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ABSTRACT
Several phosphorus-bearing molecules, such as the phosphine of interest here, have been detected in astrophysical media.
With the aim of satisfying the precision required by the astrophysical community, we report the rate coefficients of PH3 in
collision with helium from low to moderate temperature. To this end, we constructed the first three-dimensional potential energy
surface (3D-PES) of the PH3–He van der Waals complex, which governs the nuclear motions. The 3D-PES was worked out
by means of the standard coupled cluster with single, double and non-iterative triple excitation approach, in conjunction with
the aug-cc-pVQZ basis set and complemented by mid bond functions. This 3D-PES presents a well of 34.92 cm−1 at {R, θ , �}
= {5.76a0, 90◦, 60◦}. Afterwards, we incorporated this 3D-PES into time-independent close-coupling quantum dynamical
computations to derive the inelastic cross-sections of rotational excitation of (ortho-) para-PH3 after collision with He up to
(1000) 500 cm−1. Subsequently, we evaluated the rate coefficients for temperatures up to (100 K) 50 K populating the (41) 42
low-lying rotational levels of (ortho-) para-PH3. These data were derived by averaging the cross-sections thermally over the
Maxwell–Boltzmann velocity distribution. No general propensity rules are found. We also performed a comparison with the
rates for NH3–He. Differences are observed that invalidate the use of NH3 rates for deducing accurate abundances of phosphine
in cold astrophysical media. Our results should be of great help in determining accurate PH3 abundances and, more generally,
constraining the interstellar PH3 chemistry better.

Key words: ISM : abundances – ISM: molecules.

1 IN T RO D U C T I O N

The second-row elements of the periodic table are present in the
interstellar medium (ISM) with relatively low cosmic standards.
Among them, phosphorous (known also as a biogenic element) is
one of the less abundant. In fact, only one out of the 23 known
nuclides of phosphorous is stable (31P), with a binding energy
of ∼8.4 MeV (Maciá 2005). However, its formation throughout
thermonuclear fusion requires temperatures above 109 K. Indeed, the
barrier of electrostatic repulsion among the colliding nuclei related
to a nuclear charge of Z = 15 (i.e. 31P formation) imposes a great
amount of energy. These items let us expect that thermonuclear
reactions leading to the formation of phosphorous can take place
only in the cores of massive stars of size 15−100 M� (Arnett &
Arnett 1996; Maciá 2005). For instance, the early origin of the 31P
isotope occurred towards the inner zone of stars sufficiently massive
to undergo successive carbon- and neon-burning at approximately
T = 3 × 109 K (Woosley 2002). Once produced in the cores of
massive stars, this biogenic element is likely carried towards the ISM
by supernova explosions (by the birth of planetary nebulae) in the
case of very high-mass stars (of relatively high-mass stars) and stellar
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winds. The stable phosphorus thus produced and liberated in the ISM
would be ready to react with available atoms, leading to the formation
of interstellar P-bearing compounds. Among them, phosphine, PH3,
of interest in the present work, is expected to be the main reservoir
of phosphorous in space. Indeed, PH3 has been observed in various
astronomical environments over these last four decades (Moreno,
Marten & Lellouch 2009; Weisstein & Serabyn 1996; Larson 1977;
Bregman & Rank 1975). For instance, phosphine was definitely
detected in several extraterrestrial environments. In the ISM, it was
observed in the circumstellar envelope of the carbon star IRC+10216
(Agúndez et al. 2008; Tenenbaum & Ziurys 2008a). It is supposed
to be formed on interstellar grains via successive hydrogenation of
atomic phosphorus (Jiménez-Serra et al. 2018) and then desorbs to
the gas phase. Phosphine was also identified in the atmospheres of
Jupiter and Saturn (Ridgway, Wallace & Smith 1976; Larson et al.
1980). Thanks to the Herschel Spectral and Photometric Imaging
Receiver (SPIRE), high-resolution far-IR observations of Saturn’s
atmosphere allowed us to determine the vertical distribution of PH3.
Moreover, this molecule is most likely present in the atmospheres of
brown dwarfs or giant extrasolar planets (Sharp & Burrows 2007).
Furthermore, it is connected to the origin of the phosphorus signal
in comet 67P/Churyumov–Gerasimenko (Altwegg 2016).

In addition to PH3, five other P-containing molecules, namely PN,
PO, CP, HCP, CCP and NCCP, have been successfully detected in
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interstellar and circumstellar regions (Turner & Bally 1987; Ziurys
1987; Guélin et al. 1990; Turner et al. 1990; Agúndez, Cernicharo &
Guélin 2007; Halfen, Clouthier & Ziurys 2008; Milam et al. 2008). In
terms of abundances, PH3 and HCP, which are the dominant P-bearers
in IRC+10216, hold only 2 (Agúndez et al. 2014) and 5 per cent
(Agúndez et al. 2007) of atomic phosphorus, respectively. For other
P-bearing compounds, the abundance ratio with respect to P drops
to less than 0.001 (e.g. PN/P is about 5 × 10−4: Turner et al. 1990).
Otherwise, gas-phase molecules in the envelopes of evolved stars
lock a greater amount of phosphorus than in IRC+10216. Typically,
in the carbon-rich envelope CRL 2668, HCP along with PH3 holds
about half the phosphorus (Milam et al. 2008; Tenenbaum & Ziurys
2008b), while a quarter of almost all the available phosphorus is
in the form of PN and PO towards the oxygen-rich supergiant star
VYCMa (Tenenbaum, Woolf & Ziurys 2007; Milam et al. 2008)
or towards the star IK Tau (De Beck et al. 2013). These items are
in concordance with the hypothesis of Turner et al. (1990), which
was based on the weak presence of P-bearers in interstellar clouds,
suggesting that phosphorus is depleted in dust grains. Nevertheless,
chemical models for identification of the formation pathways of P-
bearing molecules in astrophysical media suffer from the lack of
accurate abundances for these species to assess the initial elemental
abundance of phosphorus, which is connected with the depletion
level of P (Chantzos et al. 2020).

For the identification of molecules in astrophysical media, one
needs accurate determinations of line positions and abundances. For
PH3, while its rotation–vibration spectrum is well-established theo-
retically and experimentally (Sousa-Silva et al. 2015), its abundance
is not. Indeed, its abundance is estimated using the collision rates
of isovalent ammonia. Therefore, accurately determining the abun-
dances of phosphine may be a clue to understanding its formation
and phosphorus chemistry in space.

In order to satisfy astrophysical precision when modelling the
abundance of interstellar species observed in media where local
thermodynamic equilibrium (LTE) conditions are not reached, one
relies on the large velocity gradient approach (LVG). Such a proce-
dure requires preliminary calculations of rate coefficients induced by
collision with the most abundant species (H2, H and He), as well as
Einstein coefficients. These latter are often known, while collisional
rates are not. In the case of a lack of such data for a newly observed
molecule, astrophysicists usually deduce its collisional rates from
those of isoelectronic species. Indeed, this approximation has been
adopted for some molecules (Barlow et al. 2013; Cernicharo et al.
2018) and its limits were pointed out thereafter (Bop et al. 2016).
In the case of phosphine, the approximation made by Agúndez
et al. (2014), who used the rate coefficients of NH3 (Danby et al.
1988; Machin & Roueff 2005), could be a priori more reliable.
Nevertheless, this hypothesis deserves to be checked by computing
the actual PH3 rate coefficients.

In this article, we investigate the rotational (de-)excitation of PH3

colliding with He. Even if He is not the dominant collision partner
in the ISM, the rate coefficients it yields may be used to evaluate
those that would be obtained using para-H2 (j = 0) as a projectile.
Indeed, this approximation takes its suitability from the fact that
para-H2 (j = 0) is spherically symmetric and contains two valence
electrons as helium. In addition, using helium as a projectile may
be useful in the experimental framework for the interpretation of
measured broadening parameters (Pickett, Poynter & Cohen 1981;
Levy, Lacome & Tarrago 1994; Salem et al. 2005). Therefore, we
generated the first 3D potential energy surface (3D-PES) of the PH3–
He van der Waals complex using the coupled cluster approach. This
3D-PES is mapped in Jacobi coordinates as defined in Fig. 1. Then

Figure 1. Description of the body-fixed coordinate system used in the
calculations; cm stands for the centre of the PH3 molecule.

an analytic expansion of the 3D-PES was obtained by fitting the
computed energies. Later on, this 3D-PES is incorporated into time-
independent quantum nuclear motion treatments to obtain the col-
lision cross-sections and the collision rates after thermal averaging.
Both ortho- and para-PH3 were considered. As said above, the present
set of data can be used to estimate the abundances of phosphine better
and to model phosphorus chemistry in astrophysical media.

2 G E N E R AT I O N O F TH E 3 D P OT E N T I A L
E N E R G Y S U R FAC E O F PH 3 – H E

2.1 Potential energy surface

The system of interest (PH3–He) results from the interaction be-
tween a symmetric top molecule and a structureless atom in their
ground electronic states, PH3(X̃1A1) and He(1S) respectively. The
phosphine monomer was held fixed in its spatial configuration, as
recommended by Faure et al. (2005), i.e. using the geometries of the
vibrationless state. Typically, the distance between phosphorus (P)
and each hydrogen (H) atom was set to rPH = 1.421 Å and the angle
ĤPH = 93.3◦ (Herzberg 1966).

Taking into account the relatively large electron number of the
titled system, it is desirable to reduce the number of degrees of
freedom in the construction of the interaction potential, while keeping
its efficiency in yielding accurate dynamic results. For the inelastic
scattering of NH3 due to He impact, neglecting umbrella inversion
motion in the potential construction – as a model treatment – has
led to errors in the amplitudes of the resonance peaks of less than
10 per cent relative to those obtained via a more elaborate treatment
,where this motion was considered fully in the interacting PES
(Gubbels et al. 2012). These errors in the amplitudes are rather
small. At first glance, one can omit this motion. Consequently, the
complex can be described in the PH3 body-fixed (Jacobi) coordinate
system using three parameters: (i) the distance (R) between helium
and the centre of mass of phosphine, (ii) the angle (θ ), which stands
for the rotation of He relative to the z-axis, and (iii) the rotation
of PH3 (�) with respect to the projection of the collision axis on
the xy-plane (see Fig. 1). Therefore, the 3D-PES was constructed
using 42 values of R ranging from 4 to 40a0, 19 He orientations

MNRAS 00, 1 (2020)
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Figure 2. Two-dimensional contour plots of the three-dimensional potential energy surface of the PH3–He van der Waals complex. Panels (a), (b) and (c) depict
respectively the 3D-PES as a function of θ and R at � = 60◦, � and R at θ = 90◦, and θ and � at R = 6.75 a0. For each panel, the blue (red) contours represent
the positive (negative) parts of the potential (in units of cm−1). The reference energy is taken as that of the separated monomers.

(0◦ ≤ θ ≤ 180◦) and seven � angles in the range [0–60◦]. All
these parameters have led to a set of 5586 non-redundant nuclear
configurations for which we performed ab initio electronic structure
computations using the MOLPRO molecular package (Werner et al.
2010). Also, we used symmetry considerations to deduce the energies
of the nuclear geometries not covered by our grid of points.

The 3D-PES was calculated using the coupled cluster with
single, double and non-iterative triple excitations (CCSD(T)) method
(Watts, Gauss & Bartlett 1993) in conjunction with the augmented–
consistent correlation–polarized valence triple zeta (aug-cc-pVQZ)
Gaussian basis sets of Dunning and co-workers (Dunning 1989),
supplemented by the bond functions (bf) of Cybulski & Toczyłowski
(1999). These latter (3s3p2d2f1g) were placed at mid-distance
between the two monomers. This level of theory will be denoted
thereafter as CCSD(T)/aug-cc-pVQZ+bf. In addition, we used the
counterpoise procedure of Boys & Bernardi (1970) to correct for the
basis set superposition errors (BSSE) using the following expression:

V (R, θ,�) = EPH3−He(R, θ, �) − EPH3 (R, θ, �)

−EHe(R, θ, �). (1)

The accuracy of the interaction potentials generated using the
methodology elaborated above has been assessed in our previous
works (Najar et al. 2017; El Hanini et al. 2019).

We display in Fig. 2 the two-dimensional cuts of the 3D-PES
of the PH3–He weakly bound system as a function of two Jacobi
coordinates, whereas the third one was kept fixed at its equilibrium
value in the PH3–He minimum. Indeed, we give the 3D-PES as a
function of θ and R at � = 60◦, � and R at θ = 90◦ and θ and �

for R =6.75 bohr. The positive parts of the 3D-PES are in blue and
the negative ones are in red, where the reference energy is taken as
that of the separated PH3 and He species. In terms of anisotropy,
the interaction between helium and phosphine exhibits a relatively
strong anisotropy.

Fig. 2 shows that the 3D-PES has a unique potential well of
34.92 cm−1, which occurs at θ = 90◦, � = 60◦ and R =6.75 bohr.
This minimum is found at the same coordinates in Fig. 2(a) and (b),
where the 2D cuts are periodical with a period of 120◦ relative to the
�-axis, as expected for this C3v symmetry molecule. Minimal energy
configurations thus correspond to an He atom located between two H
atoms and in the plane parallel to that formed by the three H atoms,
whereas maxima of the potential occur where the He is in the plane
containing the P, H bond and C3 axis.

MNRAS 00, 1 (2020)
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Figure 3. Dependence of selected radial coefficients (in units of cm−1) with
respect to R.

2.2 Analytic fit

In order to derive the radial coefficients Vλμ(R) required for the
dynamical calculations, we expanded the 3D-PES of PH3–He over
the normalized spherical harmonic functions Yλμ(θ , �) as follows:

V (R, θ, �) =
∑
λμ

Vλμ(R)Yλμ(θ,�). (2)

Due to the C3v symmetry of the phosphine molecule, only radial
terms for which μ= 3n (n being integer) are involved in the expansion
(equation 2); the others are vanishing. Therefore, using the cubic
spline routine, 70 radial coefficients (0 ≤ λ ≤ 18 and 0 ≤ μ ≤ 18)
were needed to reproduce the ab initio potential reasonably within
relative errors less than 5 per cent.

Fig. 3 depicts the variation of some radial coefficients (V00, V10,
V20, V30, V33, V40 and V43) along the R Jacobi coordinate. The V00,
V20, V30 and V43 terms have upward concavities, while the others
are oriented downward. A close examination of this figure reveals
that, for μ = 0, the term related to λ = 3 outweighs the others with
respect to the isotropic radial coefficient, namely V00. This is also the
case for μ = 3 and λ = 4. Therefore, no clear predominance pattern
can be associated with the index pair λμ. This lack of well-defined
propensity scheme will have consequences on the behaviour of cross-
sections. The radial coefficients derived from the NH3–He interacting
potential show similar patterns, except for the terms involving μ =
3 (Gubbels et al. 2012). Typically, the terms V33 and V43 are oriented
downward and upward (upward and downward) for PH3–He (NH3–
He), respectively (i.e. they even present differences in sign at short
range, as can be seen by comparison with fig. 3 of Gubbels et al.
2012).

3 DY NA M I C A L C A L C U L AT I O N S

In this work, we are interested in the study of the rotational energy
transfer of PH3 after collision with He. PH3 is a symmetric top
rotor type molecule. Usually, j ε

k is used to label the energy levels
of such molecules, where the quantum number j stands for the
total angular momentum and k its projection over the C3 axis,
while ε = ± denotes the symmetry index. For a given rotational
energy level, the parity of the rotation-inversion wavefunction and

Figure 4. Diagram of the PH3 rotational energy levels (Ejk). The energies
are labelled as jk. See text for the definition of these two quantum numbers.
Their energies are given in Tables S1 and S2 in the Supplementary Material.

Table 1. Parameters used in the dynamical calculations to solve the coupled
equations by means of the log derivative propagator. DTOL and OTOL stand
for diagonal tolerance and off-diagonal tolerance, respectively.

ortho: jε
k = 160

16 para: jε
k = 140

1
Rmin = 3a0 Rmax = 35a0

STEPS = 10−200 μ = 3.581 au
DTOL = 0.01 Å2 OTOL = 0.005 Å2

the symmetry of the umbrella inversion are (− 1)j + k + 1ε and
(− 1)j + 1ε, respectively (Rist, Alexander & Valiron 1993). Due
to the C3v symmetry of the PH3 molecule, the three hydrogen
atoms of phosphine are identical in terms of spatial configuration.
Thus, the rotational levels are split into ortho-PH3 (o-PH3) and
para-PH3 (p-PH3), which stand for k = 3n and k �= 3n (n being
integer), respectively. As k can take any value except multiples of
3, the p-PH3 rotational energy levels are denser than the o-PH3

ones (see Fig. 4). These energy levels can be calculated using the
spectroscopic constants A = B = 4.4524 cm−1 and C = 3.919 cm−1

by means of equation (3), where �
2/2Ix = X (Stroup, Oetjen &

Bell 1953):

Ejk = �
2

2Ib

j (j + 1) +
(

�
2

2Ic

− �
2

2Ib

)
k2. (3)

As the conversion o-PH3 to p-PH3 (and vice versa) is forbidden,
the ortho and para scattering channels are treated separately in the
cross-section computations.

3.1 Cross-sections

The quantum nuclear treatment detailed in this section was performed
with the MOLSCAT computer code (Hutson & Green 1994) using
the time-independent close coupling method (Arthurs & Dalgarno
1960), along with the log derivative propagator (Manolopoulos
1986). Preliminary tests were done in order to fix the parameters
of the propagator (see Table 1), such as the integration boundaries
(Rmin and Rmax), the size of the rotational basis (jmax and kmax) and
the integration step, which depends on the variable STEPS. These
optimized values have been selected within a convergence threshold
of 1.0 per cent Å2. Thereafter, the total energy (E) was smoothly
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Figure 5. Inelastic cross-sections of o-PH3, induced by collision with He, versus the kinetic energy; panels (a), (b) and (c) are for de-excitations involving
selected low-lying rotational levels.

varied from 9–1000 cm−1 (8.4–500 cm−1) for the scattering of o-
PH3 (p-PH3). In order to converge cross-sections properly, we take
all open channels into account by adding some closed channels for
both ortho and para. The convergence tests showed that a rotational
basis set including 97 levels for o-PH3 is large enough. The 97th
level corresponds to jmax = 16. For p-PH3, we considered a basis set
of 152 levels, corresponding to jmax = 14.

Fig. 5 displays the variation of cross-sections for o-PH3 with
respect to the kinetic energy. Fig. 5(a) depicts the j+

0 −→ 0+
0

transitions, Fig. 5(b) represents the transitions for which {�j, k,
ε} = {1, 0, +} and Fig. 5(c) shows the j ε

k −→ 0+
0 transitions.

All these curves, except those associated with the 4+
0 −→ 0+

0 and
4−

1 −→ 1+
1 transitions, are decreasing while increasing the kinetic

energy. Below 100 cm−1, these cross-sections present both Feshbach
and shape resonances. Such features were expected, as they were
found in previous works, such as the one treating the collisional
excitation of NH3 by atomic and molecular hydrogen (Bouhafs
et al. 2017) and that investigating the collisions between NH3 and
He (Machin & Roueff 2005). In fact, quasi-bound states occur
when the He projectile is caught in the potential well, leading to
Feshbach resonances. Regarding the shape resonances, they manifest

when tunnelling effects via the centrifugal energy barrier take place,
forming quasi-bound states.

3.1.1 o-PH3

Fig. 5(a) shows that the cross-sections of the 2+
0 −→ 0+

0 and 4+
0 −→

0+
0 transitions are the strongest and weakest ones, respectively, in

terms of magnitude, while an inversion occurs between the 1+
0 −→

0+
0 and 3+

0 −→ 0+
0 transition cross-sections. Therefore, no selection

rules can be associated with the parity of j. From Fig. 5(a) and (b), one
can see that the magnitude of resonances decreases when j increases.
Fig. 5(c) shows that the cross-sections of the 3+

3 −→ 0+
0 (4+

3 −→ 0+
0 )

and 3−
3 −→ 0+

0 (4−
3 −→ 0+

0 ) transitions are from either side of the
3+

0 −→ 0+
0 (4+

0 −→ 0+
0 ) transition. Referring to each j+

0 −→ 0+
0 , the

cross-sections of the j−
3 −→ 0+

0 transitions are lifted, while those of
the j+

3 −→ 0+
0 ones are shifted downward. Therefore, the propensity

rule is in favour of symmetry (or parity) breaking, i.e. �k = 3 and
j −→ 0. In addition, each cross-section for the j+

0 −→ 0+
0 transition

takes the shape of that of the j−
3 −→ 0+

0 transition at low kinetic
energy and then switches progressively to that of j+

3 −→ 0+
0 .
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Figure 6. Inelastic cross-sections of p-PH3 induced by collision with He versus kinetic energy; panels (a), (b) and (c) are for de-excitations involving selected
low-lying rotational levels.

3.1.2 p-PH3

Fig. 6 displays the variation of cross-sections for p-PH3 with respect
to the kinetic energy. Fig. 6(a) shows that the magnitude of cross-
sections decreases when j increases for the j−

1 −→ 1+
1 transitions,

while for the j+
1 −→ 1+

1 transitions no net dominance is observed.
In Fig. 6(b), all cross-sections have almost the same shape, whatever
the transition, with typically the same location of resonance peaks.
Regarding the magnitudes, the transitions involving negative parities
are stronger than the corresponding ones with positive parities,
except for j = 4. For instance, the cross-section of the 2−

1 −→ 1+
1

(4+
1 −→ 3+

1 ) transition outweighs that of 2+
1 −→ 1+

1 (4−
1 −→ 3+

1 ).
Thus, one can state the predominance of parity breaking; �k = 0
and �j = 1 is lifted for higher j values. Fig. 6(c) is an extension of
Fig. 6(b) to show the effect of the change of �k. The previously
highlighted behaviour persists, but for fixed j and ε. The slight
dominance of k = 2 occurs only at low kinetic energy, then it
reverses at higher energies (e.g. the 2−

1 −→ 1+
1 and 2−

2 −→ 1+
1

transitions).

In summary, we can conclude that no general propensity rule can
be associated with the indexes j, k, ε, in line with the already noticed
behaviours of the radial coefficients (see Fig. 3).

3.2 Rate coefficients

In order to deduce the rotational rate coefficients (Rjkε−→j ′k′ε′ ) of
both o-PH3 and p-PH3, we averaged the cross-sections discussed
above thermally using the Maxwell–Boltzmann velocity distribu-
tion:

Rα−→α′ (T ) =
(

8

πμβ

)1/2

β2
∫ ∞

0
Ecσα−→α′ (Ec)e−βEc dEc, (4)

where the kinetic energy is denoted by Ec, β stands for the reverse
of (kB × T), with kB being the constant of Boltzmann, and α refers
to jkε.

The cross-sections of ortho-PH3 covering the range 9–1000 cm−1

allow us to generate the velocity coefficient for the transitions
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Figure 7. Downward rotational rate coefficients of o-PH3 (top panel) and p-
PH3 (bottom panel) induced by collision with He, as a function of the kinetic
temperature.

between the 41 low-lying rotational levels [up to jk = 100] for
temperatures up to 100 K. Similary, the cross-sections of para-PH3

covering the range 8.4–500 cm−1 allow us to generate the velocity
coefficient for the transitions between the 41 low-lying rotational
levels [up to jk = 71 ] for temperatures up to 50 K.

Fig. 7 displays the variation of rate coefficients for the rotational
excitation of o-PH3 and p-PH3 due to collisions with He as a function
of the kinetic temperature. We represented only a few curves, as the
patterns observed for the cross-sections persist here, whereas the full
set of data is given in the Supplementary Material. Typically, for
o-PH3, the top panel of Fig. 7 reproduces the behaviour observed
in Fig. 5(b). The main difference consists of the dominance of the
4+

0 −→ 3+
0 transition, which occurs for the whole temperature range,

and no inversion is observed among the 2+
0 −→ 1+

0 and 3+
0 −→ 2+

0

transitions. Regarding p-PH3, the bottom panel of Fig. 7 confirms

Table 2. Comparison of PH3 (this work) and NH3 (Machin & Roueff 2005)
rotational rate coefficients (in units of cm3 s−1) at selected temperatures. The
brackets stand for negative powers of ten.

Initial levels Final levels T = 50 K T = 100 K
j k ε j′ k′ ε

′
o-PH3 o-NH3 o-PH3 o-NH3

1 0 + 0 0 + 5.99(12) 2.72(12) 6.73(12) 4.65(12)
2 0 + 0 0 + 2.09(11) 1.37(11) 2.34(11) 1.72(11)
2 0 + 1 0 + 1.54(11) 0.59(11) 1.81(11) 0.88(11)
3 3 – 0 0 + 1.43(11) 1.19(11) 1.34(11) 1.45(11)
3 3 – 2 0 + 3.20(11) 1.61(11) 3.21(11) 2.36(11)
3 3 + 0 0 + 3.70(13) 0.11(13) 2.80(13) 0.14(13)
3 3 + 2 0 + 2.24(11) 0.23(11) 2.15(11) 0.45(11)
4 0 + 3 0 + 1.76(11) 0.66(11) 2.17(11) 0.98(11)
4 0 + 0 0 + 6.82(13) 1.76(13) 1.66(12) 3.61(13)
4 3 + 0 0 + 7.40(14) 1.51(14) 1.00(13) 0.25(13)

T = 25 K T = 50 K
j k ε j′ k′ ε

′
p-PH3 p-NH3 p-PH3 p-NH3

2 2 + 1 1 + 2.61(13) 0.81(13) 2.23(13) 0.54(13)
2 2 – 1 1 + 2.70(11) 1.39(11) 2.57(11) 1.70(11)
2 1 + 1 1 + 6.63(12) 3.10(12) 7.76(12) 3.98(12)
2 1 – 1 1 + 3.01(11) 3.20(11) 3.24(11) 3.47(11)
3 2 + 1 1 + 5.60(12) 1.98(12) 5.58(12) 2.60(12)
3 2 – 1 1 + 9.75(12) 0.19(12) 1.02(11) 0.14(11)
3 1 + 2 1 + 7.23(12) 3.56(12) 7.98(12) 4.61(12)
3 1 – 2 1 + 1.43(11) 1.08(11) 1.55(11) 1.26(11)
4 1 + 3 1 + 1.14(11) 0.41(11) 1.25(11) 0.54(11)
4 1 – 3 1 + 7.71(12) 3.77(12) 9.41(12) 0.52(12)

the dominance in favour of the de-excitations for which the parity
is broken, �k = 0 and j ≤ 3 −→ j ′, as can be seen in panel (e) of
Fig. 5.

It is worth noting that the rate coefficients of NH3 induced by
collisions with helium (Machin & Roueff 2005), supplemented by
those due to para-H2 impact (Rist et al. 1993), were used to model the
PH3 abundance in astrophysical media. In this realm, comparing our
data on PH3–He with those of Machin & Roueff (2005) on NH3–He
is a clue to settle the validity of using rate coefficients of isoelectronic
molecules instead. For this purpose, Table 2 compares the PH3 rate
coefficients computed in this work with those of NH3 (Machin &
Roueff 2005). This table shows that large differences between both
sets of data are observed for both ortho and para, especially for j ≥
3. For �j = 1 (as in the observed transitions, 1+

0 −→ 0+
0 , 2+

0 −→ 1+
0

and 2ε
1 −→ 1ε

1), we noticed agreement within a factor of ∼2.5. In or-
der to have a global view of the comparison, in Fig. 8 we plot the rate
coefficients of PH3 as a function of those of NH3. For both ortho and
para, the data reported by Machin & Roueff (2005) are smaller than
the values computed in this work. At low temperature, the rate coef-
ficients of NH3 can drop down to a factor of two orders of magnitude
lower than those of PH3. This discrepancy decreases as the temper-
ature increases, which suggests a better agreement at higher temper-
atures (T ≥ 300). Although PH3 is observed in a relatively hot envi-
ronment (e.g. the carbon star envelopes IRC+10216 and CRL2688),
using the rate coefficients of NH3 to model its abundance will lead to
an underestimation of its density. Consequently, this may lead to mis-
understandings in phosphorous chemistry, as phosphine is likely one
of the main phosphorous reservoirs in space. Otherwise, the observed
lines suggest that phosphine can be formed anywhere in a disc of ra-
dius 100R� around the centre of the star (Agúndez et al. 2014). Hence,
PH3 can eventually be observed in warm/cold media, where the use of
NH3 rate coefficients would yield underestimation of the abundance
of phosphine by a factor larger than one order of magnitude.
Consequently, the present data should be used, rather than those of
NH3, for more reliable determination of the PH3 abundances in space.
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Figure 8. Comparison of the PH3 rate coefficients (in cm3s−1) with those of
NH3. With respect to the diagonal, the first dashed line represents a factor of
one order of magnitude and the second dashed line stands for a factor of two
orders of magnitude.

4 C O N C L U S I O N

We carried out the construction of a highly accurate 3D-PES for
the PH3–He interacting system. This 3D-PES was mapped in Jacobi
coordinates and computed at the CCSD(T)/aug-cc-pVQZ+bf level
of theory. The interaction among helium and phosphine is quite
anisotropic and presents one single potential well of 34.92 cm−1

at R = 6.75 bohr, θ = 90◦ for � = 60◦ and � = 180◦. Then, an
analytical expansion of this 3D-PES was derived. These electronic
structure computations were followed by computations of state-to-
state inelastic cross-sections of rotational (de-)excitation of ortho-
and para-phosphine, induced by collision with helium. This is
done using a quantum mechanical treatment, by means of the
close-coupling approach. These data were then thermally averaged
according to the Maxwell–Boltzmann kinetic energy distribution,
leading to record rate coefficients up to (100 K) 50 K for the (41) 42
low-lying rotational levels of (o-PH3) p-PH3. No general propensity
rules are found for either p-PH3 or o-PH3.

The rate coefficients computed in this work were compared
with those of Machin & Roueff (2005) for the NH3–He system,
which is used to estimate the abundances of phosphine. Large
differences are noticed, especially at low temperatures. Therefore,
the results obtained in this work may be of great help to the
astrophysical community, in order to model the physical conditions
of media where phosphine was observed. Indeed, exact knowledge
of the PH3 abundance may be a clue to constrain the chemistry of
interstellar phosphorus. In addition, the present data may help in the
identification of PH3 in astrophysical media where other P-containing
molecules were detected, e.g. in massive dense cores (Fontani et al.
2016) or the Galactic Centre (Rivilla et al. 2018).

AC K N OW L E D G E M E N T S

The authors acknowledge the Programme National ‘Physique et
Chimie du Milieu Interstellaire’ (PCMI) of Centre National de la
Recherche Scientifique (CNRS).

DATA AVAI LABI LI TY

Collision rates are available in the Supplementary Material. The
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Values that are less than 1 × 10−14 are considered significantly zero.
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