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1.  INTRODUCTION

The Pacific oyster Crassostrea gigas is of primary
importance for shellfish farming as it accounts for
ap proximately three-quarters of all production in
France (~486 million Euros) (FranceAgriMer 2019).
Since 2008, the oyster industry has been seriously
challenged by mass mortality associated with differ-
ent pathogens, such as the ostreid herpesvirus
OsHV-1 in spat (Segarra et al. 2010) and the bac-

terium Vibrio aestuarianus in adults in France (Gar-
cia et al. 2014, Azéma et al. 2017), Ireland, Scotland,
and Spain (EFSA Panel on Animal Health and Wel-
fare 2015, Lasa et al. 2019). These mortality events
have severe economic impacts for the oyster indus-
try. Most V. aestuarianus-related mortality among
adult oysters occurs in summer, and cumulative
mortality can reach approximately 30% after 2−3 yr
of farming (Garcia et al. 2014). During the last
decade, research has mostly focused on V. aestuari-
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ABSTRACT: Vibrio aestuarianus infection in oyster populations causes massive mortality, result-
ing in losses for oyster farmers. Such dynamics result from host−pathogen interactions and conta-
gion through water-borne transmission. To assess the spatiotemporal spread of V. aestuarianus
infection and associated oyster mortality at a bay scale, we built a mathematical model informed
by experimental infection data at 2 temperatures and spatially dependent marine connectivity of
oyster farms. We applied the model to a real system and tested the importance of each factor using
a number of modelling scenarios. Results suggest that introducing V. aestuarianus in a fully sus-
ceptible adult oyster population in the bay would lead to the mortality of all farmed oysters over 6
to 12 mo, depending on the location in which infection was initiated. The effect of temperature
was captured by the basic reproduction number (R0), which was >1 at high seawater tempera-
tures, as opposed to values <1 at low temperatures. At the ecosystem scale, simulations showed
the existence of long-distance dispersal of free-living bacteria. The western part of the bay could
be reached by bacteria originating from the eastern side, though the spread time was greatly
increased. Further developments of the model, including the consideration of the anthropogenic
movements of oysters and oyster-specific sensitivity factors, would allow the development of
 accurate maps of epidemiological risks and help define aquaculture zoning.
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anus infection burden (Pari za deh et al. 2018) and
related mortality occurrence, or on the properties of
the bacterium (Garnier et al. 2008, De Decker et al.
2013, Goudenège et al. 2015), but less attention has
been paid to its transmission and on the implemen-
tation of efficient control measures.

Investigating the efficiency of possible disease mit-
igation strategies in a field setting requires consider-
able time and is resource-intensive and ethically un -
desirable. Computer-based simulation modelling is a
widely acknowledged alternative approach to evalu-
ating disease management strategies ex ante. It
enables prioritising control strategies against patho-
gen spread in animal populations under different sce-
narios. To date, although such a modelling ap proach
is popular in human, animal, and plant disease man-
agement (Thompson & Brooks-Pollock 2019), only a
few models of marine diseases have been developed
to inform evidence-based policy-making (Murray
2008, Powell & Hofmann 2015). For example, the
effectiveness of several mitigation strategies against
the parasite Ciona intestinalis in mussel populations
in Prince Edward Island was compared using a math-
ematical modelling approach (Patanasatienkul et al.
2019). Before implementing these simulations, one
must first identify the key processes involved in the
disease spread and evaluate their relative impor-
tance in disease transmission and progression within
hosts (Murray 2008). For example, the modelling of
transmission dynamics of Perkinsus marinus, a well-
known parasite of the eastern oyster Crassostrea vir-
ginica, resulted in the discovery that high oyster den-
sity could limit disease invasion through foraging
interference and depletion of pathogens in the water
column (Bidegain et al. 2017). Although models are
imperfect representations of natural systems, they
are valuable ways to integrate current knowledge
and data to understand the key dynamic processes
involved in ecosystem functioning. Coupled models
that link biology and physical modelling are increas-
ingly being used to simulate the dispersion and life
cycle of pathogens (Salama & Rabe 2013). Coupling
dispersion with epidemiological models is needed to
understand feedbacks and controls of marine dis-
eases, to forecast marine disease dynamics, and to in -
form effective mitigation strategies, but this remains
a challenge (Ben-Horin et al. 2020).

A modelling strategy must also include some qual-
itative or quantitative assessment of model outputs.
In human infectious disease modelling, a minority of
studies have addressed the assessment of model
accuracy and quality, since empirical data are scarce
or highly uncertain, or the time of intervention rela-

tively fast (Walters et al. 2018). In general, authors
perform a pragmatic form of validation. In marine
molluscan disease modelling, data from longitudinal
studies are rarely available. Therefore, previous mod-
els were evaluated against disease prevalence monthly
or yearly data collected in the field for abalone
(Brandt & McManus 2009, Sokolow et al. 2009, Zvu-
loni et al. 2015), or cumulative mortality data from
previous epizootics for eastern oysters (Bidegain et
al. 2017).

In the French national context of massive oyster
mortality associated with pathogen detection, an inter -
disciplinary project was established to observe, ana-
lyse, and assist with managing the effects of global
change on oyster-farming ecosystems considering
animal health and physiology as well as environment
and economics (the GIGASSAT project). From 2012
to 2016, this project combined observation, experi-
mentation, and modelling to help predict and manage
oyster ecosystems. Several French marine ecosys-
tems, in which mass mortalities of both juvenile and
adult oysters were regularly reported, were moni-
tored using sentinel oysters. Mortality was recorded
and animal samples were collected for laboratory
DNA detection of OsHV-1 and the bacterium V. aes-
tuarianus. In particular, a longitudinal field study
identified environmental risk factors of mortality in
adult sentinel oysters (Gangnery et al. 2019) in an
estuarine ecosystem located in the Baie des Veys,
Normandy, where adult oyster mortalities due to V.
aestuarianus are regularly reported (Garcia et al.
2014). In parallel, the transmission of V. aestuarianus
was modelled to identify and estimate the key para -
meters of the infection in a small and closed oyster
population under controlled laboratory conditions
(Travers et al. 2017, Lupo et al. 2019). The experimen-
tal local-scale model enabled the mimicking of the
oyster intra-population transmission of V. aestuarianus
in a tank with homogeneous environmental condi-
tions for 2 wk (Lupo et al. 2019).

We present here the upscaling of this knowledge
and these processes into a disease process-based
model at larger spatial and temporal scales, with the
final goal of supporting decision-making. Our model
accounts for larger spatial and temporal scales, het-
erogeneity in oyster space occupation and density,
varying exposure to environmental conditions, and
marine connectivity. Field data on V. aestuarianus in -
fection of oysters are usually too scarce for both
model parameterisation and validation. The current
French surveillance system is mainly based on
farmer notifications of mollusc mortality, and labora-
tory investigation following these notifications is not
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systematic (Dufour & Hendrikx 2009). The longitudi-
nal field study conducted in Baie des Veys (Gangn-
ery et al. 2019) was not designed for model valida-
tion, but allowed the comparison of predicted versus
ob served oyster mortality patterns and related puta-
tive risk factors. Therefore, we developed our model
by utilising previous studies developed as part of the
GIGASSAT project regarding adult oyster mortality
(Gangnery et al. 2019, Lupo et al. 2019). Our objec-
tive was to simulate the spatio-temporal dynamics of
Pacific oyster mortality due to V. aestuarianus infec-
tion using a spatialised epidemiological model to
rank the processes involved in the related disease
spread in oyster populations at a bay scale. We used
the model to test the hypothesis that high tempera-
ture triggers infection and mortality and we ran a
large number of scenarios to assess whether some
areas of our modelled system could be safe for oyster
production.

2.  MATERIALS AND METHODS

2.1.  Study area

The Baie des Veys is located on the French coast in
the western part of the English Channel and consists
of 2 main farming zones: Grandcamp in the east and
Utah Beach in the west (Fig. 1). This area supports
important oyster farming activity conducted through-
out the year by 69 different oyster farms. The Baie
des Veys is one of the 9 shellfish production areas in
Normandy, which is the second-largest oyster farm-
ing re gion in France with an annual production of ca.
9000 tons (Agreste 2015).

The Baie des Veys covers 37 km2 and has a semi-
diurnal macrotidal regime with maximum ampli-

tudes ranging from 2.5 to 7 m during neap and spring
tides, respectively (Gangnery et al. 2019). The mean
daily seawater temperature varies from 7.6°C (95%
CI = 7.4, 7.8) from January to March to approxi-
mately 18.7°C (95% CI = 18.6, 18.9) in August
(REPHY 2017).

2.2.  Model overview

The model accounts for interactions at multiple
scales, including the spread of pathogens between
oyster populations in an open marine system. We
combined epidemiological equations of pathogen
dispersion within a system under realistic forcing
conditions. Starting with disease dynamics, the intro-
duced infected oyster populations shed bacteria,
which accumulate in the water and decay with time.
The pathogens diffuse at the local scale and infect
the neighbouring (local) oyster population. A con-
nectivity matrix accounts for the spread of pathogens
due to water movements and exposure of distant oys-
ter populations. Therefore, the local pathogen popu-
lation (i.e. bacteria concentration) depends on both
the local oyster population infection dynamics and
the transportation of pathogens from other oyster
populations through the tidal currents. Our model
includes the influence of fluctuating environmental
factors, notably the seawater temperature, on the
bacteria transmission. Being sessile animals, infected
oysters move neither within a farm nor between
farming sites on their own. Due to a lack of available
data, we did not consider the movements due to farm
management.

Therefore, the model involves the following 4 cou-
pled components: (i) disease dynamics at the local
population scale, (ii) temperature dependence of epi-
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Fig. 1. Location of the study area, Baie des Veys, Normandy, France. The oyster farming zone is indicated by shading and the 
computation grid. The star indicates the location of patch 78
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demiological parameters, (iii) local spread of patho-
gens, and (iv) tidal hydrodynamics. The modelling
framework components are described in Fig. 2. The
workflow of the model setup and outputs is shown in
Fig. 3.

2.3.  Model components and parameterisation

We used a combination of field data, experimental
data, literature, and assumptions to develop a port -
folio of relevant model parameters.

2.3.1.  Oyster populations

In France, land for oyster production is owned by
the French State and leased to farmers. This leasing
ground system is regulated and georeferenced by
the authorities using the maritime register. In Nor-
mandy, oysters are usually farmed in plastic mesh
bags and set on trestles in the intertidal zone (Buestel
et al. 2009). Oyster density is regulated by law with
an authorised maximum density of 6000 bags ha–1

(Préfecture du Calvados 2007, Préfecture de la
Manche 2013), with one bag containing on average
200 adult oysters (Girard et al. 2010). There is no nat-
ural oyster recruitment in the Baie des Veys, where
the oyster populations consist only of farmed ani-
mals. We used a regular grid with a fine resolution of
the study area (200 m). Based on the overlap of the
maritime register as listed by the authorities and the

grid cells, we defined 85 cells with oysters, named
‘patches’ (Fig. 1), which allowed the computing of
the oyster density in each patch, which was assumed
to be uniform within a patch. We hypothesised that
the population was only composed of adult oysters.

2.3.2.  Disease dynamics

We represented the Vibrio aestuarianus infection
dynamics among a small-scale oyster population.
Water borne transmission of infection occurred through
contact between susceptible oysters and contaminated
seawater. The bacteria were shed by the infected oys-
ter populations, accumulated in the water, and de -
cayed over time.

We used a previously validated compartmental
epidemiological model to account for the local infec-
tion dynamics at the small and homogeneous oyster
population level (Lupo et al. 2019), i.e. within a
patch. The model had 4 epidemiological compart-
ments representing the susceptible (S), exposed (E),
infectious (I), and dead (D) oysters, and a compart-
ment for the free-living bacteria (P) in the surround-
ing water body (Fig. 2). After infection initiation, we
assumed that the only outcome for an oyster was
death (Azéma et al. 2015, Travers et al. 2017).

The parameters of the epidemiological model are
described in Table 1. We did not account for the con-
tribution of the dead oysters (resulting from the
infection) to the water compartment, assuming the
fast natural cleaning of dead oysters in the open sea.
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Fig. 2. Flow diagram showing the
modelling framework components
of Vibrio aestuarianus spread
among oysters and in their envi-
ronment. Solid arrows indicate
the transitions of the oysters be-
tween the various health states.
Dashed arrows represent the dy-
namics of the pathogen popula-
tion. See Table 1 for  population
states and parameter abbrevia-

tions and descriptions
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The temporal dynamics of V. aestuarianus in both
the oyster population and seawater were described by
a system of ordinary differential equations (Table 1) in
a deterministic framework, as large populations were
considered. The probability of developing a V. aestu-
arianus infection λ(P) depended on the concentration
of the pathogen in the water. This dependence was
represented by a logistic dose−response function
(Table 1). The decay rate of V. aestuarianus in the
seawater, ξ, included the natural mortality, sedimen-
tation, and other stages of the bacterium that pre-
vented its transmission to susceptible oysters.

The model was solved using a time step of 12 h, but
we assumed that waterborne transmission could only
occur for 6 h, corresponding to the submersion time
of the patches during the semidiurnal tide cycle. We
also assumed a closed homogeneous population of
adult oysters.

2.3.3.  Temperature effect

Dedicated experimental trials were designed to
measure the epidemiological parameter values at dif-
ferent seawater temperatures, as previously described
by Lupo et al. (2019) (Text S1 in the Supplement at
www. int-res. com/ articles/ suppl/ q012 p511 _ supp .pdf).
Seawater temperature values were roughly selected
based on the temperature monitoring of the Baie des
Veys coastal waters (REPHY 2017).

The model parameters were calibrated by integrat-
ing knowledge from the small-scale experimental
individual transmission trials at low temperatures
(i.e. merged 10°C and 15°C due to a low number of
observations; Text S1) and high temperatures (i.e.
20°C) (Lupo et al. 2019).

To represent each epidemiological parameter in
the model, the observed mode in the experimental
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trials was selected as the most probable value at a
low temperature class (Table 2).

The rate of exposure to the contaminated seawater
at a low temperature was based on the filtration rate
(clearance rate) of Crassostrea gigas previously esti-
mated at 10°C (Bougrier et al. 1995).

2.3.4.  Local contagion

This spatial process within the patch was modelled
in an implicit way. The local spread of V. aestuarianus
was based on the basic reproduction number, R0, de-
fined as the average number of secondary infections
caused by one infected animal introduced to a suscep-
tible population (Anderson & May 1991). R0 carries in-
formation regarding the magnitude of the transmis-
sion, and its formula was formalised for V. aestuarianus
infection among oysters (Table 1, Text S2). Its value de-
pended on the epidemiological parameter values at
the 2 temperature classes (Table 2).

Assuming that the swimming behaviour of Vibrio
bacteria was negligible (Shigematsu et al. 1995), and
that V. aestuarianus was not adsorbed to particles or
organisms (Parizadeh et al. 2018), free-living bacte-
ria were represented as passive particles. The con-
centration of bacteria within a patch was assumed to
be homogeneous for a given time step.

2.3.5.  Hydrodynamic transport of pathogens

Dispersal of pathogens was modelled using the
transport model MARS3D, already implemented in
Baie de Veys (Gangnery et al. 2019), and the regular
grid of the study area (200 m) was used to define the
patches.

To simulate the dispersion of pathogens, we hypo -
thesised that the shedding moment occurred during
the last hour before a high tide, when the sea reached
every leasing ground. We used the same 12 hourly
outputs of Eulerian transport simulations as Gangn-
ery et al. (2019) and constructed a connectivity matrix
between patches for the year 2014 in order to obtain
the probability of a pathogen particle, i.e. a free-
 living V. aestuarianus bacterium, shed from one par-
ticular patch reaching another identified receiving
patch (see Appendix). This enabled the calculation of
the number of pathogens in each patch resulting
from hydrodynamic pathogen exchange.

These calculations took into account the most prob-
able value of the free-living bacterium’s lifetime in
seawater (1/ξ) (Table 1). Therefore, the infection
dynamics occurred at time step t due to the patho-
gens remaining in the water compartment, i.e. ac -
counting for daily pathogen decay, incoming patho-
gens, and the pathogens shed locally during time
step t.
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Notation     Definition                                                                                                          Unit                        Formulation

Population state for one patch at time t (d)
S                Number of susceptible oysters                                                                   No. of ind.                 

E                Number of exposed oysters, i.e. infected but not infectious oysters       No. of ind.           

I                 Number of infectious oysters that will die from the infection                  No. of ind.                

P                Concentration of bacteria in the surrounding seawater                        Bacteria ml−1              

D               Number of dead oysters due to the infection                                            No. of ind.                

Epidemiological parameter
a                Rate of exposure to contaminated seawater                                                    d−1

λ(P)           Probability of an oyster being infected by contaminated water                                                  
K               Half-infective dose, i.e. concentration of bacteria in seawater          Bacteria ml−1 d−1

                   that yields a 50% chance of infecting healthy oysters
1/ρ             Duration of latency period of infection                                                              d
1/r             Duration of infectious period                                                                              d
e                        Bacteria shedding rate of the infectious oysters                           Bacteria ml−1 d−1 oyster−1

1/ξ             Free-living-bacteria lifetime in seawater                                                          d

Local contagion parameter
R0              Basic reproduction number of the disease                                                No. of ind.                      

dS
d

– (P) S
t

a= ⋅ λ ⋅

dE
d

– (P) S – E
t

a= ⋅ λ ⋅ ρ ⋅

dI
d

E I
t

r= ρ ⋅ − ⋅

dP
d

I P
t

e= ⋅ − ξ ⋅

(P)
P

PK
λ =

+

. . S
. .

0a e
r K ξ

= ⋅dD
d

I
t

r

Table 1. Variables and parameters
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2.4.  Model setup

Due to a lack of information regarding the origin of
the infection and a lack of data regarding observed
mortality in cultivated oyster farms, this model was
primarily designed to investigate the role of the sim-
ulated processes in the spatial and temporal dynam-
ics of the infection. We established a series of scenar-
ios mimicking the introduction of infected oysters in
one location under realistic hydrodynamic conditions
and assumptions involving temperature variations.
The comparison of model outputs enabled the explo-
ration of the effects of temperature, hydrodynamic
connectivity, and local contagion on oyster infection
and mortality caused by V. aestuarianus.

2.4.1.  Reference simulation

The reference scenario (REF) was a standard 1 yr
simulation from January to December 2014, corre-
sponding to the longitudinal survey (Gangnery et al.
2019), with the following setup. (1) A prevalence of
50% of I oysters was introduced in patch 78 (east
zone, Grandcamp) on 1 January. This is one of the
patches pertaining to the Baie des Veys area, which
is the bay most of the aquaculture takes place. (2)
Oyster density was fixed at its maximum allowed by
regulation, i.e. 6000 bags per hectare. (3) Low and
high temperature cycle: the parameter values of the
epidemiological model switched between low and
high levels depending on the month (Table 2). In all
temperature scenarios, the parameter values were
spatially homogeneous but changed over time. Janu-
ary to June (Day 0 to 180) were assigned to low tem-
perature (see Section 2.3.3), July to October (Day 180
to 333) to high temperature, and November and
December (Day 334 to 365) again to low temperature.

2.4.2.  Sensitivity to initial conditions

Similar simulations were carried out with different
initial conditions. For each patch, a simulation was
run where the oysters were initially infected, result-
ing in a set of 85 simulations. The REF simulations
were used as a baseline for scenario comparisons,
which were only qualitative and not quantitative.

We computed the fraction of the total oyster popu-
lation in S, E, I, and D states by summing the values
in all patches. The dynamics of these epidemiological
states summarised the infection dynamics at the sys-
tem scale. We also summarised model outputs by
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computing the time to obtain 50% mortality (T50)
in each patch and in the whole oyster population of
the bay. This metric allowed the comparison of mor-
tality dynamics between scenarios. We repeated these
simulations and calculations with each individual
patch initialised with infected oysters and mapped
the results. We also plotted the metric versus R0 and
connectivity.

2.4.3.  Temperature scenarios

Using the same setup, we defined a set of tempera-
ture scenarios as follows: low seawater temperature
(LOW), the temperature was maintained at a low
value throughout the year and was spatially homo -
geneous throughout the study area; and high sea water
temperature (HIGH), the temperature was main-
tained at a high value throughout the year and was
considered to be spatially homogeneous throughout
the study area.

2.4.4.  Uncertainty analysis

To explore the effects of uncertainty regarding epi-
demiological parameter values, 100 simulations were
run for one initial condition (patch 78) using random
values of parameters drawn from their observed
 ex perimental distributions. Then, T50 was computed
for the whole oyster population for each simulation
and R0.

2.4.5.  Sensitivity to epidemiological parameters

Several simulations were run with different para -
meter values to assess the sensitivity of the model
outputs and analyse the role of  relevant epidemio-
logical parameters (Table 2). Mean T50 was used as
an indicator of the response of the modelled system to
parameter changes. Re sults were likely to depend on
the initial infected patch, but our simulations were
deliberately restricted to the same initial condition
(patch 78) to ease comparisons.

Because simulations showed that temperature was
a key factor, a sensitivity analysis was first carried
out to analyse the replacement of the most probable
values of the epidemiological parameters by their
most probable value at low temperature one at a time
in the REF scenario.

In a second series of tests, the most probable values
of the epidemiological parameters were replaced by

the first (Q1) or third (Q3) quartile value of observed
experimental distributions one at a time at high tem-
perature in the REF scenario to assess the variability
of model outputs depending on the range of input
parameters.

2.5.  Overall model consistency

Predicted versus observed oyster mortality patterns
were qualitatively compared and the related putative
risk factors were explored during the longitudinal
field study in Baie des Veys, although the causative
pathogen was uncertain (Gangnery et al. 2019).

Gangnery et al. (2019) monitored oyster mortality
in Baie des Veys from April to October 2014 to de -
termine the timing and spatial dynamics of sentinel
oyster mortality and identify the environmental risk
factors. They concluded that the mortality of adult
sentinel oysters was likely caused by pathogenic
bacteria. They found that adult sentinel mortalities
were the lowest in Utah Beach and that mortality in
some farmed areas could reach 60% or more. They
distinguished 2 mortality periods with different risk
factors. The first period extended from May to mid-
July, and sentinel mortality was associated with con-
nectivity to estuaries, temperature, and chlorophyll
concentrations. In contrast, the second period ex -
tended from mid-July to October, and risk factors
were connected to Grandcamp (in the eastern part of
the bay) and salinity. However, the link to V. aestuar-
ianus could not be demonstrated but was suspected.
They suggested that the connectivity to the Grand-
camp farmed area reflected the presence of a high-
density oyster reservoir. They also highlighted that
both salinity and temperature likely affect the occur-
rence and persistence of bacteria.

3.  RESULTS

3.1.  Speed of pathogen spreading and 
mortality outburst

The results of the REF scenario illustrate the dynam-
ics and timing of the infection by Vibrio aestuarianus.
Half of patch 78 was initially infected, and simulation
shows a rapid de crease in S oysters, the numbers of
which reached 0 after only 10 d. The number of E and
I oysters also varied rapidly, and mortality dramati-
cally increased during the first 20 d (Fig. 4). In patch
78, all of the oysters eventually died and more than
90% died within the first 50 d of the simulation. The
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offset and intensity of mortality in other patches con-
trasted with the dynamics of the initially infected
patch. The decrease in E oysters coincided with the
beginning of the summer season in the patches sur-
rounding the patch initially in fected. The timing de -
pended on the patch location but the mortality in -
creased dramatically and reached a pla teau for almost
all patches before the end of the simulated year. The S

fraction de creased dramatically from 100 to 20% dur-
ing the summer period and de creased slowly after-
ward. The E and I states peaked in the middle of the
summer season. Mortality dramatically increased at
the same time, then increased more slowly and reached
100% at the end of the simulation (1 yr).

These results were summarised by mapping T50 in
each patch (Fig. 5A). Apart from the initial patch,
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where all oysters died within a couple of days, the T50

values varied from 187 to 356 d. The map indicated
that the oysters located in Grandcamp, i.e. the eastern
part of the bay, died more quickly than those located
in the western part (Utah Beach).

Similar simulations were carried out with different
initial conditions (one initially infected patch at a
time). T50 varied from 199 to 272 d, depending on the
location, and the map showed that it took more time
to obtain 50% mortality for initially infected western
patches (Fig. 5B).

3.2.  Marine connectivity effect

The probability of leaving one patch and reaching
another patch in 1, 2, or a number of time steps due to
hydrodynamics varied over time, but spatial differences
were greater than temporal variability (Appendix,
Fig. A1). We used the reference simulation where in-
fected oysters were located in patch 78 to assess how
connectivity between this patch and others linked to
T50 in each patch. Therefore, we averaged the con-
nectivity between patch 78 and every other destination
patch, and plotted T50 versus connectivity (Fig. 6). The
lowest T50 was obtained for connectivity higher than
0.2. For these connectivity values, T50 was be tween 190
and 240 d, as opposed to T50 between 250 and 350 d
when connectivity was lower than 0.2. In addition, for
destination patches that had a similar connectivity,
those with a higher oyster density showed lower T50.

3.3.  Temperature effect

The epidemiological states were summed over all
patches to yield one trajectory for each oyster popu-
lation state and each seawater temperature scenario
(Fig. 7). Therefore, the initial population state in the
patch was defined by S = 50%, I = 50%, E = D = 0%.
The LOW scenario resulted in a very low decrease in
S and, eventually, a small increase in mortality, which
re mained very low compared to other scenarios.
Under a HIGH scenario, the mortality increased
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 dramatically after approximately 30 d and reached
100% at around t = 250 d (i.e. mid-August), and all
the trajectories displayed a very important shift com-
pared to the REF scenario.

Running simulations with different initial conditions
showed that T50 varied from 50 to 100 d in the HIGH
scenarios compared to the range of 200− 270 d in the
REF scenarios under cycling temperature (Fig. 8).
The 2 series of T50 values corresponding to HIGH or
REF scenarios were strongly correlated, though the
initially infected patches located in the western part

of the bay and yielding the highest T50 deviated from
a linear relationship.

3.4.  Uncertainty analysis

The average value of T50 was 218 d, with a range of
180 to 330 d. Plotting R0 versus T50 values showed an
inverse relationship (Fig. 9). High values of R0, be -
tween 1.5 and 2.2, yielded a T50 of less than 180 d, as
opposed to a T50 of longer than 250 d when R0 was
lower than 0.8.

3.5.  The most influential epidemiological
 parameters

The sensitivity analysis (Fig. 10) showed that K had
the greatest influence on T50, and thus, on mortality
dynamics, which varied by 140% when the K value
at low temperature replaced the value at high tem-
perature. This can be attributed to the difference
between K values at high and low temperatures,
which were 2 orders of magnitude greater than the
difference in other parameters (Fig. 10 and Table 2).

Fig. 11 shows that T50 varied by more than 140%
when the Q1 value of the shedding rate (e) was used
instead of the most probable value at high tempera-
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ture, exceeding the variation of T50 for all other epi-
demiological parameter values.

We combined the results of the sensitivity and un -
certainty analyses to assess the relationship between
the contagion parameter R0 and T50. The results
showed an inverse relationship (Fig. 12). High values
of R0, between 1.2 and 1.8, would yield a T50 be tween
180 and 200 d, as opposed to a T50 between 200 and
250 d when the R0 was lower than 1.2. Using the Q1
value of e at high temperature or the value of K at
low temperature yielded the highest T50 and a R0

close to 0. Several other parameter changes made R0

greater than 1.2, but T50 remained constant at approx-
imately 200 d.

3.6.  Overall model consistency

The conclusions of our simulation experiments are
partially supported by the results of a study by
Gangnery et al. (2019). Due to the lack of information
and data on the source of infection by the pathogens,
as the disease is endemic in Baie des Veys, we ran
1 yr simulations with several initial conditions corre-

sponding to the introduction of infected oysters in dif-
ferent locations. All our simulations predicted high
mortality levels, e.g. 50% mortality between Day 199
(i.e. mid-July) and Day 272 (i.e. end of September),
which is consistent with the second mortality period
described by Gangnery et al. (2019) in sentinel oys-
ters. In most of our simulations, the total an nual mor-
tality exceeded 90%, but large differences were
found between the eastern and western areas of the
bay. Initiating the infection in Grandcamp, in the
eastern part of the bay, yielded the highest total an-
nual mortality, even if areas in the western part of the
bay were less affected, e.g. the T50 was much longer,
and the final mortality lower than 90% in some of the
western areas. Thus, our simulations confirmed the
role of the Grandcamp farmed area in the spatial and
temporal dynamics of infection and mortality, al-
though the predicted level of mortality was larger
than that noted per our  observations.

Though Gangnery et al. (2019) showed a statistical
relationship between the mortality of adult sentinel
oysters and connectivity to Grandcamp oyster farms
during the second mortality period only, the results of
our model showed that connectivity was a key pro-
cess allowing pathogens to be transported between
farmed areas. Thus, pathogens released by oysters in
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one area have the potential to infect oysters in distant
areas, as long as the pathogen concentration exceeds
the K parameter. We used the same hydrodynamical
model as Gangnery et al. (2019) to compute connec-
tivity, but one major difference was that we took into
account the temporal variability of connectivity and
the lifespan of free-living pathogens. Our simulations
showed that the most important pathways connected
oyster farms within the Grandcamp area, which re -
sulted in very similar patterns of pathogen transmis-
sion and mortality within this area. In addition, con-
nections between Grandcamp and Utah Beach made
it possible to transmit pathogens between these 2
regions and trigger mortality with a delay of approx-
imately 2−3 mo (see simulation with initial infection
in patch 78). Connections between Utah Beach and
Grandcamp areas were weaker, but still allowed the
triggering of mortality in Grandcamp and resulted in
delayed global annual mortalities.

4.  DISCUSSION

4.1.  Main results

We first explored the spatiotemporal spread of Vib-
rio aestuarianus and associated oyster mortality and
identified the key processes involved in the disease
transmission at a bay scale. Results suggest that
intro ducing V. aestuarianus in a closed and fully sus-
ceptible population of the bay would lead to the com-
plete mortality of farmed oysters in 6 to 12 mo, the
duration depending on the location of initial infec-
tion. The bacteria spread more rapidly in the eastern
part of the bay (Grandcamp) than in the western part
(Utah Beach).

In our simulations, the transmission dynamics were
triggered by seawater temperature, a widely docu-
mented driver of marine infectious diseases (Harvell
et al. 2002, Zvuloni et al. 2015), and vibriosis dynam-
ics (Vezzulli et al. 2013). High temperatures may in -
directly favour the likelihood of oysters getting in -
fected. On the one hand, oyster susceptibility to V.
aestuarianus infection may increase with temperature.
Indeed, at high temperature, K was 25 orders of mag-
nitude lower than that at low temperature, meaning
that the probability of acquiring infection was 25-fold
greater. On the other hand, the bacterial virulence
may be increased, as at high temperature, the e was
2 orders of magnitude greater than at low tempera-
ture, suggesting a higher host infection burden.

The effect of temperature was captured by R0. In
our model, R0 was >1 at high temperature (R0 = 1.22),

leading to local transmission of V. aestuarianus
between oysters, whereas R0 was <1 (R0 = 0.41) at
low temperature, leading to a stop in infection spread.
Gangnery et al. (2019) described a similar local conta-
gion process associated with the field mortality of
adult sentinel oysters in summer. Parizadeh et al.
(2018) described a temperature limitation of V. aestu-
arianus transmission at around 10°C in a pond.

At the ecosystem scale, the effect of marine con-
nectivity suggested the long-distance dispersal of
free-living bacteria. Utah Beach, the western part of
the bay, could be theoretically reached by bacteria
originating from Grandcamp in the east under a
number of modelling scenarios, but the spread time
was greatly increased. Such a pattern was expected
as the pathogen is waterborne transmitted and short-
lived; when the infection starts in the eastern part of
the bay, the stepping stone pathogen spread requires
more patches to infect, thus, a longer mean time to
reach the west. Such long-distance dispersals of mar-
ine pathogens have been widely modelled in marine
animal diseases (Gustafson et al. 2007, Amundrud &
Murray 2009, Kough et al. 2015, Pernet et al. 2018,
Samsing et al. 2019). By combining dispersal and epi-
demiological equations, we went a step forward and
showed that dispersal is sufficient to trigger oyster
infection and mortality in places distant from the
location of initial infection.

In marine ecosystems, infectious disease dynamics
are regulated by host population size (Krkosek 2010).
A high number of infected hosts can shed a greater
number of pathogens, which, in turn, have greater
chances of encountering a new host if there are
greater numbers of hosts in the immediate environ-
ment. A similar role of farm biomass was shown on
disease transmission time through hydrodynamic
pathways in salmon (Salama & Murray 2013). How-
ever, a high host density could also lower the disease
transmission rate. Theoretical modelling studies have
suggested that the filter-feeding bivalve population
may also be sufficiently dense (i.e. over the carrying
capacity) to compete for pathogens, reducing the
concentration of free-living pathogens below the in -
fective dose, thus limiting epizootic development
(Bidegain et al. 2016a,b, Burge et al. 2016, Ben-Horin
et al. 2018). Our model only considered the role of
infected oysters in the local contagion, and we found
that oyster density had a significant and positive
effect on the spreading of disease. Accounting for the
effect of filtration on pathogen concentration would
thus reduce the risk of mortality and could be tested
with an equation for the removal of pathogens through
filtration by oysters.
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4.2.  Modelling strategy

Our modelling approach is innovative in assem-
bling different pieces of the puzzle, which were al -
ready developed. We scaled up the modelling of the
transmission of V. aestuarianus in oysters from a local
to large scale. We coupled a mathematical transmis-
sion model informed by experimental infection data,
a spatially dependent model of a distributed oyster
population, and a hydrodynamic model formulated
using marine connectivity that connected oyster pop-
ulations by pathogen exchanges.

First, we applied an existing local waterborne trans-
mission model (Lupo et al. 2019) to each oyster popu-
lation, i.e. oysters present in a patch, which was con-
sidered to be closed and homogeneous in terms of host
susceptibility and environmental conditions. The trans-
mission parameters used in the local scale model
were directly estimated using dedicated laboratory
experimental data (Lupo et al. 2019, present study).
The use of experimental data was also undertaken to
parameterise the transmission model of the proto-
zoan Perkinsus marinus in the eastern oyster Crass-
ostrea virginica (Bidegain et al. 2017). However, al -
though this model accounted for the seasonal change
in disease dynamics, the authors did not explicitly
include the temperature effect as we did here. They
used specific time factors for processes known to
have seasonal dynamics (e.g. pathogen proliferation
or inactivation, filtration rate, mortality, recruitment
of susceptible oysters).

Second, our model was spatially explicit and for-
mulated using a spatial arrangement of host popula-
tions and spatiotemporal pathogen population dynam-
ics. Most of the developed marine molluscan disease
models were not spatially structured and assumed a
single population (Powell et al. 1996, McCallum et al.
2005, Bidegain et al. 2017). A metapopulation frame-
work, which allows for both movement-based and
environmental transmission, was previously adapted
for modelling the theoretical transmission of marine
diseases (Bidegain & Ben-Horin 2018) and the white
plague transmission in corals (Sokolow et al. 2009).
However, these models were not spatially explicit.
Our modelling strategy lies between these 2 ap -
proaches, by connecting oyster populations based on
pathogen exchanges but omitting oyster migrations
between patches (e.g. anthropogenic movements for
farming).

Third, to connect oyster populations by pathogen
ex changes, we incorporated the aspect of marine con-
nectivity in our model. We explicitly included free-
living bacteria as the transmissible element, using a

hydrodynamic connectivity matrix to define the prob-
ability of bacteria shed from each patch reaching
other patches. This was derived from the Eulerian
transport model outputs, run under realistic forcing
conditions, from which the survival rate of V. aestuar-
ianus in the seawater outside the host (values derived
from experimental data) was obtained. Connectivity
in marine systems has been modelled using diverse
strategies in aquatic animal epidemiology, although
the use of particle-tracking models prevails (Murray
& Gillibrand 2006, Gustafson et al. 2007, Amundrud
& Murray 2009, Kough et al. 2015, Stene et al. 2014) for
the use of Euclidean (Brandt & McManus 2009, Zvu -
loni et al. 2009) or seaway distance (Aldrin et al. 2011).

We assumed infected oysters to be the only explicit
reservoir of pathogens, which differs from the meth-
ods of Bidegain et al. (2017), who assumed a remote
reservoir of pathogens in their transmission model of
P. marinus in eastern oysters. Contrary to P. marinus,
for which a plethora of ecological knowledge is avail-
able, only a small amount of field data is available re -
garding the viability of V. aestuarianus, and conflict-
ing results have been reported (Azandégbé et al. 2010,
Romero et al. 2014, Vezzulli et al. 2015, Parizadeh et
al. 2018). This uncertainty surrounding the ecology
and host spectrum of V. aestuarianus shaped our mod-
elling strategy, resulting in a parsimonious approach.

4.3.  Future directions

Our model is based on generic connectivity, local
contagion, and disease dynamics, and could be ap -
plied to other aquaculture regions, mollusc species,
or pathogens. The implementation of such a model to
assess a number of management scenarios would
contribute to the development of tools, such as the
Spatial Information System for Aquaculture, which
aims at gathering spatial environmental constraints
and regulations in the frame of marine spatial plan-
ning (Gangnery et al. in press). Assuming that V. aes-
tuarianus is endemic in French oyster populations,
scenarios of oyster density, location of oyster farms,
temperature range, and connectivity between farms
would yield maps of epidemiological risks and assist
with defining aquaculture zoning.

Transfer and shuffling actions between growing
sites that farmers operate to maintain oyster growth
and farm productivity likely increase the risk of patho-
gen spread. Taking such information into account
would make our model more realistic with respect to
sanitary risks resulting from the combination of the
contagion process and farmer activities. However,
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this would require the modification of our model
design and the consideration of population units as
commercial entities rather than geographical patches.
An interesting development would be to move to an
agent-based model, such as those developed by
Alaliyat et al. (2019).

The sensitivity of oysters to pathogens depends on
a number of factors not taken into account in our
model. The response of oysters to V. aestuarianus in -
fection depends on genetics, age, size, physiological
status (Azéma et al. 2016, 2017), and oyster density.
Since management plans drive the spatial and tem-
poral arrangement of age classes (maritime register),
our model could be improved by integrating a more
realistic distribution and structure of an oyster popu-
lation, which would allow testing scenarios based on
spatial arrangements of oyster density. The physio -
logical state of oysters changes over time due to
growth and reproduction, and only juvenile and adult
oysters are susceptible to V. aestuarianus infection
(Azéma et al. 2017). An oyster growth model has
been implemented in Baie des Veys and was able to
reproduce the spatial variability of oyster growth
(Grangeré et al. 2010). A general framework, as de -
scribed by Civitello et al. (2018), could allow the ac -
counting for processes related to host ecophysiology,
health, and defence mechanisms.

5.  CONCLUSIONS

We demonstrated the relationship between local
contagion (measured by the reproduction number)
and the speed of mortality spread (assessed as the
time until 50% mortality over the whole area). This
relationship reflects the upscaling from individuals to
the oyster population at the ecosystem scale due to
hydrodynamic connectivity. Therefore, our findings
show that the risk of mortality is very high through-
out the farmed area and would likely extend to a
wider domain, posing a risk for aquaculture develop-
ment in the region.

Additionally, temperature triggers the offset of
epidemiology dynamics of Vibrio aestuarianus infec-
tion. Winter temperatures restrain the intensity of
oyster mortality, but a better parameterisation of the
relationship between temperature and key epidemi-
ological parameters is necessary to assess the
changes in mortality dynamics. Such a development
would be particularly interesting in the context of
ocean warming, while the phenology of biological
and epidemiological processes is expected to
change.
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Appendix

Fig. A1. Distribution of total connectivity between one patch and all other patches of the domain. The probabilities of leaving
one patch and reaching another patch in one or several days have been summed up at each time step. Results show the high
variability of connectivity due to the changes of the hydrodynamic conditions. They also highlight that patches 21 to 26 have
the lowest connectivity, with average values close to 0. The connectivity matrix was of dimensions L×M×N×P, where L is the
number of dates, N is the number of emission patches, and P is the number of reception patches (N=P in these simulations).
The connectivity matrix used was as follows: Connectivity[30,10,20,50] represents: day no. 30; time step no. 10 (i.e. 10×12 h =
120 h after release; emission from patch 20; and reception at patch 50. For instance, Connectivity [30,10,20,50] = 0.001 indi-
cates that if one pathogen was released at the beginning of run 30 from patch 20, the probability that the pathogen will reach 

patch 50 after 120 h is 0.001
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