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We introduce lower bounds for the rate of entropy production of an active stochastic process
by quantifying the irreversibility of stochastic traces obtained from mesoscopic degrees of freedom.
Our measures of irreversibility reveal signatures of time’s arrow and provide bounds for entropy
production even in the case of active fluctuations that have no drift. We apply these irreversibility
measures to experimental spontaneous hair-bundle oscillations from the ear of the bullfrog.

PACS numbers: 05.70.Ln, 87.16.dj, 05.40.-a

Active systems are maintained out of equilibrium by
processes that consume resources of energy and produce
entropy. This is the case of living cells, where energy is
provided in the form of biochemical fuel such as adeno-
sine triphosphate that drives active mesoscopic cellular
processes. An important example of active cellular fluc-
tuations are spontaneous oscillations of mechanosensory
hair bundles of auditory hair cells [1, 2]. These oscilla-
tions have been proposed to amplify sound stimuli in the
ear of many vertebrates, providing exquisite sensitivity
and sharp frequency selectivity [3].

Active mesoscopic processes do not obey the
fluctuation-dissipation theorem: measuring both the lin-
ear response of the system to weak external stimuli and
spontaneous fluctuations provides a means to quantify
deviations from thermal equilibrium [4–9]. A related im-
portant question is how entropy production can be es-
timated in active mesoscopic systems. In cases where
active systems generate movement with drift, such as
molecular motors moving along filaments [10–12], the
rate of entropy production can be estimated from mea-
surements of drift velocities and viscous forces [10, 13].
However, for active fluctuations without drift, such as
spontaneous oscillations, it is unclear how entropy pro-
duction can be characterized. Time irreversibility is a
signature of the nonequilibrium nature of a system [14].
This suggests that quantification of irreversibility of fluc-
tuations provides information about entropy production.

In this Letter, we introduce a hierarchy of bounds
for the steady-state rate of entropy production based on
measures of irreversibility of sets of mesoscopic observ-
ables. We show that quantifying irreversibility can reveal
whether a noisy signal is produced by an active process or
by a passive system. We apply the theory to experimen-
tal recordings of spontaneous mechanical oscillations of
mechanosensory hair bundles in an excised preparation
from the ear of the bullfrog (Rana catesbeiana) [15]. Our
measures of irreversibility provide lower bounds for en-

tropy production of active processes, as we demonstrate
using a biophysical model for hair-bundle oscillations and
experimental data.

We first discuss the relation between entropy produc-
tion and irreversibility for generic nonequilibrium sta-
tionary processes. Consider a physical system described
by a set of variables labeled as Xα, with α = 1, 2, . . . . In
a stationary nonequilibrium process of time duration t,
the physical system traces a trajectory in the phase space
described by the stochastic processes Xα(t). We denote
by Γ[0,t] ≡ {(x1(s), x2(s), . . . ))}ts=0 a given trajectory
described by the system variables and its corresponding
time-reversed trajectory as Γ̃[0,t] ≡ {(θ1x1(t−s), θ2x2(t−
s), . . . )}ts=0, where θα = ±1 is the time-reversal signa-
ture of the α−th variable. Assume now that Xα are the
variables that may be out of equilibrium, i.e. we do not
include in Γ[0,t] those variables corresponding to thermal
reservoirs, chemostats, etc. In that case, the steady-state
rate of entropy production σtot is given by

σtot = kB lim
t→∞

1

t
D
[
P
(
Γ[0,t]

)∣∣∣ ∣∣∣P (Γ̃[0,t]

)]
, (1)

where kB is the Boltzmann constant and P denotes the
steady-state path probability [16–19]. Here D[Q||R] ≥ 0
is the Kullback-Leibler (KL) divergence between the
probability measures Q and R, which quantifies the dis-
tinguishability between these two distributions. For mea-
sures of a single random variable x the KL divergence
is given by D[Q(x)||R(x)] ≡

∫
dxQ(x) ln[Q(x)/R(x)].

Note that for isothermal systems σtotT equals to the rate
of heat dissipated to the environment at temperature T .

Often in experiments only one or several of the
nonequilibrium variables can be tracked in time. Con-
sider the case where only X1, . . . Xk are known. We de-
fine the k−variable rate of entropy production in terms
of path probabilities of k mesoscopic variables

σk ≡ kB lim
t→∞

1

t
D
[
P
(
Γ

(k)
[0,t]

)∣∣∣ ∣∣∣P (Γ̃(k)
[0,t]

)]
, (2)
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FIG. 1: (A) Electron micrograph of a hair-cell bundle
extracted from the bullfrog’s inner ear. The distance from
top to bottom is ∼ 7µm. (B) Experimental recording of the
tip position of an active mechanosensory hair bundle that
displays spontaneous oscillations. (C,D) Trajectories of the
reduced variables X1 (C) and X2 (D) as a function of time
obtained from a simulation of the stochastic model given by
Eqs. (3-4). (E) Representation of a 2-s trace of the simula-
tions in (C,D) in the {X1(t), X2(t)} plane. The black arrows
illustrate the value of the instantaneous velocity and the base
of the arrow the position. Parameters of the simulations:
λ1 = 0.9 pNms/nm, λ2 = 5 pNms/nm, kgs = 0.55 pN/nm,
ksp = 0.3 pN/nm, D = 72 nm, S = 0.73, Fmax = 45.76 pN,
N = 50, ∆G = 10kBT , kBT = 4.143 pNnm and Teff/T = 1.5.

where Γ
(k)
[0,t] ≡ {(x1(s), . . . , xk(s))}ts=0 and Γ̃

(k)
[0,t] ≡

{(θ1x1(t−s), . . . , θkxk(t−s))}ts=0 denote paths described
by k variables. The average k−variable rate of entropy
production increases with the number of tracked degrees
of freedom 0 ≤ σ1 ≤ · · · ≤ σk ≤ σk+1 ≤ · · · ≤ σtot. It
can also be shown that the estimator σk equals the phys-
ical entropy production σtot if the missing variables, X`

with ` > k, are at thermal equilibrium [20–22]. When the
missing variables are not at thermal equilibrium, which is
often the case in active systems, the estimator σk ≤ σtot

yields only a lower bound for the entropy production rate.
We now discuss irreversibility and entropy production

in active mechanosensory hair cells from the bullfrog’s
ear. Hair cells work as cellular microphones that trans-
duce mechanical vibrations evoked by sound into electri-
cal signals [23]. They are endowed with a tuft of cylindri-
cal protrusions −the hair bundle (Fig. 1A)− that serves
both as sensory antenna and as active oscillator that am-
plifies sound [3]. In experimental recordings of sponta-
neous hair-bundle oscillations, only the tip position X1

of the bundle is measured (Fig. 1B). Measuring X1, we
can only estimate σ1, which provides a lower bound to
the total steady-state entropy production rate σtot.

Spontaneous hair-bundle oscillations are thought to re-
sult from an interplay between opening and closing of

mechanosensitive ion channels, activity of molecular mo-
tors that pull on the channels, and fast calcium feedback.
This interplay can be described by two coupled stochas-
tic differential equations for the position of the bundle
X1 and of the motors X2 [2, 15, 24]:

λ1Ẋ1 = − ∂V

∂X1
+
√

2kBTλ1 ξ1 (3)

λ2Ẋ2 = − ∂V

∂X2
− Fact +

√
2kBTeffλ2 ξ2 , (4)

where λ1 and λ2 are friction coefficients and ξ1 and
ξ2 in (3-4) are two independent Gaussian white noises
with zero mean 〈ξi(t)〉 = 0 (i = 1, 2) and correlation
〈ξi(t)ξj(t′)〉 = δijδ(t−t′), with i, j = 1, 2 and δij the Kro-
necker’s delta. T is the temperature of the environment,
whereas the parameter Teff > T is an effective tempera-
ture that characterizes fluctuations of the motors. The
conservative forces derive from the potential associated
with elastic elements and mechano-sensitive ion channels

V (X1, X2) =
kgs∆X

2 + kspX
2
1

2
(5)

+ NkBT ln

[
exp

(
kgsD∆X

NkBT

)
+A

]
,

where ∆X = X1 − X2; kgs and ksp are stiffness
coefficients; D is the gating swing of a transduction
channel; and A = exp[(∆G + (kgsD

2)/2N)/(kBT )],
∆G being the energy difference between open
and closed states of the channels and N the
number of transduction elements. The force
Fact(X1, X2) = Fmax(1 − SPo(X1, X2)) is an active
nonconservative force exerted by the molecular motors
with a maximum value Fmax. The parameter S quantifies
calcium-mediated feedback on the motor force [25] and
Po(X1, X2) = 1/[1 + A exp(−kgsD∆X/NkBT )] is the
open probability of the transduction channels. With this
model, we can capture key features of noisy spontaneous
oscillations of hair-bundle position X1 that have been
observed experimentally (Fig. 1C and D). The oscillation
of the motors’ position (Fig. 1D) is known in the model
but hidden in experiments. Trajectories of only X1(t) or
X2(t) do not reveal obvious signs of a net current, which
here would correspond to a drift. However, trajectories
in the (X1, X2) plane show a net current which is a signa-
ture of entropy production (Fig. 1E). In the following, we
will use this stochastic model to compare the irreversibil-
ity measure σ1 to the total entropy production σtot.

In the stochastic model of hair-bundle oscillations
given by Eqs. (3-4) we deal with only two variables,
therefore σtot = σ2. From the analytical expression of
σ2, we find that the steady-state entropy production
rate can be written as [26, 27]

σtot = −〈Q̇1〉
(

1

T
− 1

Teff

)
+
〈Ẇact〉
Teff

, (6)
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where −〈Q̇1〉 = −〈(∂V/∂X1) ◦ Ẋ1〉 is the steady-state
average heat dissipated to the thermal bath at tem-
perature T and 〈Ẇact〉 = −〈Fact ◦ Ẋ2〉 is the power
exerted by the active force on the motors. Here 〈 · 〉
denote steady state averages and ◦ the Stratonovich
product [28, 29]. Equation (6) reveals two sources of
nonequilibrium in the model: the difference of effective
temperature and temperature, and the active force.

We now introduce a new method to estimate the ir-
reversibility measure σ1 for any nonequilibrium steady
state from a single stationary time series xi = X(i∆t)
(i = 1, . . . , n) of a variable X that is even under time
reversal. We describe the technique for a single vari-
able, but it can be generalized to several variables Xα(t).
In discrete processes, the KL divergence in σ1 can be
accurately measured from the statistics of sequences of
symbols [30, 31]. In continuous processes however, esti-
mating σ1 is a herculean task due to the difficulties in
sampling the whole phase space of paths [32–34].

The key idea of our method is to exploit the invari-
ance of the KL divergence under one-to-one transfor-
mations. Suppose that there exists a one-to-one map
ξi(x1, . . . , xn), i = 1, . . . , n, that transforms the original
time series and its time reversal into two new time series
ξFi = ξi(x1, . . . , xn) and ξRi = ξi(xn, . . . , x1) that are in-
dependent and identically distributed (i.i.d.) processes.
Such a procedure is often called a whitening filter [35, 36].
Because the new series are i.i.d., the KL divergence is
now simple to calculate: it is given by the KL divergence
between two univariate distributions p(ξ) and q(ξ), cor-
responding to the stationary probability distribution of
ξFi and ξRi , respectively [34]. In general, it is not possible
to find a one-to-one map that fully eliminates the correla-
tions of both the forward (x1, . . . , xn) and the backward
(xn, . . . , x1) time series. In that case, the removal of the
correlations in the backward series is enough to provide
a lower bound for σ1:

σ1 ≥ kBfsD[p(ξ)||q(ξ)] ≡ σ̂1 , (7)

where fs = (∆t)−1 is the sampling frequency and
D[p(ξ)||q(ξ)] =

∫
dξ p(ξ) ln[p(ξ)/q(ξ)] is the KL diver-

gence between the univariate distributions p(ξ) and q(ξ).
We estimate D[p(ξ)||q(ξ)] ' γ

∑
i p̂i ln(p̂i/q̂i) where p̂, q̂

are empirical densities, and the sum runs over the num-
ber of histogram bins. We introduce the prefactor γ =
1−pKS ≤ 1, where pKS is the p-value of the Kolmogorov-
Smirnov statistic between p(ξ) and q(ξ), to correct the
statistical bias of our KL divergence estimate [37]. The
proof of the bound (7) and further details of the estimate
are found in [29].

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ξFi (ξRi ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
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FIG. 2: Illustration of the method to quantify time irre-
versibility σ̂1 from an experimentally obtained stochastic time
series xi of the tip position of a hair bundle partially shown
in top left panel in (A) (blue line). (A) Top: Time series
(top left, blue line) and time-reversed series (top right, red
line) normalized by their standard deviation. Bottom: resid-
ual time series ξFi (bottom left, blue line), ξRi (bottom right,
red line) given by the difference between the original series
and their predictions from an autoregressive model of order
10 fitted to the time-reversed series. (B) Autocorrelation
function of the forward time series xi (black "+"), and the
residual time series ξFi (blue filled squares) and ξRi (red open
circles). (C) Empirical probability densities of the time series
ξFi (p(ξ), blue filled squares) and ξRi (q(ξ), red open circles).
The data corresponds to a 30-s recording of the tip position
of an active hair bundle with oscillation frequency fo = 23 Hz
and sampling rate fs = 2.5 kHz.

are determined from fits of the AR-model to the time-
reversed series of positions.

Figure 2 illustrates our estimate of σ1 applied to a rep-
resentative experimental time series of hair-bundle oscil-
lations, plotted in panel A (top left). The residual time
series ξFi and ξRi (Fig. 2A, bottom) obtained from the
whitening transformation barely have any time correla-
tion (Fig. 2B) and are therefore i.i.d. processes in good
approximation. Although the time series and its time re-
versed (Fig. 2A, top right) do not look different by eye,
corresponding to relatively low values of the Kolmogorov-
Smirnov p-value (here pKS = 0.06), the measure provided
by the KL divergence (Eq. 7) yields σ̂1 = (4.3±0.8)kB/s
revealing that the residual distributions p(ξ) and q(ξ)
are different (Fig. 2C), i.e. time irreversibility. Since
σtot ≥ σ1 ≥ σ̂1, Eq. (7) implies that our irreversibility
measure σ̂1 provides for this case the bound σtot ≥ (4.3±
0.8)kB/s for the rate of entropy production. This bound
corresponds to an entropy production rate of at least
(0.19 ± 0.03)kB per oscillation cycle [29]. Interestingly,
this value corresponds to a rate of heat dissipation that
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FIG. 3: (A) Examples of experimental traces for the tip
position of different mechanosensory hair bundles as a func-
tion of time. Top: active hair bundles. Bottom: passive hair
bundles, i.e. when the channel blocker gentamicin is present
(magenta, green), and experimental noise trace (black). The
data used in Fig. 2 corresponds to the oscillation shown here
in red. (B) Irreversibility measure σ̂1 (symbols) as a function
of the observation time obtained from the experimental
traces partially shown in (A). (C) Estimate of the local irre-
versibility measure (8) obtained from single 30s recordings of
the oscillations shown in panel A as a function of the residual
value ξ. (D) Histogram of the irreversibility measure σ̂1

obtained from 182 experimental recordings of spontaneous ac-
tive oscillations of the hair bundle of duration texp = 30 s. The
experimental average value of the irreversibility measure σ̂1 is
∼ 3kB/s. Inset: Empirical cumulative distribution function
(CDF) of irreversibility (black circles). The red line is a fit to
an exponential distribution with mean value (2.82±0.02)kB/s
and R2 > 0.9990. The sampling rate was fs = 2.5 kHz.

is below, here by two orders of magnitude, the estimated
mean power output per hair cell ∼10kBT/cycle found for
spontaneous emissions of sound by the ears of lizards [38].

We apply our method to quantify irreversibility in
active oscillatory hair bundles (Fig. 3A, top), in quies-
cent hair bundles exposed to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, magenta and
green) and for noisy signals produced by the recording
apparatus when there is no hair bundle under the objec-
tive of the microscope (Fig. 3A, black). For sufficiently
long recordings, σ̂1 saturates to a value that exceeds the
value obtained for cells exposed to gentamicin and for
experimental noise (Fig. 3B). To gain further insights,
we apply the local irreversibility measure

ŝ1(ξ) ≡ kBfs

[
p(ξ) ln

p(ξ)

q(ξ)
+ q(ξ)− p(ξ)

]
, (8)
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FIG. 4: Dynamical and thermodynamic features of spon-
taneous hair-bundle oscillations as a function the calcium-
feedback strength S and maximal motor force Fmax obtained
from numerical simulations of the model given by Eqs. (3-4):
(A) Quality factor Q; (B) Steady-state average of the open
channel probability 〈Po〉; (C) Irreversibility measure σ̂1; (D)
Steady-state entropy production rate σtot. In (B,C,D) we
indicate the parameter values for which 〈Po〉 = 0.1, 0.5 and
0.9 (white dashed lines from top to bottom, respectively).
The results are obtained from numerical simulations of
Eqs. (3-4) of total duration tsim = 300 s, sampling frequency
fs = 1 kHz and parameter values λ1 = 2.8 pNms/nm,
λ2 = 10 pNms/nm, kgs = 0.75 pN/nm, ksp = 0.6 pN/nm,
D = 61 nm, ∆G = 10kBT , kBT = 4 pNnm and Teff/T = 1.5.

which obeys ŝ1(ξ) ≥ 0 for all ξ [39], and σ̂1 =
∫
dξŝ1(ξ):

for all the analyzed values of ξ, the local irreversibility of
active oscillations is ∼ 103 times larger than for passive
oscillations and experimental noise. Using a population
of 182 hair cells that showed spontaneous hair-bundle
oscillations [15], we obtained a probability density of σ̂1

that was well described by an exponential distribution
with mean 3 kB/s (Fig. 3C). Interestingly, this result
depends on the sampling frequency fs: irreversibility is
maximal in the range fs ∼ (200− 600)Hz where its value
goes up to 4.3 kB/s. This frequency dependency may
provide additional information about timescales of the
underlying active process [29].

Finally, we relate these estimates of entropy produc-
tion from experimental recordings to results obtained for
a stochastic model of hair-bundle oscillations. We per-
formed numerical simulations of Eqs. (3-4) for different
values of the control parameters Fmax and S (Fig. 4)
to explore entropy production throughout the state dia-
gram of the system. The quality factor of the oscillation
Q −given by the ratio between the oscillation frequency
and the bandwidth at half the maximal height of the
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power spectrum− and the average open probability 〈Po〉
at steady state are displayed in Fig. 4A-B in the state
diagram. The irreversibility measure σ̂1 for trajectories
X1(t) of spontaneous oscillations is shown in Fig. 4C.
This measure can be compared to the quantification of to-
tal entropy production σtot of the model, given by Eq. (6),
which is shown in Fig. 4D. Irreversibility of trajectories
and total entropy production correlate strongly. How-
ever, as expected, σ̂1 provides a lower bound: the rate of
entropy production estimated from our measure is here
typically three orders of magnitude smaller than the to-
tal entropy production. Clearly, measuring other degrees
of freedom additional to the hair-bundle position would
be required to obtain tighter bounds to the rate of en-
tropy production with our method or other estimation
techniques [40–44].

In summary, we have shown that fluctuations of ac-
tive systems can reveal the arrow of time even in the
absence of net drifts or currents. The hierarchy of
measures of time irreversibility introduced here provides
lower bounds for the entropy production of an active pro-
cess. These irreversibility measures can quantify contri-
butions to entropy production in active matter, including
living systems, from fluctuations of only a few mesoscopic
degrees of freedom. We have here demonstrated the ap-
plicability of the approach by estimating entropy produc-
tion associated with experimental noisy oscillations of a
single degree of freedom in the case of mechanosensory
hair bundles from the bullfrog’s ear.

We thank Peter Gillespie for providing the hair-bundle
picture used in Fig. 1A. We acknowledge stimulating
discussions with Izaak Neri, Andre C. Barato, Simone
Pigolotti, Johannes Baumgart, Jose Negrete Jr, Ken
Sekimoto, Ignacio A. Martínez, Patrick Pietzonka and
A.J. Hudspeth.
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SUPPLEMENTAL MATERIAL

Here we present additional details of the methods and results discussed in the Main Text. In Secs. and , we provide
a derivation of the bound used in Eq. (7) in the Main Text, and describe the whitening transformation that we use to
estimate irreversibility of stochastic time traces. In Sec. , we provide further details on the experimental results and
error analysis for the data shown in Fig. 2 in the Main Text. In Sec. , we provide further details on the experimental
results reported in Fig. 3 in the Main Text. In Sec. , we analyze how our irreversibility measure depends on the
data sampling rate of the experimental recordings of hair-bundle spontaneous fluctuations. In Sec. we introduce
and describe the local irreversibility measure given by Eq. (8) in the Main Text. In Sec. , we discuss how entropy
production is estimated in numerical simulations of the hair-bundle biophysical model. Section provides details on
the calculation of the quality factor of spontaneous oscillations shown in Fig. 4A in the Main Text. In Sec. , we
discuss the biophysical model of hair-bundle oscillations and the experimental techniques.

S1. BOUNDS ON THE MULTIVARIATE KULLBACK-LEIBLER DIVERGENCE

Here we prove a general lower bound for the Kullback-Leibler (KL) divergence between two multivariate probability
densities PX(x1, . . . , xn) and QX(x1, . . . , xn) that fulfill the following: there exits a one-to-one map ξi = ξi(x1, . . . , xn)
with i = 1, . . . , n, such that

1. the transformed variables ξi are identically distributed under both P and Q, that is, the distributions
PΞ(ξ1, . . . , ξn) and QΞ(ξ1, . . . , ξn) have, respectively, identical marginal distributions p(ξ) and q(ξ) for any ξi
(i = 1, . . . , n);

2. the transformed variables ξi are independent and identically distributed (i.i.d.) under the distribution Q, that
is, QΞ(ξ1, . . . , ξn) = Πi q(ξ).

The first step in the derivation is a simple application of the invariance of the KL distance under a one-to-one map:

D [PX(x1, . . . , xn)||QX(x1, . . . , xn)] = D [PΞ(ξ1, . . . , ξn)||QΞ(ξ1, . . . , ξn)] . (S9)

Second, we can rewrite the relative entropy as

D [PΞ(ξ1, . . . , ξn)||QΞ(ξ1, . . . , ξn)] =

∫
dξ1· · ·

∫
dξn PΞ(ξ1, . . . , ξn) ln

PΞ(ξ1, . . . , ξn)

Πi q(ξi)

=

∫
dξ1· · ·

∫
dξn

[
PΞ(ξ1, . . . , ξn) ln

Πi p(ξi)

Πi q(ξi)
+ PΞ(ξ1, . . . , ξn) ln

PΞ(ξ1, . . . , ξn)

Πi p(ξi)

]
= nD[p(ξ)||q(ξ)] +D [PΞ(ξ1, . . . , ξn)||Πi p(ξi)] . (S10)

Because the KL divergence between two distributions is always positive, Eqs. (S9) and (S10) yield the bound

D [PX(x1, . . . , xn)||QX(x1, . . . , xn)] ≥ nD[p(ξ)||q(ξ)] , (S11)

and the inequality saturates if the transformed variables ξi (i = 1 . . . n) are also i.i.d. under PΞ(ξ1, . . . , ξn), i.e. when
PΞ(ξ1, . . . , ξn) = Πi p(ξi). If one can find a one-to-one map that transforms the original random variables into i.i.d.
variables under both distributions P and Q, then (S11) becomes an equality and the exact KL divergence between the
two multivariate distributions PX and QX can be reduced to the KL divergence between single variable distributions
p(ξ) and q(ξ), which is much easier to evaluate from real data. This is the key idea of our method to estimate the
irreversibility of experimental time series.

S2. IRREVERSIBILITY IN CONTINUOUS TIME SERIES: THE WHITENING TRANSFORMATION

The estimation of the KL divergence rate from single stationary trajectories of both discrete and continuous random
variables have been previously discussed [34]. For continuous random variables, the most common strategy is to make
a symbolization or discretization of the time series [32]. Then, the KL divergence is estimated from the statistics
of substrings of increasing length [30, 31]. The main limitation of this method is that one easily reaches lack of
statistics even for short substrings. If the observed time series is non-Markovian, this limitation could yield inaccurate
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bounds for the entropy production. For instance, the KL divergence between two data substrings can be zero in
non-equilibrium stationary states without observable currents [30, 31, 34].

Here we introduce a new method to estimate the KL divergence rate

σ1

kB
≡ lim
t→∞

1

t
D
[
P
(
{x(s)}ts=0

)
||P
(
{x(t− s)}ts=0

)]
, (S12)

that is valid for continuous and possibly non-Markovian stochastic processes X(t). First, in practice one has access to
discrete-time observations of the process xi ≡ X(i∆t), i = 1, . . . , n, i.e., a time series containing n = t/∆t consecutive
samples of the process with sampling rate fs = 1/∆t. The time discretization implies a loss of information yielding a
lower bound to the KL divergence rate:

σ1

kB
≥ fs lim

n→∞

1

n
D[PX(x1, . . . , xn)||QX(x1, . . . , xn)] , (S13)

where QX(x1, . . . , xn) = PX(xn, . . . , x1) is the probability to observe the reverse trajectory (xn, . . . , x1).
We can now apply the inequality (S11) to the right-hand side in Eq. (S13) To do that, it is necessary to find a one-

to-one map ξi = ξi(x1, . . . , xn) that transforms the reverse time series (xn, . . . , x1) into a sequence of n i.i.d. random
variables, that is, into a white noise. Such a transformation is usually termed whitening transformation.

An example of whitening transformation is the time series formed by the residuals of an autoregressive model, which
is the transformation that we will use along this paper. A discrete-time stochastic process Yi is called autoregressive
of order m, AR(m), when its value at a given time is given by a linear combination of its m previous values plus a
noise term. Such process is univocally determined by m ≥ 1 real coefficients, a1, a2, . . . , am, a discrete-time white
noise ηi and a set of initial values Y1, Y2, . . . , Ym. The values of Yi for i > m are given by the linear recursion

Yi =

m∑
j=1

ajYi−j + ηi . (S14)

Inspired by the AR(m) process, we introduce the following one-to-one map

ξi =


xi if i ≤ m

xi −
m∑
j=1

ajxi−j if i > m
, (S15)

which is a linear transformation defined by a unitriangular matrix with Jacobian equal to one. With an appropriate
choice of the coefficients aj , one can get a new process (ξ1, . . . , ξn) which is approximately i.i.d. A good choice is given
by a maximum likelihood fit of the process to the AR(m) model. In that case, the elements ξi in this new time series
for i > m are usually called residuals of the original time series (x1, . . . , xn) with respect to the AR(m) model. Notice
also that, if (x1, . . . , xn) is indeed a realization of the stochastic process (S14), then the residuals are i.i.d. random
variables and the process (ξm+1, . . . , ξn) has correlations 〈ξiξj〉 = δij for all i, j > m.

We now apply the bound (S11) to the KL divergence in the right hand side of Eq. (S13), using the transformation
defined by Eq. (S15). Since the contribution of the first, possibly correlated, m values of the time series ξi, vanishes
in the limit n→∞, we obtain the following lower bound to the KL divergence rate [Eq. (7) in the Main Text]:

σ1

kB
≥ fsD[p(ξ)||q(ξ)] . (S16)

We can obtain empirical estimates of p(ξ) and q(ξ) from a single stationary time series (x1, . . . , xn) as follows.
We apply the transformation (S15) to both the original time series (x1, . . . , xn) and to its time reversal (xn, . . . , x1)
obtaining, respectively, two new time series (ξF

1 , . . . , ξ
F
n ) and (ξR

1 , . . . , ξ
R
n ), which are stationary at least for i > m.

The empirical PDFs obtained from the data of each series are estimations of, respectively, p(ξ) and q(ξ). Note that
the same transformation (S15) must be applied to both the original time series (x1, . . . , xn) and its time reverse
(xn, . . . , x1), but the inequality (S11) only requires uncorrelated residuals in the reverse series. For this purpose, we
calculate the coefficients a1, . . . , am by fitting the reverse time series (xn, . . . , x1) to the AR(m) model in Eq. (S14).

As indicated in the previous section, the inequality (S16) is tighter when the residuals are uncorrelated in the
forward series as well. This is the case of the experimental series that we have analyzed (see, for instance, Fig. 2B
in the Main Text) although, in principle, it is not guaranteed by this procedure. We remark that the inequality
(S16) is a rigorous result if the transformation (S15) applied to the reverse time series yields an uncorrelated series
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(ξR
1 , . . . , ξ

R
n ). In that case, kBfsD[p(ξ)||q(ξ)] is an estimate of σ1 with only two possible sources of error: i) the

discrete sampling of the process X(t) and ii) the remnant correlation time in the residuals (ξF
1 , . . . , ξ

F
n ) obtained from

the forward time series.

To summarize, our theory provides an estimate σ̂1 for the KL divergence rate σ1 which can be evaluated as
follows:

1. Estimate the coefficients, a1, . . . , am, by fitting the time-reversed series (xn, . . . , x1) to an autoregressive AR(m)
model of order m > 1. A reasonable choice is m = 10, but it should be tuned to minimize the correlation time
in the residuals (ξR

1 , . . . , ξ
R
n ).

2. Apply the whitening transformation (S15) to the original series (x1, . . . , xn) and to its time reversal (xn, . . . , x1)
to obtain, respectively, new time series (ξF

1 , . . . , ξ
F
n ) and (ξR

1 , . . . , ξ
R
n ). Note that the new processes are not each

other’s time reversal.

3. Obtain the empirical distributions p(ξ) and q(ξ) from the time series (ξF
1 , . . . , ξ

F
n ) and (ξR

1 , . . . , ξ
R
n ), respectively.

4. Calculate the KL divergence between p(ξ) and q(ξ)

D[p(ξ)||q(ξ)] =

∫
dξ p(ξ) ln

p(ξ)

q(ξ)
, (S17)

which can be estimated from numerical integration of the right hand side in (S17) using the empirical normalized
histograms p(ξ) and q(ξ). We call this estimate D̂, which is given by

D̂ = γ
∑
i

p̂i ln
p̂i
q̂i

, (S18)

where p̂i = nF
i /(
∑
i n

F
i ) and q̂i = nR

i /(
∑
i n

R
i ) are the empirical probabilities, obtained from the number of times

nF
i and nR

i that the sequences (ξF
1 , . . . , ξ

F
n ) and (ξR

1 , . . . , ξ
R
n ) lie in the i−th bin, respectively. The sum in (S18)

runs over all bins for which nF
i > 0 and nR

i > 0. For simplicity, we used 100 bins of equal spacing ranging from
the minimum to the maximum values of the residual time series (ξF

1 , . . . , ξ
F
n ).

The value of the estimate D̂ of the KL divergence (S17) is weighted by a prefactor γ ≤ 1 defined in terms of the
probability to reject the null hypothesis p(ξ) = q(ξ). We use this procedure to correct the statistical bias in the
estimation of the KL divergence that appears when two stochastic processes have similar statistics [31, 37]. For
this purpose, we use the Kolmogorov–Smirnov (KS) statistical test under the null hypothesis H0 : p(ξ) = q(ξ)
which yields a p-value pKS for the two distributions to be equal. Here, small pKS means that there is stronger
statistical evidence in favour of the alternative hypothesis p(ξ) 6= q(ξ), thus γ = 1 − pKS serves as a weight of
irreversibility: γ ' 0 when it is hard to reject H0 (reversibility) and γ ' 1 there is a larger statistical evidence
to reject H0.

5. Finally, our estimate of σ̂1 is thus given by the KL divergence estimate D̂ times the Boltzmann constant and
the data sampling frequency:

σ̂1 = kBfsD̂ . (S19)
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S3. DETAILS OF THE EXPERIMENTAL RESULTS IN FIG. 2

In this section, we describe the procedure used to estimate the bound σtot ≥ (4.3 ± 0.5)kB/s for the experimental
data shown in Fig. 2 in the Main Text. For different values of the observation time t ranging from 1.5s to 30s, we
slice the time series x1, . . . , xn into N ≥ 1 non-overlapping time series. We then evaluate the estimate σ̂1 given by
Eq. (S19) for each of the slices following the procedure described in Sec. . The value of the irreversibility measure at
each time t, denoted by σ̂1(t) and shown in Fig. S5, is the average of the estimate σ̂1 evaluated over the different slices
of length t. By fitting σ̂1(t) as a function of time t with an exponentially-decreasing function σ̂1(t) = A+B exp(−t/τ),
we estimate the mean value of the irreversibility measure from the value of the fitting parameter A. Next, we estimate
the error of σ̂1 (red shaded area in Fig. S5) from the standard deviation of the data points σ̂1(t) in the long-time
plateau t ≥ 5s > τ , which corresponds to the stationary limit.
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FIG. S5: Values of the irreversibility measure σ̂1 (red squares) evaluated for time traces of t ≤ τexp, with τexp = 30 s,
obtained for the experimental recording shown in Fig. 2 in the Main Text. The solid line is a fit of the data to a function
σ̂1(t) = A+B exp(−t/τ). Parameters of the fit: A = 4.3kB/s, B = 16kB/s, τ = 2s. Goodness of fit R2 = 0.87. The red shaded
area is centred in the long-time value A and its width equals to the standard deviation of the values σ̂1(t) with t ≥ 5s (see
histogram in the inset), which provides the mean and the error on the steady-state value of σ̂1 ≥ (4.3± 0.8)kB/s.

S4. DETAILS OF THE EXPERIMENTAL RESULTS IN FIG. 3

In this section, we provide further details of the experimental results shown in Fig. 3 in the Main Text and additional
information on the error and statistical analysis of these results.

The results in Fig. 3B of the Main text were obtained as follows. For different values of t ranging from texp/20 = 1.5s
to texp/2 = 15s (with texp = 30s the total time of the recording), we analyse Nt non-overlapping time series obtained
by slicing the experimental time series (x1, . . . , xn), with n∆t = texp. Here, Nt equals to texp/t rounded to the lowest
integer. For each value of t, we obtain Nt estimates of σ̂1 as described by Eq. (S19). The data points plotted in
Fig. 3B in the Main Text are given by the average of the Nt values of σ̂1, and the error bars are the standard deviation
of the Nt values of σ̂1.

The results in Fig. 3C of the Main text were obtained as follows. For each of the 182 experimental recordings of
hair bundle oscillations at sampling frequency fs = 2.5 kHz, we estimate σ̂1 from the residual time series of duration
texp = 30 s and following the procedure described in Sec. .

In Fig. S6A we show the values and error bars of the estimate σ̂1 obtained following the procedure described in
Sec. . Notably, only the time series obtained from active oscillations (cyan, orange, blue and red symbols in Fig. S6A)
display values of σ̂1 (± error bars) that are larger than zero, corresponding to time-irreversible oscillations. Fig. S6B
shows the value of the parameter γ = 1−pKS obtained for these 30s experimental recordings. We recall here that pKS

is the Kolmogorov–Smirnov (KS) statistic under the null hypothesis H0 : p = q. This analysis reveals that recordings
obtained from this set of active oscillations are not time-reversal invariant with KS p-value pKS < 0.2 (blue square in
Fig. S6B), although two of the cells (green and orange symbols) show pKS < 0.05. In Fig. S6C we show the distribution
of γ for the full ensemble of experimental recordings analyzed in this work. We find that in 22% of the experimental
recordings, the s distributions p(ξ) and q(ξ) are different with pKS < 0.05, and thus γ > 0.95. The irreversibility
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FIG. S6: (A) Irreversibility measure σ̂1 for the oscillations depicted in Fig. 3A of the Main Text. The value and error
bars are obtained as described in Sec. . The horizontal dotted line is set to zero as a guide to the eye. (B) Value of the
parameter γ = 1− pKS for the same oscillations, with pKS the p-value of the Kolmogorov-Smirnov statistic for the distributions
of the residuals ξF and ξR to be the identical. (C) Histogram of γ obtained from 182 experimental recordings of hair bundle
oscillations each with duration of 30s. The vertical dashed line is set to a common threshold of the Kolmogorov-Smirnov
parameter γ = 0.95, which corresponds to 22% of the recordings. The sampling frequency of the oscillations is fs = 2.5 kHz.

10 15 20 25 30 35
0

5

10

15

20

25

30

C
ou

nt
s

0 0.5 1 1.5 2 2.50

10

20

30

40

50

C
ou

nt
s

A B

50

N = 182 cells

Mean = 3.01 kB / s

N = 41 cells

Mean = 7.25 kB / s

N = 182 cells

Mean = 0.24 kB / cycle

N = 66 cells

Mean = 0.46 kB / cycle

FIG. S7: Histograms of the irreversibility measure σ̂1 in units of kB/s (A) and in units of kB per oscillation cycle (B). The
histograms were obtained from the full ensemble of 182 oscillatory hair cells (turquoise bars) and from the sub-ensemble of 66
cells that display irreversibility in the residuals with Kolmogorov-Smirnov parameter γ ≥ 0.95 (yellow bars). The sampling
frequency of the oscillation is here fs = 2.5 kHz.

measure σ̂1 for this sub-ensemble of irreversible oscillations, consisting of 41 recordings, displays a distribution with
mean equal to 2.4 times the mean of the full ensemble (Fig. S7A). We also compare the irreversibility measure in units
of kB per oscillation cycle, i.e. σ̂1/fo, where fo is determined from a fit of the power-spectrum density (see Sec. ), and
show that the irreversibility of our experimental recordings is on average of the order of 0.2kB/cycle (0.5kB/cycle) for
the full (sub-) ensemble of the cells analyzed (Fig. S7B).

Our quantification of irreversibility thus predicts that hair bundles displaying irreversibility with pKS < 0.05 produce
entropy at an average rate of at least ∼ 0.5kB per oscillation cycle. Investigating the tightness of the bound σtot ≥



11

σ̂1 is a challenging experimental task since no direct measurements of heat dissipation in spontaneous hair-bundle
oscillations have yet been reported. Reference [38] reports experimental estimates of the sound power in spontaneous
oto-acoustic emissions by the iguanoid lizard Anolis sagrei. Spontaneous oto-acoustic emissions are weak sounds
that are emitted spontaneously by the ears of the animal; these sounds are though to be produced by spontaneous
hair-bundle oscillations in the auditory organ of the inner ear. From these measurements, the mean power output
of individual hair bundles is estimated to be on average of 141 aW = 1.41 × 10−16J/s = 3.37 × 104 kBT/s, where
kBT = 4.18 × 10−21J for T = 30◦C. The oscillation frequency of lizards’ hair bundles used in [38] was in the range
1−8 kHz. Using an average oscillation frequency fo = 3.5kHz, we estimate the mean power output to be on the order
of 3.37 × 104 kBT/s/(3.5 × 103cycle/s) ' 10kBT/cycle, i.e. 20 times larger than the average value of our measure of
irreversibility (Fig. S7B). We remark here that the results presented in this section and in the Main Text are specific
for the sampling frequency fs = 2.5 kHz. In the next section we will discuss how the KS p-value and our bound of
entropy production depend on fs.

S5. DEPENDENCY OF THE IRREVERSIBILITY MEASURE ON THE SAMPLING FREQUENCY

In this section, we analyse the dependency of our irreversibility measure on the sampling frequency fs. For this
purpose, we evaluate σ̂1 defined in Eq. (S19) for 30s recordings of the 182 cells that showed spontaneous oscillations at
different sampling frequencies, ranging from 125Hz to 2500Hz (the latter corresponding to the data shown in Fig. 3C in
the Main text). Figure S8 shows that the distribution of the irreversibility measure depends strongly on the sampling
frequency of the data. Notably, the distributions shift towards higher irreversibility when the sampling frequency is
reduced, until there is too much filtering fs < 250Hz such that oscillations cannot be distinguished clearly.
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FIG. S8: Histograms of the irreversibility measure σ̂1/kB for different values of the sampling frequency fs indicated above each
panel of the figure. All the histograms were obtained from the same ensemble of 182 oscillatory hair cells that displayed active
oscillations.

In Fig. S9 we report the distributions of the parameter γ for the 182 recordings of spontaneous oscillations at
different sampling frequencies. For all the analyzed cases, the distributions are right-sweked towards values of γ close
to 1. Interestingly, the number of cells that display large γ (i.e. KS p-value pKS < 0.05) attains its maximum in an
intermediate frequency range ∼ 200− 600Hz. To gain further insight on this result, we plot in Fig. S10 box plots of
the distributions of γ and of the corresponding irreversibility estimate σ̂1 as a function of the data sampling frequency.
Notably, the median of γ is above 0.95 for intermediate sampling frequencies ranging from 208 to 625Hz (Fig. S10A).
For values of fs of this frequency band 208 − 625Hz, the median of γ is above 0.95 indicating that more than half
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of the cells display irreversibility with "significant" KS p-value pKS < 0.05 at those frequencies. Within this band,
the median of the irreversibility measure σ̂1 decreases monotonically with fs from 3.5 kB/s (fs = 208 Hz) to 2.6 kB/s
(fs = 625 Hz).
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FIG. S9: Histograms of the parameter γ = 1− pKS with pKS given by the Kolmogorov-Smirnov p-value for different values of
the sampling frequency fs indicated above each panel of the figure. All the histograms were obtained from the same ensemble
of 182 oscillatory hair cells that displayed active oscillations.
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FIG. S10: Box plot of the parameter γ (A) and of the irreversibility measure σ̂1 (B) as a function of the sampling frequency
obtained from recordings of the tip position of hair bundles in the entire population of 182 cells. The yellow dashed line in (A)
is set to the threshold γ = 0.95 corresponding to the Kolmogorov-Smirnov p-value pKS < 0.05. In (B), we highlight (horizontal
yellow thick lines) the median of the distributions of σ̂1 for which the median value of γ is larger than 0.95.
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S6. LOCAL IRREVERSIBILITY MEASURE

In this section, we introduce a local irreversibility measure σ̃1(ξ) that provides further insights about the degree of
irreversibility of a time series. For this purpose, we first note, following Shiraishi et al. [39] that the KL divergence
between two univariate distributions D[p(ξ)||q(ξ)] can be written as follows

D[p(x)||q(x)] =

∫
dx p(x) ln

p(x)

q(x)
(S20)

=

∫
dx
[
p(x) ln

p(x)

q(x)
+ q(x)− p(x)

]
︸ ︷︷ ︸

≡s[p(x)||q(x)]≥0

, (S21)

where in the second line we have used the fact that both p and q are normalized, i.e.
∫
dx p(x) =

∫
dx q(x) = 1. In

Ref. [39] it was shown that the function s[p(x)||q(x)] = p(x) ln p(x)
q(x) + q(x)− p(x) is positive, and thus provides a local

distance between two probability densities p(x) and q(x) i.e. at a given value of the random variable x. Following the
irreversibility estimate provided by Eq. (S19) we can define the local irreversibility as

s1(ξ) = kBfs

[
p(ξ) ln

p(ξ)

q(ξ)
+ q(ξ)− p(ξ)

]
, (S22)

which obeys by definition σ1 =
∫
dξ s1(ξ). Figure S11 shows estimates of s1(ξ) obtained for the seven time series

reported in Fig. 3(A-B) in the Main Text. The estimate ŝ1(ξ) is obtained by replacing p(ξ) and q(ξ) in Eq. (S22) by
the corresponding empirical densities. Notably, active cells exhibit larger values of irreversibility than passive cells:
at any value of the residual ξ of the whitening transformation, we find ŝact

1 (ξ) ≥ ŝpass
1 (ξ). Moreover, typical values

of local irreversibility are in the range ŝact
1 (ξ) ∼ 0.1kB/s for such active cells and ŝpass

1 (ξ) ∼ 10−4kB/s for the passive
cells, and the latter is comparable to the result obtained for the experimental noise.

We evaluate in Fig. S11 the local irreversibility measure for three representative experimental time series (Fig. S11A).
We plot in Fig. S11B the residual distributions corresponding to the active cell in Fig. 2 in Main Text (blue), an
active cell whose time series exhibits large jumps (red) and experimental noise (green). The active cell with larger
jumps produces the most noticeable difference of the residual distributions at the tails |ξ| ≥ 0.5. Notably, we show in
Fig. S11C that the local irreversibility measure for the active cells is three orders of magnitude larger than its value
for the passive oscillation, throughout all the range of values of the residuals. Furthermore, the contributions to the
local irreversibility measure from central and extreme residuals are of the same order of magnitude, for both typical
and atypical (large jumps) active oscilaltions.
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FIG. S11: (A) Snapshots of duration 0.5s extracted from 30s-experimental recordings of the position of the tip of two active
hair bundles (top blue and middle red) and of experimental noise, normalized by the time series standard deviation. Empirical
probability density ((B)) of the residuals p(ξ) (filled squares) and q(ξ) (open circles), and local irreversibility measure ((C))
given by Eq. (S22) for the time series partially shown in (A).
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S7. QUANTIFICATION OF ENTROPY PRODUCTION IN NUMERICAL SIMULATIONS OF HAIR
BUNDLE OSCILLATIONS

In this Section, we provide numerical results for the stochastic model of the ear hair bundle given by Eqs. (3-5) in
the Main Text. The steady-state entropy production rate of the model is given by

σtot =
1

T

〈
F1 ◦

dX1

dt

〉
+

1

Teff

〈
F2 ◦

dX2

dt

〉
, (S23)

where F1 = F1(X1, X2), F2 = F2(X1, X2) and ◦ denotes the Stratonovich product. Using the definitions of the forces
in Eq. (S23) one obtains after some algebra Eq. (6) in the Main Text. In all our numerical simulations, we estimate
the steady-state averages of the type 〈

F ◦ dX
dt

〉
= lim
t→∞

1

t

∫ t

0

F (t′) ◦ dX(t′) , (S24)

for a generic force F (t) = F (X(t), Y (t)) from a single stationary trajectory of total duration tsim = 300 s and sampling
time ∆t = 1 ms as follows:〈

F ◦ dX
dt

〉
' 1

tsim

n∑
i=1

(
F (ti) + F (ti−1)

2

)
(X(ti)−X(ti−1)) , (S25)

where ti = i∆t and n = tsim/∆t.

S8. ESTIMATION OF THE QUALITY FACTOR OF STOCHASTIC OSCILLATORS

We estimate the quality factor Q of spontaneous hair-bundle oscillations from numerical simulations of the hair-
bundle stochastic model given by Eqs. (3-4) in the Main Text. For this purpose, we generate a single numerical
simulation of duration tsim = 300 s. We then partition the simulation into 10 consecutive traces of duration T =
tsim/10 = 30 s. For each of these traces {Xα(t)} (α = 1, . . . , 10) we compute the power spectral density as Cα(f) =

(1/T )
∣∣∣∫ T0 Xα(s)e2πift dt

∣∣∣2. We then calculate the average of the power spectral density over the 10 different traces

C̃(f) = (1/10)
∑10
α=1 Cα(f) and fit the estimate C̃(f) as a function of f to the sum of two Lorentzian functions [4,

15, 45]

C̃(f) =
A

(fo/2Q)2 + (f − fo)2
+

A

(fo/2Q)2 + (f + fo)2
, (S26)

where Q is the quality factor, fo is the oscillation frequency and A > 0 is an amplitude parameter. Figure S12 shows
examples of numerical simulations for which we apply this procedure to determine the value of the quality factor
by extracting the value Q from the fit of the data to Eq. (S26). Notably, Eq. (S26) reproduces power spectra of
hair-bundle simulations for oscillations with values Q that are in a wide range of orders of magnitude (Fig. S12C).
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FIG. S12: Estimation of the quality factor Q from numerical simulations of the hair bundle. (A) Values of the quality factor
Q calculated from numerical simulations of duration tsim = 300 s for the same parameter values as in Fig. 4 in the Main Text.
(B) Examples of 0.5-second traces of X1 as a function of time for the parameter values indicated in A: B.1) [1 in (A)]; B.2) [2 in
(A)], B.3) [3 in (A)]; B.4) [4 in (A)]. (C) Power spectral density (black line) of the numerical simulations with parameter values
indicated with black open circles in (A). The quality factor is estimated from a fit of the power spectra to Eq. (S26) (red line).
The values of Q and fo extracted from the fits are: Q = 0.5, fo = 7.3Hz (C.1), Q = 7, fo = 25Hz (C.2), Q = 0.45, fo = 10.6Hz
(C.3), Q = 3.8, fo = 41.3Hz (C.4).

S9. BIOPHYSICS OF MECHANOSENSORY HAIR BUNDLES

Details of the experimental procedure have been published elsewhere [2]. In short, an excised preparation of the
bullfrog’s (Rana catesbeiana) sacculus was mounted on a two-compartment chamber to reproduce the ionic environ-
ment of the inner ear. This organ is devoted to sensitive detection of low-frequency vibrations (5 − 150 Hz) of the
animal’s head in a vertical plane; it contains about 3000 sensory hair cells that are arranged in a planar epithelium.
The basal bodies of hair cells were bathed in a standard saline solution and the hair bundles projected in an artificial
endolymph. The preparation was viewed through a ×60 water-immersion objective of an upright microscope. Under
these conditions, spontaneous hair-bundle oscillations were routinely observed. The oscillations could be recorded
by imaging, at a magnification of ×1000, the top of the longest stereociliary row onto a displacement monitor that
included a dual photodiode. Calibration was performed by measuring the output voltages of this photometric system
in response to a series of offset displacements. Here, we analyzed 182 spontaneously oscillating hair bundles from data
previously published [15].

Spontaneous hair-bundle oscillations were described by a published model of active hair-bundle motility [2] that
rest on a necessary condition of negative hair-bundle stiffness, on the presence of molecular motors that actively pull
on the tip links, and on feedback by the calcium component of the transduction current. Hair-bundle deflections
affect tension in tip links that interconnect neighbouring stereocillia of the bundle. Changes in tip-link tension in
turn modulate the open probability of mechano-sensitive ion channels connected to these links. Importantly, the
relation between channel gating and tip-link tension is reciprocal: gating of the transduction channels affects tip-link
tension. Consequently, channel gating effectively reduces the stiffness of a hair bundle, a phenomenon appropriately
termed "gating compliance", which can result in negative stiffness if channel-gating forces are strong enough. Active
hair-bundle movements result from the activity of the adaptation motors. By controlling tip-link tension, adaptation
motors regulate the open probability of the mechanosensitive channels. The force produced by the motors is in turn
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regulated by the Ca2+ component of the transduction current which thus provides negative feedback on the motor
force [2]. When the fixed point of this dynamical system corresponds to an unstable position of negative stiffness, the
system oscillates spontaneously. The maximal force exerted by the motors Fmax and the calcium feedback strength S
are control parameters of the system and fully determine its dynamics (oscillatory, quiescent, bi-stable) [25].
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