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BETWEENNESS OF PARTIAL ORDERS

Bruno Courcelle*

Abstract. We construct a monadic second-order sentence that characterizes the ternary relations that
are the betweenness relations of finite or infinite partial orders. We prove that no first-order sentence
can do that. We characterize the partial orders that can be reconstructed from their betweenness
relations. We propose a polynomial time algorithm that tests if a finite relation is the betweenness of
a partial order.
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1. Introduction

Betweenness is a standard notion in the study of structures such as trees, partial orders and graphs. It
is defined as the ternary relation B(x, y, z) expressing that an element y is between x and z, in a sense that
depends on the considered structure. This relation is easy to understand and axiomatize in first-order (FO) logic
for linear orders. In particular, a linear order can be uniquely described, up to reversal, from its betweenness
relation. However, the notion of partial betweenness1 raises some difficult algorithmic and logical problems ([8],
Chap. 9).

Betweenness in partial orders is axiomatized in [10] by an infinite set of FO sentences that cannot be replaced
by a finite one, as we will prove. In this article, we axiomatize betweenness in partial orders by a single
monadic second-order (MSO) sentence. We characterize the partial orders that are uniquely reconstructible, up
to reversal, from their betweenness relations. We show that an MSO formula can describe some partial order P
such that BP = BQ from the betweenness relation BQ of a partial order Q: this definition yields a partial order
that may be a proper suborder of Q. We give a polynomial time algorithm to test if a finite ternary structure
is the bewteenness relation of some partial order and to produce relevant partial orders if this is possible.

Several notions of betweenness in graphs have also been investigated and axiomatized. We only refer to
the survey [1] that contains a rich bibliography. Another reference is [2]. In previous articles we have studied
betweenness in finite or infinite trees, and also in generalized trees, defined as the partial orders such that the set
of elements larger than any one is linearly ordered [4–7]. The corresponding betweenness relations are defined
from partial orders, but not as in [10] and in the present article.
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2 B. COURCELLE

This work contributes to the understanding of the expressive power of monadic second-order logic in finite
and infinite graphs and related relational structures. We refer to [3, 8] for monadic second-order logic.

2. Definitions and known results

All partial orders, graphs and relational structures are finite or countably infinite. The cardinality of a set X
is denoted by |X| ∈ N ∪ {ω}.

Let P = (V,≤) be partial order. A chain (resp. an antichain) is a subset X of V that is linearly ordered
(resp. where any two elements are incomparable). We say that P is trivial if V is an antichain.

Definition 2.1. Betweenness. To shorten writings 6= (x1, x2, . . . , xn) means that x1, x2, . . . , xn are pairwise
distinct.
(a) Betweenness in linear orders

Let L = (V,≤) be a linear order. Its betweenness relation BL is the ternary relation on V defined by:

BL(x, y, z) :⇐⇒ x < y < z or z < y < x.

The following properties hold for B = BL and all x, y, z, u ∈ V :

B1 : B(x, y, z)⇒6= (x, y, z).
B2 : B(x, y, z)⇒ B(z, y, x).
B3 : B(x, y, z)⇒ ¬B(x, z, y).
B4 : B(x, y, z) ∧B(y, z, u)⇒ B(x, y, u) ∧B(x, z, u).
B5 : B(x, y, z) ∧B(x, u, y)⇒ B(x, u, z) ∧B(u, y, z).
B6 : 6= (x, y, z)⇒ B(x, y, z) ∨B(x, z, y) ∨B(y, x, z).

We get an axiomatization by finitely many universal first-order sentences: a ternary structure S = (V,B)
satisfies these properties, if and only if B = BL for some linear order L = (V,≤). We will say that the class
of betweenness relations of linear orders is first-order (FO) definable or axiomatizable. If |V | ≥ 3, the order
L = (V,≤) and its reversal Lrev := (V,≥) are the only2 partial orders whose betweenness relation is BL, see
[4, 5, 8]. We will say that ≤ is uniquely defined, up to reversal (written u.t.r.), or reconstructible from its
betweenness relation.
(b) Betweenness in partial orders

The betweenness relation BP of a partial order P = (V,≤) – we will also say a poset3 – is the ternary relation
on V defined, as in (a), by:

BP (x, y, z) :⇐⇒ x < y < z or z < y < x.

We denote by Bet(P ) the ternary structure (V,BP ). For all x, y, z, u, v ∈ V , the relation B = BP satisfies
Properties B1 to B5 together with:

X : B(x, y, z) ∧B(u, y, v)⇒ B(x, y, u) ∨B(x, y, v),
F : B(x, y, z) ∧B(y, u, v)⇒ B(x, y, u) ∨B(z, y, u),

and an infinite set O of properties expressed by universal first-order sentences. The notation is borrowed to the
article by Lihova [10] who proved, conversely, that if a ternary structure S = (V,B) satisfies these properties,
then B = BP for a poset P = (V,≤) and, of course for its reversal P rev := (V,≥). We will prove that no finite
set of first-order sentences can characterize betweenness in posets. Our proof will use the following examples.

(c) A B-cycle is a ternary structure (V,B) such that V = {a1, a2, . . . , an, b1, b2, . . . , bn}, n ≥ 2,
and B consists of the triples (a1, b1, a2), (a2, b2, a3), . . . , (an−1, bn−1, an), (an, bn, a1) and the inverse ones,
(a2, b1, a1), (a3, b2, a2), . . . so that B2 is satisfied. This structure satisfies Properties B1-B5. If n is even, then
B = BP where P = (V,≤) is the poset such that:

2If |V | = 2, the trivial order has the same empty betweenness relation.
3This is an inelegant but short terminology for partial order, partial ordering or partially ordered set.
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a1 < b1 < a2 > b2 > a3 < b3 < a4 > ...an−1 < bn−1 < an > bn > a1,

and no other inequality holds except by transitivity (e.g. a1 < a2). If n is odd, no such partial order does exist
(cf. Lem. 4.2). Consider for example the case n = 3. A partial order P such that a1 < b1 and BP = B must
verify b1 < a2 > b2 > a3 < b3 < a1 but then, we would have (b3, a1, b1) in B, which is not assumed. The set O
excludes these odd B-cycles.

(d) If a partial order is trivial or if it has no chain of cardinality more than 2, then its betweenness relation
is empty. It tells nothing about it.

We will prove that the class of betweenness relations of partial orders is monadic second-order (MSO) definable
without using the set O. We will also identify the partial orders that can be reconstructed u.t.r. from their
betweenness relations, independently of any logical description. We refer to [3, 8] for first-order and monadic
second-order logic.

Definition 2.2. Comparability graphs and Gaifman graphs. (a) A ternary structure is a pair S = (V,B) such
that B ⊆ V 3. Its Gaifman graph4 is Gf (S) := (V,E) where there is an undirected edge u− v in E if and only
if u 6= v and u and v belong to a same triple in B.

We say that S is connected if Gf (S) is. If Gf (S) is not connected, then S is the union of the pairwise disjoint
induced structures S[X] := (X,B ∩X3), called the connected components of S, where the sets X are the vertex
sets of the connected components of Gf (S).

(b) If P = (V,≤) is a partial order, its comparability graph Comp(P ) has vertex set V and an edge u− v if
and only if u and v are different and comparable, i.e., u < v or v < u. It is the Gaifman graph of the binary
structure P .

(c) We say that P is connected if Comp(P ) is. If Comp(P ) is not connected, then P is the union of the
pairwise disjoint posets P [X] := (X,≤ ∩X2) where the sets X are the vertex sets of the connected components
of Comp(P ).

We have Gf (Bet(P )) ⊆ Comp(P ). The inclusion may be proper (see Ex. 2.3). If Gf (Bet(P )) is connected,
then so is Comp(P ), but not necessarily conversely, because Gf (Bet(P )) has no edge if P has no chain of
cardinality 3.

Example 2.3. Here is an example where Gf (Bet(P )) ⊂ Comp(P ). Let P = (V,≤) where V = {a, b, c, d, e, f}
and ≤ is generated by a < b < c < d, e < c, e < f, b < f, reflexivity and transitivity. The edge e− f of Comp(P )
is not in Gf (Bet(P )) because e and f do not belong to any chain of cardinality 3. If we remove the clause e < f ,
the resulting partial order P ′ has the same betweenness relation as P and Gf (Bet(P ′)) = Comp(P ′). We will
generalize this observation in Proposition 3.3.

3. Betweenness in partial orders

Definition 3.1. Extremal elements and B-minimality. (a) Let P = (V,≤) be a partial order. We define Min(P )
and Max(P ) as the sets of, respectively, the minimal and the maximal elements of P . They are its extremal
elements and Ext(P ) := Min(P ) ∪Max(P ). An element is isolated if it is an isolated vertex of Comp(P ),
equivalently, if it belongs to Min(P ) ∩Max(P ).

(b) In a ternary structure S = (V,B) that satisfies Properties B1,B2 and B3 (in order to avoid uninteresting
cases), we say that an element x is extremal if B(y, x, z) does not hold for any y, z. The extremal elements of a
structure Bet(P ) are the extremal elements of P . An element is isolated in S if it is in its Gaifman graph. An
isolated element of P is isolated in Bet(P ). The converse is true if P is B-minimal.

(c) A poset P is B-minimal if Gf (Bet(P )) = Comp(P ), equivalently, if every two comparable elements belong
to a chain of cardinality at least 3. A trivial poset is B-minimal. So is one without maximal or without minimal
elements.

4This graph is defined similarily for arbitrary relational structures, not only for ternary ones.
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(d) A poset P is strongly B-minimal if, for any x ∈Min(P ) and y ∈Max(P ), we have x < z < y for some
z. This property implies B-minimality. If Min(P ) or Max(P ) is empty, then P is strongly B-minimal.

Example 3.2. Let P = (V,≤) where V = {a, b, c, d, e, f} and ≤ is generated by a < b < c, d < e < f, d < c,
reflexivity and transitivity. Then Comp(P ) is connected but Gf (Bet(P )) is not. It is not B-minimal. The only
orderings on V that yield Comp(P ) as comparability graph are P and P rev. The graph Gf (Bet(P )) has two
connected components with vertex sets {a, b, c} and {d, e, f}. From it, one obtains four orderings on V that
yield the betweenness structure Bet(P ). We will develop this observation.

Proposition 3.3. Let P = (V,≤) be a poset and ≤′ be the partial order defined from <′ such that x <′ y if and

only if x < y and, if x ∈ Min(P ) and y ∈ Max(P ), then x < z < y for some z. Then P̃ := (V,≤′) ⊆ P is a

B-minimal poset and Bet(P̃ ) = Bet(P ). It is the unique minimal poset Q = (V,≤Q) such that Bet(Q) = Bet(P )
and Q ⊆ P .

Proof. If x <′ y <′ z then x < y < z, hence x < z, and if x ∈ Min(P ) and z ∈ Max(P ), we have y between

them, so that x <′ z. Hence, P̃ := (V,≤′) is actually a poset and P̃ ⊆ P .

We have Bet(P̃ ) ⊆ Bet(P ). However, if x < y < z, we have x <′ y <′ z by the definitions. Hence, P̃ and P

have the same chains of cardinality at least 3. In particular, Bet(P̃ ) = Bet(P ).

If P̃ is not B-minimal, there are x, y such that x <′ y and x and y do not belong to any chain of cardinality
3 in P̃ , whence, in P . As x < y this implies that x ∈ Min(P ) and y ∈ Max(P ), but we have x < z < y for
some z, hence we have x <′ z <′ y, which contradicts the assumption that x and y do not belong to a chain of
cardinality 3 in P̃ . Hence, P̃ is B-minimal.

Assume that Q = (V,≤Q) ⊆ P and Bet(Q) = Bet(P ). If x <′ y, then, we have x <Q y: to prove this,
we observe that the definitions yield x < y < z or z < x < y or x < z < y of some z. In the first case,
(x, y, z) ∈ BP = BQ, hence x <Q y <Q z because Q ⊆ P , and so x <Q y. The proofs are similar for the two

other cases. Hence P̃ ⊆ Q and P̃ is the unique minimal poset Q such that Bet(Q) = Bet(P ) and Q ⊆ P .

An element that is not isolated in P may be isolated in P̃ .
A poset P is B-reconstructible (that is reconstructible from its betweenness relation) if P and P rev are the

only ones whose betweenness structure is Bet(P ). A poset of cardinality 2 is not B-reconstructible. If P̃ ⊂ P,
then P is not reconstructible, because there are x, y in V such that x < y, x ∈ Min(P ) and y ∈ Max(P ) and

x < z < y for no z. Then Bet(P̃ ) = Bet(P ) = Bet(P rev) but P̃ 6= P rev and P̃ 6= P .
Two partial orders ≤ and ≤′ defined on a set V agree on X ⊆ V if they induce on X the same partial order.

Lemma 3.4. (1) Let L = (V,≤) be a linear order and a < b. Then ≤ is the unique order5 whose betweenness
relation is BL and such that a < b.

(2) Let P = (V,≤) be a partial order. Let C and D be two maximal chains of cardinality at least 3 such that
C ∩D 6= ∅. Let Q = (V,≤′) be a partial order whose betweenness relation is BP and such that ≤′ and ≤ agree
on C. Then, ≤′ and ≤ also agree on D.

Proof. (1) If |V | ≤ 2, then BL is empty and the result holds. Otherwise, let ≤′ be a partial order on V whose
betweenness relation B′ is equal to BL.The relation B′ satisfies properties B1-B6, hence ≤′ is a linear order.
Proposition 5.3 of [5] proves that it is the same as ≤.

(2) Let P,C,D and Q be as in the statement. The order ≤′ induces on D a linear order because its betweenness
relation equal to BP satisfies properties B1-B6 on D and |D| ≥ 3. If |C ∩D| ≥ 2, the claim follows from (1)
because we have a < b and a <′ b for some a, b ∈ C ∩D.

Otherwise, let {a} = C ∩D. By the maximality conditions on C and D, we can have three cases.
(i) a = Max(C) = Max(D),
(ii) a = Min(C) = Min(D),
(iii) a is extremal neither in C nor in D.

5This order is FO definable in the structure (V,BL, a, b).
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In Case (i) we have b ∈ C and c ∈ D such that b < a, b <′ a and c < a. We cannot have a <′ c because we
would have b <′ a <′ c, hence (b, a, c) ∈ BQ = BP , b < a < c, and a /∈ Max(C). Hence, c <′ a and (1) shows
that ≤′ and ≤ agree on D. Case (ii) is proved similarly.

For Case (iii), we have b ∈ C and c ∈ D such that b < a, b <′ a and a < c. Hence, we have (b, a, c) ∈ BP = BQ

and so b <′ a <′ c or c <′ a <′ b. The first holds since b <′ a, hence by (1), ≤′ and ≤ agree on D.

Theorem 3.5. (1) Let P = (V,≤) and Q = (V,≤′) be B-minimal and connected posets such that BP = BQ.
Then Q = P or Q = P rev.

(2) A poset of cardinality at least 3 is B-reconstructible if and only if:
(2.1) either it is connected and strongly B-minimal,
(2.2) or it has two connected components, one that is an isolated element, and the other that has no extremal

elements.

Proof. (1) Let P and Q be as in the statement. All maximal chains have cardinality at least 3. Let C be a
maximal chain in P . By Lemma 3.4(1), ≤′ induces on C the linear order ≤ or its reversal. We assume the first.
Otherwise, we continue the proof with P rev instead of P .

Consider a sequence C1, . . . , Cn of maximal chains in P such that C = C1 and Ci ∩Ci+1 6= ∅ for each i < n.
Then Lemma 3.4(2) shows that ≤′ and ≤ agree on Ci for each i = 2, . . . , n.

Let a < b. We will prove that a <′ b. The elements a and b belong to a maximal chain in P . Since Comp(P )
is connected, there is a sequence C1, . . . , Cn of maximal chains as above such that C = C1 and a, b ∈ Cn. Then,
the previous observation shows that ≤′ and ≤ agree on Cn. Hence, a <′ b and so P = (V,≤) ⊆ Q = (V,≤′).
By exchanging P and Q, we get Q ⊆ P, hence an equality.

(2) We first consider connected posets and prove (2.1). Let P = (V,≤) be strongly B-minimal and Q = (V,≤′)
have the same betweenness relation as P . As in the proof of (1), we can fix a maximal chain C on which ≤ and
≤′ agree. All maximal chains in P have cardinality at least 3 as P is B-minimal.

Claim 1 : ≤ and ≤′ agree on every maximal chain in P .

Proof. Let D be a maximal chain in P . Since Comp(P ) is connected, there is a sequence C1, C2, . . . , Cn of
maximal chains in P such that Ci ∩Ci+1 6= ∅ for each i, C = C1 and D = Cn. By Lemma 7(2), ≤ and ≤′ agree
on C1, C2, . . . , Cn, hence on D.

Claim 2 : ≤ and ≤′ agree on V .

Proof. If a < b, then a and b belong to a maximal chain in P , hence, by Claim 1, we have a <′ b.
Conversely, let a <′ b. If a and b belong to a maximal chain in P , then a < b or b < a. As ≤ and ≤′ agree on

every maximal chain in P , we have a < b.
Otherwise, assume that a /∈Min(P ). Hence c < a for some c, and c and a belong to a maximal chain in P .

By Claim 1, we have c <′ a. Hence c <′ a <′ b, and (c, a, b) ∈ BQ = BP . Hence, a and b belong to a maximal
chain in P , contradicting the initial assumption. Hence, we have a ∈Min(P ). If b ∈Max(P ), then, since P is
strongly B-minimal, we have a < c < b for some c. Hence a and b belong to a maximal chain in P , contradicting
the initial assumption. So, we have b < c for some c, and then, b and c belong to a maximal chain in P and
b <′ c. Hence, a <′ b <′ c, (a, b, c) ∈ BQ = BP , and a and b belong to a maximal chain in P , contradicting the
assumption. We have proved that a <′ b. �

Claim 2 shows that P = Q.
For the converse, assume that P = (V,≤) is not strongly minimal. There are a ∈Min(P ), b ∈Max(P ) with-

out any c such that a < c < b. We can add or remove from ≤ the pair (a, b), without changing the betweenness
relation, and we still have a poset. This shows that P is not B-reconstructible.

To prove (2.2), we assume that P = (V,≤) is not connected. It is not B-reconstructible in the following cases.
(i) It has a connected component X that is not B-reconstructible. This means that there is a partial order

≤′ on X such that B(X,≤′) = BP ∩X3 and ≤′ does not agree on X with ≤ or its reversal. If we replace in P
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the order ≤ on X by ≤′, we obtain an order on V whose betweenness relation is BP but that differs from P
and P rev.

(ii) Two connected components are isolated elements a and b. Letting a < b, b < a or a and b incomparable
does not change BP . Hence, at least 3 orders on V have a betweenness relation equal to BP .

(iii) Two connected components that are not isolated elements are B-reconstruc-tible. Then, at least 4 orders
on V have a betweenness relation equal to BP . (Note that if a poset is not trivial, then it differs from its
reversal).

It remains to consider the case where P = (V,≤) has two connected components, one that is an isolated
element a and the other one, X, that is B-reconstructible.

If X has a maximal (resp. minimal) element b, then adding to ≤ the pair (a, b) (resp. (b, a)) does not change
the betweenness relation and we still have a poset. Hence, P is not B-reconstructible.

If conversely, P has no extremal element, adding (a, b) or (b, a) to ≤ does change the betweenness relation:
if we add (a, b), we have b < c for some c, and BP becomes augmented with all triples (a, b, d) for all d > b; the
proof is similar if we add (b, a). Hence, apart from reversing the order of P , any change to it will change the
betweenness relation. Hence P is B-reconstructible.

This completes the proof of (2.2) and that of the theorem.

3.1. A monadic second-order axiomatization of the class BPO

We let BPO be the class of betweenness structures Bet(P ) for finite or countably infinite posets P .

Theorem 3.6. The class BPO is MSO axiomatizable among finite or countably infinite ternary structures.
There is a pair of monadic second-order formulas that defines, for each S ∈ BPO, some partial order P such
that S = Bet(P ).

Definition 3.7. Cut of a partial order.
A cut of a poset P = (V,≤) is a partition (L,U) of V such that:

(i) L is downwards closed and U is upwards closed,
(ii) Every maximal chain meets L and U .

Note that (U,L) is a cut of the reversal (V,≥) of P . These cuts are Dedekind cuts in linear orders.

Lemma 3.8. [9] : Every poset P without isolated element has a cut.

Proof. We let A be a maximal antichain of P . There exists one that is constructible from an enumeration6

v1, v2, ... of V. We define

U := {x ∈ V −Min(P ) | x ≥ y for some y ∈ A} and L := V − U .

We prove that (L,U) is a cut. From the definition, U is upwards closed, and so, L is downwards closed. Let
C be a maximal chain: it contains a unique element a ∈ A. If a = Min(C), then a ∈Min(P ) ⊆ L. As a is not
isolated in P , a 6= Max(C), hence, we have a < x for some x ∈ C, and so x ∈ U . Otherwise, we have y < a for
some y ∈ C, hence a /∈Min(P ) and so a ∈ U and y /∈ U . Hence, (L,U) is a cut.

Proof of Theorem 3.6. It follows from Proposition 6 that BPO is the class of structures Bet(P ) for B-minimal
posets P .

First part : We first characterize the structures Bet(P ) for B-minimal posets P without isolated elements.
Let P = (V,≤) be such a poset and (L,U) be a cut of it. We claim that ≤ can be defined from L,U and the

betweenness relation BP by FO formulas7.

6We consider finite or countably infinite sets that are effectively given, see [8], hence, that have some explicit or implicit
enumeration. The Choice Axiom can also be used to assert the existence of an enumeration.

7We allow free set variables, here L, in FO formulas. We make explicit the dependence on the relation B.
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Claim 1 : For x, y ∈ V, we have x < y if and only if one of following conditions holds, for B := BP :
(i) x ∈ L, y ∈ U , and B(x, y, z) ∨B(x, z, y) ∨B(z, x, y) holds for some z,
(ii) x, y ∈ L and B(x, y, w) holds for some w ∈ U ,
(iii) x, y ∈ U and B(w, x, y) holds for some w ∈ L.

Proof. Let x, y be such that x < y. As P is B-minimal, x and y belong to a maximal chain C of cardinality at
least 3. This chain contains some z such that x < y < z, x < z < y or z < x < y and meets L and U .

If x ∈ L and y ∈ U , then each of these three cases can hold and yields respectively B(x, y, z), B(x, z, y) or
B(z, x, y). If x, y ∈ L, then, since C meets U , we have some w ∈ U such that x < y < w and B(x, y, w) holds.
If x, y ∈ U then, since C meets L, we have some w ∈ L such that w < x < y and B(w, x, y) holds. Hence, we
have one of the exclusive cases (i), (ii) or (iii).

Let ϕ(B,L, x, y) be the FO formula expressing the disjunction of Conditions (i), (ii) and (iii) in a ternary
structure S = (V,B), where L ⊆ V , and U is defined as V − L. (If B1 holds, these conditions imply x 6= y).
Then, there exists an FO formula ψ(B,L) expressing the following:

(a) B satisfies properties B1, B2 and B3, and every element of V belongs to some triple in B.
(b) L and its complement U := V − L are not empty,
(c) the binary relation {(x, y) ∈ V × V | S |= ϕ(B,L, x, y)} is a strict partial order < that is B-minimal8,
(d) B is the betweenness relation of < .
Finally, we let θ(B) be the MSO sentence ∃L.ψ(B,L).

Claim 2 : For a ternary structure S = (V,B), we have S |= θ(B) if and only if S = Bet(P ) for a B-minimal
poset P = (V,≤) and S has no isolated elements.

Proof. “If” Let P = (V,≤) be B-minimal, B = BP be its betweenness relation, and assume that Bet(P ) has
no isolated elements. The poset P has none either and has a cut (L,U). Properties (a) and (b) hold by the
definitions. By Claim 1, ϕ(B,L, x, y) defines the strict partial order < and so, (c) and (d) hold. So we have
S |= θ(B).

Conversely, assume that B and L satisfy ψ(B,L). Properties (c) and (d) hold hence B = BP for the strict
and B-minimal partial order P defined by ϕ(B,L, x, y). By Property (a), S has no isolated elements.

To define a B-minimal partial order P such that Bet(P ) = S where S satisfies θ(B), we use the following
MSO formulas:

ψ(B,L) intended to select in S = (V,B) an appropriate set L.
ϕ(B,L, x, y) that defines the partial order in terms of L assumed to satisfy ψ(B,L).

If P is a partial order such that Bet(P ) has no isolated elements, then, Bet(P ) |= θ(B) because, by Propo-

sition 3.3, Bet(P ) = Bet(P̃ ) where P̃ is B-minimal. The formula ϕ(B,L, x, y) defines, in the structure Bet(P ),
partial orders Q such that Bet(Q) = Bet(P ) (but Q may differ from P ). Note that P need not be connected.

Second part : Let be given a structure S = (V,B). It is the union of its connected components S[X] where the
sets X are the vertex sets of the connected components of Gf (S). There is nothing to verify for the components
which are isolated elements. The others can identified by an MSO formula γ(X), cf. [8]. Then, S ∈ BPO if and
only if each of these components satisfies θ(B). For this purpose, we translate θ(B) into a formula θ′(B,X) such
that, for every subset X of V ,

S |= θ′(B,X) if and only if S[X] |= θ(B ∩X3).

This is a classical construction called relativization of quantifications to a set X, see e.g. [8]. Hence, a structure
S belongs to BPO if and only if:

S |= ∀X.(γ(X) =⇒ θ′(B,X)).

8We mean that the associated partial order ≤ is B-minimal.
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Similarily, ψ(B,L) can be transformed into ψ′ such that, if X,L ⊆ V , then:

S |= ψ′(B,L ∩X,X) if and only if S[X] |= ψ(B ∩X3, L ∩X).

It follows that, from a set L ⊆ V such that:

S |= ∀X.(γ(X) =⇒ ψ′(B,L ∩X,X)),

one can define partial orders for the components S[X].
We transform ϕ(B,L, x, y) into ϕ′(B,L,X, x, y) that defines a partial order on X, by using L ∩X. Then,

from L as above, one obtains a strict partial order on V defined by:

x < y :⇐⇒ S |= ∃X.(x, y ∈ X ∧ γ(X) ∧ ϕ′(B,L,X, x, y))

whose betweenness relation is B. This completes the proof of the theorem. �

Remark 3.9. A B-minimal poset P = (V,≤) has several cuts (L,U). However, from the structure Bet(P ),
they yield only two orders whose betweenness relation is Bet(P ), provided P is connected. If Gf (Bet(P )) has n
connected components that are not singleton, the formulas ψ′ and ϕ′ define 2n partial orders whose betweenness
structure is Bet(P ).

Remark 3.10. A partial order is reconstructible, u.t.r., from its comparability graph if and only if this graph
is prime. This notion is relative to the theory of modular decomposition. Furthermore, there is an MSO formula
that defines the two transitive orientations of a prime comparability graph G, equivalently, the two partial orders
P such that G = Comp(P ). More generally, the class of comparability graphs is MSO definable, and primality
is MSO definable. These results are proved in Section 5 of [3]. They concern finite and countably infinite partial
orders.

4. Finite partial orders

We give an algorithm that decides in polynomial time whether a finite ternary structure S = (V,B) is Bet(P )
for some poset P , and produces one if possible.

Lemma 4.1. Let P = (V,≤) is a finite and B-minimal poset. For x, y ∈ V , we have x < y if and only if:

either BP (x, y, z) holds for some z ∈Max(P ),
or y ∈Max(P ) and BP (w, x, y) ∨BP (x,w, y) holds for some w ∈ V .

Proof. The ”if” direction is clear, since Max(P ) is not empty.
For the converse, assume that x < y. The elements x and y belong to a chain of cardinality at least 3 with

maximal element z ∈Max(P ). If y 6= z we have BP (x, y, z), otherwise BP (w, x, y)∨BP (x,w, y) for some w ∈ V.
(The term BP (x,w, y) is for the case where x is minimal).

We recall that in a ternary structure S = (V,B) that satisfies Properties B1, B2 and B3, an element x ∈ V
is extremal if B(y, x, z) does not hold for any y, z. We let EXT (S) be the graph whose vertex set is the set of
extremal elements denoted by Ext(S) and u− v is an edge if and only if B(u,w, v) holds for some w (necessarly
not in Ext(S)). It follows that EXT (S) is a subgraph of Gf (S) and of Comp(P ) if S = Bet(P ).

Lemma 4.2. Let P = (V,≤) be a finite and B-minimal partial order without isolated elements. The graph
EXT (Bet(P )) is bipartite with bipartition (Max(P ),Min(P )). It is connected if P is.

Proof. Each element of Max(P ) ∪Min(P ) is extremal in Bet(P ). If w /∈ Max(P ) ∪Min(P ) then u < w < v
for some u, v and so BP (u,w, v) holds and w is not extremal in Bet(P ).

The set Max(P ) ∩Min(P ) is empty. If u − v is an edge of EXT (Bet(P )), then BP (u,w, v) holds, hence
u < w < v or v < w < u and u and v cannot be both in Max(P ) or in Min(P ). Hence, EXT (Bet(P )) is
bipartite with bipartition (Max(P ),Min(P )).
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Assume now that P is connected. Let x, y ∈ Ext(P ) and x− z1− ...− zn− y be a shortest path in Comp(P ).
We claim that there exists also one x − u1 − ... − un − y such that u1, . . . , un are extremal. Without loss of
generality, we assume that x ∈Min(P ). If z1 < z2, then x− z2 is an edge in Comp(P ) and the considered path
is not shortest between x and y. Hence, z1 > z2. Let u1 ∈ Max(P ) such that z1 ≤ u1. Hence u1 > z2 and we
have a path x− u1 − z2 − ...− y in Comp(P ). Similarly, we cannot have z3 < z2. We let u2 ∈Min(P ) be such
that u2 < z2. We have a path x− u1 − u2 − z3...− y in Comp(P ). By continuing in this way, we obtain a path
x− u1 − ...− un − y such that u1, . . . , un are extremal. Hence EXT (Bet(P )) is connected. Note that this path
we have an alternation of minimal and maximal elements.

This proof shows in particular that the odd B-cycles are not Bet(P ) for any partial order P , because their
extremal elements are a1, . . . , an (cf. Def. 2.1(c)) forming an odd cycle and EXT (Bet(P )) would not be bipartite.

Theorem 4.3. There exists a polynomial time algorithm that decides whether a finite ternary structure S =
(V,B) is the betweenness structure of a partial order P , and produces one if possible.

Proof. Let be given a finite ternary structure S = (V,B), n := |V | and m := |B| = O(n3).
Step 1 : In order to eliminate trivial cases, the algorithm first checks Properties B1,B2 and B3, and if they
hold, it constructs the graph Gf (S) and determines its connected components. This step takes time O(n+m).

Each connected component is then considered and still denoted by S.
Step 2 : The algorithm constructs the graph EXT (S), checks if it is bipartite and if it is, it determines its
bipartition (V1, V2) that is unique because EXT (S) is connected. If EXT (S) is not bipartite, the algorithm
stops and returns a negative answer. This step takes time O(m).
Step 3 : By taking V1 as intended set of maximal elements, the algorithm defines a binary relation < as follows:

x < y if and only if B(x, y, z) holds for some z ∈ V1,
or y ∈ V1 and B(w, x, y) ∨B(x,w, y) holds for some w ∈ V − V1.

This step take time O(m). If S = Bet(P ) for some poset P , then, by Lemma 4.1 , < is a B-minimal strict
partial order such that Bet(Q) = S, where Q := (V,≤)
Step 4 : The algorithm verifies that B = Bet(Q). This step takes time O(n3). If B 6= Bet(Q), it can report a
failure.

This algorithm can perhaps be improved by means of clever data-structures.

5. No finite first-order axiomatization of BPO

Proposition 5.1. The class BPO is not FO axiomatizable, i.e., is not the class of finite or countably infinite
models of a single first-order sentence.

We recall that it is by the conjunction of an infinite set of universal first-order sentences [10].

Proof. The proof is based on a reduction to a first-order definability result for languages.
A word w of length p > 0 over the alphabet {a, b} can be represented by the relational structure S(w) :=

([p],≤, A) whose domain [p] := {1, 2, . . . , p} is the set of positions of letters, ≤ is the standard order and A ⊆ [p]
is the set of positions of letter a. Hence B := [p]−A is the set of positions of b. We let suc(x, y) express that y
is the position following x; this relation is FO definable from ≤.

The language K := {(ab)m | m ≥ 2} is FO definable, which means that there exists an FO sentence κ such
that, for every nonempty word w over {a, b}, we have w ∈ K if and only if S(w) |= κ.

We define an FO formula β(x, y, z) relative to S(w) that expresses the following property of a triple (x, y, z)
of positions of a word w in K:

x ∈ A ∧ suc(x, y) ∧ suc(y, z) or
z ∈ A ∧ suc(z, y) ∧ suc(y, x) or
x ∈ A ∧ suc(z, y), x is the first position of w and y is the last one or
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z ∈ A ∧ suc(x, y), z is the first position of w and y is the last one.

These triples form a set Bw ⊆ [2m]3 (that satisfies Properties B1,B2 and B3). The structure T (w) :=
([2m], Bw) is a B-cycle as in Definition 2.1(c). Its vertices a1, . . . , am are the odd positions, those of letter
a, its vertices b1, . . . , bm are the even positions, those of letter b. It follows from Definition 2.1(c) and Lemma
4.2 that T (w) ∈ BPO if and only if m is even.

Assume now that BPO is axiomatized by a first-order sentence θ, possibly not universal. This sentence can
be translated into an FO sentence θ′ such that, for every word w over {a, b}, we have:

S(w) |= κ ∧ θ′
if and only if w ∈ K and T (w) |= θ
if and only if w ∈ K and T (w) ∈ BPO

if and only if w = (ab)2n for some n.

The language L := {(ab)2n | n ≥ 1} would be first-order definable, which is not the case by a classical result
due to McNaughton, Papert and Schützenberger, see [11].

We get a contradiction hence, the class BPO is not axiomatizable by a single first-order sentence.

Acknowledgements. I thank Maurice Pouzet for his comments from which I obtained the easy proof of Proposition 5.1.
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