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Long focal length high repetition rate femtosecond laser glass welding

A long focal length focusing device is proposed for the process of glass welding by femtosecond laser pulses at high repetition rate and report on the significant advantages. The study is performed using a 100 mm focusing length F-theta lens. The results are compared to those obtained with high numerical aperture microscope objective. The long focal length with the associated Rayleigh length method allows a robust high process speed: welding at 1000 mm/s has been achieved, several order of magnitude larger compared to what was reported till now. Moreover, the heat accumulation process on a larger laser spot leads to a lower temperature increase after each pulse and thus a lower thermic gradient. As a result, the residual stress in the welding seams is reduced, preventing the formation of fractures inside the seams: mechanical resistance at 30 MPa has been measured

Introduction

Glass welding by femtosecond laser pulses is a recent method which has been developed to overcome the weaknesses of the conventional glass bonding technics [START_REF] Richter | Laser welding of glasses at high repetition rates -Fundamentals and prospects[END_REF][START_REF] Okamoto | Evaluation of molten zone in micro-welding of glass by picosecond pulsed laser[END_REF]. Classical processes such as adhesive bonding or fusing require either the addition of an adhesive material or high temperature. The first one limits the chemical and thermal resistance of the bonding and the second one is unsuitable for temperature sensitive material [START_REF] Hülsenberg | Microstructuring of glasses[END_REF]. By comparison, glass welding by ultrashort laser pulses presents many advantages in term of mechanical, thermal and chemical resistance, control and precision, biocompatibility and process speed [START_REF] Zimmermann | Ultrastable bonding of glass with femtosecond laser bursts[END_REF][START_REF] Carter | Picosecond laser micro-welded similar and dissimilar material[END_REF][START_REF] Cvecek | Gap bridging in joining of glass using ultra short laser pulses[END_REF]. This method is particularly suitable for micro-welding applications, such as micro-optics, microfluidics or MEMS packaging [START_REF] Tamaki | Welding of transparent materials using femtosecond laser pulses[END_REF].

Femtosecond laser glass welding relies on the irradiation of a volume at the interface of two glass plates in close contact with a focused laser beam, as illustrated in Fig. 1. Due to the low linear absorption at 1030 nm in our case, the beam can propagate through the first glass plate until high optical intensity is reached in the focused spot, generating nonlinear absorption of the laser energy [START_REF] Tamaki | Welding of transparent materials using femtosecond laser pulses[END_REF]. The use of a high repetition rate laser (above 300 kHz for borosilicate glass) introduces thermal accumulation effects leading to a localized temperature increase of the glass in the focusing point up to its melting point [START_REF] Richter | Laser welding of glasses at high repetition rates -Fundamentals and prospects[END_REF]. The bonding is obtained during the fast cooling of the melting pool.

Probably due to the former difficulty in reaching the non-linear absorption threshold with "classic" lasers (pulse duration ≥ ps), femtosecond laser glass bonding at high repetition rate has mainly been demonstrated using microscope objective with high numerical aperture (Fig. 2) [START_REF] Zhang | Femtosecond laser Bessel beam welding of transparent to nontransparent materials with large focal-position tolerant zone[END_REF]. The work presented in this paper demonstrates the benefits of using a scanner head containing a long focusing length lens with low numerical aperture (Fig. 3). At first glance, the welding process can be described similarly in both configurations: nonlinear absorption of the laser beam and thermal accumulation effect due to high repetition rate. The 
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Conclusion

Femtosecond laser glass welding has been demonstrated using a long focal length lens integrated in a scanner head instead of the more conventional microscope objectives with high numerical aperture. The welding principle can be described similarly for both methods, relying on melting due to thermal accumulation effect. However, the temperature dynamics are completely different. In the case of a long focal length lens, the large focusing diameter generated a lower temperature increase by pulse. This smooth temperature dynamics reduces the residual stress induced in the welding seams and limits the risk of fracture in the glass material. The use of a long focal length lens also offers further advantages for an industrial process. The long working distance, corresponding to long Rayleigh length, reduces the difficulties involved in positioning the focusing spot on the interface. Thus, a large attainable welding scanning speed of up to 1000 mm/s has been obtained, thus being a great advantage in terms of industrialization. The mechanical and thermal resistance of the samples are besides reasonable for a welding process, with a tensile strength of 30 MPa and the ability to sustain thermal shocks of 300 °C.
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