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• Complete line position and intensity analysis of the bending region of germane.

• Accurate determination of the Ge–H equilibrium bond length.

• Update of Germane Calculated Spectroscopic Database
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Abstract

Germane is a tetrahedral molecule found in trace abundance in giant gas planets like Jupiter
and Saturn. We have recently provided a database of calculated lines of the stretch-
ing fundamental bands in the 2100 cm−1 region that is of high interest for planetology
(https://vamdc.icb.cnrs.fr/PHP/GeH4.php). It is now necessary to study many rovibra-
tional levels, including the lowest ones, in order to access the hot bands and thus to improve
the model of the spectral region of interest for Jupiter, especially in the framework of the
ongoing Juno mission. We present here a complete analysis and modeling of line positions
and intensities in the ν2/ν4 bending dyad region near 900 cm−1 for all five germane isotopo-
logues in natural abundance. Thanks to the high symmetry of the molecule, we use the
tensorial formalism and group theory methods developed in the Dijon group, that allows
us to provide a set of effective Hamiltonian and dipole parameters. The present study also
leads to a refined value of the Ge–H equilibrium bond length of 1.51714(25) Å. Finally, new
calculated germane lines were derived and injected in the GeCaSDa database.

Keywords:
Germane, High-Resolution Infrared Spectroscopy, Line positions, Line intensities,
Tensorial Formalism

1. Introduction

The presence of germane in the atmosphere of giant planets is known since 1978 and the
discovery of the molecule by Fink et al. [1] in the atmosphere of Jupiter in trace amount. In
2011, the Juno NASA space probe was launched toward the gas giant carrying the JIRAM
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(Jovian InfraRed Auroral Mapper) spectrometer, covering the large 1.993–5.014 µm range.
Since 2016, Juno is orbiting Jupiter, recording data with an accuracy never reached before [2].
Accurate modeling of the GeH4 infrared spectrum is now essential, in particular to allow the
retrieval of other tropospheric species. In 2018, we have presented the first complete analysis
and modeling of line positions and intensities in the strongly absorbing ν1/ν3 stretching dyad
region near 2100 cm−1, for all five germane isotopologues in natural abundance [3]. This
study was recently used by Grassi et al. [4] in the analysis of the IR spectro-imager data
leading to the creation of latitudinal profiles.

The introduction of our previous paper [3] presented a review of the different spectro-
scopic analyses conducted by other groups. Since that publication, we can additionally cite
the very recent works of Ulenikov et al. [5, 6] about the analysis of this same bending dyad
and of some hot bands in the 1100–1350 cm−1 region.

The present work constitutes a complete line position and intensity investigation of the
bending region of germane between 715 and 1100 cm−1. Although this region has not the
same interest in planetology as the bands analyzed in our previous work, their modeling
is an important step in the characterization of hot bands. This study allows us to fit
effective Hamiltonian for v2 = 1 and v4 = 1 states. The ν2 and ν4 fundamental bands could
be analyzed as an interacting dyad for the five isotopologues that are present in natural
abundance: 70GeH4 (21.23%), 72GeH4 (27.66%), 73GeH4 (7.73%), 74GeH4 (35.94%) and
76GeH4 (7.44%). We could also perform the fit of the effective dipole moment parameters
for these two bands, leading to absolute line intensity predictions. Section 2 details the
experimental method, while Section 3 focuses on the theoretical model developed in Dijon.
Section 4 presents the line intensity measurements. Then, Section 5 presents and discusses
the results of our analyses. The present data also allowed us to determine a new accurate
value of the Ge–H equilibrium bond length.

2. Experimental details

Ten absorption spectra of germane (GeH4) have been recorded in the range from 675 to
1210 cm−1 using the high-resolution Fourier transform spectrometer (FTS) Bruker IFS125HR
located at the LISA facility in Créteil. The instrument was equipped with a silicon carbide
Globar source, a KBr/Ge beamsplitter and an optimized home-made MCT detector de-
veloped at the AILES beamline [7], used in conjunction with two bandpass optical filters
(675− 960 and 810− 1210 cm−1) to improve the signal-to-noise ratio (S/N). The FTS was
continuously evacuated below 7 Pa by a dry pump to minimize absorption by atmospheric
gases. The diameter of the entrance aperture of the spectrometer was set to 1.5 mm, to
maximize the intensity of IR radiation falling onto the detector without saturation or loss
of spectral resolution. Interferograms were recorded with a 40 kHz scanner frequency and
a maximum optical path difference (MOPD) of 473.68 cm. According to the Bruker def-
inition (resolution = 0.9 / MOPD), this corresponds to a resolution of 0.0019 cm−1. The
spectra were obtained by Fourier transformation of the interferograms using a Mertz phase
correction, 1 cm−1 phase resolution, a zero-filling factor of 2 and no apodization (boxcar
option).
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Germane 5.0 (99.999 % stated purity) was purchased from Linde Gas and used without
further purification. For all the measurements, a small cryogenic cell (5.10 ± 0.01 cm path
length) made of stainless steel to minimize adsorption and corrosion issues, fitted with
9.5 mm diameter, 0.4 mm thick, wedged diamond windows (E6, Netherlands) and housed
inside the sample compartment of the Bruker IFS125HR spectrometer, was used. A detailed
description of the cell is given in Ref. [8]. The sample pressure in the cell was measured
using calibrated MKS Baratron capacitance manometers models 627D (2 and 100 torr full
scale) and 628 D (10 torr full scale), characterized by a stated reading accuracy of 0.12 %.
Taking into account the uncertainty arising from small variations of the pressure during the
recording (∼ 0.35 %), we estimated the measurement uncertainty on the pressure to be equal
to 0.5 %. All the spectra were recorded at a stabilized room temperature of 300 ± 1 K.

The following procedure was used to record the spectra. A background spectrum was
first collected while the cell was being continuously evacuated. It was recorded at the same
resolution as the sample spectra to ensure proper removal of the water vapor absorption
lines and of the weak channeling generated by the wedged cell windows. The infrared gas
cell was then passivated several times with the GeH4 sample. Finally, spectra were recorded
for ten different sample pressures of germane. The ten pressures chosen and the number
of interferograms recorded and averaged to yield the corresponding spectra are listed in
Table 1. All the sample spectra were ratioed against the empty cell background spectrum,
and interpolated 4 times. The root mean square (RMS) S/N ratio in the ratioed spectra
ranged between 270 and 750. For line position analysis, spectra S2, S4 and S7 were used
and were calibrated by matching the measured positions of 32 lines of OCS observed in the
800–1000 cm−1 spectral region to reference wavenumbers available in HITRAN [9] with a
RMS deviation of 0.0002 cm−1. Figs 1 and 2 present an overview of the ν4 region for 3 of
the spectra recorded and the R(4) manifold of the ν4 band of the five isotopologues studied
in the present work, respectively.

3. Theoretical model

As already mentioned in our previous work [3], germane is a tetrahedral spherical top
molecule with Td point group symmetry at equilibrium and possesses four normal modes of
vibration. In this study we only focus on the doubly-degenerate mode with E symmetry,
ν2, and the triply-degenerate mode with F2 symmetry, ν4. They interact and form the ν2/ν4

bending dyad region and are respectively and approximately centered at 930 cm−1 and
820 cm−1.

3.1. Effective Hamiltonian operator

Due to the high symmetry of the molecule, we use the tensorial formalism and group
theory methods developed in the Dijon group [10, 11]. Let us just recall briefly the principles
of this model.

We are here considering an XY4 molecule for which the vibrational levels can be grouped
into a series of polyads named Pk with k = 0, . . . , n, Pk=0 being the ground state (GS). The
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Hamiltonian operator is written as follows (assuming that some perturbative treatment such
as a contact transformation [12] has been performed to eliminate inter-polyad interactions):

H = H{P0≡GS} +H{P1} + . . .+H{Pk} + . . .+H{Pn−1} +H{Pn}. (1)

where the different H{Pk} terms are expressed in the following form:

H{Pk} =
∑

all indexes

t
Ω(K,nΓ)ΓvΓ′v
{s}{s′} β

[
εV

Ωv(ΓvΓ′v)Γ
{s}{s′} ⊗RΩ(K,nΓ)

]
(A1). (2)

In this equation, the t
Ω(K,nΓ)ΓvΓ′v
{s}{s′} are the parameters to be determined, while εV

Ωv(ΓvΓ′v)Γ
{s}{s′}

and RΩ(K,nΓ) are vibrational and rotational operators, respectively. For each term, Ωv and
Ω represent the degree in elementary vibrational operators (creation a+ and annihilation a
operators), and rotational operators (components Jx, Jy and Jz of the angular momentum),
respectively. ε = (−1)Ω is the parity under time reversal. β is a factor that allows the scalar
terms (terms with Γ = A1, the totally symmetric irreducible representation of Td) to match
the “usual” contributions like B0J

2, etc. The order of each individual term is defined as
Ω + Ωv − 2. We deal with the effective Hamiltonians which are obtained, for a given polyad
Pk, by the projection of H on the Pn Hilbert subspace:

H̃<Pn> = P<Pn>HP<Pn> (3)

= H<Pn>
{GS} +H<Pn>

{P1} + . . .+H<Pn>
{Pk} + . . .+H<Pn>

{Pn−1} +H<Pn>
{Pn} .

In the case we are interested in, ν2 transitions are clearly visible while this band is “for-
bidden” in absorption. This, and the fact that ν2 and ν4 are close enough (≈ 100 cm−1)
imply an intensity borrowing by Coriolis coupling. Therefore we shall treat both bands as
an interacting dyad, as this is often the case for tetrahedral XY4 molecules [13, 14, 15].

We thus use the following effective Hamiltonians:

• The ground state effective Hamiltonian,

H̃<GS> = H<GS>
{GS} . (4)

• The ν2/ν4 bending dyad effective Hamiltonian,

H̃<ν2/ν4> = H
<ν2/ν4>
{GS} +H

<ν2/ν4>
{ν2/ν4} . (5)

3.2. Effective dipole moment operator

In order to calculate transition absolute intensities, we also need to expand the effective
dipole moment operator in a very similar way to what we did recently in the case of the
RuO4 [16] and SiF4 [17] molecules. This operator, just as the effective Hamiltonian, is
expanded as a sum of rovibrational operators, as detailed in Ref. [12]. In the case of the
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ν2/ν4 bending dyad, it appears necessary to expand it up to order one plus a single second-
order operator (with K = 0 for the rotational part) in the case of ν4. This amounts to a total
of four operators and thus to four associated parameters to be fitted using experimental line
intensities:

µ̃ = +µ1
2

(
R1(1,0F1) ⊗ −V 1(A1E)E

{GS}{ν2}

)
(F2)

+µ0
4

(
R0(0,0A1) ⊗ +V

1(A1F2)F2

{GS}{ν4}

)
(F2)

+µ1
4

(
R1(1,0F1) ⊗ −V 1(A1F2)F2

{GS}{ν4}

)
(F2)

+µ2
4

(
R2(2,0A1) ⊗ +V

1(A1F2)F2

{GS}{ν4}

)
(F2), (6)

where we used a simplified notation for the effective parameters. Here, µ0
4 is the dipole

moment derivative relative to the q4 normal mode coordinates and µ1
4 is a rovibrational

contribution that corresponds to the usual Herman-Wallis factor, while µ2
4 is a second-order

rovibrational correction and µ1
2 is an induced rovibrational term for the ν2 band (this term

is induced into the effective dipole moment operator by the contact transformation that
isolates the bending dyad; this has been previously explained in the case of methane, CH4,
see [18]). In Equation 6, the R and V symbols represent rotational and vibrational operators,
just as in the case of the effective Hamiltonian operator; their construction is detailed in
Refs. [12, 19]. In principle, there exist three other rovibrational operators at order two (with
K = 2 for the rotational part), but these cannot be determined here (see Section 5.3) and
are thus ignored.

3.3. Basis sets

The calculation of the effective Hamiltonian and effective dipole moment matrix elements
are performed in the coupled rovibrational basis∣∣[Ψ(Cv)

v ⊗Ψ(J,nCr)
r

]
(C)
σ

〉
, (7)

where Ψ
(J,nCr)
r is a rotational wavefunction with angular momentum J , rotational symmetry

species Cr and multiplicity index n; Ψ
(Cv)
v is a coupled vibrational basis set; C is the overall

symmetry species (C = Cv ⊗ Cr), with component σ. In the present case, Ψ
(Cv)
v contains

the relevant functions for the ν2 and ν4 normal modes of vibration (bending modes),∣∣Ψ(Cv)
v σv

〉
=
∣∣(Ψ(l2,n2C2)

v2
⊗Ψ(l4,n4C4)

v3
)(Cv)
σv

〉
, (8)

with two contributions:

• For the doubly degenerate mode ν2, we use a symmetrized doubly degenerate harmonic
oscillator basis set denoted ∣∣ψ(l2,C2)

v2 σ2

〉
= |v2, l2, C2, σ2〉 , (9)

with v2 = l2 = 1 for the dyad under consideration, v2 and l2 being the usual vibrational
angular momentum quantum numbers and C2 = E.
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• For the triply degenerate mode ν4, we use a symmetrized triply degenerate harmonic
oscillator basis set denoted ∣∣ψ(l4,n4C4)

v4 σ4

〉
= |v4, l4, n4, C4, σ4〉 , (10)

with v4 = l4 = 1 for the dyad under consideration, v4 and l4 being the usual vibrational
angular momentum quantum numbers and C4 = F2, while n4 is a multiplicity index.

The effective Hamiltonian matrix is diagonalized numerically, and this leads to eigen-
functions obtained from

H̃
∣∣Ψ(J,C,α)

σ

〉
= E

∣∣Ψ(J,C,α)
σ

〉
, (11)

where α = 1, 2, . . . numbers functions with the same symmetry C in a given J block. This
eigenbasis set can be expanded in terms of the initial rovibrational basis set (7) and is used
to calculate the matrix elements (in Debye) of the Z component µZ of the effective dipole
moment operator µ̃, in the laboratory-fixed frame. This µZ component is related to µ̃ from
Equation (6) through Stone coefficients [20] and the direction cosines tensor as explained in
Section 6.1. of Ref. [10]. The line intensity at temperature T for a transition at wavenumber
ν̃if (in cm−1) between an initial state i (with energy Ei, in Joules) and a final state f is then
obtained through:

Sif (cm−1/(molecule cm−2)) =
1

4πε0

ν̃if
8π3

3hcQ
e
− Ei
kBT

(
1− e−

hcν̃if
kBT

)
Rif , (12)

with

Rif = 3
∑
αi,αf

∣∣∣∣〈Ψ(Ji,Ci,αi)
σf

∣∣∣µZ ∣∣∣∣Ψ(Jf ,Cf ,αf)
σf

〉∣∣∣∣2 . (13)

Q is the total partition function at temperature T , c the speed of light in vacuum, h Planck’s
constant and kB Boltzmann’s constant. The line strength Sif is expressed here in the so-
called “HITRAN unit” [9].

4. Line intensity measurements

As was done in our previous contribution for germane [3], the line intensities were mea-
sured using a multi-spectrum fitting program developed in Brussels [21, 22]. This program
adjusts a synthetic spectrum to each of any number of observed Fourier transform spec-
tra, using a Levenberg-Marquardt non-linear least-squares fitting procedure. Each synthetic
spectrum is the convolution of the molecular transmission spectrum with an instrument line
shape function, calculated on a wavenumber scale interpolated 4 times with respect to that
of the corresponding observed spectrum. The latter was estimated using the “extended ILS
model” of the program linefit (version 14.5, [23]) relying on a few isolated strong lines of
the ν4 band of germane observed in the lowest pressure spectrum, interpolated 16 times and
chosen because self broadening could be neglected. Neglecting its wavenumber dependence,
the ILS thus determined was used during the multi-spectrum analysis of the spectra. The
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profile of the molecular lines was modeled using a Voigt function [24], with Gaussian width
always held fixed to the value calculated for the Doppler broadening. The measurements
were carried out on small spectral intervals, ranging from 0.015 to 0.60 cm−1 and contain-
ing one to several lines. The background in each spectrum was modeled by a polynomial
expansion up to the second order.

Of the 10 spectra recorded at pressures in the range 0.13 − 90 torr, 7 were actually
used. The measurements performed in the region of the ν2 band involved the fitting of the
self-broadening coefficients of lines stronger than about 2.0× 10−23 cm−1/(molecule cm−2).
The self broadening coefficients of the other lines were held fixed at 0.1 cm−1atm−1, a rough
average of the self broadening coefficients measured in the ν3 band [3]. The measurements
performed for the P and R branches of the weaker ν2 band mainly relied on the higher
pressure spectra S4 to S7 (Table 1 and Fig. 3). Measurements for high J lines of the
P branch also involved the lower pressure spectrum S3. Spectrum S7 was excluded from
the analysis of the Q branch of the ν2 band because the density of lines combined with
pressure broadening led to rather significant overlapping of the lines, as illustrated in Fig.
4. The measurements performed in the region of the ν2 band involved the fitting of the
self-broadening coefficients of lines stronger than about 2.0× 10−23 cm−1/(molecule cm−2).
It was held fixed at 0.1 cm−1atm−1 for the other lines. Spectra corresponding to even higher
pressures (30 to 90 torr, S8 to S10 in Table 1) were not used because the blending of lines
was obviously more pronounced.

For both bands, the line intensity measurements involved the simultaneous fitting of the
selected spectra. The required initial values of the positions and intensities (as well as the
assignments) of lines belonging to the ν4 and ν2 bands of the 5 isotopologues of germane
considered in the present work were generated relying on the results of the frequency analysis
described in section 5.1. The high quality of the predictions proved to be particularly helpful
in the analysis of the ν2 band as the lines of the various isotopologues tend to appear close
together, as illustrated in Fig. 5. The initial values of the positions and intensities of lines
observed in the fitted spectral ranges but not predicted by the frequency analysis (most
probably belonging to hot bands) were measured using the program WSpectra [25].

Figure 6 presents an example of the results of a fit. It involved 54 lines for a total of
83 fitted parameters. Signatures observed for the stronger lines in the residuals of the lower
pressure spectrum may result from an imperfect modeling of the instrument line shape.

Altogether, 447/275, 489/309, 350/183, 512/325 and 355/171 line intensities have been
measured for the ν4/ν2 bands of 70GeH4, 72GeH4, 73GeH4, 74GeH4 and 76GeH4, respectively.
They are associated with lines observed in the range from 753 to 1040 cm−1 and range
from 6.1× 10−24 to 1.2× 10−19 cm−1/(molecule cm−2) at 300 K. Although self broadening
coefficients have been determined in the present work, we prefer not to report them because
of the rather low pressures involved and the fact that most of the lines are rather heavily
blended leading to large uncertainties on the measured self broadening coefficients. As a
result, no rotational dependence is observed for the 909 measured self broadening coefficients,
with average equal to about 0.075 cm−1atm−1.
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5. Analysis and discussion

5.1. Line positions

From Table 1, only experimental spectra S2, S4 and S7 were used in the line position
analysis of the ν2/ν4 bending dyad. Because of the presence of five germane isotopologues
in natural abundance, these spectra show a dense structure where many transitions are
overlapped. We started the analysis of the most abundant isotopologue, 74GeH4, using
initial parameters taken from our work on the ν1/ν3 region and unpublished results that
were included in the STDS (Spherical-Top Data System) package [26], part of the XTDS
(eXtended spherical-Top Data System) software [27]. The calculation performed using these
parameters led to a very good initial spectrum simulation that allowed to assign many
transitions in P and R branches.

Assignments were made using the home made software SPVIEW (Spectrum-View) [27] in
its new 2.0 beta version. The Q branch shows a higher transition density making assignments
not straightforward. However, using a standard iterative Levenberg-Marquardt non-linear
least squares fitting procedure, simulations and new assignment sets, we finally reached a
total of 1394 assigned transitions, up to J = 25, with a set of 26 parameters and a root
mean squares deviation of 4.86× 10−4 cm−1. Each line position was considered to have the
same uncertainty of 10−3 cm−1, which accounts for both peak position and global calibration
uncertainties. GS parameters of the five isotopologues were fixed to their fitted values taken
from the results of Ref. [3].

Once transition assignment was completed for the main isotopologue, we have used same
parameters to investigate the less abundant isotopologues. For each isotopologue, only the
band center was updated, trying to visually match most transitions. The same fit procedure
as described above was then repeated. Parameters that could not be correctly fitted were
fixed to the value of 74GeH4.

The results and fit statistics for all five isotopologues are presented in Table 2. Seven
parameters are used to define v2 = 1 up to order 4, 13 for v4 = 1 up to order 5 and six inter-
actions parameters between states v2 = 1 and v4 = 1. The last column of the table allows
to convert all these constant values to the “classical” notation. We obtained a very good
fit whose root mean squares deviation is 4.58×10−4cm−1, 5.75×10−4cm−1, 3.10×10−4cm−1,
4.86×10−4cm−1 and 3.03×10−4cm−1 for each isotopologue (70GeH4, 72GeH4, 73GeH4, 74GeH4,
76GeH4), respectively.

In Ref. [5], Ulenikov et al. have presented comparable results, but using a different
reduction (fix parameters are not the same). In our case we have significantly high number
of assignments up to higher J values.

Figure 7 presents the fit residuals for line positions. Some polynomial deviation seems
to appear in the ν4 region (below 900 cm−1). This may correspond to some higher order
contributions to the effective Hamiltonian that we could not fit here. But the residuals
remain very small, anyway.

Figure 8 shows the reduced energy levels in the case of 74GeH4, defined by

ν̃red = ν̃ −
∑

Ω

t
Ω(0,0A1)A1A1

{GS}{GS} (J(J + 1))Ω/2
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= ν̃ −B0J(J + 1) +D0J
2(J + 1)2 − . . . , (14)

where B0, D0, . . . are ground state values, i.e. we subtract the dominant scalar polynomial
terms in order to enhance levels splittings due to molecular symmetry. The colors illustrate
the mixings due to the interaction between the two vibrational levels. We give both the
calculated and observed reduced energy levels. Observed levels are simply levels reached by
assigned transitions which are included in the fit. This gives a good idea of the sampling
of the energy spectrum. The four other isotopologues lead to a very similar picture. This
figure allows to judge the quality of the simulation performed using the present effective
Hamiltonian parameters, when extrapolating to unassigned J values.

In Ref. [28], we have studied the isotopic dependance of band centers and Coriolis-
interaction parameters, using a simple model and the present values. More detail is given
in Figure 2 of this reference.

5.2. Equilibrium bond length

The determination of the equilibrium bond length re of a spherical-top molecule (which
is the unique geometrical parameter that defines its equilibrium structure) is possible if one
knows the value of the rotational constant B0 in the ground state and rotational constant
differences in all the vibrational fundamental levels, say ∆Bi = Bi −B0 (i = 1 to 4), where
Bi is the rotational constant in an excited state with vi = 1 [29]. The formula giving Be

(equilibrium value) is [14]:

Be = B0 −
1

2

4∑
i=1

di∆Bi, (15)

where di is the normal mode degeneracy (d1 = 1, d2 = 2, d3 = d4 = 3). The equilibrium
bond length is then [14]:

re =

√
3h

64π2cmHBe

, (16)

h being Planck’s constant, c the speed of light in vacuum and mH the hydrogen atom
mass, whose values are taken from Ref. [30]. The fitted parameters B0 = t

2(0,0A1)A1A1

{0}{0} and

∆Bi = t
2(0,0A1)ΓvΓv
{i}{i} (i = 1 to 4) result from the line position fits in Table 2 of Ref. [3] and in

the present work (see Table 2). Using these fitted values and their standard deviation and
averaging over all 5 isotopologues, we get:

Be = 2.72531(95) cm−1, (17)

and thus:
re(GeH4) = 1.51710(27) Å. (18)

It should be recalled that, within the Born-Oppenheimer approximation, structural param-
eters like re do not depend on the isotopologue.

Somewhat higher values can be found in rather old references. The CRC Handbook of
Chemistry and Physics [31] reports an experimental value re = 1.5251 Å, while Yu et al.
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obtain a theoretical ab initio value re = 1.5358 Å [32]. However, in our previous work
on 70GeD4 [33], we reported re = 1.5173(1) Å, which is fully consistent with the present
determination. Thus, going back to this Ref. [33], we can take again parameter values from
its Tables 1 to 3 and include the accurate 70GeD4 value in our average calculation, leading
finally to:

re(GeH4,GeD4) = 1.51714(25) Å. (19)

Since the present study relies on highly accurate high-resolution spectroscopic data, it should
be very reliable. Even considering a 3σ uncertainty (that would be 0.00075 Å), this rules out
the previous higher values from the literature that we mentioned above. The value presented
here can serve as a benchmark for new quantum chemistry calculations.

5.3. Line intensities

As explained in Section 4, the line positions and relative intensities prediction resulting
from the effective Hamiltonian fit in Section 5.1 were useful for the measurements of absolute
line intensities. By comparison with the theoretical predictions of line positions, this made
possible the assignment of these lines for an intensity fit. We could then perform, for each
isotopologue, a fit of the four effective dipole moment parameters up to order 2 that we
described in Section 3.2 (as already mentioned, other operators at order two cannot be
fitted and are ignored here). In this fit we consider only lines for which the relative observed
minus calculated difference is bellow 10 %. This constitutes an extended intensity analysis in
the bending dyad of germane, using several hundreds of intensity data for each isotopologue.

The resulting effective dipole moment parameters and fit statistics are displayed in Ta-
ble 3. We get a very satisfactory result, with a relative standard deviation below 4 %, for
all isotopologues.

We can compare these results with the recent work of Ulenikov et al. [5]. For each
isotopologue we have used around twice more assigned lines and higher J values by two
or three units. We notice that we get different values as well as a much smaller isotopic
dependance for the dipole parameters of order 1 and 2.

Figure 9 displays the intensities for assigned lines, as well as the fit residuals for line
intensities, for all five isotopologues. Figure 10 shows a simulation of the five germane
isotopologues in natural abundance using the parameters derived from the fits in position
and intensity discussed above. Figures 11 and 12 show a comparison and the difference
between the experimental and simulated spectra (obtained using the effective Hamiltonian
and dipole moment parameters fitted in this study) for the ν4 region and for a small part of
the ν2 region, respectively.

6. GeCaSDa database update

We have updated the GeCaSDa database [34] by using an polyad scheme adapted to
the ν2/ν4 bending dyad. The first scheme that was defined previously is dedicated to the
ν1/ν3 fundamental bands and the second and new one to the present analysis. The complete
database is illustrated in Table 4, where P0 is the ground state and P1 contains the funda-
mental levels (v1 = 1 and v3 = 1 for the first scheme and v2 = 1 and v4 = 1 for the second
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one). An amount of 28 486 new transitions have been included in the database increas-
ing to 60 878 the total number of lines. The calculated data are accessible either through
our website at http://vamdc.icb.cnrs.fr/PHP/gecasda.php or on the VAMDC portal
at https://portal.vamdc.eu/vamdc_portal. Our webpage allows to plot the data and
download two sorts of file formats: the line by line list is given following the HITRAN 2004
format [35], while cross section is a simple 2-column flat file. An overview of the GeCaSDa
database is displayed Figure 13, as downloadable from our website.

7. Conclusion

We have presented here a complete high-resolution study of both line positions and
absolute line intensities of the ν2/ν4 bending dyad of germane, for its five isotopologues in
natural abundance. We could determine accurate effective Hamiltonian and dipole moment
parameters thanks to a series of high-quality infrared spectra. An accurate value of the Ge–
H bond length has been derived. New calculated quantitative line lists have been derived
and added to the GeCaSDa database [34], available form the VAMDC portal [36, 37, 38, 39].
These data will also be provided to the other public spectroscopic databases [9, 40].

Lines lists with assignments for line positions and line intensities are provided as supple-
mentary material for this paper.

Although the bending dyad region is not the one used for the planetological detection
of germane, the two low-lying vibrational levels which are characterized here are the main
source of the hot bands in the ν1/ν3 stretching region, like ν3 + ν2 − ν2, ν3 + ν4 − ν4, etc.
The present results are thus an essential first step towards the simulation of such hot bands
of planetological interest. The next step will be the study of the upper states of these hot
bands, through the analysis of combination bands like ν3 + ν2, ν3 + ν4, . . .
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A. Markwick, T. Marquart, N. J. Mason, C. Mendoza, T. J. Millar, N. Moreau, S. V. Morozov, T. Möller,
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Figure 1: Overview of the high resolution (0.0019 cm−1) spectrum of the ν4 band of a sample of germane
in natural isotopic abundance. The temperature and absorption path length were 300 K and 5.1 cm,
respectively. The 3 spectra presented (S1 to S3 in Table 1) were used in the present work to retrieve line
intensities for that band.
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Figure 2: High resolution (0.0019 cm−1) spectrum of the R(4) manifold in the ν4 band of the 5 isotopologues
of germane studied in the present work. The observed spectrum is presented in the upper panel (S2 in Table
1). The lower panel displays the integrated absorption cross sections of the lines of the various isotopologues
[in cm−1/(molecule cm−2) at 300 K], predicted by the theoretical model.

17



1.0

0.8

0.6

0.4

0.2

0.0

Tr
an

sm
itt

an
ce

104010201000980960940920900880
Wavenumber / cm–1

 1.005 torr
 2.004 torr
 4.004 torr
 8.02 torr
 16.03 torr

Figure 3: Overview of the high resolution (0.0019 cm−1) spectrum of the ν2 band of a sample of germane
in natural isotopic abundance. The temperature and absorption path length were and 300 K and 5.1 cm,
respectively. The 5 spectra presented (S3 to S7 in Table 1) were used in the present work to retrieve line
intensities for that band.
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Figure 4: Same as Fig. 3 (upper panel), showing a small part of the Q branch of the ν2 band of the 5
isotopologues of germane studied in the present work.
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Figure 5: High resolution (0.0019 cm−1) spectra of a small part of the P branch of the ν2 band of the 5
isotopologues of germane studied in the present work, showing the increase with pressure of the spectral
congestion. The lower panel displays the integrated absorption cross sections of the lines of the various
isotopologues [in cm−1/(molecule cm−2) at 300 K], predicted by the theoretical model (blue: 70GeH4;
green: 72GeH4; orange: 73GeH4; red: 74GeH4; violet: 76GeH4).
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Figure 6: Results of the multi-spectrum analysis applied to 3 spectra (S4 to S6 in Table 1) of a portion of
the Q branch of the ν2 band of germane in natural isotopic abundance: observed (spectrum S4; red) and
best-fit calculated (blue) spectra (top panel), and best-fit residuals corresponding to spectra S4 to S7 (from
top to bottom). The vertical bars at the top indicate the positions of the lines included in the analysis,
the taller ones identifying the lines for which at least one parameter (position, intensity or self broadening
coefficient) was fitted.
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wavenumber.
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Figure 8: Calculated (left panel) and observed (right panel) reduced energy levels for 74GeH4, as a function
of the rotational quantum number J . Observed levels correspond to levels reached by assigned transitions.
The colors indicate the mixings between both vibrational levels, i.e. the projection of each eigenlevel on the
v2 = 1 (red) and v4 = 1 (blue) initial normal mode basis set.
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Figure 13: Extracted line by line list plotted on a graph as shown at the GeCaSDa web page
(https://vamdc.icb.cnrs.fr/PHP/GeH4.php).
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Table 1: Pressure of GeH4 (in torr), spectral range recorded and number of interferograms averaged to yield
the corresponding spectrum (# scans). All the spectra were recorded with an absorption path length of
5.10 ± 0.01 cm, at a stabilized room temperature of 300 ± 1 K, a resolution (equal to 0.9 divided by the
maximum optical path difference) of 0.0019 cm−1 and an entrance aperture diameter of the interferometer
equal to 1.5 mm. The absolute uncertainty on the pressure is equal to 0.5 % of the value given.

# P (GeH4) Range / cm−1 # scans

S1 0.1349 (7) 740− 900 80
S2 0.511 (3) 740− 890 80
S3 1.005 (5) 730− 910 80
S4 2.004 (10) 715− 1100 240
S5 4.004 (20) 715− 1100 260
S6 8.02 (4) 715− 1100 80
S7 16.03 (8) 900− 1100 80
S8 30.07 (15) 900− 1100 80
S9 60.05 (30) 900− 1100 80
S10 89.97 (45) 900− 1100 240

30



T
ab

le
2:

E
ff

ec
ti

ve
H

am
il

to
n

ia
n

p
ar

am
et

er
s

fo
r

th
e

g
ro

u
n

d
v
ib

ra
ti

o
n

a
l

st
a
te

,
v 2

=
1

a
n

d
v 4

=
1

le
ve

ls
o
f

a
ll

fi
ve

is
o
to

p
o
lo

g
u

es
o
f

g
er

m
a
n

e.
S

ta
n

d
ar

d
d

ev
ia

ti
on

is
in

d
ic

at
ed

in
p

ar
en

th
es

is
,

in
th

e
u

n
it

o
f

la
st

tw
o

d
ig

it
s.

V
ib

ra
ti

o
n
a
l

le
v
e
l

(H̃
)

O
rd

e
r

Ω
(K
,
n
C

)
{s
}
C

1
{s
′ }

C
2

V
a
lu

e
/

c
m
−

1
(H

a
m

il
to

n
ia

n
H̃

)
o
r

V
a
lu

e
/

D
e
b
y
e

(d
ip

o
le

m
o
m

e
n
t
µ̃

)
N

o
ta

ti
o
n

o
f

R
o
b
ie

tt
e
e
t
a
l.

o
r

T
ra

n
si

ti
o
n

(µ̃
)

7
0
G

e
H

4
7
2
G

e
H

4
7
3
G

e
H

4
7
4
G

e
H

4
7
6
G

e
H

4
(w

h
e
n

d
e
fi

n
e
d
)

G
S

0
2
(0
,
0
A

1
)

0
0
0
0
A

1
0
0
0
0
A

1
2
.6

9
5
8
6
4
4
†

B
0

G
S

2
4
(0
,
0
A

1
)

0
0
0
0
A

1
0
0
0
0
A

1
−

3
.3

4
1
8
†

×
1
0
−

5
−
D

0

G
S

2
4
(4
,
0
A

1
)

0
0
0
0
A

1
0
0
0
0
A

1
−

1
.5

4
6
4
†

×
1
0
−

6
−
( √ 1

5
/
4
√

2
) D

0
t

G
S

4
6
(0
,
0
A

1
)

0
0
0
0
A

1
0
0
0
0
A

1
1
.1

4
2
†

×
1
0
−

9
H

0

G
S

4
6
(4
,
0
A

1
)

0
0
0
0
A

1
0
0
0
0
A

1
−

4
.9

7
†

×
1
0
−

1
1

( 3
√

5
/
1
6
√

2
) H

4
t

G
S

4
6
(6
,
0
A

1
)

0
0
0
0
A

1
0
0
0
0
A

1
−

1
.6

0
0
†

×
1
0
−

1
1

−
( √ 2

3
1
/
6
4
√

2
) H

4
t

v
2

=
1

0
0
(0
,
0
A

1
)

0
1
0
0
E

0
1
0
0
E

9
2
9
.9

0
1
2
4
(1

9
)

9
2
9
.9

0
5
1
3
(1

7
)

9
2
9
.9

0
7
2
8
(4

8
)

9
2
9
.9

0
9
1
0
(1

5
)

9
2
9
.9

1
3
0
8
(4

4
)

ν
2

v
2

=
1

2
2
(0
,
0
A

1
)

0
1
0
0
E

0
1
0
0
E

5
.2

5
(3

0
)

5
.4

8
(3

2
)

4
.8

0
(6

9
)

5
.3

2
(2

2
)

4
.6

2
(6

8
)

×
1
0
−

3
B

2
−
B

0

v
2

=
1

2
2
(2
,
0
E

)
0
1
0
0
E

0
1
0
0
E

−
6
.0

8
(2

6
)

−
5
.8

8
(2

8
)

−
6
.4

7
(6

1
)

−
6
.0

1
(1

9
)

−
6
.6

4
(6

0
)

×
1
0
−

3
√

3
b
2

+
2
4
( √ 3

/
7
) C 6

v
2

=
1

3
3
(3
,
0
A

2
)

0
1
0
0
E

0
1
0
0
E

−
2
.5

4
2
(9

9
)

−
2
.6

0
(1

1
)

−
2
.4

1
(1

8
)

−
2
.5

2
7
(7

8
)

−
2
.2

6
(2

1
)

×
1
0
−

5
(1
/
2
)
d
2

v
2

=
1

4
4
(0
,
0
A

1
)

0
1
0
0
E

0
1
0
0
E

7
.9

2
(3

2
)

7
.4

8
(2

8
)

7
.5

5
(1

9
)

7
.6

4
(2

2
)

9
.0

7
(7

6
)

×
1
0
−

7
−

(D
2
−
D

0
)

v
2

=
1

4
4
(2
,
0
E

)
0
1
0
0
E

0
1
0
0
E

−
9
.0

6
(2

9
)

−
8
.7

7
(2

6
)

−
8
.7

5
‡

−
8
.7

5
(1

9
)

−
0
.9

9
6
(7

0
)

×
1
0
−

7
−

(3
/
4
)
C

5
+

(9
/
7
)
C

6

v
2

=
1

4
4
(4
,
0
A

1
)

0
1
0
0
E

0
1
0
0
E

6
.6

(1
.2

)
5
.1

(1
.0

)
5
.9

1
‡

5
.9

1
(8

5
)

1
.0

3
(2

9
)

×
1
0
−

8
−
( √ 1

5
/
4
) (D

2
t
−
D

1
t
)

v
2

=
1

4
4
(4
,
0
E

)
0
1
0
0
E

0
1
0
0
E

0
.0
‡

0
.0
‡

0
.0
‡

0
.0
‡

0
.0
‡

−
( 3
√ 3

/
7
) C 6

v
2

=
1
/
v
4

=
1

in
t.

1
1
(1
,
0
F
1
)

0
1
0
0
E

0
0
0
1
F
2

−
4
.2

2
3
(1

7
)

−
4
.2

0
5
(1

8
)

−
4
.2

4
2
(3

9
)

−
4
.2

1
0
(1

3
)

−
4
.2

4
6
(3

9
)

−
( √ 3

) R 2
4

+
( √ 3

/
1
0
) F 2

4
b

v
2

=
1
/
v
4

=
1

in
t.

2
2
(2
,
0
F
2
)

0
1
0
0
E

0
0
0
1
F
2

−
2
.3

3
8
(3

0
)

−
2
.3

6
5
(3

2
)

−
2
.2

9
4
(7

3
)

−
2
.3

5
3
(2

2
)

−
2
.2

8
8
(6

8
)

×
1
0
−

2
(u

n
d
e
fi

n
e
d
)

v
2

=
1
/
v
4

=
1

in
t.

3
3
(1
,
0
F
1
)

0
1
0
0
E

0
0
0
1
F
2

−
1
.1

4
6
(1

0
)

−
1
.1

5
2
(1

3
)

−
1
.1

1
5
(3

7
)

−
1
.1

5
0
2
(8

1
)

−
1
.1

5
6
(2

6
)

×
1
0
−

4
(3
/
4
)
R

0
1

2
4

+
(3
/
4
)
F
2
4
a

+
(9
/
8
0
)
F
2
4
b

v
2

=
1
/
v
4

=
1

in
t.

3
3
(3
,
0
F
1
)

0
1
0
0
E

0
0
0
1
F
2

3
.6

8
(1

2
)

3
.5

1
(1

1
)

3
.6

4
(1

2
)

3
.5

3
6
(8

1
)

3
.9

8
(2

8
)

×
1
0
−

5
−
( √ 3

/
4
√

1
0
) F 2

4
b

v
2

=
1
/
v
4

=
1

in
t.

3
3
(3
,
0
F
2
)

0
1
0
0
E

0
0
0
1
F
2

2
.7

5
5
(7

2
)

2
.7

7
4
(6

9
)

2
.8

9
(1

2
)

2
.7

5
0
(5

4
)

2
.5

7
(2

0
)

×
1
0
−

5
( √ 3

/
2
√

2
) F 2

4
c

v
2

=
1
/
v
4

=
1

in
t.

4
4
(4
,
0
F
1
)

0
1
0
0
E

0
0
0
1
F
2

2
.3

3
(2

2
)

2
.1

3
(2

1
)

2
.0

3
(2

3
)

2
.1

1
(1

8
)

2
.9

6
(5

5
)

×
1
0
−

7
(u

n
d
e
fi

n
e
d
)

v
4

=
1

0
0
(0
,
0
A

1
)

0
0
0
1
F
2

0
0
0
1
F
2

8
2
1
.5

4
4
6
2
(1

3
)

8
2
1
.1

1
7
0
3
(1

3
)

8
2
0
.9

1
1
2
6
(1

5
)

8
2
0
.7

1
1
6
5
(1

2
)

8
2
0
.3

2
6
6
6
(1

6
)

ν
4

v
4

=
1

1
1
(1
,
0
F
1
)

0
0
0
1
F
2

0
0
0
1
F
2

6
.3

6
5
8
0
(3

2
)

6
.3

7
2
7
6
(3

4
)

6
.3

7
6
9
8
(7

3
)

6
.3

7
9
7
8
(2

3
)

6
.3

8
7
0
3
(7

2
)

3
√

2
B
ζ
4

(ν
4

C
o
ri

o
li
s)

v
4

=
1

2
2
(0
,
0
A

1
)

0
0
0
1
F
2

0
0
0
1
F
2

−
2
.4

2
(2

0
)

−
2
.5

8
(2

1
)

−
2
.1

3
(4

6
)

−
2
.4

9
(1

5
)

−
2
.0

2
(4

6
)

×
1
0
−

3
B

4
−
B

0

v
4

=
1

2
2
(2
,
0
E

)
0
0
0
1
F
2

0
0
0
1
F
2

3
.7

2
(3

0
)

3
.9

6
(3

2
)

3
.2

9
(6

9
)

3
.8

2
(2

2
)

3
.1

3
(6

9
)

×
1
0
−

3
−

(1
/
2
)α

2
2
0
−

6
α
2
2
4

v
4

=
1

2
2
(2
,
0
F
2
)

0
0
0
1
F
2

0
0
0
1
F
2

−
1
.4

7
9
(2

3
)

−
1
.4

9
6
(2

4
)

−
1
.4

4
4
(5

2
)

−
1
.4

8
3
(1

7
)

−
1
.4

2
9
(5

2
)

×
1
0
−

2
−

(3
/
4
)α

2
2
0

+
6
α
2
2
4

v
4

=
1

3
3
(1
,
0
F
1
)

0
0
0
1
F
2

0
0
0
1
F
2

1
.4

0
1
(1

5
)

1
.4

0
9
(1

6
)

1
.3

8
3
(2

6
)

1
.3

9
9
(1

2
)

1
.3

6
2
(3

2
)

×
1
0
−

4
−

(3
(√

3
)/

4
(√

2
)F

1
1
0

v
4

=
1

3
3
(3
,
0
F
1
)

0
0
0
1
F
2

0
0
0
1
F
2

1
.7

5
(1

2
)

1
.8

0
(1

3
)

1
.5

6
(2

4
)

1
.7

0
7
(9

7
)

1
.4

1
(2

7
)

×
1
0
−

5
(3
/
√

5
/
2
)F

1
3
4

v
4

=
1

4
4
(0
,
0
A

1
)

0
0
0
1
F
2

0
0
0
1
F
2

−
1
.1

4
0
(2

3
)

−
1
.1

1
3
(2

1
)

−
1
.1

1
1
3
(9

5
)

−
1
.1

1
6
(1

6
)

−
1
.2

1
2
(5

3
)

×
1
0
−

6
−

(D
4
−
D

0
)

v
4

=
1

4
4
(2
,
0
E

)
0
0
0
1
F
2

0
0
0
1
F
2

−
3
.9

1
(1

2
)

−
3
.7

5
(1

1
)

−
3
.7

2
8
(4

7
)

−
3
.7

9
7
(8

3
)

−
4
.2

9
(2

8
)

×
1
0
−

7
( √ 3

/
8
) G 2

2
0

+
( 3
√

3
/
2
) G 2

2
4

v
4

=
1

4
4
(4
,
0
A

1
)

0
0
0
1
F
2

0
0
0
1
F
2

−
1
.1

5
(1

0
)

−
1
.0

3
8
(8

9
)

−
1
.0

5
5
(2

2
)

−
1
.0

7
0
(7

1
)

−
1
.4

5
(2

4
)

×
1
0
−

7
( 3
√

3
/
1
6
) G 2

2
0
−
( 3
√

3
/
2
) G 2

2
4

v
4

=
1

4
4
(4
,
0
E

)
0
0
0
1
F
2

0
0
0
1
F
2

−
3
.4

3
(3

4
)

−
3
.0

6
(3

0
)

−
3
.1

5
‡

−
3
.1

5
(2

3
)

−
4
.3

6
(8

3
)

×
1
0
−

7
( −3
√

5
/
4
√

2
) (D

4
t
−
D

0
t
)

v
4

=
1

5
5
(1
,
0
F
1
)

0
0
0
1
F
2

0
0
0
1
F
2

1
.3

4
4
(8

3
)

1
.2

3
6
(8

7
)

1
.4

3
(1

7
)

1
.1

9
8
(7

3
)

0
.9

9
(1

9
)

×
1
0
−

9
( −3
√

7
/
2
) G 2

4
4

+
( √ 2

1
/
2
√

2
2
) G 2

4
6

v
4

=
1

5
5
(3
,
0
F
1
)

0
0
0
1
F
2

0
0
0
1
F
2

−
1
.6

9
8
(7

2
)

−
1
.8

8
6
(6

9
)

−
1
.7

9
(1

3
)

−
1
.9

0
3
(6

2
)

−
1
.8

7
(1

2
)

×
1
0
−

9
( −9
√

7
/
8
) G 2

4
4
−
( √ 2

1
/
√

2
2
) G 2

4
6

A
b
u
n
d
a
n
c
e
/

%
2
1
.2

3
2
7
.6

6
7
.7

3
3
5
.9

4
7
.4

4

N
b
.

d
a
ta

1
0
3
1

1
1
8
7

6
0
3

1
3
9
4

6
3
8

J
m

a
x

2
6

2
6

2
3

2
5

2
4

d
R
M

S
∗

0
.4

5
8

0
.4

7
5

0
.3

1
0

0
.4

8
6

0
.3

0
3

†
G

ro
u
n
d

st
a
te

p
a
ra

m
e
te

rs
a
re

fi
x
e
d

to
7
4
G

e
H

4
v
a
lu

e
s

fr
o
m

th
e

p
re

v
io

u
s

st
u
d
y

o
f

th
e
ν
1
/
ν
3

st
re

tc
h
in

g
d
y
a
d
.

‡
F

ix
e
d

v
a
lu

e
.

∗
d
R
M

S
/
1
0
−

3
c
m
−

1
.

31



T
ab

le
3:

E
ff

ec
ti

v
e

d
ip

ol
e

m
om

en
t

p
ar

am
et

er
va

lu
es

fo
r

th
e
ν 2

a
n

d
ν 4

b
a
n

d
s

o
f

a
ll

fi
ve

g
er

m
a
n

e
is

o
to

p
o
lo

g
u

es
.

S
ta

n
d

a
rd

d
ev

ia
ti

o
n

is
in

d
ic

a
te

d
in

p
ar

en
th

es
is

,
in

th
e

u
n

it
of

la
st

tw
o

d
ig

it
s.

B
a
n

d
O

rd
er

Ω
(K
,n
C

)
{s
}
C

1
{s
′ }

C
2

V
a
lu

e
/

D
eb

y
e

D
es

cr
ip

ti
o
n

7
0
G

eH
4

7
2
G

eH
4

7
3
G

eH
4

7
4
G

eH
4

7
6
G

eH
4

(w
h

en
a
v
a
il

a
b

le
,

se
e

E
q
.

(6
))

ν
2

1
1
(1
,0
F

1
)

0
0
0
0
A

1
0
1
0
0
E

−
6
.0

7
2
3
(1

6
)
−

6
.1

8
5
1
(1

7
)

−
6
.5

3
8
0
(1

7
)
−

6
.2

3
0
7
(1

9
)

−
5
.5

4
0
5
(1

6
)
×

1
0
−

4
µ

1 2

ν
4

0
0
(0
,0
A

1
)

0
0
0
0
A

1
0
0
0
1
F

2
3
.4

4
7
6
3
(1

3
)

3
.4

6
3
7
2
(1

7
)

3
.5

6
7
6
1
6
(6

4
)

3
.4

8
7
5
1
(2

2
)

3
.6

2
9
3
2
6
(6

3
)
×

1
0
−

1
µ

0 4
=
( √ 3

/
2
) (∂

µ
4
/
∂
q 4

) 0

ν
4

1
1
(1
,0
F

1
)

0
0
0
0
A

1
0
0
0
1
F

2
−

2
.1

0
0
5
(5

3
)
−

2
.0

7
4
9
(6

3
)

−
2
.1

6
7
8
(3

3
)
−

1
.8

9
4
0
(7

6
)

−
2
.2

3
7
1
(3

3
)
×

1
0
−

4
µ

1 4
=

H
er

m
a
n

-W
a
ll
is

fa
ct

o
r

ν
4

2
2
(0
,0
A

1
)

0
0
0
0
A

1
0
0
0
1
F

2
−

3
.4

5
2
1
(3

4
)
−

3
.6

7
1
5
(4

0
)

−
3
.1

9
7
2
(2

3
)
−

3
.7

4
8
3
(4

8
)
−

3
.1

2
0
6
3
(2

3
)
×

1
0
−

5
µ

2 4

A
b

u
n

d
a
n

ce
/

%
2
1
.2

3
2
7
.6

6
7
.7

3
3
5
.9

4
7
.4

4

N
b

.
d

a
ta

5
7
3

6
2
0

3
8
9

6
6
6

3
7
2

J
m

a
x

2
3

2
1

2
0

2
1

1
9

d
R

M
S
/
%

3
.4

8
8

3
.5

1
2

3
.9

2
5

3
.3

5
8

3
.6

8
9

32



Table 4: Rovibrational transitions in GeCaSDa. The polyad sheme is described by the (i1, i2, i3, i4) multiplet
as explained in Section 2 of Ref. [34].

Transitions Nb. dipolar Dipolar wavenumber Dipolar intensity
cm−1 cm−1/(molecule cm−2)

70GeH4

Scheme 1 (1,0,1,0)
P1 − P0 6426 1930 – 2270 8×10−24 – 4×10−19

Scheme 2 (0,1,0,1)
P1 − P0 5666 650 – 1106 8×10−24 – 4×10−19

72GeH4

Scheme 1 (1,0,1,0)
P1 − P0 6462 1930 – 2270 8×10−24 – 4×10−19

Scheme 2 (0,1,0,1)
P1 − P0 5679 649 – 1106 8×10−24 – 4×10−19

73GeH4

Scheme 1 (1,0,1,0)
P1 − P0 6470 1929 – 2270 8×10−24 – 4×10−19

Scheme 2 (0,1,0,1)
P1 − P0 5700 649 – 1105 8×10−24 – 4×10−19

74GeH4

Scheme 1 (1,0,1,0)
P1 − P0 6509 1929 – 2270 8×10−24 – 4×10−19

Scheme 2 (0,1,0,1)
P1 − P0 5700 649 – 1105 8×10−24 – 4×10−19

76GeH4

Scheme 1 (1,0,1,0)
P1 − P0 6525 1929 – 2269 8×10−24 – 4×10−19

Scheme 2 (0,1,0,1)
P1 − P0 5741 648 – 1105 8×10−24 – 4×10−19

Total 60 878
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