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Abstract: A long focal length focusing device is proposed for the process of glass welding by 
femtosecond laser pulses at high repetition rate and report on the significant advantages. The 
study is performed using a 100 mm focusing length F-theta lens. The results are compared to 
those obtained with high numerical aperture microscope objective. The long focal length with 
the associated Rayleigh length method allows a robust high process speed: welding at 
1000 mm/s has been achieved, several order of magnitude larger compared to what was 
reported till now. Moreover, the heat accumulation process on a larger laser spot leads to a 
lower temperature increase after each pulse and thus a lower thermic gradient. As a result, the 
residual stress in the welding seams is reduced, preventing the formation of fractures inside 
the seams: mechanical resistance at 30 MPa has been measured  

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Glass welding by femtosecond laser pulses is a recent method which has been developed to 
overcome the weaknesses of the conventional glass bonding technics [1, 2]. Classical 
processes such as adhesive bonding or fusing require either the addition of an adhesive 
material or high temperature. The first one limits the chemical and thermal resistance of the 
bonding and the second one is unsuitable for temperature sensitive material [3]. By 
comparison, glass welding by ultrashort laser pulses presents many advantages in term of 
mechanical, thermal and chemical resistance, control and precision, biocompatibility and 
process speed [4-6]. This method is particularly suitable for micro-welding applications, such 
as micro-optics, microfluidics or MEMS packaging [7]. 

Femtosecond laser glass welding relies on the irradiation of a volume at the interface of 
two glass plates in close contact with a focused laser beam, as illustrated in Fig. 1. Due to the 
low linear absorption at 1030 nm in our case, the beam can propagate through the first glass 
plate until high optical intensity is reached in the focused spot, generating nonlinear 
absorption of the laser energy [7]. The use of a high repetition rate laser (above 300 kHz for 
borosilicate glass) introduces thermal accumulation effects leading to a localized temperature 
increase of the glass in the focusing point up to its melting point [1]. The bonding is obtained 
during the fast cooling of the melting pool. 

Probably due to the former difficulty  in reaching the non-linear absorption threshold with 
”classic” lasers (pulse duration ≥ ps), femtosecond laser glass bonding at high repetition rate 
has mainly been demonstrated using microscope objective with high numerical aperture 
(Fig. 2) [8]. The work presented in this paper demonstrates the benefits of using a scanner 
head containing a long focusing length lens with low numerical aperture (Fig. 3). At first 
glance, the welding process can be described similarly in both configurations: nonlinear 
absorption of the laser beam and thermal accumulation effect due to high repetition rate. The 
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5. Conclusion 

Femtosecond laser glass welding has been demonstrated using a long focal length lens 
integrated in a scanner head instead of the more conventional microscope objectives with 
high numerical aperture. The welding principle can be described similarly for both methods, 
relying on melting due to thermal accumulation effect. However, the temperature dynamics 
are completely different. In the case of a long focal length lens, the large focusing diameter 
generated a lower temperature increase by pulse. This smooth temperature dynamics reduces 
the residual stress induced in the welding seams and limits the risk of fracture in the glass 
material. The use of a long focal length lens also offers further advantages for an industrial 
process. The long working distance, corresponding to long Rayleigh length, reduces the 
difficulties involved in positioning the focusing spot on the interface. Thus, a large attainable 
welding scanning speed of up to 1000 mm/s has been obtained, thus being a great advantage 
in terms of industrialization. The mechanical and thermal resistance of the samples are 
besides reasonable for a welding process, with a tensile strength of 30 MPa and the ability to 
sustain thermal shocks of 300 °C.  
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