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3D Interface for the P300 Speller BCI
Saman Noorzadeh, Bertrand Rivet, and Christian Jutten

Abstract—A brain-computer interface (BCI) is a common
device for communication between the human brain and a
computer. This paper investigated the efficiency of using a 3D
interface for BCI machines. For this purpose, the P300 speller—a
BCI device that enables the user to spell characters on a screen
using brain waves—was modified. The classical virtual keyboard
of the P300 speller was replaced with 3D stereoscopic images,
which enhances the ergonomic features of the device. Moreover,
the flashing paradigm on a 3D interface can affect the perfor-
mance of the device in three ways: accuracy, speed and capacity.
This paper proposed two different flashing paradigms called the
natural 3D and parallel 2D interfaces and studied their effects
regarding the three mentioned measures. The former flashes the
planes in 3D space, and the latter comprises flashes of parallel
keyboards at different 3D depths. The theoretical analysis of these
effects is presented. The results were validated by experimental
data obtained from real subjects and were compared with
the classical 2D interface. Both presented keyboards increase
the speed of the device, while parallel 2D has a better total
performance than natural 3D.

Index Terms—brain-computer interface, P300 Speller, 3D,
three-dimensional stereoscopic Images, 3D virtual keyboard

I. INTRODUCTION

BRAIN-computer interfaces (BCIs) are a direct commu-
nication link between the human brain and an exter-

nal device that was initially designed to assist people with
severe motor neuron diseases. Although these patients have
lost their movement abilities, their cognitive abilities remain
intact. Therefore, BCIs are a new technology that allows
communication or the control of external devices that works
based on brain activities [1], [2]. In addition, BCIs are
currently considered in game navigation [3] or other virtual
environments [4], serious games [5], neurofeedback [6] to
manage certain disorders or devices for well-being. The P300
speller is among the BCI devices that have allowed the user
to enter data (characters) with his/her brain. The user chooses
a specific target symbol/character on the computer screen
by concentrating on that symbol. The brain activities would
be different for the attended and ignored symbols, and the
computer can detect the attended symbol by processing the
brain activities. The brain activity is recorded in a non-invasive
manner by electroencephalogram (EEG) signals [7], and the
voltage fluctuation of interest in the EEG signal owing to
an evoked neural activity is called the ERP (event-related
potential) [8].

The P300 speller device is based on the elicitation of ERP
waves in the EEG signal that are evoked by an external stim-
ulus. This device was first developed by Farwell and Donchin

S. Noorzadeh works at the Institute of Medical Science and Technologies
at Shahid Beheshti University. She worked at GIPSA-LAB at the time of this
study.

B. Rivet and C. Jutten work at GIPSA-LAB, Saint Martin d’Hères, France.

in 1988 [9]. It works according to the oddball paradigm:
if a person is subjected to an external stimulus, which is
unpredictable for that person, the P300-evoked potentials are
elicited in the EEG signal as a positive wave approximately
300 ms after the stimuli. The first proposed interface of the
P300 speller was a 6 × 6 matrix of symbols with sequential,
random flashes on rows and columns as external stimuli, as
shown in Fig. 1. The user concentrates on one of the symbols
by counting the number of flashes of that symbol and ignores
other flashes. Therefore, target P300 ERPs appear in the EEG
when the row and column of the target symbol are flashed.
The detection of P300 waves in the recorded EEG leads to
the detection of the attended symbol as the intersection of the
target row and target column that caused the P300.

(a) a flash on row (b) a flash on column

Fig. 1. The classical 2D interface with 36 symbols. If the letter ’Q’ is intended
to be spelled, the indicated flashes can detect this symbol.

Studies on the P300 speller can be categorized into different
enhancements of the device. Some studies have proposed
methods to enhance the signals recorded from subjects to
remove artifacts [10]–[13], and some have focused on dif-
ferentiating P300 from non-P300-evoked potentials [14], [15].
However, the BCI devices have the drawbacks of low speed
and information throughput, and studies have been investigated
to improve the capacity of the device. Therefore, not only
the signal processing aspect but also a higher level modi-
fication can be helpful, and the interface of the device can
be modified to gain a better speed or accuracy [16]. Among
the recent modifications of the P300 speller interface, the
flashing paradigms have been replaced by other types—e.g.,
rotations, translation, and zooming—making the device more
comfortable for the user [17]. Similarly, others have used
variations in motion, colors or flash patterns [18]–[21]. Some
other studies have divided the symbol matrix to submatrices
to reduce the number of flashes [22]. In other studies, the
row/column flashes were replaced by overlaying faces with
characters for better performance of the face paradigm than
the classical flashing paradigm [23], [24]. Another paradigm,
called the checkerboard paradigm was proposed [25], in which
the standard matrix of symbols is virtually superimposed on a
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checkerboard to avoid the erroneous detection of a character
and its adjacent one. For almost the same reason, [26] also
proposed a new flashing paradigm, which will be used in our
3D virtual keyboards. The use of different matrix sizes has
been investigated [27], and another study [28] has investigated
the use of ”multiple flashes” on an 8 × 8 grid to show that
this paradigm can produce more robust ERP. More recently,
the P300 speller was designed with 3D cube symbols to study
the evoked P300s and compare them with the classical inter-
face [29]. This study showed that the device outperforms the
classical 2D device in accuracy and capacity while requiring
a weaker workload for the user.

The present study aimed to investigate the use of a novel
3D interface in the BCI and tests a 3D setting in the P300
speller device. A 3D P300 speller can first affect the user’s
acceptability of the device, a factor that is not considered in
recent studies [30]. As mentioned before, BCI is not only
used for patients but also in the game and leisure industry,
where it has gained an essential status; therefore, for such
applications, a 3D interface can be more acceptable for the
user. Furthermore, the flashing paradigm on a 3D interface
would be different from the classical row and column flashing.
This new paradigm promotes differences in the number of
flashes or trials. Therefore, we first propose 2 new paradigms
and perform theoretical and experimental analyses to examine
how they affect the accuracy, speed and throughput of the
device. The main purpose of this study was to prove the
functionality of using 3D interfaces in the P300 speller.

This paper is organized as follows: In section II, the
implementation of the 3D interfaces of the P300 speller
is discussed. In section III, the theoretical analysis of the
proposed 3D extensions is presented. Section IV explains
the collected dataset and the required signal processing and
classification part. The results obtained with the experiments
are then explained in section V. Finally, section VI summarizes
the techniques that are presented in this study.

II. 3D EXTENSIONS OF P300-BASED BCI

Here, the interface of the P300 speller is modified by
expanding the 2D keyboard to a 3D one. This modification can
improve the device according to its speed, accuracy, and the
information transfer rate. The generalization of the classical
2D interface to a 3D one is performed by reorganizing the
symbols in a three-way table, as shown in Fig. 2. The im-
plementation of 3D stereoscopic images (section II-1) follows
this section. Afterward, two flashing strategies, called natural
3D (section II-A) and parallel 2D (section II-B), are explained
in the following sections.

1) Implementation of the 3D Stereoscopic P300 speller:
The 3D device is implemented considering the stereop-
sis—how to represent the 3D data in two separate images for
each eye [31]. For the virtual keyboard of the P300 speller, 3D
stereoscopic images are implemented according to the depth
cues: monocular cues [32] and binocular cues [33], [34]. The
keyboard is implemented as a pair of left and right images
with a specific distance between their corresponding pixels.
This distance is called disparity.

There are different methods available to render stereo pairs
of 3D images by positioning the cameras e.g.: Off-axis or Toe-
in [35]. The toe-in method is not used owing to the discomfort
it may cause for the visual system [36]. The method that is
used here is the off-axis [37], [38].

Generally, viewing positive disparities are easier for the
visual system than negative disparities [39]; therefore, we have
implemented our virtual keyboard such that the first depth is
on the screen with zero disparity, and other depths appearing
on the screen have positive disparities. Other parameters, such
as the distance between the two cameras, distance from the
screen, and maximum disparity [40], were also determined
mainly considering the user’s visual comfort [41]. An imple-
mentation of a 3D keyboard using 3 rows and 3 columns in
3 depths is shown in Fig. 2. The flashes are implemented by

(a) a flash on column (b) a flash on column

(c) a flash on depth

Fig. 2. Natural 3D virtual keyboard with 3 rows, 3 columns, and 3 depths.
Stimulus flashes corresponding to the planes of Natural 3D the virtual
keyboard of 3 × 3 × 3 dimension. The three depicted target flashes indicate
letter ’F’.

changing the color of symbols to green and increasing the
size, as shown in Fig. 2. Notably, to cover all symbols in a
symbol matrix, all rows, columns, and (in the 3D case) depth
planes are flashed once randomly. A repetition is the set of all
these flashes. Because one repetition is not usually sufficient
for a reliable detection, several repetitions are considered as a
random permutation of flashes on all rows and columns.

A. Natural 3D

The natural generalization of row and column flashes of the
2D interface is the plane flashes in the 3D interface (Fig. 2),
which is referred to as natural 3D. In such a flashing strategy,
each symbol of the three-way matrix is the intersection of a
row, a column, and a depth plane.

B. Parallel 2D

Another flashing approach is proposed by considering each
depth of the 3D keyboard as a separate 2D keyboard. In other
words, separate 2D keyboards are placed at different depth
levels and function in parallel with the sequential on and off
flash times. The depth is coded by a delay between the stimuli
flashes of different layers, and the flashes of each layer follow
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the classical row/column paradigm. Fig. 3 illustrates the onset
and offsets of the flashes of an interface with two layers by
showing the stimuli timelines: the dotted line corresponds to
one of the depth levels, and the continuous line corresponds
to the other, where, for N stimuli, ti, i ∈ [1, N ], is the onset
of the ith flash on the first depth layer and t′i is the onset of
the ith flash on the second depth layer. The interlacing flashes
lead to independent or parallel layers. This new configuration
of interface and flashes is called parallel 2D.

The number of 2D keyboards that can function in parallel
is limited because of the limited frame rate of the imaging
device and to ensure good detection; the delay between layers
should not be too small.

Time

S
tim

ul
i

Fig. 3. Parallel flashes on 2 depth levels in the parallel 2D interface. The solid
and dashed lines represent the times of the stimuli for the first and second
depths, respectively.

To address the small delays between flashes of depths in
this interface, a different paradigm is applied here: Among
any pair of repetitions, any two consecutive flashes should be
different. Thus, let f (j)

k (i) denote the row or column index of
the i-th flash of the j-th repetition on the k-th layer. Then,
with a two-depth interface (k = 1 or 2), and any i, i′ ∈ [1, N ]
and any j, j′ repetition, the sequence of flashes on the first
and second layers must verify that:(

f
(j)
1 (i), f

(j)
2 (i)

)
=

(
f
(j′)
1 (i′), f

(j′)
2 (i′)

)
(1)

⇒ (i, j) = (i′, j′).

This equation expresses that the same pair of consecutive
flashes cannot occur in two different repetitions. Because
the classifier score will be computed cumulatively among
repetitions, by having the mentioned paradigm of eq. (1), the
false detected target flash will not gain more scores through
the repetitions. This implementation is necessary because the
delay between successive flashes is small. Additionally, the
keyboards in different depths only work in parallel and do not
increase the ISI (inter-stimuli interval) to keep the speed intact.
However, if such a paradigm had not been implemented, the
target flash would likely have been detected erroneously as its
previous or next flash.

Another flashing paradigm is also used on row/column
flashes to avoid erroneous detection of adjacent symbols. This
is fully presented in [26].

III. THEORETICAL ANALYSIS OF THE 3D EXTENSIONS

Having proposed the 3D extensions of the virtual keyboard
of the P300 speller and flashing paradigms, we will provide
the theoretical analysis concerning the changes in accuracy,
speed, and capacity.

A. Accuracy

As mentioned in the Introduction section, the classical P300
speller has a 2D interface (see Fig. 1), which we consider as
the reference to compare with the new 3D extensions. First, we
review the classical 2D interface for its accuracy. The target
symbol is the intersection of a target row and a target column.
Let’s define R and C as discrete random variables representing
the detected rows and columns, respectively. These random
variables have a uniform distribution because the flashes on
the rows and columns are equal and we expect equal P300
elicitation. We assume that the detection of a row and a column
is independent but equal to P ∈ [0, 1]. Now, if p(R = r, C =
c) denotes the probability that the row r and column c are
jointly detected, equation (2) shows the probability that the
target symbol is correctly detected, indicating that the target
row, rt, and target column, ct, are both detected correctly.

Accclassical2D = p(R = rt, C = ct)

=p(R = rt)p(C = ct) = P 2.
(2)

In the natural 3D interface, the probability of detecting the
symbol at the intersection of a row plane r, column plane c,
and depth plane d is expressed as p(R = r, C = c,D =
d), where R, C, and D are uniform random variables. We
assume equal numbers of rows, columns and depths, equal to
the number of rows (columns) in classical 2D. Additionally,
assuming that the marginal detections are independent (i.e.,
p(R = r, C = c,D = d) = p(R = r)p(C = c)p(D = d)) and
equal to P , the accuracy of the natural 3D interface is given
by:

Accnatural3D = p(R = rt, C = ct, D = dt) = P 3, (3)

where rt, ct, and dt are the target row plane, column plane, and
depth plane, respectively. The natural 3D accuracy (eq. (3)) is
theoretically lower than the classical 2D accuracy (eq. (2)).

Finally, for the parallel 2D approach, as noted in sec-
tion II-B, the probability of detecting a symbol as the in-
tersection of row r and column c in layer d is independent
of d: p(R = r, C = c,D = d) = p(R = r, C = c). This is
because the keyboards are working in parallel. With factorizing
probabilities, the accuracy of the parallel 2D interface is given
by:

Accparallel2D = p(R = rt, C = ct, D = dt) = P 2. (4)

Considering P ∈ [0, 1] as the marginal probability, the
accuracy of the classical 2D and parallel 2D was shown to be
equal to P 2; however, that of the natural 3D interface would
be lower and equal to P 3 for the same number of rows and
columns (and depth for 3D).

B. Speed: number of flashes

Among the most important characteristics of the newly
proposed interfaces is their speed. Each P300 speller interface
requires, in each repetition, a minimum number of flashes. The
number of these flashes estimates the speed of the interface.
Here, we compare the theoretical speed of the interfaces by
calculating the number of required flashes.
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Fig. 4. Comparison of the speed of the interfaces. Fig. 4(a) shows the mini-
mum number of flashes—as calculated in equations (5),(6), and (7)—against
the total number of symbols on the interface. The number of depths in the
parallel 2D interface is 2 (d = 2). Fig. 4(b) shows the relative speed of the
interfaces defined in eq.(8), when T = 1.

With a total number of S symbols on the interface of the
classical 2D, we can have the minimum number of flashes if
the symbols are placed in a square-shaped matrix; therefore,
there are S

1
2 number of rows and also the same number of

columns, leading to 2 × S
1
2 number of rows and column

flashes. The minimum number of flashes required to cover
all the columns and rows in one repetition is hence calculated
from:

N2D =

⌈
2× S

1
2

⌉
, (5)

where d·e is the ceiling function. In the row-column-depth
configuration for natural 3D, the minimum number of flashes
is calculated from eq. (6), where S

1
3 is referred to as the

number of rows, or columns, or depths in a cubic matrix of
symbols.

Nnatural3D =

⌈
3× S

1
3

⌉
. (6)

For parallel 2D, the total number of symbols can be distributed
over the number of layers, referred to as d, so that each
layer contains S

d symbols. The minimum number of flashes
is then the number of row/column flashes on each layer of the
interface, and is calculated as:

Nparallel2D =

⌈
2×

(S
d

) 1
2

⌉
, (7)

Fig. 4 compares the minimum number of flashes on each
interface considering 2 layers for parallel 2D (d = 2).
With more than nine symbols in the interface (S > 9), the
classical 2D interface requires more flashes than the natural 3D
interface; when there are fewer than 85 symbols, the parallel
2D interface needs fewer flashes than the natural 3D interface.
However, the parallel 2D always requires fewer flashes than
the classical 2D one.

As noted above, the speed of the interface is directly related
to the number of flashes, N . By defining the speed F of
the interface inversely proportional to the duration of each
repetition, its expression is given by:

F =
1

N × T
, (8)

where T is the inter-stimuli interval (ISI) in seconds. Thus,
the smaller is number of flashes, the faster is the interface
(Fig. 4(b)).

C. Capacity

A more relevant performance measure used to quantize the
information transfer rate (ITR) is the capacity. According to
[42], for one repetition, the capacity of a S-symbol keyboard,
with an accuracy of Acc, is defined as:

Q = log2(S) +Acc log2(Acc) + (1−Acc) log2

(
1−Acc

S − 1

)
,

(9)

The capacity Q is expressed in bits per repetition. However, the
duration of repetitions can be different for different interfaces
because of the different number of flashes that each interface
might have. Thus, the comparison between interfaces is more
appropriate if we consider the time and bit-rate B, in bits per
second. This is defined as:

B = Q× F =
Q

N T
, (10)

or the relative bit-rate B′, expressed in bits per flash because
the ISI is the same for all flashes:

B′ =
Q

N
. (11)

As shown in Figs. 5(d), 5(e), and 5(f), the bit-rates of
the natural 3D and parallel 2D interfaces are always larger
than that of the classical 2D interface for a given accuracy.
However, the bit-rate of the natural 3D interface is only larger
than that of the classical 2D for large values of marginal
probability P (Figs. 5(a), 5(b), and 5(c)). This threshold
value for P decreases as the number of symbols increases
because the relationships between the accuracy and marginal
probability of good detection is nonlinear.

However, the bit-rate of the parallel 2D interface is always
larger than that of the classical 2D interface because of
the smaller number of flashes with the same accuracy. This
improvement factor is given by N2D/Nparallel2D.

IV. EXPERIMENTS AND PROCESSING METHODS

Our primary goal is the possibility of designing a 3D
interface for the P300 speller and designing the flashing
paradigms for this new interface. Considering the previous
points, experiments on subjects were performed to analyze
the theoretical analysis using real data. Because we aimed to
prove the functionality of a 3D setting in a BCI device, the ex-
periments presented here are preliminary with a small number
of subjects. We mainly intended to link what we concluded in
theory to the results observed in real subjects. Based on this
study, future studies can include more experiments in real-time
and/or with a larger number of subjects.

A. Dataset

The data were collected from 16 volunteers between 22
and 34 years of age (with a mean age of 27 years), with
normal stereoscopic vision and a normal neurological state.
Eight participants among the 16 were subjected to the natural
3D keyboard, and the other eight were subjected to the parallel
2D keyboard. Both sets of subjects also were subjected to the



5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5 Classical 2D
Natural 3D
Parallel 2D

(a) 27 symbols

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5 Classical 2D
Natural 3D
Parallel 2D

(b) 64 symbols

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5 Classical 2D
Natural 3D
Parallel 2D

(c) 125 symbols

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5 Classical 2D
Natural 3D
Parallel 2D

(d) 27 symbols

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5 Classical 2D
Natural 3D
Parallel 2D

(e) 64 symbols

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5 Classical 2D
Natural 3D
Parallel 2D

(f) 125 symbols

Fig. 5. Relative bit-rate per flash B′ of eq. (11) for several symbols S in the interface against the marginal probability of good detection P (top Figs.) and
against the accuracy (bottom Figs.). In Fig. 5(e), B′

natural3D = B′
parallel2D because Nnatural3D = Nparallel2D for 64 symbols.

classical 2D interface, so that the results can be compared with
the 3D ones.

Each subject recorded two sessions for each interface. In
the first session, he/she had 50 predefined symbols to type on
the keyboard. In the second session, the subjects were free to
choose a word to spell on the interface. All the analyses were
performed offline.

The interfaces were implemented using OpenGL. The num-
ber of symbols on the interfaces was almost the same to make
a fair comparison; therefore, the classical 2D interface is a
6 × 6 matrix of symbols, the natural 3D keyboard is in 3
rows, 3 columns, and 3 depths with 27 symbols, and the
parallel 2D keyboard has 32-character placements in 2 depths
of 4×4 matrices of symbols. The number of rows and columns
was chosen to have almost the same number of symbols on
different interfaces. The number of symbols cannot be exactly
the same for all keyboards because the number of symbols
versus the number of rows, columns and depth is a stepwise
function (Fig. 4). In other words, the dimension of the interface
matrix—which is already defined to be cubic—defines the
number of positions that the symbols can take and can be
detected with the P300 speller.

The ISI is equal to 133 milliseconds with a duty cycle of
50% for the flashes. To spell each letter, 5 repetitions are
considered. The subjects sit at a distance of 45 cm from a
3D television.

The EEG from the subjects was recorded via 16 active
electrodes using a g.USBamp device from g.tec [43]. The
signal is sampled at a rate of 1200 Hz.

B. Signal Processing
The EEG signals recorded during the experiments are first

filtered by a bandpass filter in the frequency band between

1 and 12 Hz using a fourth-order Butterworth filter. Then,
to enhance the signals, spatial filters are estimated [12], [44]
from the training data. This filter is applied to enhance the
P300-evoked potentials. The spatial filter used here is xdawn,
which is fully described in [45].

C. Classification

The temporally and spatially filtered signals are then cat-
egorized into two parts according to the epoch type, which
can be target or non-target, and is used as the two-class data
to train the classifier. As mentioned, using spatial filters, the
data are already projected onto the ERP subspace to enhance
the ERP signals and improve the signal-to-noise ratio [45].
Therefore, the spatially filtered target and non-target ERPs are
directly used as the features. In this study, Bayesian Linear
Discriminant Analysis (BLDA) was used [46].

In the test phase, the trained spatial filters are applied on
the signal, and the predictive score for each stimulus flash is
provided by the BLDA classifier. Each row and column (and
depth in natural 3D) will receive a score in each repetition.
These scores are summed to predict the symbol. Let Sk(i, j)
be the predictive probability score (0 ≤ S ≤ 1) of the i-th row
(or column or depth) flash of the j-th repetition on the row,
column or depth, k ∈ [r, c or d].

The spelled symbol is then predicted according to the
intersection of a row and a column (and the depth for the
natural 3D), which have the largest scores summed over all
the repetitions:
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Fig. 6. Accuracy against the number of repetitions for Natural 3D (Fig. 6)(a)
and Parallel 2D (Fig. 6(b)) interfaces. The median accuracies are plotted, and
the errorbars extend from the 10% quantile to the 90% quantile.

k̂ = argmax
i

J∑
j=1

Sk(i, j), k ∈ [r, c or d], (12)

ˆsymbol = intersect(r̂, ĉ, d̂). (13)

Because the number of subjects is small, to have more
accurate results, we have two strategies for validation. First,
a K-fold cross-validation is adopted using the first-session
recordings. As already mentioned, this session comprises
50 pre-defined symbols, so the database is divided into 40
symbols for training and 10 symbols for the tests. This
partitioning is performed randomly 2,000 times, and the results
are averaged. Section V demonstrates the results of such cross-
validation. These results are then summarized in Table II.

The next strategy is the train-test in which all 50 symbols
are used for training, and the second session recording is used
for the test. To calculate the accuracy, the subject is asked what
word he/she has spelled after the experiment. These results are
summarized in section V Table III

V. RESULTS AND DISSCUSSIONS

The experimental results offer two comparisons that are pre-
sented in this section: the classification accuracy and capacity
of the presented interfaces. The speed of the interface depends
on the implementation of the 3D interfaces and is directly
measured by the ISI and number of repetitions. Thus, without
the experiments, the speed of different interfaces has already
been compared theoretically in the previous sections.

A. Accuracy and marginal probability

Using the data from the experiments, the classification
accuracies of the two 3D extensions are compared in Fig. 6. It
should be pointed out that the classification accuracy increases
with the number of repetitions.

The classification accuracy of the classical 2D interface is
larger than that of the natural 3D interface (see also Table I:
the first and second rows for t-test p-values). The accuracy of
classical and parallel 2D interfaces are more similar (Table I:
row 3). Parallel 2D accuracy also outperformed the classical
2D approach, as expected, in the theoretical part.

Because the obtained results do not match completely with
the theoretical part (especially for natural 3D), we must
evaluate the assumption of the equality of marginal proba-
bilities. To verify the theoretical assumptions on the marginal

probabilities, P , of the interfaces (section III-A), the accuracy
of detecting rows and columns (and depths) is separately
calculated in the experiments. The results are then depicted
in Fig. 7, which shows that the equal marginal probability
hypothesis cannot be completely achieved for all dimensions
with the natural 3D interface. In particular, based on the
hypothesis tests of Table I: row 4 and row 5, the marginal
probability of good detection of the depth is smaller than
the marginal probabilities of good detection of the rows or
columns (Table I: row 5). By contrast, the two marginal
probabilities of good detection of the rows or columns are the
same (Table I: row 6) and are almost similar to those of good
detection using the classical 2D interface (Table I: row 7 and
8). These results were more comparable in the last repetitions.
One can interpret the lower accuracy of depth detection than
those of rows and columns because the non-target flashed
depth layers in different visual fields may interrupt the subject
while focusing on the intended symbol. Another advantage
of the 3D interface is that, in the very first repetitions, the
detection of rows and columns is more accurate than that using
classical 2D because of the lower dimension of the interface
and higher amplitudes of P300 waves in the 3D stereoscopic
interface [29].

1 2 3 4 5

# Repetitions

0.4

0.6

0.8

1

P
Row
Column
Depth
Classical 2D row (or column)

(a) Natural 3D

1 2 3 4 5

# Repetitions

0.4

0.6

0.8

1

P

Row
Column
Depth
Classical 2D row (or column)

(b) Parallel 2D

Fig. 7. Marginal probability (P ) against the number of repetitions for Natural
3D and Parallel 2D interfaces. The median accuracies are plotted, and the
error bars extend from the 10% quantile to the 90% quantile.

On the parallel 2D interface, the two assumptions regarding
the marginal probabilities (identical and independent marginal
probabilities on the rows and columns, and a marginal prob-
ability of detecting the depth close to one; see section III-A)
are well verified. Both distributions of marginal probabilities
on the rows and columns are similar in mean (Table I:row
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P-values for 5 No. of repetitions
Row no. Null hypothesis paired t-test type 1 2 3 4 5

1 ¯acc(C2D)= ¯acc(N3D) both-tailed 0.05 0.03 .05 0.07 0.10
2 ¯acc(C2D) > ¯acc(N3D) right-tailed 0.98 0.99 0.98 0.97 0.95
3 ¯acc(C2D)= ¯acc(P2D) both-tailed 0.77 0.66 0.84 0.52 0.74
4 P̄ (depth(N3D)) < P̄ (row(N3D)) left-tailed 0.99 1.00 1.00 1.00 0.99
5 P̄ (depth(N3D)) < P̄ (column(N3D)) left-tailed 1.00 1.00 0.99 0.96 0.97
6 P̄ (row(N3D)) = P̄ (column(N3D)) both-tailed 0.70 0.88 0.74 0.66 0.93
7 P̄ (row(C2D)) = P̄ (row(N3D)) both-tailed 0.47 0.90 0.85 0.61 0.82
8 P̄ (column(C2D)) = P̄ (column(N3D)) both-tailed 0.96 0.60 0.56 0.61 0.81
9 P̄ (column(P2D)) = P̄ (row(P2D)) both-tailed 0.08 0.06 0.36 0.14 0.15

10 P̄ (row(C2D)) = P̄ (row(P2D)) both-tailed 0.07 0.41 0.32 0.22 0.32
11 P̄ (column(C2D)) = P̄ (column(P2D)) both-tailed 0.19 0.64 0.35 0.33 0.53
12 P̄ (depth(C2D)) = 1 left-tailed 0.001 0.006 0.014 0.010 0.012

TABLE I
Paired t-test p-values to compare the accuracy of the devices. THE TABLE ROW NUMBERS SHOW THE ACCURACIES, WHICH ARE COMPARED. THIS

INFORMATION IS FOUND IN THE TEXT. COMPARING THE TWO SETS OF DATA, X AND Y, FOR BOTH TAILED T-TESTS, THE NULL HYPOTHESIS IS THAT DATA
IN x− y ARE SAMPLES OF A NORMAL DISTRIBUTION WITH A MEAN OF 0; IN THE RIGHT-TAILED T-TEST WITH MEAN GREATER THAN 0, AND IN THE

LEFT-TAILED TEST WITH A MEAN LESS THAN 0.

9)(Fig. 7(b)), and they are also similar to the marginal prob-
ability of the classical 2D interface (Table I:row 10 for rows
and Table I:row 11 for columns). Moreover, the marginal
probability of detecting the depth in parallel 2D is close to
one after at least 3 repetitions (Table I:row 12). This analysis
validates the assumption that the depth can be efficiently coded
by the time shifts between the layers and orthogonal sequences
of the flashes (eq. (4)). For information about the statistical
tests, refer to [47].

Lastly, the cross-validation and the train-test results are
summarized in tables II and III.

Interface Accuracy (%) Capacity (bit-rate per flash)
Classical 2D 79.5± 4.04 70.03 ± 6.75
Natural 3D 62.6 ± 5.4 47.88± 7.90
Parallel 2D 77.63± 4.67 67.42± 8.09

TABLE II
CROSS-VALIDATION RESULTS: SUMMARY OF THE PRESENTED RESULTS

ON ALL 5 REPETITIONS WITH THE CROSS-VALIDATION.

Interface Accuracy (%) Capacity (bit-rate per flash)
Classical 2D 75.16± 2.21 62.4± 3.33
Natural 3D 73.25± 3.14 58.35± 4.73
Parallel 2D 74.65± 2.2 62.25± 3.25

TABLE III
TEST RESULTS: SUMMARY OF ALL REPETITIONS AND SUBJECTS, WHEN A

TEST SESSION WAS CONSIDERED FOR THE SUBJECTS. THE TRAIN DATA
ARE USED FOR TRAINING, AND A SEPARATE TEST SESSION IS CONSIDERED

FOR EACH SUBJECT (AS EXPLAINED IN SECTION IV), IN WHICH HE/SHE
SPELLED A WORD OF FOUR TO EIGHT CHARACTERS FREELY.

B. Capacity

Here, using the experimental results, the capacities of the
interfaces are compared against time. The capacities are de-
picted according to elapsed time in Fig. 8. First, having the
same number of repetitions in both 3D approaches takes less
time than in the classical 2D approach, as expected in the
theoretical part. Second, Fig. 8(a) shows that the bit-rate of
the natural 3D interface is lower than that of the classical 2D
interface, likely owing to the lower accuracy of the natural 3D
interface. Compared with the theoretical analysis, the accuracy
of the natural 3D interface is only larger than that of the

classical 2D interface for very large marginal probabilities
(almost 90% for 27 symbols), unlike the case here (Figs. 5(a)
to 5(c)). Other considerations should be applied to improve
the marginal probability in future work. In Figs. 5(d) to 5(f),
the capacity of natural 3D is higher than that of classical 2D
only if they have the same accuracy.
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(a) Natural 3D
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Classical 2D
Parallel 2D

(b) Parallel 2D

Fig. 8. Comparison of relative bit-rates. B′
Max is the maximum bit-rate

assuming a perfect accuracy (i.e. Acc = 100%). The median accuracies are
plotted, and the error bars extend from the 10% quantile to the 90% quantile.

The bit-rate of the parallel 2D is higher than that of the
classical 2D interface (Fig. 8 on the right). This observation
was confirmed by the theoretical analysis (Fig. 5) because, for
the same accuracy, the capacity of the parallel 2D was higher
because of its higher speed. Finally, it should be noted that
the high variance of the capacities is due to the sensitivity
of the capacity to the accuracy and is averaged over different
subjects; for each, there is a probability of visual or brain
distraction while spelling on the interfaces.

VI. CONCLUSIONS

Two 3D extensions of the classical 2D P300 speller have
been proposed in this paper: natural 3D and parallel 2D. The
major aim of the extensions was to improve the efficiency of
the device in 3D settings and make the P300 speller device
more ergonomic for users because the ergonomics of this
device has not been considered much previously. Experiments
on a set of 16 subjects showed that the two new 3D ap-
proaches have some advantages compared with the classical
2D interface. One advantage is the comfort in spelling on the
interface and the ergonomics. Considering these factors, each
subject declared his/her comfort in a survey and the obtained
results showed that the 3D keyboard can increase the user’s



8

satisfaction with the device. Through this survey, we found that
75% of the subjects preferred the 3D keyboard to the 2D for its
comfort and higher ergonomic features. Other advantages are
related to the accuracy, capacity, and speed. Therefore, in this
study, the performance, in terms of these 3 factors, has been
theoretically discussed, and then the experiments on real data
were performed to prove the theoretical results. Although the
experiments involved a small number of subjects, they showed
that the 3D settings can be applied in BCI applications.

Regarding the speed, this study showed that:
• Both 3D approaches are always faster than the classical

2D approach with the same number of symbols.
• The speed of the natural 3D interface is higher than that of

the parallel 2D interface only for more than 61 characters
on the interface.

Regarding the Accuracy, this study shows that:
• The accuracy of the natural 3D interface is lower than

that of the classical 2D interface.
• The accuracy of the parallel 2D interface is almost the

same as that of the classical 2D interface.
• The relationship between the accuracy of the devices

(Acc2D = Accparallel2D > AccNatural) was validated
in both the theoretical and experimental results; however,
the marginal probability of the depth of the natural 3D
interface was shown to be less accurate than that of
the other two layers in the experimental results, despite
our hypothesis in the theoretical part. Thus the parallel
2D interface is recommended when considering the 3D
interface.

Considering the capacity (bit-rate) of the different interfaces
theoretically and experimentally, we can conclude that:
• The capacity of the parallel 2D interface is higher than

that of the other interfaces.
• The natural 3D interface has a lower capacity than the

classical 2D interface.
This study has proven the functionality of 3D interfaces in

the P300 speller. According to the higher speed and accuracy,
we recommend the parallel 2D interface. This finding is
validated by both theoretical and experimental results. The use
of any of these paradigms depends on the application in which
it is being used. It should be noted that the general effect of
3D stereoscopic images on the elicitation of ERPs was not
investigated in this study and can be further analyzed in a
future study. Here, only the efficiency of 3D was studied in a
P300 speller paradigm. Notably, the 3D settings can be used
not only in the P300 devices but also in other technologies
that require ergonomics, 3D environments, or even a higher
speed, such as virtual worlds [48].
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