets, case (2).

Table 3: MAEs of the predictions of TANNs with respect to the validation data-sets, for the original, un-
noised data and each level of noise, at the end of the training, Early-stopping is used and the training is
always completed at approximately 1000 epochs.

Mean Absolute Error
(1e-4)

∆ζi ∆σi Ft+∆t ∆Dt+∆t

un-noised3.2 4.1 0.8 7.5
nsζ 324 2.5 0.9 5.9
nsσ 3.3 39 1.0 5.4
nsF 3.3 3.1 19 7.3
nsD 3.4 4.9 0.9 57

quality of the data, which in this case they don’t respect the laws of thermodynamics due to
measurement noise. Notice that the values of the training error is consistent with Eq. (13),
the expression given in Section 3.4 and the magnitude of the noise. The implementation of
the laws of thermodynamics in the network’s architecture shields the learning process and
prohibits learning of inconsistent data.
For instance, with reference to Table 3, we can see that for case (2), nsσ, the MAEs in the
predictions of the inelastic strains, energy and dissipation rate approximately coincide with
those obtained with the un-noised data.
The aforementioned behavior is not observed in standard ANNs. As an example, we show
in Table 4 the MAEs of the predictions of standard ANNs with respect to the validation
data-sets, for noised stresses. In this case, we can see that the network, unaware of the
requirements of the thermodynamics, learns successfully the noised outputs. This means
that, once standard ANNs are asked to make predictions, in recall mode, the outputs will
be affected by the noisy training in an unpredicted way. For the levels of noise cases (1),
(3), and (4), similar results are obtained.
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Table 4: MAEs of the predictions of standard ANNs with respect to the validation data-sets, for the original,
un-noised data and noise on stresses, at the end of the training (approximately 1000 epochs).

Mean Absolute Error
(1e-4)

∆ζi ∆σi

un-noised5.8 4.2
nsσ 5.9 4.2

In Figure 19 compared the predictions in recall mode of both networks based on noise
data. The predictions of the training with clean (un-noised) data is also presented for
helping the comparison. We notice that TANNs, whilst trained on data with relatively large
levels of noise, successfully predict the material response and perform more or less as when
trained on data free of noise. On the contrary, standard ANNs are strongly affected by
the large levels of noise of the data used to train the network. Similar results are found in
presence of noise in the training and validation data of the internal variable, ζi, see Figure
S11, in the Supplementary Material. It should be noticed that, in this case, ANNs do not
manage to successfully minimize the loss function of ∆ζi, with the selected number of hyper-
parameters. This is the consequence of the ANN architecture which have been chosen to
achieve the best performance with thermodynamic consistent (clean of noise) data. However,
we emphasize that, if the number of hyper-parameters of the ANN model were increased
to achieve convergence with respect to the noised data, then ANNs would learn the noised
material response, resulting to be highly affected by noise measurements.
Consequently, we can state that TANNs show high degree of robustness to noise, when
compared to ANNs.

7. Concluding remarks

A new class of artificial neural networks models to replace constitutive laws and predict
the material response at the material point level was proposed. The two basic laws of
thermodynamics were directly encoded in the architecture of the model, which we refer to
as Thermodynamics-based Neural Network (TANN). Our approach was inspired by the so-
called Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019), where the automatic
differentiation was used to perform the numerical calculation of the derivative of a neural
network with respect to its inputs. Feed-Forward Neural Networks were used herein, but
the approach is general and can be applied to Recurrent Neural Networks (RNNs) or other
types of ANNs as well.

The numerical requirements regarding the mathematical class of appropriate activation
functions to be used together with automatic differentiation were investigated. More specifically,
the internal restrictions, derived from the first law of thermodynamics, require activation
functions whose second gradient does not vanish. This new problem and its remedy was
extensively explored and discussed in the manuscript.
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Figure 19: Influence of noise in the stress, σi, for the predictions of the stress, internal variable, and
dissipation rate of TANNs and of standard ANNs with respect to the target values, for the tri-axial cyclic
loading path for material case H-1 (perfect plasticity). Noise strongly affect the predictions of standard
ANNs, see Fig.s 13-15.

TANN, relying on an incremental formulation and on the theoretical developments in
Houlsby and Puzrin (2007), posses the special feature that the entire constitutive response
of a material can be derived from definition of only two scalar functions: the free-energy
and the dissipation rate. This assures thermodynamically consistent predictions both for
seen and unseen data. Differently from the standard ANN approaches, TANN does not have
to identify, through learning, the underlying thermodynamic laws. Indeed, predictions of
standard ANNs may be thermodynamically inconsistent, even though the training of the
network has been performed on consistent material data. Being aware of physics, TANNs
are found to be a robust approach with the presence of noise measurements in the training
data, contrary to the standard ANN approach.

For the cases here investigated, we showed that TANNs are characterized by high
accuracy of the predictions, higher than those of standard approaches. The integration
of thermodynamic principles inside the network renders TANN’s ability of generalization
(i.e., make predictions for loading paths different from those used in the training operation)
remarkably good. Consequently, TANN is an excellent candidate for replacing constitutive
calculations at Finite Element incremental formulations. Moreover, thanks to the implementation
of the free-energy in the network predictions and its thermodynamical relation with the
stresses, the Jacobian ∂σ

∆ε
at the material point level is better predicted even for increments

far beyond the training data-set range. As a result quadratic convergence in implicit
formulations can be preserved, reducing the calculation cost.
Finally, we investigated the presence of noise in data and the effect on the training process
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and predictions in recall mode. The thermodynamic framework of TANNs shields the
training operation and prohibits learning of inconsistent data. As a result, TANNs posses
high degrees of robustness to noise, compared to standard ANNs.

Further extensions of TANN in a wide range of applications, for complex materials,
are straightforwards, as the thermodynamics principles hold true for any known class of
material, at any length (micro- and macro-scale).
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7.1. Appendix A. Understanding second-order vanishing gradient
In the following, we investigate the performance and influence of different activation

functions on the computational time to train an ANN with input I, primary output O1, and
secondary output O2 = ∇IO1. Consider the above discussed example with I = x, O1 = x2,
and O2 = 2x. The ANN has one hidden layer, with Nn = 6 nodes, and activation functions
as reported in Table 5. The output layer has linear activation and null bias. The absolute
error is selected as loss function for both O1 and O2. Training is performed on 1000 samples,
normalized between -1 and 1. A very small value for the learning rate is selected, i.e.,
ϵ = 10−5 in order to facilitate the gradient descent algorithm in reaching small values of the
loss function. We use early-stopping. In other words, training is stopped as the error of a
validation set (500 samples) starts to increase while the learning error still decreases (Géron,
2019). The validation set is used to avoid over-fitting of the training data.

Table 5: Set of activation functions considered to investigate the performance of the network with outputs
O = x2 and ∇IO = 2x, with I = x, in the framework of first- and second-order vanishing gradients.

Function z range A(z) A′(z) A′′(z)

ReLUz
z < 0 0 0 0
z ≥ 0 z 1 0

ReLU0.5z2+z
z < 0 0 0 0
z ≥ 0 0.5z2 + z z + 1 1

ReLUz2
z < 0 0 0 0
z ≥ 0 z2 2z 2

ELUe ∀z ez − 1 ez ez

ELUz
z < 0 ez − 1 ez ez

z ≥ 0 z 1 0

ELU0.5z2+z
z < 0 ez − 1 ez ez

z ≥ 0 0.5z2 + z z + 1 1

ELUz2
z < 0 ez − 1 ez ez

z ≥ 0 z2 2z 2

ELUz4
z < 0 ez − 1 ez ez

z ≥ 0 z4 4z3 12z2

ELUz4+0.5z2+z
z < 0 ez − 1 ez ez

z ≥ 0 z4 + 0.5z2 + z 4z3 + z + 1 12z2 + 1

For each tested activation function, Table 6 shows the adimensional Mean Absolute Error
(MAE) calculated using a set of new, unseen data (500 samples) of input-output predictions
for x2 and 2x. The advancement of training is quantified herein as the number of epochs,
i.e., the number with which the training algorithm works with the training data-set Géron
(2019). Activation functions with quadratic terms, or of higher degree, perform very well,
compared to their linear equivalents. RELUz2 , ELUz2 outperform as their shape is very
similar to the input-output regression they are trained to learn. Nevertheless, it is worth
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noticing that training fails when activation functions with vanishing second gradient are
used (e.g. RELUz and ELUz). Figure 20 compares the ANN predictions for a selection of
activation functions with the analytical (exact) results. Whilst RELUz is clearly inadequate,
ELUz predictions overall agree with the analytical values. This is due to the fact that the
ANN takes advantage of the exponential term, for negative z and thus successfully manage
to satisfy both O and ∇IO. Additional hidden layers may improve the performance of the
network. It can be further noticed that activation function of high degree, e.g. ELUe, ELUz4 ,
and ELUz4+0.5z2+z, even if successful, require a large number of epochs.

Table 6: Activation functions and performance with unseen data.

Activation function A L LO L∇IO no. epochs
(10−4) (10−4) (10−4) (-)

ReLUz 1521.2 205.98 1315.18 920
ReLU0.5z2+z 762.4 93.58 668.85 8054
ReLUz2 0.061 0.0241 0.0371 148
ELUe 127.2 26.83 100.38 19477
ELUz 108.56 12.12 96.44 17280
ELU0.5z2+z 65.5 10.91 54.63 12178
ELUz2 0.13 0.067 0.067 88
ELUz4 65.36 33.75 31.61 20051
ELUz4+0.5z2+z 12.94 1.81 11.13 9683
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Appendix B. Derivation of the incremental material formulation

By differentiating the energy expressions (13) and rearranging the terms, we obtain the
following non-linear incremental relations

σ̇ = ∂εεF · ε +
∑

k

∂εζkF · ζ̇k + ∂εθF θ̇ (28a)

−χ̇i = ∂ζiεF · ε +
∑

k

∂ζiζkF · ζ̇k + ∂ζiθF θ̇ (28b)

−Ṡ = ∂θεF · ε +
∑

k

∂θζkF · ζ̇k + ∂θθF θ̇, (28c)

where the following notation is adopted

∂εεF =
∂2F
∂εi j∂εkl

, ∂εζkF =
∂2F
∂εi j∂ζk

,

∂εθF =
∂2F
∂εi j∂θ

, ∂θθF =
∂2F
∂θ2
.

We introduce the thermodynamic dissipative stresses X† = (X1, . . . , XN) with

Xi :=
∂D
∂ζ̇i

∀ i ∈ [1,N]. (29)

For a rate-independent material, the dissipation is a homogeneous first-order function in the
internal variable rates ζ̇i (Houlsby and Puzrin, 2007). This homogeneity can be expressed
by the Euler’s relation

D =
N∑

i=1

∂D
∂ζ̇i
· ζ̇i =

∑
i

Xi · ζ̇i, (30)

which, together with (11), implies
N∑

i=1

(Xi − χi) · ζ̇i = 0 (31)

Ziegler’s orthogonality condition (Ziegler, 2012) is further assumed, i.e., Xi = χi ∀ i ∈ [1,N].
Being D homogeneous first-order function in ζ̇i, the Legendre transform, conjugate to Xi, is
degenerate, that is equal to zero, and represents the yield function y = ỹ(θ, ε,Z,X†), i.e.

λy =
∑

i

Xi · ζ̇i −D = 0, (32)

where λ is a non-negative multiplier. From the properties of Legendre transform, the
following flow rules must hold

ζ̇i = λ
∂y
∂Xi

∀ i ∈ [1,N]. (33)
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Since λ ≥ 0 and λy = 0, y ≤ 0. If y = 0, the following consistency equation is met

ẏ =
∂y
∂ε
· ε̇ +

N∑
i=1

∂y
∂ζi
· ζ̇i +

N∑
i=1

∂y
∂Xi
· Ẋi +

∂y
∂θ
θ̇ = 0. (34)

By further using the flow rules (33) and Ziegler’s normality condition, we obtain

λ = −Cε
B
· ε̇ − Cθ

B
· θ̇, (35)

with

Cε =
∂y
∂ε
−

N∑
i=1

∂y
∂Xi
· ∂ζiεF,

Cθ =
∂y
∂θ
−

N∑
i=1

∂y
∂Xi
· ∂ζiθF,

and

B =
N∑

i=1

∂y
∂ζi
· ∂y
∂Xi
−

N∑
i=1

∂y
∂Xi

 N∑
k=1

∂ζkεF ·
∂y
∂Xk

 .
Finally, we arrive to the following, incremental non-linear formulation, for y = 0,

Ξ̇ =M|y=0 ξ̇, with Ξ̇ =


σ̇
−Ẋi

−Ṡ
ζ̇i
λ

 , ξ̇ =
[
ε̇
θ̇

]
, M|y=0 =



Mεε Mεθ
Mζε Mζθ
Mθε Mθθ

−Cε
B
· ∂y
∂Xi
−Cθ

B
· ∂y
∂Xi

−Cε
B
· −Cθ

B


, (36)

and

Mεε = ∂εεF −
∑

k ∂εζkF ·
(
Cε
B ·

∂y
∂Xk

)
,

Mεθ = ∂εθF −
∑

k ∂εζkF ·
(
Cθ
B ·

∂y
∂Xk

)
,

Mζε = ∂ζiεF −
∑

k ∂ζiζkF ·
(
Cε
B ·

∂y
∂Xk

)
,

Mζθ = ∂ζiθF −
∑

k ∂ζiζkF ·
(
Cθ
B ·

∂y
∂Xk

)
,

Mθε = ∂θεF −
∑

k ∂θζkF ·
(
Cε
B ·

∂y
∂Xk

)
,

Mθθ = ∂θθF −
∑

k ∂θζkF ·
(
Cθ
B ·

∂y
∂Xk

)
.

In case of y < 0, relation (36) becomes

Ξ̇ =M|y<0 ξ̇, with M|y<0 =


∂εεF ∂εθF
∂ζiεF ∂ζiθF
∂θεF ∂θθF

0 0
0 0

 . (37)
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