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We consider the nonlinear Korteweg-de Vries (KdV) equation in a bounded interval equipped with the Dirichlet boundary condition and the Neumann boundary condition on the right. It is known that there is a set of critical lengths for which the solutions of the linearized system conserve the L 2 -norm if their initial data belong to a finite dimensional subspace M. In this paper, we show that all solutions of the nonlinear KdV system decay to 0 at least with the rate 1/t 1/2 when dim M = 1 or when dim M is even and a specific condition is satisfied, provided that their initial data is sufficiently small. Our analysis is inspired by the power series expansion approach and involves the theory of quasi-periodic functions. As a consequence, we rediscover known results which were previously established for dim M = 1 or for the smallest critical length L with dim M = 2 by a different approach using the center manifold theory, and obtain new results. We also show that the decay rate is not slower than ln(t + 2)/t for all critical lengths.

      
u t (t, x) + u x (t, x) + u xxx (t, x) + u(t, x)u x (t, x) = 0 for t ∈ (0, +∞), x ∈ (0, L), u(t, x = 0) = u(t, x = L) = u x (t, x = L) = 0 for t ∈ (0, +∞),

u(t = 0, •) = u 0 in (0, L),
where u 0 ∈ L 2 (0, L) is the initial data. The KdV equation has been introduced by Boussinesq [START_REF] Boussinesq | Essai sur la théorie des eaux courantes[END_REF] and Korteweg and de Vries [START_REF] Diederik | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF] as a model for propagation of surface water waves along a channel. This equation also furnishes a very useful nonlinear approximation model including a balance between a weak nonlinearity and weak dispersive effects and has been studied extensively, see e.g. [START_REF] Beresford | Linear and nonlinear waves[END_REF][START_REF] Miura | The Korteweg-de Vries equation: a survey of results[END_REF].

Regarding (1.1), Rosier [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] introduced a set of critical lengths N defined by (1.2)

N := 2π k 2 + kl + l 2 3 ; k, l ∈ N * .
This set plays an important role in both the decay property of the solution u of (1.1) and the controllability property of the system associated with (1.1) where u x (t, L) is a control instead of 0.

Let us briefly review the known results on the controllability of (1.1) where u x (t, L) is a control:

(1.3)           
u t (t, x) + u x (t, x) + u xxx (t, x) + u(t, x)u x (t, x) = 0 for t ∈ (0, +∞), x ∈ (0, L), u(t, x = 0) = u(t, x = L) = 0 for t ∈ (0, +∞),

u x (•, x = L) : is a control, u(t = 0, •) = u 0 in (0, L).
For initial and final datum in L 2 (0, L) and controls in L 2 (0, T ), Rosier [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] proved that system (1.3) is small-time locally controllable around 0 provided that the length L is not critical, i.e., L ∈ N . To this end, he studied the controllability of the linearized system using the Hilbert Uniqueness Method and compactness-uniqueness arguments. He also established that when the length L is critical, i.e., L ∈ N , the linearized system is not controllable. More precisely, he showed that there exists a non-trivial finite-dimensional subspace M (= M L ) of L 2 (0, L) such that its orthogonal space in L 2 (0, L) is reachable from 0 whereas M is not. To tackle the control problem for the critical length L ∈ N , Coron and Crépeau introduced the power series expansion method [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF]. The idea is to take into account the effect of the nonlinear term uu x absent in the linearized system. Using this method, they showed [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF] (see also [8, section 8.2]) that system (1.3) is small-time locally controllable if L = m2π for m ∈ N * satisfying (1.4) (k, l) ∈ N * × N * with k 2 + kl + l 2 = 3m 2 and k = l, with initial and final datum in L 2 (0, L) and controls in L 2 (0, T ). In this case, dim M = 1 and M is spanned by 1 -cos x. Cerpa [START_REF] Cerpa | Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain[END_REF] developed the analysis in [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF] to prove that (1.3) is locally controllable at a finite time in the case dim M = 2. This corresponds to the case where

L = 2π k 2 + kl + l 2 3
for some k, l ∈ N * with k > l, and there is no (m, n) ∈ N * × N * with m > n and m 2 + mn + n 2 = k 2 + kl + l 2 . Later, Crépeau and Cerpa [START_REF] Cerpa | Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain[END_REF] succeeded to extend the ideas in [START_REF] Cerpa | Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain[END_REF] to obtain the local controllability for all other critical lengths at a finite time. Recently, Coron, Koenig, and Nguyen [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF] prove that when (2k + l)/3 ∈ N * , one cannot achieve the small time local controllability for initial datum in H 3 (0, L) and controls in H 1 (in time). We also establish the local controllability for finite time of (1.3) for some subclass of these pairs (k, l) with initial datum in H 3 (0, L) and the controls in H 1 (0, T ). This is surprising when compared with known results on internal controls for system (1.1). It is known, see [START_REF] Roberto | Internal controllability of the Kortewegde Vries equation on a bounded domain[END_REF][START_REF] Alberto | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Fernando | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF], that system (1.1) is locally controllable using internal controls whenever the control region contains an arbitrary open subset of (0, L).

We next discuss the decay property of (1.1). Multiplying the equation of u (real) with u and integrating by parts, one obtains In the case L ∈ N , Menzala, Vasconcellos, and Zuazua [START_REF] Alberto | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF] proved that the solutions of (1.1) with small initial datum in L 2 (0, L) decay exponentially to 0. Their analysis is based on the exponential decay of the linearized system for which it holds, see [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]Proposition 3.3],

(1.7)

t 0 |u x (s, 0)| 2 ds ≥ c t L 0 |u(0, x)| 2 for all t > 0.
When a local damping was added, they also obtained the global exponential stability using the multiplier technique, compactness arguments, and the unique continuation for the KdV equations. Related results on modified nonlinear KdV equations can be found in [START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF][START_REF] Linares | On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping[END_REF]. It is known from the work of Rosier [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] that for u 0 ∈ M, the solution u of the linearized system satisfies (1.8)

t 0 |u x (s, 0)| 2 ds = 0 for all t > 0,
which implies in particular that (1.7) does not hold for any t > 0. The work of Menzala, Vasconcellos, and Zuazua naturally raises the question whether or not the solutions of (1.1) go to 0 as the time goes to infinity (see [START_REF] Alberto | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF]Section 4] and also [START_REF] Fernando | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF]Section 5]). Quite recently, progress has been made for this problem. Concerning the decay property of (1.1) for critical lengths, when dim M = 1, Chu, Coron, and Shang [START_REF] Chu | Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths[END_REF] showed that the solution u(t, •) goes to 0 as t → +∞ for all small initial data in L 2 (0, L). Moreover, they showed that there exists a constant C depending only on L such that (1.9)

u(t, •) L 2 (0,L) ≤ C √ t for t > 0.
It is worth mentioning that the set of L ∈ N such that dim M = 1 is infinite [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF]. When k = 2 and l = 2 (the smallest length for which dim M = 2), Tang, Chu, Sang, and Coron [START_REF] Tang | Asymptotic stability of a Korteweg-de Vries equation with a two-dimensional center manifold[END_REF] also established the decay to 0 of the solutions by establishing an estimate equivalent to (1.9) (see [20, (1.20) in Theorem 1.1]). The analysis in [START_REF] Chu | Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths[END_REF][START_REF] Tang | Asymptotic stability of a Korteweg-de Vries equation with a two-dimensional center manifold[END_REF] is based on the center manifold theory in infinite dimensions, see e.g. [START_REF] Haragus | Local bifurcations, center manifolds, and normal forms in infinitedimensional dynamical systems[END_REF], in particular the work [START_REF] Van | Invariant manifolds of partial functional differential equations[END_REF]. To this end, the authors showed the existence and smoothness of a center manifold associated with (1.1), which have their own interests.

In this paper, we show that all solutions of (1.1) decay to 0 at least with a rate 1/t 1/2 provided their initial data in L 2 (0, L) is small enough when dim M = 1 or when condition (1.14) below holds (this requires in particular that dim M is even). Given a critical length L, condition (1.14) can be checked numerically, a scilab program is given in the appendix (see Corollary 1.1 for a range of validation). Our approach is inspired by the spirit of the power series expansion due to Coron and Crépeau [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF] and involves the theory of quasi-periodic functions.

Before stating our results, let us introduce some notations associated with the structure of M, see e.g. [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF][START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF][START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF]. Recall that, for each L ∈ N , there exists exactly

n L ∈ N * pairs (k m , l m ) ∈ N * ×N * (1 ≤ m ≤ n L ) such that k m ≥ l m , and (1.10) L = 2π k 2 m + k m l m + l 2 m 3 . For 1 ≤ m ≤ n L , set (1.11) p m = p(k m , l m ) = (2k m + l m )(k m -l m )(2l m + k m ) 3 √ 3(k 2 m + k m l m + l 2 m ) 3/2
, and denote (1.12) P L = p m given by (1.11); 1 ≤ m ≤ n L .

For L ∈ N and 1 ≤ m ≤ n L with p m = 0, let σ j,m (1 ≤ j ≤ 3) be the solutions of

σ 3 -3(k 2 m + k m l m + l 2 m )σ + 2(2k m + l m )(2l m + k m )(k m -l m ) = 0, and set, with the convention σ j+3,m = σ j,m for j ≥ 1, (1.13) s m = s(k m , l m ) := 3 j=1 σ j,m (σ j+2,m -σ j+1,m ) e 4πi(km-lm) 3 e 2πiσ j,m + e -2πiσ j,m .
We are ready to state the main result of the paper:

Theorem 1.1. Let L ∈ N . Assume that either dim M = 1 or (1.14) p m = 0 and s m = 0 for all 1 ≤ m ≤ n L .
There exists ε 0 > 0 depending only on L such that for all (real)

u 0 ∈ L 2 (0, L) with u 0 L 2 (0,L) ≤ ε 0 , the unique solution u ∈ C [0, +∞); L 2 (0, L) ∩ L 2 loc [0, +∞); H 1 (0, L) of (1.1) satisfies (1.15) lim t→0 u(t, •) L 2 (0,L) = 0.
More precisely, there exists a constant C depending only on L such that, for t ≥ C/ u 0 2

L 2 (0,L) and u 0 L 2 (0,L) ≤ ε 0 , it holds (1.16) u(t, •) L 2 (0,L) ≤ 1 2 u(0, •) L 2 (0,L) .
As a consequence, we have

(1.17) u(t, •) L 2 (0,L) ≤ c/t 1/2 for t ≥ 0,
for some positive constant c depending only on L.

Remark 1.1. Let L ∈ N. Condition p m = 0 for all 1 ≤ m ≤ n L is equivalent to the fact that dim M is even, see e.g. [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF].

Remark 1.2. Note that s m is a antisymmetric function of (σ 1,m , σ 2,m , σ 3,m ) and hence the condition (1.14) does not depend on the order of (σ 1,m , σ 2,m , σ 3,m ).

Remark 1.3. Assume (1.14). Applying Theorem 1.1, one derives from (1.6) that 0 is (locally) asymptotically stable with respect to L 2 (0, L)-norm for system (1.1).

Remark 1.4. Assume that (1.16) holds. By the regularity properties of the KdV equations, one derives that the same rate of decay holds for t > 1 when

• L 2 (0,L) is replaced by • H m (0,L) for m ≥ 1.
Condition (1.14) can be checked numerically. For example, using scilab (the program is given in the appendix), we can check s m = 0 for all (k m , l m ) ∈ N * with 1 ≤ l m < k m < 2000. As a consequence, we have

Corollary 1.1. Let L ∈ N . Assume that either dim M = 1 or 1 ≤ k m , l m ≤ 1000 for some 1 ≤ m ≤ n L . Then (1.17) holds if p m = 0 for all 1 ≤ m ≤ n L .
We thus rediscover the decay results in [START_REF] Chu | Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths[END_REF][START_REF] Tang | Asymptotic stability of a Korteweg-de Vries equation with a two-dimensional center manifold[END_REF] by a different approach and obtain new results. Remark 1.5. Concerning (1.14), we expect that s m = 0 holds for all L ∈ N but we are not able to show it.

The optimality of the decay rate 1/t 1/2 given in (1.17) is open. However, we can establish the following result for all critical lengths. Proposition 1.1. Let L ∈ N . There exists c > 0 such that for all ε > 0, there exists u 0 ∈ L 2 (0, L) such that u 0 L 2 (0,L) ≤ ε and u(t, •) L 2 (0,L) ≥ c ln(t + 2)/t for some t > 0.

It is natural to ask if the decay holds globally, i.e., without the assumption on the smallness of the initial data. In fact, this cannot hold even for non-critical lengths. More precisely, Doronin and Natali [START_REF] Germanovitch Doronin | An example of non-decreasing solution for the KdV equation posed on a bounded interval[END_REF] showed that there exist (infinite) stationary states of (1.1) for any length L, which is critical or not.

1.2. Ideas of the analysis and structure of the paper. The key of the analysis of Theorem 1.1 is to (observe and) establish the following fact (see Lemma 5.1): Let L ∈ N . Under condition (1.14) or dim M = 1, there exist two constants T 0 > 0 and C > 0 depending only on L such that for T ≥ T 0 , one has, for all u 0 ∈ L 2 (0, L) with u 0 L 2 (0,L) sufficiently small,

(1.18) u(T, •) L 2 (0,L) ≤ u 0 L 2 (0,L) 1 -C u 0 2 L 2 (0,L) for T ≥ T 0 ,
where u is the unique solution of (1.1).

To get an idea of how to prove (1.18), let us consider the case u 0 ∈ M \ {0}, which is somehow the worst case. The analysis is inspired by the spirit of the power expansion method [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF]. Let u 1 be the unique solution of

(1.19)        u 1,t (t, x) + u 1,x (t, x) + u 1,xxx (t, x) = 0 for t ∈ (0, +∞), x ∈ (0, L), u 1 (t, x = 0) = u 1 (t, x = L) = u 1,x (t, x = L) = 0 for t ∈ (0, +∞), u 1 (t = 0, •) = u 0 /ε in (0, L),
with ε = u 0 L 2 (0,L) > 0, and let u 2 be the unique solution of (1.20)

       u 2,t (t, x) + u 2,x (t, x) + u 2,xxx (t, x) + u 1,x (t, x) u 1 (t, x) = 0 for t ∈ (0, +∞), x ∈ (0, L), u 2 (t, x = 0) = u 2 (t, x = L) = u 2,x (t, x = L) = 0 for t ∈ (0, +∞), u 2 (t = 0, •) = 0 in (0, L).
By considering the system of ε u 1 + ε 2 u 2 -u, we can prove that, for arbitrary τ > 0,

(1.21) (ε u 1 + ε 2 u 2 -u) x (•, 0) L 2 (0,τ ) ≤ c τ ε 3 ,
for some c τ > 0 depending only on τ and L, provided that ε is sufficiently small. Since u 1 (t, •) ∈ M for all t > 0, one can then derive that u 1,x (t, 0) = 0 for t ≥ 0.

Thus, if one can show that, for some τ 0 > 0 and for some c 0 > 0

(1.22) u 2,x (•, 0) L 2 (0,τ 0 ) ≥ c 0 ,
then from (1.21) one has, for ε small enough,

u x (•, 0) L 2 (0,τ 0 ) ≥ c 0 ε 2 .
This implies (1.18) with T 0 = τ 0 by (1.5).

To establish (1.22), we first construct a special solution W of the system

(1.23) W t (t, x) + W x (t, x) + W xxx (t, x) + u 1,x (t, x) u 1 (t, x) = 0 for t ∈ (0, +∞), x ∈ (0, L), W (t, x = 0) = W (t, x = L) = W (t, x = L) = 0 for t ∈ (0, +∞),
via a separation-of-variable process. Moreover, we can prove for such a solution W that (1.24) W is bounded by u 1 (0, •) L 2 (0,L) up to a positive constant, and W x (•, 0) is a non-trivial quasi-periodic function.

The proof of this property is based on some useful observations on p m and the boundary conditions considered in (1.1), and involves some arithmetic arguments. It is in the proof of the existence of W and the second fact of (1.24) that assumption (1.14) or dim M = 1 is required. Note that, for all δ > 0, there exists T δ > 0 such that it holds, for τ ≥ T δ ,

(1.25)

y x (•, 0) L 2 (τ,2τ ) ≤ δ y 0 L 2 (0,L) , for all solution y ∈ C [0, +∞); L 2 (0, L) ∩ L 2 loc [0, +∞); H 1 (0, L) of the system y t (t, x) + y x (t, x) + y xxx (t, x) = 0 for t ∈ (0, +∞), x ∈ (0, L), y(t, x = 0) = y(t, x = L) = y x (t, x = L) = 0 for t ∈ (0, +∞).
Combining (1.24) and (1.25), we can derive (1.22) after applying the theory of quasi-periodic functions, see e.g. [START_REF] Bohr | Almost Periodic Functions[END_REF].

The proof of Proposition 1.1 is inspired by the approach which is used to prove Theorem 1.1 and is mentioned above.

The paper is organized as follows. The elements for the construction of W are given in Section 2 and the elements for the proof of (1.24) are given in Section 3. The proof of Theorem 1.1 is given in Section 5 where (1.18) is formulated in Lemma 5.1. The proof of Proposition 1.1 is given in Section 6. In the appendix, we reproduce a proof of a technical result, which is obtained in [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF], and provide the scilab code.

Construction of auxiliary functions

Let us begin with recalling and introducing some useful notations motivated by the structure of M, see e.g. [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF][START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF][START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF]. For L ∈ N and for 1 ≤ m ≤ n L , denote (2.1)

             η 1,m = - 2πi(2k m + l m ) 3L , η 2,m = η 1,m + 2πi L k m = 2πi(k m -l m ) 3L , η 3,m = η 2,m + 2πi L l m = 2πi(k m + 2l m ) 3L . Set (2.2) ψ m (x) = 3 j=1 (η j+1,m -η j,m )e η j+2,m x for x ∈ [0, L], Ψ m (t, x) = e -itpm ψ m (x) for (t, x) ∈ R × [0, L],
(recall that p m is defined in (1.11)). It is clear from the definition of η j,m in (2.1) that

(2.3) e η 1,m L = e η 2,m L = e η 3,m L .
This property of η j,m associated with L is used several times in our analysis.

Remark 2.1. One can check that η j,m are the solutions of the equation

λ 3 + λ -ip m λ = 0.
This implies in particular that

p m 1 = p m 2 if (k m 1 , l m 1 ) = (k m 2 , l m 2 ) as observed in [4].
It is known that Ψ m is a solution of the linearized KdV system; moreover,

Ψ m,x (•, 0) = 0, i.e., (2.4) Ψ m,t (t, x) + Ψ m,x (t, x) + Ψ m,xxx (t, x) = 0 for t ∈ (0, +∞), x ∈ (0, L), Ψ m (t, 0) = Ψ m (t, L) = Ψ m,x (t, 0) = Ψ m,x (t, L) = 0 for t ∈ (0, +∞).
These properties of Ψ m can be easily checked. It is known that, see e.g. [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF],

(2.5)

M = span (ψ m (x)); 1 ≤ m ≤ n L ∪ (ψ m (x)); 1 ≤ m ≤ n L .
Here and in what follows, for a complex number z, we denote z, z, and z its real part, its imaginary part, and its conjugate, respectively. In this section, we prepare elements to construct the function W mentioned in the introduction. Assume that u 0 ∈ M \ {0} and let ε = u 0 L 2 (0,L) . By (2.5), there exists

(α m ) n L m=1 ⊂ C such that (2.6) 1 ε u 0 = n L m=1 α m Ψ m (0, x) .
The function u 1 defined by (1. [START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF]) is then given by

u 1 (t, x) = n L m=1 α m Ψ m (t, x) = n L m=1 α m e -ipmt ψ m (x) .
Using the fact, for an appropriate complex function f ,

f (t, x) f x (t, x) = 1 2 ( f (t, x)) 2 x = 1 8 f (t, x) 2 ) x + f (t, x) 2 x + 2(|f (t, x)| 2 ) x ,
we derive from (2.2) and (2.6) that

u 1,x (t, x) u 1 (t, x) = 1 8 n L m 1 =1 n L m 2 =1 α m 1 α m 2 e -i(pm 1 +pm 2 )t ψ m 1 (x)ψ m 2 (x) x (2.7) + 1 8 n L m 1 =1 n L m 2 =1 α m 1 α m 2 e -i(pm 1 +pm 2 )t ψ m 1 (x)ψ m 2 (x) x + 1 4 n L m 1 =1 n L m 2 =1 α m 1 ᾱm 2 e -i(pm 1 -pm 2 )t ψ m 1 (x) ψm 2 (x) x .
Motivated by (2.7), in this section, we construct solutions of system (2.12)-(2.13) and system (2.33)-(2.34) below.

We begin with the following simple result whose proof is omitted.

Lemma 2.1. Let L ∈ N and 1 ≤ m 1 , m 2 ≤ n L . We have, in [0, L], (2.8) ψ m 1 ψ m 2 (x) = 3 j=1 3 k=1 (η j+1,m 1 -η j,m 1 )(η k+1,m 2 -η k,m 2 )(η j+2,m 1 + η k+2,m 2 )e (η j+2,m 1 +η k+2,m 2 )x ,

and

(2.9)

ψ m 1 ψm 2 (x) = 3 j=1 3 k=1 (η j+1,m 1 -η j,m 1 )(η k+1,m 2 -ηk,m 2 )(η j+2,m 1 + ηk+2,m 2 )e (η j+2,m 1 +η k+2,m 2 )x .
We next introduce Definition 2.1. For z ∈ C, let λ j = λ j (z) (1 ≤ j ≤ 3) be the roots of the equation

(2.10) λ 3 + λ -iz = 0,
and set

(2.11) Q(z) =     1 1 1 e λ 1 L e λ 2 L e λ 3 L λ 1 e λ 1 L λ 2 e λ 2 L λ 3 e λ 3 L     .
Remark 2.2. Some comments on the definition of Q are in order. The matrix Q is antisymmetric with respect to λ j (j = 1, 2, 3), and its definitions depend on a choice of the order of (λ 1 , λ 2 , λ 3 ). Nevertheless, we later consider either the equation det Q = 0 or a quantity depending on Q in such a way that the order of (λ 1 , λ 2 , λ 3 ) does not matter. The definition of Q is only considered in these contexts.

Remark 2.3. The definition of λ j (z) in Definition 2.1 is slightly different from the one given in [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF] where iz is used instead of -iz in (2.10).

Remark 2.4. It is known that if z ∈ P L for some L ∈ N , then

λ j = η j,m for some 1 ≤ m ≤ n L .
Hence, by (2.3), e λ 1 L = e λ 2 L = e λ 3 L .

Remark 2.5. Note that (2.10) has simple roots for z = ±2/(3 √ 3). Thus, a general solution of the equation

y (x) + y (x) -izy(x) = 0 in [0, L], is of the form 3 j=1 a j e λ j (z)x when z = ±2/(3 √ 3). For z = ±2/(3 √ 3), equation (2.10) has three roots λ 1 = ∓2i/ √ 3 and λ 2 = λ 3 = ±i/ √ 3.
We now recall a useful property of solutions of the equation det Q = 0 which is established in [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF] (a consequence of [10, Remark 2.7]).

Lemma 2.2. Let z ∈ R. Then det Q(z) = 0 if and only if either z = ±2/ √ 3 or (L ∈ N and z ∈ P L ). Moreover, ± 2/ √ 3 ∩ P L = ∅ for all L ∈ N .
The proof of Lemma 2.2 is reproduced in the appendix for the convenience of the reader.

Let L ∈ N and 1 ≤ m 1 , m 2 ≤ n L . As mentioned above, we are interested in constructing a solution of the system (2.12)

-i(p m 1 + p m 2 )ϕ m 1 ,m 2 (x) + ϕ m 1 ,m 2 (x) + ϕ m 1 ,m 2 (x) + ψ m 1 ψ m 2 (x) = 0 in (0, L), and 
(2.13) ϕ m 1 ,m 2 (0) = ϕ m 1 ,m 2 (L) = ϕ m 1 ,m 2 (L) = 0.
We have

Proposition 2.1. Let L ∈ N and 1 ≤ m 1 , m 2 ≤ n L . Let λ j = λ j (p m 1 + p m 2 ) and Q = Q(ip m 1 + ip m 2 )
where λ j and Q are defined by (2.10) and (2.11). When p m 1 = 0 and p m 2 = 0, set

(2.14) D = D m 1 ,m 2 = 3 j=1 3 k=1 (η j+1,m 1 -η j,m 1 )(η k+1,m 2 -η k,m 2 ) 3η j+2,m 1 η k+2,m 2 ,
and

(2.15) χ m 1 ,m 2 (x) = - 3 j=1 3 k=1 (η j+1,m 1 -η j,m 1 )(η k+1,m 2 -η k,m 2 ) 3η j+2,m 1 η k+2,m 2 e (η j+2,m 1 +η k+2,m 2 )x in [0, L].
We have 1) Assume that p m 1 = 0, p m 2 = 0, and

p m 1 + p m 2 ∈ P L ∪ 2/(3 √ 3)
. The unique solution of system (2.12)-(2.13) is given by

(2.16) ϕ m 1 ,m 2 (x) = χ m 1 ,m 2 (x) + 3 j=1
a j e λ j x , where (a 1 , a 2 , a 3 ) is uniquely determined via (2.13), i.e.,

(2.17)

Q(a 1 , a 2 , a 3 ) T = D(1, e (η 1,m 1 +η 1,m 2 )L , 0) T .
2) Assume that p m 1 = 0, p m 2 = 0, and p m 1 + p m 2 ∈ P L . A solution of system (2.12)-(2.13) is given by (2.16) where (a 1 , a 2 , a 3 ) satisfies

(2.18) a 1 + a 2 + a 3 = D and λ 1 a 1 + λ 2 a 2 + λ 3 a 3 = 0.
3) Assume that p m 1 = 0, p m 2 = 0, and

p m 1 + p m 2 = 2/(3 √ 3). Consider the convention (2.19) λ 1 = -2i/ √ 3 and λ 2 = λ 3 = i/ √ 3.
System (2.12)-(2.13) has a unique solution given by

(2.20) ϕ m 1 ,m 2 (x) = χ m 1 ,m 2 (x) + a 1 e λ 1 x + (a 2 + a 3 x)e λ 2 x
, where (a 1 , a 2 , a 3 ) is uniquely determined via (2.13), i.e.,

(2.21)

Q 1 (a 1 , a 2 , a 3 ) T = D(1, e (η 1,m 1 +η 1,m 2 )L , 0) T ,
where

(2.22) Q 1 =     1 1 0 e λ 1 L e λ 2 L Le λ 2 L λ 1 e λ 1 L λ 2 e λ 2 L (λ 2 L + 1)e λ 2 L     . 4) Assume that p m 1 = p m 2 = 0 and thus m 1 = m 2 = m. A solution of system (2.12)-(2.13) is (2.23) ϕ m,m (x) = 4 L sin x + 1 6 -x sin x - 1 6 cos(2x) .
Proof. We proceed with the proof of 1), 2), 3), and 4) in Steps 1, 2, 3, and 4 below, respectively.

Step 1: Proof of 1). Since η = η j,m (1 ≤ j ≤ 3) is a root of the equation

η 3 + η -ip m = 0, it follows that η j,m 1 = -η k,m 2
(since otherwise p m 1 = -p m 2 which is impossible), and

(η j,m 1 + η k,m 2 ) 3 + (η j,m 1 + η k,m 2 ) -i(p m 1 + p m 2 ) = 3η j,m 1 η k,m 2 (η j,m 1 + η k,m 2 ).
Since p m 1 = 0 and p m 2 = 0, we derive from Lemma 2.1 that χ m 1 ,m 2 is a solution of (2.12). Since a general solution of the equation ξ + ξ = i(p m 1 + p m 2 )ξ is of the form 3 j=1 a j e λ j x by Remark 2.5, it follows that (2.24) a general solution of (2.12) is of the form χ m 1 ,m 2 (x) + 3 j=1 a j e λ j x . We have

(2.25) -χ m 1 ,m 2 (0) = D, -χ m 1 ,m 2 (L) (2.3) = De (η 1,m 1 +η 1,m 2 )L , and -χ m 1 ,m 2 ,x (L) (2.3) = 0.
It follows that a function of the form χ m 1 ,m 2 (x) + 3 j=1 a j e λ j x satisfies (2.13) if and only if

3 j=1 a j = D, 3 j=1
a j e λ j L = De (η 1,m 1 +η 1,m 2 )L , 3 j=1 a j λ j e λ j L = 0, which is equivalent to (2.17). Since p m 1 + p m 2 ∈ P L ∪ 2/(3 √ 3) and p m 1 + p m 2 > 0, it follows from Lemma 2.2 that det Q = 0. Therefore, one obtains 1).

Step 2: Proof of 2). A solution of (2.12) is of the form χ m 1 ,m 2 (x) + 3 j=1 a j e λ j x . This function satisfies (2.13) if and only if, by Remark 2.4 (recall that p m 1 + p m 2 ∈ P L ),

3 j=1 a j = D, e λ 1 L 3 j=1 a j (2.3) = De (η 1,m 1 +η 1,m 2 )L , 3 j=1 a j λ j (2.3) = 0.
This system has a solution if

(2.26) e λ 1 L = e (η 1,m 1 +η 1,m 2 )L ,
and a solution is given by (2.16) where (a 1 , a 2 , a 3 ) satisfies (2.18). It remains to prove (2.26). Assume, for some p m 3 ∈ P L , that (2.27)

p m 1 + p m 2 = p m 3 .
To establish (2.26), it suffices to prove that, by (2.3) and Remark 2.4,

e (η 2,m 1 +η 2,m 2 )L = e η 2,m 3 L
which is equivalent to the fact, by (2.1),

(2.28)

k m 3 -l m 3 3 - k m 1 -l m 1 3 - k m 2 -l m 2 3 ∈ Z.
From (2.27) and the definition of p m in (1.11), we have

(2.29) (k m 3 -l m 3 )(2k m 3 + l m 3 )(2l m 3 + k m 3 ) = (k m 1 -l m 1 )(2k m 1 + l m 1 )(2l m 1 + k m 1 ) + (k m 2 -l m 2 )(2k m 2 + l m 2 )(2l m 2 + k m 2 ). Since (k m j -l m j )(2k m j + l m j )(2l m j + k m j ) = l m j -k m j mod 3, It follows from (2.29) that k m 3 -l m 3 = k m 1 -l m 1 + k m 2 -l m 2 mod 3,
which yields (2.28). The proof of Step 2 is complete.

Step 3: Proof of 3). A solution of (2.12) is of the form χ m 1 ,m 2 (x) + a 1 e λ 1 x + (a 2 + a 3 x)e λ 2 x . This function satisfies (2.13) if and only if, by (2.25),

a 1 + a 2 = D, a 1 e λ 1 L + a 2 e λ 2 L + a 3 Le λ 2 L = De (η 1,m 1 +η 1,m 2 )L ,
and

a 1 λ 1 e λ 1 L + a 2 λ 2 e λ 2 L + a 3 (λ 2 L + 1)e λ 2 L = 0,
which is equivalent to (2.21). Hence, it suffices to prove that Q 1 is invertible. Replacing the third row of Q 1 by itself minus λ 2 times the second row, we obtain (2.30)

Q 2 =     1 1 0 e λ 1 L e λ 2 L Le λ 2 L (λ 1 -λ 2 )e λ 1 L 0 e λ 2 L     .
We have

det Q 2 = e 2λ 2 L -1 -L(λ 1 -λ 2 ) e (λ 1 +λ 2 )L .
Using (2.19), we derive that det Q 2 = 0 if and only if

e 3λ 2 L = 1 + 3λ 2 L.
Since the equation e ix = 1 + ix has only one solution x = 0 in the real line, one derives that det Q 2 = 0. Therefore, Q 1 is invertible. The proof of Step 3) is complete.

Step 4: Proof of 4). Since p m = 0, it follows that k m = l m , and L = 2πk m . One then has

η 1,m = -i, η 2,m = 0, η 3,m = i.
It follows from the definition of ψ m in (2.2) that (2.31)

ψ m (x) = 2i(cos x -1).
This implies ψ 2 m (x) x = 8(cos x -1) sin x. A straightforward computation gives the conclusion.

The proof of Proposition 2.1 is complete.

Remark 2.6. In the case, p m 1 = 0 and p m 2 = 0, one cannot construct a solution of (2.12)-(2.13) in general. In fact, one can check that

(2.32) χ m 1 ,m 2 (x) = - j=1,2 3 k=1 (η j+1,m 1 -η j,m 1 )(η k+1,m 2 -η k,m 2 ) 3η j+2,m 1 η k+2,m 2 e (η j+2,m 1 +η k+2,m 2 )x - 3 k=1 (η 1,m 1 -η 3,m 1 )(η k+1,m 2 -η k,m 2 )η k+2,m 2 3η k+2,m 2 2 + 1 xe η k+2,m 2 x
is a solution of (2.12). However,

χ m 1 ,m 2 (0) = e -η 1,m 2 L χ m 1 ,m 2 (L)
since, in general,

3 k=1 (η k+1,m 2 -η k,m 2 )η k+2,m 2 3η k+2,m 2 2 + 1 = 0.
Hence one cannot find (a 1 , a 2 , a 3 ) ∈ C 3 such that the function χ m 1 ,m 2 (x) + 3 j=1 a j e λ j x , with λ j = λ j (p m 2 ), verifies (2.13).

Let L ∈ N and 1 ≤ m 1 , m 2 ≤ n L . We are next interested in constructing a solution of the system

(2.33) -i(p m 1 -p m 2 )φ m 1 ,m 2 (x) + φ m 1 ,m 2 (x) + φ m 1 ,m 2 (x) + ψ m 1 ψm 2 (x) = 0 in (0, L), and 
(2.34) φ m 1 ,m 2 (0) = φ m 1 ,m 2 (L) = φ m 1 ,m 2 (L) = 0.
We have

Proposition 2.2. Let L ∈ N and 1 ≤ m 1 , m 2 ≤ n L . Let λ j = λ j (p m 1 -p m 2 ) and Q = Q(ip m 1 - ip m 2 )
where λ j and Q are defined by (2.10) and (2.11). When p m 1 = 0 and p m 2 = 0, set

(2.35) D = D m 1 ,m 2 = 3 j=1 3 k=1 (η j+1,m 1 -η j,m 1 )(η k+1,m 2 -ηk,m 2 ) 3η j+2,m 1 ηk+2,m 2 and (2.36) χ m 1 ,m 2 (x) = - 3 j=1 3 k=1 (η j+1,m 1 -η j,m 1 )(η k+1,m 2 -ηk,m 2 ) 3η j+2,m 1 ηk+2,m 2 e (η j+2,m 1 +η k+2,m 2 )x in [0, L].
We have 1) Assume that p m 1 = 0, p m 2 = 0, p m 1 = p m 2 , and p m 1 -p m 2 ∈ P L . The unique solution of system (2.33)-(2.34) is given by

(2.37) φ m 1 ,m 2 (x) = χ m 1 ,m 2 (x) + 3 j=1
a j e λ j x , where (a 1 , a 2 , a 3 ) is uniquely determined via (2.34), i.e.,

(2.38)

Q(a 1 , a 2 , a 3 ) T = D(1, e (η 1,m 1 +η 1,m 2 )L , 0) T .
2) Assume that p m 1 = 0, p m 2 = 0, p m 1 = p m 2 , and p m 1 -p m 2 ∈ P L . A solution of system (2.33)-(2.34) is given by (2.37) where (a 1 , a 2 , a 3 ) satisfies (2.39) a 1 + a 2 + a 3 = D and λ 1 a 1 + λ 2 a 2 + λ 3 a 3 = 0. (η j+1,m -η j,m )(η k+1,m -ηk,m ) 3η j+2,m ηk+2,m e (η j+2,m +η k+2,m )x

+ 3 j=1 3 k=1 (η j+1,m -η j,m )(η k+1,m -ηk,m ) 3η j+2,m ηk+2,m . 
4) Assume that p m 1 = p m 2 = 0 and thus m 1 = m 2 = m. A solution of system (2.33)-(2.34) is

(2.40) φ m,m (x) = -4 L sin x + 1 6 -x sin x - 1 6 cos(2x) .
Proof. We proceed with the proof of 1), 2), 3), and 4) in Steps 1, 2, 3, and 4 below, respectively.

Step 1: Proof of 1). The proof is similar tos Step 1 in the proof of Proposition 2.1. One just notes that (η j,m 1 + ηk,m 2

) 3 + (η j,m 1 + ηk,m 2 ) -i(p m 1 -p m 2 ) = 3η j,m 1 ηk,m 2 (η j,m 1 + ηk,m 2 ), and η j,m 1 + ηk,m 2 = 0 since p m 1 = p m 2 .
Step 2: Proof of 2). The proof is almost the same as Step 2 in the proof of Proposition 2.1. The details are omitted.

Step 3: Proof of 3). One can check that φ m,m is a solution of (2.33)-(2.34). The uniqueness follows from the fact that equation (2.10) has simple roots for z = 0.

Step 4: Proof of 4). The conclusion is from 4) of Proposition 2.1 by noting that

|ψ m (x)| 2 (2.31) = -ψ m (x) 2 if p m = 0.
The proof is complete.

Properties of auxiliary functions

The main goal of this section is to establish, for L ∈ N and 1 ≤ m ≤ n L with p m = 0, that We have

(3.3) D m,m = -χ m,m (0) = 1 3 E 2 m , and 
(3.4) E m = - 27k m l m (k m + l m ) (k m + 2l m )(2k m + l m )(k m -l m ) = 0. Proof. It is clear to see from (2.15) that D m,m = -χ m,m (0) = 1 3 E 2 m .
With the notation γ j,m = Lη j,m /(2πi), we have

(3.5) γ 1,m = - 2k m + l m 3 , γ 2,m = k m -l m 3 , γ 3,m = k m + 2l m 3 .
It follows that

E m = 3 j=1 γ j+1,m -γ j,m γ j+2,m = 3k m k m + 2l m - 3l m 2k m + l m - 3(k m + l m ) k m -l m .
Since

k m (2k m + l m )(k m -l m ) -l m (k m + 2l m )(k m -l m ) -(k m + l m )(k m + 2l m )(2k m + l m ) = 2(k 2 m -l 2 m )(k m -l m ) -(k m + l m )(k m + 2l m )(2k m + l m ) = (k m + l m ) 2k 2 m -4k m l m + 2k 2 m -2k 2 m -2l 2 m -5k m l m = -9k m l m (k m + l m ), we derive that E m = - 27k m l m (k m + l m ) (k m + 2l m )(2k m + l m )(k m -l m ) = 0.
The proof is complete.

We next show in Lemmas 3. Proof. We first claim that there is no k, l ∈ N * with k ≥ l such that

(3.6) (2k + l)(2l + k)(k -l) = (k 2 + l 2 + kl) 3/2 .
We prove this by contradiction. Assume that there exists such a pair (k, l). Set

H = (k, l) ∈ N * × N * , k ≥ l, and (3.6) holds . Set h = min k + l; (k, l) ∈ H > 0. Fix (k, l) ∈ H such that k + l = h. Since (2k + l)(2l + k)(k -l) is even,
it follows from (3.6) that k 2 + l 2 + kl is even. Hence both k and l are even. We write k = 2k 1 and l = 2l 1 for some k 1 , l 1 ∈ N * . It is clear that

k 1 ≥ l 1 , and (2k 1 + l 1 )(2l 1 + k 1 )(k 1 -l 1 ) = (k 2 1 + l 2 1 + k 1 l 1 ) 3/2 . This implies (k 1 , l 1 ) ∈ H.
We have k 1 + l 1 = (k + l)/2 = h/2 and h > 0. This contradicts the definition of h. The claim is proved.

We are ready to derive the conclusion of Lemma 3.2. Since 2p m = 2/(3 √ 3) for some 1 ≤ m ≤ n L and for some L ∈ N if and only if, by the definition of p m in (1.11),

(2k m + l m )(k m -l m )(2l m + k m ) = (k 2 m + l 2 m + k m l m ) 3/2
, the conclusion follows from the claim.

We next prove Lemma 3.3. There is no quadruple (k 1 , l 1 , k 2 , l 2 ) ∈ N 4 * satisfying the system

(3.7)        k 1 > l 1 , k 2 > l 2 , k 2 1 + k 1 l 1 + l 2 1 = k 2 2 + k 2 l 2 + l 2 2 , (2k 2 + l 2 )(2l 2 + k 2 )(k 2 -l 2 ) = 2(2k 1 + l 1 )(2l 1 + k 1 )(k 1 -l 1 ).
Consequently, for L ∈ N and 1 ≤ m ≤ n L , we have

(3.8) 2p m ∈ P L if p m = 0.
Proof. We prove the non-existence by contradiction. Assume that there exists a quadruple (k

1 , l 1 , k 2 , l 2 ) ∈ N 4 * satisfying (3.7). Set (3.9) G = (k 1 , l 1 , k 2 , l 2 ) ∈ N 4 * ; (3.7) holds , and let (3.10) g = min k 1 + l 1 + k 2 + l 2 ; (k 1 , l 1 , k 2 , l 2 ) ∈ G > 0. Fix (k 1 , l 1 , k 2 , l 2 ) ∈ G such that k 1 + l 1 + k 2 + l 2 = g. Set (3.11) A := k 2 1 + k 1 l 1 + l 2 1 = k 2 2 + k 2 l 2 + l 2 2
(by the second line of (3.7)). Since, for (k, l) ∈ R,

(2k + l)(2l + k) = 2(k 2 + kl + l 2 ) + 3kl and (k -l) 2 = (k 2 + kl + l 2 ) -3kl,
it follows from the square of the last line of (3.7), with (3.12) x 1 = 3k 1 l 1 and

x 2 = 3k 2 l 2 , that (2A + x 2 ) 2 (A -x 2 ) = 4(2A + x 1 ) 2 (A -x 1 ). This implies (3.13) (4A 3 -3Ax 2 2 -x 3 2 ) = 4(4A 3 -3Ax 2 1 -x 3 1 ), or equivalently (3.14) 12A 3 = 3A(4x 2 1 -x 2 2 ) + 4x 3 1 -x 3 2
. Using (3.12), we derive that A 3 = 0 mod 3, which yields

A = 0 mod 3.
Putting this information into (3.14) and using again (3.12), we obtain

x 3
1 -x 3 2 = 0 mod 3 4 . We deduce from (3.12) that (3.15) (k 1 l 1 ) 3 -(k 2 l 2 ) 3 = 0 mod 3.

By writing k 1 l 1 under the form k 2 l 2 + 3q + r with q ∈ Z and r ∈ N with 0 ≤ r ≤ 2, we have 3 . Combining (3.15) and (3.16) yields that r = 0. Putting this information into (3.14), we obtain

(3.16) (k 1 l 1 ) 3 -(k 2 l 2 ) 3 = 3k 2 2 l 2 2 (3q + r) + 3k 2 l 2 (3q + r) 2 + (3q + r)
A 3 = 0 mod 3 4 .

This implies

A = 0 mod 9.

We deduce from (3.11) that

k 1 = 0 mod 3, l 1 = 0 mod 3, k 2 = 0 mod 3, l 2 = 0 mod 3.
Let k1 , l1 , k2 , l2 ∈ N * be such that

k 1 = 3 k1 , l 1 = 3 l1 , k 2 = 3 k2 , l 2 = 3 l2 .
One can easily check that ( k1 , l1 , k2 , l2 ) ∈ G and k1 + l1 + k2 + l2 = g/3 < g.

We obtain a contradiction. The non-existence associated with (3.7) is proved.

It is clear that (3.8) is just a consequence of the non-existence by the definition of L and p m as a function of k m and l m in (1.10) and (1.11). The proof is complete.

We are ready to state and prove the main result of this section: 

       3 j=1 λ j a j = 0 (= ϕ m,m (0) since χ m,m (0) = 0), 3 j=1 λ j e λ j L a j = 0 (= ϕ m,m (L) since χ m,m (L) = 0), 3 j=1 (e λ j L -α)a j = 0 (= -χ m,m (L) + αχ m,m (0) since χ m,m (L) = αχ m,m (0))
. Since E m = 0 by Lemma 3.1, one has a non-trivial solution (a 1 , a 2 , a 3 ) of this system. This implies (3.20) det K 1 = 0 where Here we used the fact 3 j=1 λj = L 3 j=1 λ j = 0. From the definition of λ j = λ j (2p m ) given in Definition 2.1, we have

K 1 :=     λ 1 λ 2 λ 3 λ 1 e λ 1 L λ 2 e λ 2 L λ 3 e λ 3 L e λ 1 L -α e λ 2 L -α e λ 3 L -α     . Set λj = λ j L.
       λ1 + λ2 + λ3 = 0, λ1 λ2 + λ1 λ3 + λ2 λ3 = L 2 , λ1 λ2 λ3 = 2ip m L 3 .
Define σ j,m by λj = 2πiσ j,m 3 .

We then have

       σ 1,m + σ 2,m + σ 3,m = 0, σ 1,m σ 2,m + σ 1,m σ 3,m + σ 2,m σ 3,m = -3(k 2 m + l 2 m + k m l m ), σ 1,m σ 2,m σ 3,m = -2(2k m + l m )(2l m + k m )(k m -l m ),
where in the last identity, we used the fact

p m L 3 = 1 27 (2π) 3 (2k m + l m )(2l m + k m )(k m -l m ).
It is clear that det K 2 = 0 if and only if (1.14) holds. The proof is complete.

Useful properties related to quasi-periodic functions

In this section, we derive some properties for W x (•, 0) given in the introduction using the quasiperiodic-function theory. The main result of this section is Proposition 4.1. We begin with its weaker version. Lemma 4.1. Let ∈ N * , a j ∈ C, q j ≥ 0 for 1 ≤ j ≤ , and

M j 1 ,j 2 , N j 1 ,j 2 ∈ C with 1 ≤ j 1 , j 2 ≤ . Assume that (4.1)            q j 1 = q j 2 for 1 ≤ j 1 = j 2 ≤ , M j,j = 0 for 1 ≤ j ≤ ,
(M j,j is real and N j,j = 0) if q j = 0, a j ∈ iR if q j = 0, and

(4.2) j=1 |a j | 2 > 0.
Set, for t ∈ R,

(4.3) g(t) := j 1 =1 j 2 =1
a j 1 a j 2 M j 1 ,j 2 e -i(q j 1 +q j 2 )t + āj 1 āj 2 Mj 1 ,j 2 e i(q j 1 +q j 2 )t + 2a j 1 āj 2 N j 1 ,j 2 e -i(q j 1 -q j 2 ) .

There exists t ∈ R + such that

(4.4) g(t) = 0.
Proof. We prove (4.4) by recurrence in . It is clear that the conclusion holds for = 1. Indeed, if q 1 = 0 then since e 2q 1 t , 0, and e -2q 1 t are independent, the conclusion follows. Otherwise, q 1 = 0. Since M 1,1 is real and a 1 ∈ iR, we have

g(t) = 2|a 1 | 2 N 1,1 .
The conclusion in the case = 1 follows since N 1,1 = 0. Assume that the conclusion holds for ≥ 1, we prove that the conclusion holds for +1. Without loss of generality, one might assume that

(4.5) 0 ≤ q 1 < q 2 < • • • < q < q +1 .
We will prove (4.4) for + 1 by contradiction. Assume that there exist a j and q j ≥ 0 with 1 ≤ j ≤ + 1, M j 1 ,j 2 , N j 1 ,j 2 ∈ C with 1 ≤ j 1 , j 2 ≤ + 1 such that (4.1), (4.2), and (4.5) hold, and, for all t ∈ R + , (

+1

j 1 =1 +1 j 2 =1
a j 1 a j 2 M j 1 ,j 2 e -i(q j 1 +q j 2 )t + āj 1 āj 2 Mj 1 ,j 2 e i(q j 1 +q j 2 )t + 2a j 1 āj 2 N j 1 ,j 2 e -i(q j 1 -q j 2 ) = 0.

Since the function e -2iq +1 t defined in R + does not belong to the space span e -it(q j 1 +q j 2 ) ; 1

≤ j 1 ≤ + 1; 1 ≤ j 2 ≤ , e it(q j 1 +q j 2 ) ; 1 ≤ j 1 ≤ + 1; 1 ≤ j 2 ≤ + 1 , e -it(q j 1 -q j 2 ) ; 1 ≤ j 1 ≤ + 1; 1 ≤ j 2 ≤ + 1 ,
for t ∈ R + by (4.5), we have a 2 +1 M +1, +1 = 0. This yields, since M +1, +1 = 0, a +1 = 0. It follows from (4.6) that (4.7)

j 1 =1 j 2 =1
a j 1 a j 2 M j 1 ,j 2 e -i(q j 1 +q j 2 )t + āj 1 āj 2 Mj 1 ,j 2 e i(q j 1 +q j 2 )t + 2a j 1 āj 2 N j 1 ,j 2 e -i(q j 1 -q j 2 ) = 0.

We now can use the assumption on the recurrence to obtain a contradiction. The proof of (4.4) is complete.

Using Lemma 4.1 and the theory of quasi-periodic functions, see e.g. [START_REF] Bohr | Almost Periodic Functions[END_REF], we can derive the following useful result for the proof of Theorem 1.1. Proposition 4.1. Let ∈ N * , a j ∈ C, q j ≥ 0 for 1 ≤ j ≤ , and M j 1 ,j 2 , N j 1 ,j 2 ∈ C with 1 ≤ j 1 , j 2 ≤ . Assume that (4.1) holds and denote g by (4.3). For all 0 < γ 1 < γ 2 there exist γ 0 > 0 and τ 0 > 0 depending only on γ 1 , γ 2 , , q j , M j 1 ,j 2 , and N j 1 ,j 2 such that if

(4.8) γ 1 ≤ j=1 |a j | 2 ≤ γ 2 , then (4.9) g L 2 (τ,2τ ) ≥ γ 0 for all τ ≥ τ 0 .
Proof. Instead of (4.9), it suffices to prove

(4.10) g L ∞ (τ,2τ ) ≥ γ 0 for τ ≥ τ 0 by contradiction since |g (t)| ≤ C in R. Assume that for all n ∈ N * there exist (a j,n ) j=1 ⊂ C and (t n ) ⊂ R such that γ 1 ≤ j=1 |a j,n | 2 ≤ γ 2 , t n ≥ n, and 
(4.11) g n L ∞ (tn,2tn) ≤ 1/n,
where g n is defined in (4.3) where a j 1 and a j 2 are replaced by a j 1 ,n and a j 2 ,n . Without loss of generality, one might assume that lim

n→+∞ a j,n = a j ∈ C and γ 1 ≤ N j=1 |a j | 2 ≤ γ 2 .
Consider g defined by (4.3) with these a j . We have (4.12) lim

n→+∞ g n -g L ∞ (R) = 0.
Since g is an almost-periodic function with respect to t (see e.g. [1, Corollary on page 38]), it follows from the definition of almost-periodic functions, see e.g. [1, Section 44 on pages 32 and 33], that for every ε > 0, there exists L ε > 0 such that every interval (α, α + L ε ) containing a number τ (ε, α) for which it holds (4.13)

|g(t + τ (ε, α)) -g(t)| ≤ ε for all t ∈ R.
The proof is now divided into two cases.

Case 1: lim inf ε→0 L ε < +∞. Denote L 0 = lim inf ε→0 L ε . We claim that g is T -periodic for some period T ≤ L 0 + 1. Indeed, by (4.13) applied with α = 1/2, there exists a sequence (τ n ) ⊂ (1/2, L 0 + 1) such that, for large n,

|g(t + τ n ) -g(t)| ≤ 1/n for all t ∈ R.
By choosing T = lim inf n→+∞ τ n , we have

g(t + T ) = g(t) for all t ∈ R.
The claim is proved. Since g is T -periodic, we have

g L ∞ (tn,tn+T +1) = g L ∞ (0,T +1) for n ∈ N * ,
and since g is analytic and g = 0 by Lemma 4.1, we obtain

g L ∞ (0,T +1) > 0.
This contradicts (4.11) and (4.12). The proof of Case 1 is complete.

Case 2: lim ε→0 L ε = +∞. Set (4.14) ρ = g L ∞ (0,1) .
It follows from Lemma 4.1 that g is not identically equal to 0. Since g is analytic, we derive that (4.15) ρ > 0.

Let n 0 ≥ 2 be such that 

g n -g L ∞ (R) < ρ/4,
≥ g L ∞ (τ (ε,tn),τ (ε,tn)+1) (4.18) ≥ g L ∞ (0,1) -ε ≥ ρ -ρ/4 = 3ρ/4.
Combining (4.16) and (4.19) yields a contradiction since ρ > 0 by (4.15). The proof of Case 2 is complete.

5. An upper bound for the decay rate -Proof of Theorem 1.1

This section containing two subsections is devoted to the proof of Theorem 1.1. The main ingredient is given in the first section and the proof is presented in the second one.

5.1.

A key lemma. In this section, we prove Lemma 5.1. Let L ∈ N . Assume that dim M = 1 or (1.14) holds. There exist ε 0 > 0, C > 0, and T 0 > 0 depending only on L such that for all (real) u 0 ∈ L 2 (0, L) with u 0 L 2 (0,L) ≤ ε 0 , the unique solution u ∈ C [0, +∞); L 2 (0, L) ∩ L 2 loc [0, +∞); H 1 (0, L) of system (1.1) satisfies

(5.1) u(T, •) L 2 (0,L) ≤ u 0 L 2 (0,L) 1 -C u 0 2 L 2 (0,L) for T ≥ T 0 .
Proof. We first collect several known facts. Let T 1 > 0 be such that

(5.2) v x (•, 0) L 2 (0,t) ≥ 1 2 v(0, •) L 2 (0,L) for t ≥ T 1 , for all solutions v ∈ C [0, +∞); L 2 (0, L) ∩ L 2 loc [0, +∞); H 1 (0, L) of the system (5.3) v t (t, x) + v x (t, x) + v xxx (t, x) = 0 in (0, +∞) × (0, L), v(t, x = 0) = v(t, x = L) = v x (t, x = L) = 0 in (0, +∞), with v(0, •) ∈ L 2 (0, L) satisfying the condition v(0, •) ⊥ M
(the orthogonality is considered with respect to L 2 (0, L)-scalar product). The existence of such a constant T 1 follows from [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]. There exist two positive constants ε 0 and c 1 such that if u 0 L 2 (0,L) ≤ ε 0 , then

(5.4) u C [0,T 1 ];L 2 (0,L) + u L 2 (0,T 1 );H 1 (0,L) ≤ c 1 u 0 L 2 (0,L)
(see e.g., [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF]Proposition 14]).

There is a positive constant c 2 such that if u 0 ∈ L 2 (0, L), f ∈ L 1 (0, T 1 ); L 2 (0, L) , and y ∈ C [0, T 1 ); L 2 (0, L) ∩ L 2 [0, T 1 ); H 1 (0, L) is the unique solution of the system (5.5)

       u t (t, x) + u x (t, x) + u xxx (t, x) = f in (0, T 1 ) × (0, L), u(t, x = 0) = u(t, x = L) = u x (t, x = L) = 0 in (0, T 1 ), u(t = 0, •) = u 0 in (0, L), then (5.6) u x (•, 0) L 2 (0,T 1 ) + u C [0,T 1 ];L 2 (0,L) + u L 2 (0,T 1 );H 1 (0,L) ≤ c 2 u 0 L 2 (0,L) + f L 1 (0,T 1 );L 2 (0,L)
.

There exists a positive constant c 3 depending only on L such that, for all T > 0,

(5.7)

ξξ x L 1 (0,T );L 2 (0,L) ≤ c 3 ξ 2 L 2 (0,T );H 1 (0,L)
(the constant c 3 is independent of T ).

We now decompose u 0 into two parts:

(5.8) u 0 = u 0,1 + u 0,2 in (0, L), where u 0,1 = Projection M u 0 with respect to L 2 (0, L)-scalar product.

The proof is now divided into two cases, with 0 < ε = u 0 L 2 (0,L) < ε 0 (the conclusion is clear if ε = 0),

• Case 1: u 0,2 L 2 (0,L) ≥ βε 2 = β u 0 2 L 2 (0,L) , • Case 2: u 0,2 L 2 (0,L) < βε 2 = β u 0 2 L 2 (0,L)
, where (5.9)

β = 4c 2 1 c 2 c 3 .
Case 1: Assume that (5.10)

u 0,2 L 2 (0,L) ≥ βε 2 = β u 0 2 L 2 (0,L) .
Let û ∈ C [0, T 1 ); L 2 (0, L) ∩ L 2 [0, T 1 ); H 1 (0, L) be the unique solution of (5.11)

       ût (t, x) + ûx (t, x) + ûxxx (t, x) = 0 in (0, T 1 ) × (0, L), û(t, 0) = û(t, L) = ûx (t, L) = 0 in (0, T 1 ), û(0, •) = u 0 in (0, L).

Then

(5.12) (û -u) x (•, 0) L 2 (0,T 1 )

(5.6) ≤ c 2 uu x L 1 (0,T 1 );L 2 (0,L)

(5.4),(5.7)

≤ c 2 1 c 2 c 3 ε 2 .
Let ûj ∈ C [0, T 1 ); L 2 (0, L) ∩ L 2 [0, T 1 ); H 1 (0, L) with j = 1, 2 be the unique solution of (5.13)

      
ûj,t (t, x) + ûj,x (t, x) + ûj,xxx (t, x) = 0 for t ∈ (0, T ), x ∈ (0, L), ûj (t, 0) = ûj (t, L) = ûj,x (t, L) = 0 for t ∈ (0, T ), ûj (0, •) = u 0,j in (0, L).

Then û = û1 + û2 in [0, T 1 ] × [0, L].
We have

(5.14) û1,x (•, 0) = 0 in [0, T 1 ],
and, by the choice of T 1 via (5.2),

(5.15) û2,x (•, 0) L 2 (0,T 1 ) ≥ 1 2 û2 (0, •) L 2 (0,L) = 1 2 u 0,2 L 2 (0,L) .
It follows from (5.10) that

(5.16) ûx (•, 0) L 2 (0,T 1 ) ≥ 1 2 βε 2 .
From (5.12) and (5.16), we obtain

u x (•, 0) L 2 (0,T 1 ) ≥ ûx (•, 0) L 2 (0,T 1 ) -(u -û) x (•, 0) L 2 (0,T 1 ) ≥ 1 2 β -c 2 1 c 2 c 3 ε 2 (5.9) ≥ c 2 1 c 2 c 3 ε 2 .
In other words, (5.17)

u x (•, 0) L 2 (0,T 1 ) ≥ c 2 1 c 2 c 3 u 0 2 L 2 (0,L) .
Case 2: Assume that

(5.18) u 0,2 L 2 (0,L) < βε 2 = β u 0 2 L 2 (0,L) . Since u 0,1 2 
L 2 (0,L) + u 0,2 2 
L 2 (0,L) = u 0 2 L 2 (0,L) = ε 2 , by considering ε sufficiently small, one can assume that u 0,1 L 2 (0,L) ≥ ε/2. Let α m ∈ C (1 ≤ m ≤ n L ) be such that (5.19) 1 ε u 0,1 = n L m=1 α m Ψ m (0, x) . Since u 0,1 ∈ M, such a family of (α m ) n L m=1 exists. Since 1/2 ≤ 1 ε u 0,1 L 2 (0,L) ≤ 1
and Ψ m (0, •) is orthogonal in L 2 (0, L) (with respect to the complex field), one can assume in addition that

0 < γ 1 ≤ n L m=1 |α m | 2 ≤ γ 2 ,
for some constants γ 1 , γ 2 depending only on L. Moreover, since Ψ m (0, x) ∈ iR for x ∈ [0, L] (by (2.31)) if p m = 0 (see e.g. (2.31)), one can also assume that a m ∈ iR if p m = 0.

Let γ 0 > 0 and τ 0 > 0 be the constants given in Proposition 4.1 with = n L , γ 1 and γ 2 determined above, q m = p m given by (1.11) 

∈ C (1 ≤ j ≤ N ) satisfying γ 1 ≤ N j=1 |a j | 2 ≤ γ 2 , it holds (5.21) g L 2 (τ,2τ ) ≥ γ 0 for all τ ≥ τ 0 , where (5.22) g(t) = n L m 1 =1 n L m 2 =1 a m 1 a m 2 M m 1 ,m 2 e -i(pm 1 +pm 2 )t + ām 1 ām 2 Mm 1 ,m 2 e i(pm 1 +pm 2 )t + 2a m 1 ām 2 N m 1 ,m 2 e -i(pm 1 -pm 2 ) .

Define

(5.23)

A = β + 2 n L m 1 =1 n L m 2 =1 ϕ m 1 ,m 2 L 2 (0,L) + 2 n L m 1 =1 n L m 2 =1 φ m 1 ,m 2 L 2 (0,L) ,
and set

(5.24) c 4 = 1/(2A).

Let T 2 ≥ 2τ 0 be such that (5.25)

y x (•, 0) L 2 (T 2 /2,T 2 ) ≤ c 4 γ 0 y(0, •) L 2 (0,L) , for all solutions y ∈ C [0, +∞); L 2 (0, L) ∩ L 2 loc [0, +∞); H 1 (0, L) of (5.26) y t (t, x) + y x (t, x) + y xxx (t, x) = 0 for t ∈ (0, +∞), x ∈ (0, L), y(t, 0) = y(t, L) = y x (t, L) = 0 for t ∈ (0, +∞),
with y(0, •) ∈ L 2 (0, L). Note that T 2 is independent of y(0, •). The existence of T 2 can be proved by decomposing y(0, •) = y 1 (0, •) + y 2 (0, •) with y 1 (0, •) ∈ M, and noting that (5.25) holds for the solution with initial data being y 2 (0, •) since the solution is exponential decay, and the contribution for y x (•, 0) from the solution with initial data is y

1 (0, •) is 0. Let u 1 , u 2 ∈ C [0, +∞); L 2 (0, L) ∩ L 2 loc [0, +∞); H 1 (0, L) be the unique solution of (5.27)          u 1,t (t, x) + u 1,x (t, x) + u 1,xxx (t, x) = 0 for t ∈ (0, +∞), x ∈ (0, L), u 1 (t, 0) = u 1 (t, L) = u 1,x (t, L) = 0 for t ∈ (0, +∞), u 1 (0, •) = 1 ε u 0,1 in [0, L],
Let W ∈ C [0, +∞); L 2 (0, L) ∩ L 2 loc [0, +∞); H 1 (0, L) be the unique solution of (5.37)

       W t (t, x) + W x (t, x) + W xxx (t, x) = 0 for t ∈ (0, +∞), x ∈ (0, L), W (t, 0) = W (t, L) = W x (t, L) = 0 for t ∈ (0, +∞), W (0, •) = u 2 (0, •) -W (0, •). Then (5.38) u 2 = W + W in (0, +∞) × (0, L).
We have

(5.39) u 2,x (•, 0) L 2 (T 2 /2,T 2 ) (5.38) ≥ W x (•, 0) L 2 (T 2 /2,T 2 ) -W x (•, 0) L 2 (T 2 /2,T 2 ) , (5.40) W x (•, 0) L 2 (T 2 /2,T 2 ) (5.25) ≤ c 4 γ 0 W (0, •) L 2 (0,L) ,
and, since T 2 ≥ τ 0 , (5.41)

W x (•, 0) L 2 (T 2 /2,T 2 ) (5.35) ≥ γ 0 .
Since, by (5.30), (5.31), and (5.34)

8W (0, x) = n L m 1 =1 n L m 2 =1 α m 1 α m 2 ϕ m 1 ,m 2 (x) + n L m 1 =1 n L m 2 =1 ᾱm 1 ᾱm 2 φm 1 ,m 2 (x) + 2 n L m 1 =1 n L m 2 =1 α m 1 ᾱm 2 φ m 1 ,m 2 (x), it follows that (5.42) W (0, •) L 2 (0,L) ≤ 2 n L m 1 =1 n L m 2 =1 ϕ m 1 ,m 2 L 2 (0,L) + 2 n L m 1 =1 n L m 2 =1 φ m 1 ,m 2 L 2 (0,L) .
By the definition of A in (5.23), we obtain from (5.18) and (5.42) that It is clear that

f d L 1 (0,T 2 );L 2 (0,L) ≤ Cε 2 ,
where C is a positive constant depending only on T 2 and L. It follows that u d C [0,T 2 ];L 2 (0,L) + u d L 2 (0,T 2 );H 1 (0,L) ≤ Cε 2 .

This in turn implies that f d L 1 (0,T 2 );L 2 (0,L) ≤ Cε 3 . and therefore,

(5.47) u d,x (•, 0) L 2 (0,T 2 ) ≤ Cε 3 .

Combining (5.44) and (5.47), and noting that u 1,x (t, 0) = 0 yield (5.48)

u x (•, 0) L 2 (T 2 /2,T 2 ) ≥ Cε 2 .
The analysis of Step 2 is complete.

The conclusion now follows from Case 1 where one obtains (5.17) and Case 2 where one obtains (5.48) by choosing T 0 = max{T 1 , T 2 } and using (1.5). The proof is complete.

We are ready to give This yields, with u(0, •) L 2 (0,L) = ε > 0 and p being the largest integer less than 1/(2Cε 2 ), u(pT 2 , •) L 2 (0,L) ≤ 1 2 u(0, •) L 2 (0,L) .

Here we also used (1.5). Using (1.5) again, it follows that, for T ≥ C/ u(0, •) 2 L 2 (0,L) ,

u(T, •) L 2 (0,L) ≤ 1 2 u(0, •) L 2 (0,L) .
This implies, by recurrence, that u(T, •) L 2 (0,L) ≤ 2 -n u 0 L 2 (0,L) for T ≥ C since u(t, •) L 2 (0,L) is a non-increasing function with respect to t. In particular, we obtain, since u(t, •) L 2 (0,L) is a non-increasing function with respect to t,

(5.49) u(t, •) L 2 (0,L) ≤ C/t 1/2 .

The proof is complete.

Multiplying the equation of u d with u d (which is real), integrating by parts in (1, t) × (0, L), and using the form of f d just above give (6.7) Let a be a (small) positive constant defined later (the smallness of a depending only on L). Let t 0 ∈ [1, a/ε] be such that Continuing this process, we obtain (6.9) sup t∈[0,an/ε]

u d (t, •) L 2 (0,L) ≤ C n u d (0, •) L 2 (0,L) + n k=1 C k ε 2 .
We now consider u with u(0, •) = ε u 1 (0, •) + ε 2 u 2 (0, •). 

Thus

1 . Introduction 1 . 1 .

 111 Introduction and statement of the main results. We consider the nonlinear Kortewegde Vries (KdV) equation in a bounded interval (0, L) equipped with the Dirichlet boundary condition and the Neumann boundary condition on the right: (1.1)

  , x)| 2 dx + t 0 |u x (s, 0)| 2 ds = L 0 |u(0, x)| 2 dx for all t > 0.As a consequence of (1.5), one has(1.6) L 0 |u(t, x)| 2 dx ≤ L 0 |u(0, x)| 2 dxfor all t > 0.

3 )

 3 Assume that p m 1 = p m 2 = 0 and thus m 1 = m 2 = m. System (2.33)-(2.34) has a unique solution φ m,m (x) = -

(3. 1 )Lemma 3 . 1 . 3 j=1η

 1313 ϕ m,m (0) = 0 provided (1.14) holds (see Proposition 3.1) where ϕ m,m is determined in Proposition 2.1. We begin with Let L ∈ N and 1 ≤ m ≤ n L with p m = 0. Set (3.2) E m := j+1,m -η j,m η j+2,m .

  2 and 3.3 below that for L ∈ N and for 1 ≤ m ≤ n L with p m = 0, it holds 2p m = 2/(3 √ 3) and 2p m ∈ P L . As a consequence ϕ m,m is constructed via 1) and 4) in Proposition 2.1. We begin with Lemma 3.2. Let L ∈ N and 1 ≤ m ≤ n L . Then 2p m = 2/(3 √ 3).

Proposition 3 . 1 .

 31 Let L ∈ N and 1 ≤ m ≤ n L . Then (3.17) ϕ m,m (0) = 4πL = -φ m,m (0) if p m = 0, and, if p m = 0 and s m = 0 then (3.18) ϕ m,m (0) = 0.Proof. Assertion (3.17) follows immediately from 4) of Propositions 2.1 and 2.2. We next consider the case p m = 0. By Lemmas 3.2 and 3.3, we have ϕ m,m (0) = 0 only if, with α = e 2η 2,m L and λ j = λ j (2p m ),(3.19) 

Condition ( 3 e λ1 λ2 e λ2 λ3 e λ3 e

 3λ3 λ1 -α e λ2 -α e λ3 -α -λj+2 )e λj+1 + λj+2 -α( λj+1 e λj+1 -λj+2 e λj+2 ) , -λj+2 ) e -λj + αe λj .

( 5 .

 5 43) A ≥ u 2 (0, •) L 2 (0,L) + W (0, •) L 2 (0,L) (5.38) ≥ W (0, •) L 2 (0,L) .Combining (5.39), (5.40), (5.41), and (5.43) yieldsu 2,x (•, 0) L 2 (T 2 /2,T 2 ) ≥ γ 0 -c 4 γ 0 A. Since c 4 = 1/(2A) by (5.24), we obtain (5.44) u 2,x (•, 0) L 2 (T 2 /2,T 2 ) ≥ γ 0 /2. Set u d = ε u 1 + ε 2 u 2 -u in (0, +∞) × (0, L),and(5.45)f d = uu x -ε 2 u 1 u 1,x in (0, +∞) × (0, L).We have, by (5.27) and (5d,t (t, x)+ u d,x (t, x) + u d,xxx (t, x) = f d (t, x) for t ∈ (0, +∞), x ∈ (0, L), u d (t, x = 0) = u d (t, x = L) = u d (t, x = L) = 0 for t ∈ (0, +∞),u d (t = 0, •) = 0 in (0, L).

5. 2 .

 2 Proof of Theorem 1.1. By Lemma 5.1, we haveu(T 2 , •) L 2 (0,L) ≤ u(0, •) L 2 (0,L) 1 -C u(0, •) 2 L 2 (0,L) .

2 L 2

 22 (0,L)

L 0 |u 2 t 1 L 0 |u d | 2 |u x | dx ds + t 1 L 0 (ε| u 1 | 2 t 1 L 0 |g

 0210101210 d (t, x)| 2 dx ≤ L 0 |u d (1, x)| 2 dx + + ε 2 | u 2 |) x |u d | 2 dx ds + d ||u d |.

2 ≤

 2 Cε for t ≥ 0, and the effect of the regularity, one has(6.8) |u(t, x)| + |u x (t, x)| ≤ Cε for t ≥ 1, x ∈ [0, L].

  L 0 |u d (t 0 , x)| 2 dx = max t∈[1,a/ε] L 0 |u d (t, x)| 2 dx.Combining (6.7) with t = t 0 and (6.8) yieldsL 0 |u d (t 0 , x)| 2 dx ≤ L 0 |u d (1, x)| 2 dx + Ca

ε - 1

 1 |g d | 2 dx.This implies, if a is sufficiently small,L 0 |u d (t 0 , •)| 2 dx dx ≤ C L 0 |u d (1, x)| 2 dx + Cε 4by (6.6).On the other hand, one hasL 0 |u d (t, •)| 2 dx dx ≤ C L 0 |u d (0, x)| 2 dx + Cε 4 for t ∈ [0, 1].We have just proved that, for a sufficiently small, supt∈[0,a/ε] u d (t, •) L 2 (0,L) ≤ C u d (0, •) L 2 (0,L) + ε 2 .

(6. 10 ) 0 | u 1

 1001 u d (0, •) = 0. Fix γ > 0 such that (6.11) inf t∈R L (t, x)| 2 dx ≥ 4γ. c=exp ( 4 * %p i * %i * ( k-l ) / 3 ) ; a1= c * exp ( 2 * %i * %p i * r ( 1 ) / 3 ) + exp(-2 * %i * %p i * r ( 1 ) / 3 ) ; a2 = c * exp ( 2 * %i * %p i * r ( 2 ) / 3 ) + exp(-2 * %i * %p i * r ( 2 ) / 3 ) ; a3=c * exp ( 2 * %i * %p i * r ( 3 ) / 3 ) + exp(-2 * %i * %p i * r ( 3 ) / 3 ) ; s = r ( 1 ) * ( r ( 3 ) -r ( 2 ) ) * a1 + r ( 2 ) * ( r ( 1 ) -r ( 3 ) ) * a2 + r ( 3 ) * ( r ( 2 ) -r ( 1 ) ) * a3 ; i f abs ( s ) < t then t=abs ( s ) ; a=k ; b=l ; end end end d i s p ( a , b , t ) ; The outcome is t = 0.0000164, a = 736, and b = 611. This means min |s(k, l)|; 1 ≤ l < k ≤ 2000 = t = 0.0000164 and s(736, 611) = t.

  g n L ∞ (tn,2tn) < ρ/4 for n ≥ n 0 . ∞ (tn,2tn) ≤ g n -g L ∞ (tn,2tn) + g n L ∞ (tn,2tn) ≤ ρ/4 + ρ/4 = ρ/2. Fix 0 < ε < ρ/4 and fix n ≥ n 0 such that 1 ≤ L ε ≤ t n /2. Such a number n exists since t n ≥ n. It follows from the definition of τ (ε, t n ) that (4.17) τ (ε, t n ) ∈ (t n , t n + L ε ) ⊂ (t n , 3t n /2), + τ (ε, t n ) -g(t)≤ ε for all t ∈ R.

	Such an n 0 exists by (4.11), (4.12), and (4.15). We have, for n ≥ n 0 ,
	(4.16) g L and
	(4.18) g t This yields
		(4.17)
	(4.19)	g L ∞ (tn,2tn)

  ,m 2 (0) and N m 1 ,m 2 = 1 8 φ m 1 ,m 2 (0), where ϕ m 1 ,m 2 and φ m 1 ,m 2 are defined in Proposition 2.1 and Proposition 2.2, respectively; in the case the definition of ϕ m 1 ,m 2 and φ m 1 ,m 2 in Proposition 2.1 and Proposition 2.2 are not unique, we fix a choice of ϕ m 1 ,m 2 and φ m 1 ,m 2 .

	,
	(5.20) ϕ m 1 By Proposition 3.1, we have M m 1 ,m 2 = 1 8
	M m,m = 0,
	and
	(M m,m is real and N m,m = 0) if p m = 0.
	Then, by Proposition 4.1, for all a j
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and

(5.28)

u 2,t (t, x) + u 2,x (t, x) + u 2,xxx (t, x) + u 1 u 1,x = 0 for t ∈ (0, +∞), x ∈ (0, L), u 2 (t, 0) = u 2 (t, L) = u 2,x (t, L) = 0 for t ∈ (0, +∞),

α m Ψ m (t, x) and U (t, x) = V (t, x).

We have (5.29)

This implies

and

(5.31)

Then, by the construction of ϕ m 1 ,m 2 , (5.32)

and, by the construction of φ m 1 ,m 2 , (5.33)

It follows from (5.22) that W x (t, 0) = g(t) in R + and hence, by (5.21),

(5.35)

6. A lower bound for the decay rate -Proof of Proposition 1.1

be the unique solution of (6.1)

and denote (6.4)

Since φ m,m is real by 3) of Proposition 2.2, it follows that V 2 is real and hence so is u 2 .

As in the proof of Lemma 5.1, we have

Let u ∈ C [0, +∞); L 2 (0, L) ∩ L 2 loc [0, +∞); H 1 (0, L) be a (real) solution of (1.1) with u(0, •) L 2 (0,L) ≤ Γε, where Γ := sup

We write f d under the form

With n being the largest integer number such that C n+1 ≤ γε -1 (we assume now and later on that C ≥ 2), we derive from (6.9) and (6.10) that sup

, by the choice of γ, we have, for ε sufficiently small, u(an/ε, •) L 2 (0,L) ≥ γε.

We deduce that, with τ = an/ε ∼ ε

The proof is complete.

Let L ∈ N and z ∈ P L . Then, from [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], z = p m for some 1 ≤ m ≤ n L and λ j = η j,m .

One can then check that det Q = 0. On the other hand, if z = ±2/(3 √ 3) and det Q(z) = 0, it follows that there exists (a 1 , a 2 , a 3 ) ∈ C 3 \ {0} such that the function ξ defined by

a j e λ j (z)x satisfies ξ(0) = ξ(L) = ξ (L) = 0. Since ξ + ξ = izξ, by an integration by parts, one has ξ (0) = 0 if z is real. Hence, from [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], if z ∈ R \ {±2/(3 √ 3)} and det Q(z) = 0, then L ∈ N and z = p m for some 1 ≤ m ≤ n L . We finally note that, {±2/

The proof is complete.