
HAL Id: hal-03076711
https://hal.science/hal-03076711v1

Submitted on 16 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Quantization for Polycube Maps
François Protais, Maxence Reberol, Nicolas Ray, Etienne Corman, Franck

Ledoux, Dmitry Sokolov

To cite this version:
François Protais, Maxence Reberol, Nicolas Ray, Etienne Corman, Franck Ledoux, et al.. Ro-
bust Quantization for Polycube Maps. Computer-Aided Design, 2022, Volume 150 (103321),
�10.1016/j.cad.2022.103321�. �hal-03076711�

https://hal.science/hal-03076711v1
https://hal.archives-ouvertes.fr

Robust Quantization for Polycube Maps

FRANÇOIS PROTAIS*, Université de Lorraine, CNRS, Inria, LORIA, France
MAXENCE REBEROL, Université catholique de Louvain, Belgium
NICOLAS RAY, Université de Lorraine, CNRS, Inria, LORIA, France
ETIENNE CORMAN, Université de Lorraine, CNRS, Inria, LORIA, France
FRANCK LEDOUX, CEA, DAM, DIF, France
DMITRY SOKOLOV, Université de Lorraine, CNRS, Inria, LORIA, France

Fig. 1. Polycube-based hexahedral meshing algorithms are able to produce very regular grids (left), but fail to capture important geometric features with a
coarse grid (left → middle). Our method allows to produce a coarse mesh preserving important geometric features (right).

An important part of recent advances in hexahedral meshing focuses on
the deformation of a domain into a polycube; the polycube deformed by the
inverse map fills the domain with a hexahedral mesh. These methods are
appreciated because they generate highly regular meshes. In this paper we
address a robustness issue that systematically occurs when a coarse mesh is
desired: algorithms produce deformations that are not one-to-one, leading to
collapse of large portions of the model when trying to apply the (undefined)
inverse map. The origin of the problem is that the deformation requires to
perform a mixed integer optimization, where the difficulty to enforce the
integer constraints is directly tied to the expected coarseness. Our solution
is to introduce sanity constraints preventing the loss of bijectivity due to
the integer constraints.

CCS Concepts: • Computing methodologies → Volumetric mod-
els; Mesh models.

Additional KeyWords and Phrases: hexahedral meshing, PolyCube-Map,
rounding

1 INTRODUCTION
Hexahedral meshes exhibit superior performances than tetrahe-
dral meshes in certain types of numerical simulations. They are
commonly used for industrial applications like geological simula-
tions, large deformations and non-linear elasto-plastic structural

*Corresponding author: francois.protais@inria.fr

analyses [Dheeravongkit and Shimada 2006; Lessmann et al. 2018;
Wheeler et al. 2012]. In practice, engineersmake use of semi-automatic
tools to precisely control cells orientation and quality. They often
rely on coarse block decomposition of a domain which is then re-
fined according to the simulation’s need. A block decomposition
allows them to generate a structured mesh, i.e. a mesh in which all
internal nodes have identical connectivity, thus allowing to store
little data and generate sparse FEMmatrices [Armstrong et al. 2015].
Overall this process is very time consuming and can take days,
weeks or even months.

Automatic hexahedral meshing is an active research area but
remains a challenging task especially when looking for coarse block
decompositions. One of the most promising approach comes from
global parameterization. The idea is to design a 3D steering field
prescribing the orientation of the hexahedra to produce, and then
to compute a deformation of a regular grid with prescribed (local)
orientation.
This approach faces two main obstacles: first, existing frame

field-based methods cannot guarantee the validity of the singularity
structure, resulting in degenerated parameterizations [Li et al. 2012;
Nieser et al. 2011; Ray et al. 2016]. Second, current algorithms lack
robustness when trying to produce meshes with arbitrarily large
cells. In practice, mixed integer solvers often choose to allocate a

Research Report, LORIA 2020.

2 • François Protais*, Maxence Reberol, Nicolas Ray, Etienne Corman, Franck Ledoux, and Dmitry Sokolov

Fig. 2. Pipeline of hexahedral mesh generation with polycube.

negative or zero number of layers of hexahedra between two con-
strained sheets (boundaries of the object, internal constraints or sin-
gularities). Moreover, even having computed a parametrization, the
extraction of the hexahedral mesh is a challenging problem [Lyon
et al. 2016] as corrections of local non-bijectiveness of the map tend
to break when generating coarse meshes.
One possible way to alleviate the first issue is to generate steer-

ing fields without (inner) singularities. This limitation trades some
genericity against simpler and more robust algorithms. The idea is
to deform the input shape into a polycube, i.e. a solid formed by
joining multiple cubes of same size face to face [Gregson et al. 2011;
Tarini et al. 2004].

In this article we focus on robust polycube generation enabling
as coarse as possible polycube hexahedral remeshing. So, starting
from a volume Ω, we want to compute a hexahedral mesh. Polycube
methods are usually split into three parts (Figure 2):

(1) Flagged deformation — The boundary 𝜕Ω of the volume Ω
is segmented into charts assigned with one of the six possi-
ble flags {®𝑢,−®𝑢, ®𝑣,−®𝑣, ®𝑤,− ®𝑤}. A continuous, positive Jacobian
mapping to the parametric space ®𝑢, ®𝑣, ®𝑤 , is then computed
such that its distortion is minimized and the image of each
chart is planar and perpendicular to the axis of flagging. For-
mal definitions of the flagging and the map (to a polycuboid)
are given in §3.1.

(2) Quantization — This second step makes sure that the faces
of the polycuboid are aligned with the integer grid to obtain
a Polycube. At this step, the volume can be filled by a unit
grid.

(3) Inversion— The polycube deformation is inverted to extract
the final hexahedral mesh.

All three steps have robustness issues, in this paper we address
the quantization and the inversion problem. The first step (comput-
ing a flagging leading to a valid polycuboid) is very challenging
[Sokolov and Ray 2015; Zhao et al. 2019], and no existing algorithm
is guaranteed to produce a positive Jacobian polycuboid map. Solv-
ing these issues is an active research topic, that is orthogonal to the
robustness issues treated in this paper. Therefore we assume that a
valid polycuboid is given as an input.

So, given a continuous, positive Jacobian mapping 𝔤 of the object
Ω to the parametric space, we do the following:

• We quantize the mapping, i.e. we find a valid set of integer
boundary constraints.

• We compute the combinatoral structure of the hexahedral
mesh induced by these integer constraints.

Fig. 3. Simply snapping variables to the nearest integer is not problematic
for producing a high resolutionmesh (Left), but becomes critical for a coarser
mesh (Middle). Our constraints prevents such geometric collapses (Right).

Fig. 4. A straightforward approach to compute the mapping of the interior
is to first fix the boundary (initialization in [Livesu et al. 2013]). It produces
highly distorted hexes when dealing with very coarse meshes (upper image).
Moreover, hexmesh extractionmay fail in presence of inverted elements. Our
mappings have a much better geometry (bottom image) on the same mesh,
and its extraction is more robust, because it does not rely on computing
valid global parameterizations.

• We recover the geometry of the hexahedral mesh.
The usual approach to quantize the parameterization (step (2))

is to snap the polycube’s faces to the closest integer coordinate
plane. This is very damageable as several faces can be snapped to-
gether, leading to topological changes of the domain. This makes
the inversion the deformation and extraction of a valid hexahedral
mesh impossible. This technique typically collapses small geometric
details of the model, but when looking for coarse polycubes it be-
comes so dramatic that the entire geometry is considered as a detail
and collapsed to a point. In this article, we provide theoretical and
practical guarantees preventing collapsing (see Fig. 3). Given a valid
polycuboid (step (1)), we output a valid hexahedral mesh regardless
of the level of coarseness.

To invert the polycube map (step (3)), the usual approach [Greg-
son et al. 2011; Livesu et al. 2013] is to compute the mapping as a
piecewise linear map on a tetrahedral mesh of Ω. It was sufficient to

Research Report, LORIA 2020.

Robust Quantization for Polycube Maps • 3

produce previous work results, but we are facing a more challenging
situation: extremely coarse meshes imply much higher distortion
(see Figure 4). To robustly handle this extreme situation, we compute
the inverse map i.e. a transformation of the polycube to Ω. Namely,
we extract the combinatorial structure of the resulting hexahedral
mesh from the quantized map, and we optimize for its geometry. It
removes the step of re-computing a global parametrization prone to
have degeneracies/inverted elements that even HexEx [Lyon et al.
2016] would not be able to recover.

CONTRIBUTIONS
To sum up, we propose an approach which, given a positive Jaco-
bian flagged deformation 𝔤 (step (1)), produces a valid hexahedral
mesh, even for very coarse meshes. This paper contributes to
three aspects of polycube-based hexahedral meshing:

• We guarantee to quantize well the flagged deformation.Namely,
we construct a positive Jacobian parameterization with inte-
ger boundaries.

• We generate hexahedral meshes in a robust way: the positivity
of the Jacobian for the input flagged deformation 𝔤 is not
necessary, refer to §6.

• We generate hexahedral meshes in a robust way: our mesh gen-
eration does not rely on computing positive Jacobian global
parameterizations for the inversion step.

2 PREVIOUS WORK
Polycubes were introduced in computer graphics for seamless textur-
ing of triangulated surfaces [Tarini et al. 2004]. The first automatic
algorithm for polycube generation [He et al. 2009] computes a scalar
field on the object that constrains the 𝑧-coordinate of the deformed
object. The remaining dimensions are solved by a 2D rasterization.
Recent methods [Fu et al. 2016; Gregson et al. 2011; Huang et al.
2014; Zhao et al. 2018] prefer to optimize all the coordinates of the
deformation simultaneously. The idea is to progressively deform the
model in a way that each boundary triangle of the deformed object
has one of its coordinates constant and integer. At each iteration,
the triangle’s normal becomes more and more aligned with one of
the axes of the coordinate system. Each triangle would basically
have to be aligned with the closest axis to its normal, but more
elaborate strategies [Livesu et al. 2013] can improve the results. The
final hexahedral mesh is typically improved by padding, possibly
with a global optimization [Cherchi et al. 2019].

These algorithms have two major sources of failure. First of all,
there may not exist a valid deformation aligning all triangles w.r.t
a given flagging. Many failure cases can be fixed by heuristics [Fu
et al. 2016; Gregson et al. 2011; Huang et al. 2014], but solving it in
the general case is very difficult [Sokolov and Ray 2015] and beyond
the scope of this paper. Second, respecting the flagging is only a
half of the story: the integer coordinates of the boundary are to be
chosen in a way that allows us to produce a valid hexahedral mesh.
In this article we are focusing on the second issue.
The finer a hexmesh is, the easier it is to produce, so a natural

way to approach the problem of coarse block decomposition is to
generate a fine hexahedral mesh, and to decimate it with a general
hexahedral mesh simplification algorithm [Gao et al. 2015, 2017]. At

each step, the algorithm applies a simplification operation (sheets
or chords collapse) to the hexahedral mesh. The geometry of the
new mesh is obtained by a reparameterization.
It is also possible to obtain a coarse structure prior to the mesh

generation phase, by working directly on coordinates of charts
representing the polycube. Cherchi et al. [Cherchi et al. 2016] locally
align a pair of polycube corners along one coordinate. Zhao et
al. [Zhao et al. 2019] optimize the polycube edge lengths and Chen
et al. [Chen et al. 2019] optimize the position of charts, but both
consider only the boundary of the polycube, which is insufficient
to prevent loss of bijectivity (as illustrated in Figure 13). Guo et
al. [Guo et al. 2020] extend [Chen et al. 2019] approach, considering
charts that are opposite to one another, but their constraints are still
not exhaustive. Our algorithm has lower expectations on the input,
and provides an optimal solution (instead of a greedy strategy), and
is guaranteed to deliver a valid output.
The polycube approach can be extended by introducing cuts in

the deformation to remove some unnecessary constraints, as Fang
et al. [Fang et al. 2016] and Guo et al. [Guo et al. 2020] propose
to do. Interestingly if we consider all possible cuts, we fall back
to the family of hexahedral remeshing algorithms based on global
parameterizations [Nieser et al. 2011]. Global parameterizations
have robustness issues similar to those of polycube remeshing: frame
fields problems replace flagging problems, and the requirement on
the bijectivity of the deformation is replaced by the positivity of
the Jacobian of the global parameterization. Frame field design is
currently the bottleneck of the process and is an active research
area [Li et al. 2012; Liu et al. 2018] and as in the polycube case,
bijectivity becomes critical when a coarse mesh is desired.

It has to be noted that for the 2D case (i.e. quad mesh generation)
[Kälberer et al. 2007; Ray et al. 2006], there exists robust algorithms
based on global parameterizations [Campen et al. 2015; Myles et al.
2014]. The main ingredient of these algorithms is the decomposition
of the domain into quad-shaped charts by cutting the domain along
a motorcycle graph (for example, by tracing frame field streamlines).
With this decomposition one can generate a quad mesh respecting
the structure of these charts.

Our work can be understood as an extension of this approach to
3D. The fact that we restrict our attention to polycubes only simpli-
fies the task: 3D motorcycle graphs are simply a set of axis-aligned
planes in the parametric domain, the block decomposition has the
combinatorial structure of a polycube (no T-junctions) and the edge
lengths are manipulated by the coordinates of their extremities,
which are directly the variables of the parameterization problem.

3 QUANTIZATION: PROBLEM STATEMENT
N.B. For the sake of clarity, we present the quantization problem in
2D; it is trivial to extend it to 3D (§6).

As mentionned earlier, parameterization methods give great re-
sults for quad mesh generation. The idea is to compute a parame-
terization 𝑓 , or, in other words, two scalar fields 𝑓1 and 𝑓2 over the
domain Ω (refer to Fig. 5). Integer iso-lines of these scalar fields
form a structured quad mesh.

For a quad mesh to be well defined, these scalar fields must have
following properties (refer to Fig. 6):

Research Report, LORIA 2020.

4 • François Protais*, Maxence Reberol, Nicolas Ray, Etienne Corman, Franck Ledoux, and Dmitry Sokolov

Fig. 5. Example of a parametrization 𝑓 = (𝑓1, 𝑓2) of a domain Ω, displayed
by its level-sets.

(1) They must be well behaved: the Jacobian of the map 𝑓 must
be positive.

(2) Theymust be aligned with the boundary 𝜕Ω, i.e. the boundary
must be on an iso-line of one of the scalar fields.

(3) Moreover, on each point of the boundary 𝜕Ω, at least one of
the scalar fields must be integer.

In this work, we propose to start from a parametrization that
respects the properties (1) and (2), but violates (3); we will compute
another parameterization that holds all three properties. In §3.1 we
introduce few notations necessary to formalize the problem (§3.2).

3.1 Notations
We denote the domain as Ω ⊂ R2, and its boundary as 𝜕Ω. Let 𝑋 =

(𝑥,𝑦) be a point of R2. The Jacobian matrix of a parameterization

𝑓 : (𝑥,𝑦) → (𝑓1, 𝑓2) ∈ R2 is denoted as 𝐷𝑓 =

(
𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

)
, and its

determinant as det(𝐷𝑓) = 𝜕𝑓1
𝜕𝑥

𝜕𝑓2
𝜕𝑦 − 𝜕𝑓1

𝜕𝑦
𝜕𝑓2
𝜕𝑥 .

Definition 1 (Real polycube maps 𝒫R). We say that the map
𝑓 : Ω → R2 is in 𝒫R if:

• 𝑓 ∈ 𝐶0 (
Ω,R2) (continuity)

• det(𝐷𝑓) > 0 (positive Jacobian)
• ∀𝑋 ∈ 𝜕Ω, 𝑓1 (𝑋) ∈ 𝐿𝑟1 or (inclusive) 𝑓2 (𝑋) ∈ 𝐿𝑟2 (boundary
is a set of iso-lines), where 𝐿𝑟 =

{
𝐿𝑟1, 𝐿

𝑟
2
}
a finite set of real

values.

Definition 2 (Integer polycube maps 𝒫Z). We say that 𝑓 ∈ 𝒫R
is in 𝒫Z if 𝐿𝑟 ⊂ Z (and we will denote 𝐿𝑟 = 𝐿)

Let us take 𝑓 ∈ 𝒫R. The boundary 𝜕Ω can be broken down
into a set of charts 𝑈𝑖 for the first dimension and 𝑉𝑗 for the second
dimension. Charts are iso-lines of 𝑓 such as 𝑓1 |𝑈𝑖

∈ 𝐿𝑟1 and 𝑓2 |𝑉𝑗
∈

𝐿𝑟2 .
To simplify the notations, we refer to these constant values as

𝑓1 |𝑈𝑖
and 𝑓2 |𝑉𝑗

(refer to Fig. 7). Throughout the paper, whenever
possible, we put the expressions for the 1st dimension only, and
we mention “resp 𝑉𝑗 ” to signify that it is trivial to retrieve the 2nd
expression.

Fig. 6. Top row: a mesh extracted from a map in 𝒫R (refer to §3.1) has non
boundary-aligned elements (in red). Bottom row: To obtain valid meshes,
map in 𝒫Z must be considered.

Fig. 7. Given a real polycube map 𝔤 over the domain Ω, the boundary 𝜕Ω
is split into a set of charts𝑈𝑖 (resp.𝑉𝑗); corresponding iso-values of 𝔤1 and
𝔤2 are denoted by 𝔤1|𝑈𝑖

and 𝔤2|𝑉𝑗
.

3.2 Problem statement
Given an input real polycubemap 𝔤 ∈ 𝒫R, the quantization problem
is to find a similar (but integer!) polycube map 𝑓 ∈ 𝒫Z, solution of:

𝑓 = arg min
𝑓 ∈𝒫Z

𝐸 (𝑓) :=
∫
Ω

∥∇𝑓1 − ∇𝔤1∥ + ∥∇𝑓2 − ∇𝔤2∥𝑑𝑋
 (1)

with ∥ · ∥ the Euclidean norm, and 𝐸 (𝑓) is an energy measuring the
distance between 𝑓 and 𝔤.
A common approach to solve this problem is to greedily find a

set 𝐿 of new values for the boundary, such that 𝑙𝑈𝑖
≈ 𝔤1 |𝑈𝑖

(resp.
𝑉𝑗). Then a new map constrained by these boundary values and
minimizing (1) is computed. The problem, however, is that for some

sets 𝐿 =

{{
𝑙𝑈𝑖

} |𝐿𝑟1 |
𝑖=1 ,

{
𝑙𝑉𝑗

} |𝐿𝑟2 |
𝑗=1

}
, it is impossible to define a smooth

positive Jacobian polycube map i.e. the set 𝒫Z is empty. Thus the
quantization fails. The trivial example is to set all constraints to
zero (𝑙𝑈𝑖

= 0,∀𝑖); a quite common non-trivial failure case is shown
in Fig 8.

Research Report, LORIA 2020.

Robust Quantization for Polycube Maps • 5

Fig. 8. Given a real polycube map (an element of 𝒫R), a naive approach to compute an integer polycube map (an element of 𝒫Z) is to round the boundary
values to the nearest integer, and then to recompute the parameterization in order to spread out the resulting distortion. In certain cases it is impossible to
generate a positive Jacobian integer polycube map, and thus the quad mesh extraction fails.

4 QUANTIZATION: OUR APPROACH
In this section we present a way to construct a map 𝐹𝐿 : Ω → R2

for a given set of integer boundary constraints 𝐿. Then, in §4.1.1
and §4.1.2, we will introduce two constraints, [C1] and [C2], such
that “𝐿 respects [C1] and [C2]” if and only if 𝐹𝐿 ∈ 𝒫Z. Armed with
this construction, we approximate the problem (1) as follows:

𝑓 = arg min
𝐹𝐿 : 𝐿 respects [C1] and [C2]

𝐸 (𝐹𝐿). (2)

In the rest of the section we show the construction of 𝐹𝐿 for a
given set of integer boundary constraints 𝐿 (§4.1) and we describe
the optimization process in §4.2.

4.1 Construction of 𝐹𝐿
Recall that a triangulated domain Ω and a positive Jacobian real
polycube map 𝔤 ∈ 𝒫R are given as an input. First we show how to
construct a function 𝐹𝐿 for a given set 𝐿 ⊂ Z, and then we prove
that 𝐹𝐿 is a valid integer polycube map (𝐹𝐿 ∈ 𝒫Z) if and only if 𝐿
respects [C1]and [C2].

For each chart𝑈𝑖 (resp.𝑉𝑗), we can extract the iso-lines of 𝔤1 such
that 𝔤1 (𝑋) = 𝔤1 |𝑈𝑖

. Since det(𝐷𝔤) > 0, these iso-lines decompose
the domain Ω into quadrangular blocks (see Fig. 9). To simplify a bit
the input block decomposition, we ignore the connected components
of the iso-lines that do not touch the corresponding chart (bottom
row of Fig. 9).
Each block is mapped by 𝔤 to an axis-aligned rectangle limited

by the values of four charts 𝑈𝑖 ,𝑈𝑖′,𝑉𝑗 ,𝑉𝑗 ′ that delimited it. N.B.
Without loss of generality, we consider that 𝔤1 |𝑈𝑖

< 𝔤1 |𝑈𝑖′ ⇐⇒
𝑖 < 𝑖 ′ (resp. 𝑉𝑗).

Relying on this block decomposition, we define 𝐹𝐿 as a sum of
two functions:

𝐹𝐿 := ℎ − 𝛿. (3)

The underlying idea is to define the function ℎ that is almost an in-
teger polycube map. If 𝐿 satisfies the constraint [C1], the function ℎ
is still a (valid) real polycube map (ℎ ∈ 𝒫R), but it maps the bound-
ary 𝜕Ω very close to the integer values given by 𝐿. The function
ℎ does most of the work: it has a positive Jacobian (det(𝐷ℎ) > 0),
and a small correction 𝛿 is needed to make ℎ − 𝛿 a valid integer

Fig. 9. The input real polycube map 𝔤 allows to decompose the domain Ω
into quadrangular blocks. We do not extract connected components of the
isolines that do not touch “corners” of the domain Ω (bottom row, right).

polycube map (ℎ − 𝛿 ∈ 𝒫Z). This correction is only possible if 𝐿
also satisfies the constraint [C2].
We represent ℎ and 𝛿 by prescribing their values at the vertices

of the block decomposition. Refer to Fig. 10: given a block with
four vertices 𝑝11, 𝑝12, 𝑝21 and 𝑝22, it is mapped to an axis-aligned
rectangle by 𝔤. If we want to evaluate a function 𝑓 represented by
four values 𝑓 (𝑝11), 𝑓 (𝑝12), 𝑓 (𝑝21) and 𝑓 (𝑝22), then for any point 𝑝
of the block we can find its barycentric coordinates 𝜆1, 𝜆2, 𝜇1, 𝜇2 w.r.t.
the axis-aligned rectangle, and 𝑓 (𝑝) can be evaluated as follows:

𝑓 (𝑝) =
∑

𝑖, 𝑗 ∈{1,2}

𝜆𝑖𝜇 𝑗

(𝜆1 + 𝜆2) (𝜇1 + 𝜇2)
𝑓 (𝑝𝑖 𝑗)

So, the block decomposition allows us to represent continuous
blockwise bi-linear functions; ℎ (§4.1.1) and 𝛿 are (§4.1.2) defined in
this way.

4.1.1 Construction of ℎ. As mentionned previously, we represent ℎ
by specifying its values at the vertices of the block decomposition.

Research Report, LORIA 2020.

6 • François Protais*, Maxence Reberol, Nicolas Ray, Etienne Corman, Franck Ledoux, and Dmitry Sokolov

Fig. 10. Each quadrangular block is mapped to an axis-aligned rectangle
by 𝔤. For every point 𝑝 in a block we can find barycentric coordinates of its
image 𝔤(𝑝) w.r.t. the axis-aligned rectangle; this allows us to define bi-linear
functions over the original block by prescribing 4 values at the block vertices.

ALGORITHM 1: Computation of 𝛿
Result: A value of 𝛿 (𝑠) for each vertex 𝑠 of the block decomposition

1 for 𝑠 ∈ 𝐵 do
2 𝛿1 (𝑠) = 0; visited[𝑠] = false;
3 for 𝑠 ∈ 𝑈𝑖 do
4 𝛿1 (𝑠) = 𝑖𝜀; visited[𝑠] = true;
5 while There is an edge (𝑠, 𝑡) such that ∥ℎ (𝑠) − ℎ (𝑡) ∥ < |𝐿 |𝜀 and

visited[𝑠] and not visited[𝑡] do
6 𝛿1 (𝑡) = 𝛿1 (𝑠) ;
7 visited[𝑡] = true;
8 𝛿2 is computed the same manner;

Thus, for every vertex generated by two charts𝑈𝑖 and𝑉𝑗 , we define
ℎ to be equal to (𝑙𝑈𝑖

+ 𝑖𝜀, 𝑙𝑉𝑗
+ 𝑗𝜀) with 𝜀 > 0 and the bi-linear

interpolation does the rest of the job.
It is easy to verify that det(𝐷ℎ) > 0 (refer to Appendix A) if 𝐿

satisfies the constraint [C1] expressed as follows:

Definition 3. we say that 𝐿 respects [C1]if :
Given a block limited by𝑈𝑖 and𝑈𝑖′ (resp. 𝑉𝑗):

𝑖 < 𝑖 ′ ⇒ 𝑙𝑈𝑖
≤ 𝑙𝑈𝑖′ ([C1])

Thus, under the constraint [C1]the mapping ℎ ∈ 𝒫R, i.e. it is
a positive Jacobian real polycube map; it is easy to see that it is
almost integer: it differs only by 𝑂 (𝜀) from the target, and only
a small correction 𝛿 is needed so that 𝐹𝐿 := ℎ − 𝛿 is an integer
polycube map.

4.1.2 Construction of 𝛿 . We need to compute a small correction
function 𝛿 such that:

(1) ℎ − 𝛿 has desired integer values 𝐿 on the boundary 𝜕Ω;
(2) the Jacobian det(𝐷𝐹𝐿) is positive.

Like ℎ, the function 𝛿 is represented by its values on the vertices
of the block decomposition, and is interpolated elsewhere. Alg. 1
shows how to compute the values by iterating over the edges of the
block decomposition.
N.B. In our implementation we do not actually compute 𝛿 ev-

erywhere, but only for the boundary; nevertheless, we provide its

explicit construction because it allows us to state the constraint
[C2], which is useful to avoid degeneracies.
The construction is straightforward: first we guarantee that ℎ − 𝛿

has the desired values 𝐿 on the boundary (lines 3–4 of Alg. 1). Then,
to ensure the positivity of the Jacobian det(𝐷 (ℎ − 𝛿)) > 0, we
perform a front propagation (lines 5–7) over the edges of the block
decomposition starting from each chart. The idea is to have all
variations of 𝛿 situated where the variation of ℎ is sufficient to keep
the positivity of the Jacobian.

More precisely, our algorithm guarantees that if an edge (𝑠, 𝑡) of
the block decomposition is “short” under action of ℎ (i.e. ∥ℎ(𝑠) −
ℎ(𝑡)∥ < |𝐿 |𝜀), then the correction 𝛿 keeps its length unchanged,
i.e. 𝛿 (𝑠) = 𝛿 (𝑡). In Appendix B we demonstrate that this condition
implies the positivity of the Jacobian det(𝐷 (ℎ − 𝛿)) > 0.

There is one caveat though. The algorithm propagates fronts start-
ing from the charts, the propagation is made along “short” edges
of the block decomposition. What happens if two different fronts,
say, from charts 𝑈𝑖 and 𝑈 𝑗 meet across an edge? By construction,
that would imply that there is a path made entirely of “short” edges
that links a vertex of𝑈𝑖 with a vertex of𝑈 𝑗 . It implies the equality
of integer boundary constraints 𝑙𝑈𝑖

= 𝑙𝑈 𝑗
and 𝑙𝑉𝑖′ = 𝑙𝑉𝑗′ ; in turn, it

implies that it is impossible to build a valid integer polycube map
represented as a bi-linear interpolation over the block decomposi-
tion.
Fig. 8 provides a typical example of the violated constraint: two

different points of Ω are placed in the same place in the paramet-
ric space, leading to a degenerate Jacobian. To avoid this, we put
constraints on the set 𝐿: we force certain paths over the edges of
the block decomposition to contain “long” edges. It is sufficient to
consider only monotonic paths, i.e., paths that do not go back and
forth in each of the dimensions.

Definition 4. We say that a path 𝑃 over the edges of the block
decomposition is monotonic if its coordinate functions ℎ1 (𝑃) and
ℎ2 (𝑃) are (non-strictly) monotonic.

Thus, we put a constraint that every monotonic path between any
two points of different charts in the same dimension, must contain
a “long” edge. We call this constraint [C2] and it is formulated as
follows:

Definition 5. We say that 𝐿 respects [C2] if:
Given two vertices issued from charts 𝑈𝑖 ,𝑉𝑗 and𝑈𝑖′,𝑉𝑗 ′ . If the ver-
tices are both situated on same dimension charts and if there exists
monotone path between them, then:

sign(𝑖 ′ − 𝑖) (𝑙𝑈𝑖′ − 𝑙𝑈𝑖
) + sign(𝑗 ′ − 𝑗) (𝑙𝑉𝑗′ − 𝑙𝑉𝑗

) > 0 ([C2])

Let us sum up: given a positive Jacobian real polycube map
𝔤 ∈ 𝒫R and a set of integer constraints 𝐿; if 𝐿 respects
[C1] and [C2], then 𝐹𝐿 , whose construction we give explicitly,
is a valid positive Jacobian integer polycube map (𝐹𝐿 ∈ 𝒫Z).

4.2 Estimating 𝐸 (𝐹𝐿) and optimization
Having defined a construction of a function 𝑃𝐿 for a given set of
integer constraints 𝐿, we need to evaluate the energy 𝐸 (𝐹𝐿) to be
able to solve our optimization problem (2).

Research Report, LORIA 2020.

Robust Quantization for Polycube Maps • 7

For a given value of 𝜀, evaluation of 𝐸 (𝐹𝐿) is quite cumbersome.
Fortunately, we can notice the following fact:

lim
𝜀→0

𝐸 (𝐹𝐿) = lim
𝜀→0

𝐸 (ℎ)

The behavior of 𝐸 (ℎ) at the limit with 𝜀 → 0 is easy to study,
some straightforward calculations (see Appendix C) give following
expression:

lim
𝜀→0

𝐸 (𝐹𝐿) =
∑

𝑏 block of Ω

𝛼1

���𝑙𝑈𝑖′ − 𝑙𝑈𝑖
− (𝔤1 |𝑈𝑖′ − 𝔤1 |𝑈𝑖

)
���

+𝛼2
���𝑙𝑉𝑗′ − 𝑙𝑉𝑗

− (𝔤2 |𝑉𝑗′ − 𝔤2 |𝑉𝑗
)
���
 , (4)

where 𝛼1 and 𝛼2 are constant per block:

𝛼1 =

∫
𝑏
∥∇𝔤1 (𝑋)∥ 𝑑𝑋

|𝔤1 |𝑈𝑖′ − 𝔤1 |𝑈𝑖
| 𝛼2 =

∫
𝑏
∥∇𝔤2 (𝑋)∥ 𝑑𝑋

|𝔤2 |𝑉𝑗′ − 𝔤2 |𝑉𝑗
| .

It allows us to reformulate the problem (2) as follows:

𝑓 = arg min
𝐹𝐿 : 𝐿 respects [C1] and [C2]

lim
𝜀→0

𝐸 (𝐹𝐿) . (5)

Under a proper change of variables, this optimization problem
boils down to a mixed-integer linear program, i.e. a minimization
of a linear energy under linear and integer constraints.
N.B. This problem always has a solution; as a matter of fact, the

choice 𝑙𝑈𝑖
= 𝑖 (resp. 𝑙𝑉𝑗

= 𝑗) is a feasible set of constraints.

5 IMPLEMENTATION
For the sake of clarity, so far our method was presented in 2 dimen-
sions, but it is straightforward to extend it to 3D. We discuss our
implementation and results in 3 dimensions.
It is important to notice that the construction we proposed in

Section 4 relies on a (local) bijectivity of 𝔤 everywhere over the
domain. In practice, it is a lot to ask: usually real polycube maps
have small defects that undermine our construction, particularly
if we actually wanted to cut the input mesh along the iso-surfaces
generated by the charts in order to extract the block decomposition.
To circumvent this issue, we do not compute the iso-surfaces,

but rather we:
• § 5.1: extract the combinatorial structure of the block
decomposition by rasterizing the image of Ω by 𝔤;

• § 5.2: this information suffices to deduce the combinatorial
structure of the resulting hexmesh by solving the mixed-
integer linear program given by Eq. (5);

• § 5.3: finally, we use 𝐹𝐿 to recover the geometry of the hex
mesh. Note that with the information in our hands, 𝐹−1

𝐿
is

not defined everywhere in the domain, however it is possible
to evaluate it at the vertices of the hex mesh.

5.1 Extracting the block decomposition
As pointed out earlier, 𝔤 often presents small defects like inverted
or degenerated tetrahedra. It is not an issue as long as at least all
the charts are well defined and the image 𝔤

(
{𝑈𝑖 }

⋃{𝑉𝑗 }
⋃{𝑊𝑘 }

)
forms a valid boundary of a volume. In this case, we can cut R3 with
axis-aligned planes placed at the values 𝔤1 |𝑈𝑖

) (resp. 𝑉𝑗 ,𝑊𝑘). This
defines an axis-aligned grid in the parametric space, and by a simple
rasterization we can find whether a current grid cell is in the image

of Ω by 𝔤, or out. Having extracted all inner blocks, we obtain the
combinatory structure of the block decomposition.

5.2 Computing hexahedral combinatory
The combinatorial structure of the resulting hexahedral mesh is
completely defined by the quantization 𝐿, and it can be found by
solving Eq. (5). We solve the mixed-integer linear program by us-
ing [CPLEX 2019], and the implementation is rather straightforward,
but we must pay attention to two details:

• the proposed energy (Eq. (5)) relies on the computation of
weights 𝛼𝑖 , which requires to integrate ∇𝔤𝑖 over each block
of Ω. Note that for robustness reasons we have chosen not to
compute the block decomposition of Ω explicitly, therefore
we approximate 𝛼𝑖 in each block 𝑏 ∈ Ω by the volume of the
block under action of 𝔤, which is readily available.

• the constraint [C2] represents a lot of inequalities (𝑂 (𝑁 2),
where 𝑁 the number of vertices of the block decomposition).
In our implementation, we treat them as “lazy” constraints.
More precisely, we solve the problem without enforcing en-
tirely [C2], i.e. we start by only constraining charts that are
opposite to one another, similarly to [Guo et al. 2020]. Then,
if the solution violates [C2], we add the “least respected” in-
equality to the problem, and restart until we find a solution
that respects [C2]. In practice we never encountered a case
where more than few iterations were necessary, refer to the
right column of Table 1.

To compute the final combinatorial structure of the resulting hexa-
hedral mesh, first we create the hexahedral mesh (still not endowed
with geometry) inherited from the block decomposition. Then we
remove or split hexahedra based on the quantization 𝐿.

So far we have computed the connectivity of the output hexahe-
dral mesh but we are still missing the vertex positions. In §5.3 we
will apply 𝐹−1

𝐿
to find the final mesh.

5.3 Computing hexahedral geometry
The last step of the process is to compute the geometry of the final
hexahedral mesh. We have already computed its image under 𝐹𝐿 ,
and therefore we need to apply 𝐹−1

𝐿
to the previous result.

The problem, however, is that we have chosen to compute only
the combinatorial structure of the block decomposition and not its
geometry inΩ; therefore 𝐹𝐿 is not defined everywhere in the domain
with the information we have in our hands. Fortunately, it is well-
defined for the vertices of our hexahedral mesh. Applying 𝐹−1

𝐿
to the

vertices of the hexahedral mesh boils down to mapping the mesh
onto 𝔤(Ω) and then to applying 𝔤−1 to the vertices. Since in practice
𝔤 may present local imperfections (e.g. foldovers), the resulting
mesh might not be perfectly conforming with the boundary, or
possess poor quality elements. In this case, we can apply a mesh
optimisation algorithm such as [Livesu et al. 2015] to improve the
boundary compliance and get rid of poor quality elements.

6 RESULTS
We tested our algorithm on a i7 4.3GHz CPUwith 64GB of RAM on a
single thread implementation. We compute the initial real polycube
map 𝔤 with the algorithm [Gregson et al. 2011].

Research Report, LORIA 2020.

8 • François Protais*, Maxence Reberol, Nicolas Ray, Etienne Corman, Franck Ledoux, and Dmitry Sokolov

Fig. 11. Our robust quantization process allows for multi resolution meshes,
without risk of collapses of the geometry.

Id Model name size (tets) # blocks # hexahedra total time (sec) CPLEX calls
1 kiss 302292 2558 410 150 2
2 Bunny 731085 426 58 130 2
3 grid 6718 285 56 2.1 1
4 street 2327 483 55 3.0 3
5 connecting rod 14380 203 54 2.6 1
6 engine1 18864 6151 219 4.6 1
7 engine2 56789 9415 404 9.2 1

Table 1. Statistics for the models shown in Fig 12.

6.1 Hexahedral meshing
We use our algorithm to generate hexahedral meshes minimizing
the distortion with respect to the initial real polycube map 𝔤. The
resolution of the meshes is determined by the scale of the input
real polycube map 𝔤. Fig. 11 shows the results for two different
resolutions. Unlike the naive snapping technique sometimes used
for quantization (Fig. 3), our quantization produces valid hexahedral
meshes (no missing hexes) without loss of geometric features. We
ran our code on 1000+ models from the dataset [Hu et al. 2018].
Results are provided in the supplementary material1. Concerning
our claims on robustness to local non-bijectivity, it should be noted
that from the 1391 model tested, 815 (59%) had at least one
flipped tetrahedron through 𝔤.

6.2 As coarse as possible block decomposition.
To challenge the robustness of our algorithm, we generate as coarse
as possible hexahedral meshes by using a down-scaled 𝔤, i.e. , replace
the input 𝔤 by 𝜂𝔤 with 𝜂 ≈ 0. The result can be interpreted as a
block decomposition that minimizes the distance between pairs of
charts. Table 1 provides statistics on 7 models, the decompositions
are shown in Fig. 12. Note that 𝔤 was computed with [Gregson et al.
1Contact: francois.protais@inria.fr

Fig. 12. For each model, we optimize the block decomposition to get an
as coarse as possible polycube. The associated mesh will give a very coarse
decomposition of the original domain Ω.

2011] for all models except the two first models from Table 1 that
come from the supplemental material of [Livesu et al. 2013].
We reported the number of blocks in the input polycuboid, the

number of blocks in the output generated with global overlaps
as well as the timings and the number of times we had to call
CPLEX. It can be seen that we achieve a significant simplification
of the mesh structure, and that our algorithm is robust to extreme
simplifications, being able to recover valid meshes even for highly
distorted polycube maps.

Comparison with polycube simplification methods. [Zhao et al.
2019], [Chen et al. 2019] and [Guo et al. 2020] propose a set of
constraints to guarantee the validity of the polycube. The problem,
however is that their constraints are not sufficient and can poten-
tially lead to degenerate polycube during simplification. They only
guarantee the integrity of the boundary of the polycube, missing
the deformation inside the domain. Fig 13 shows a failure example:
the bottom of the cup collapses into a plane without violating their
constraints, whereas our set of constraints guarantees the validity
of the polycube map. Cherchi et al. [Cherchi et al. 2016] attempt to
locally align corners of the polycube. As a consequence they fail
to align vertices that are far away from each other. In contrast, our
method considers all possible chart alignments. For example, the

Research Report, LORIA 2020.

Robust Quantization for Polycube Maps • 9

Fig. 13. Quantization without volumic constraints [Chen et al. 2019; Zhao
et al. 2019] can not detect the collapse of the bottom of the cup (middle).
We take them into account (right). [Guo et al. 2020] would succeed on this
model, but would fail on more tricky set-up (such as Fig 8).

of blocks Time (min)
Original GAO et al. 2017 Us GAO et al. 2017 Us

Top 33 23 28 27 <1
Middle 347 80 80 >200 <1
Bottom 70 24 16 24 <1

Table 2. Comparison with mesh simplification method [Gao et al. 2017]:
number of blocks before and after simplification and timing. Models are
rendered in Fig 14. Our method leads to similar number of blocks with a
considerable speed-up (∼ 20×). For the top model Gao et al. has fewer blocks
only because they allow non-polycube deformation (close-up).

model 4 in Fig. 12 we are able to align the hole with one of the top
dents, and this cannot be done by [Cherchi et al. 2016].

Comparison with [Gao et al. 2017]. Another way of computing a
minimal block decomposition is to compute a fine hexahedral mesh
and to decimate it using a genericmesh simplification algorithm. The
state-of-the-art method [Gao et al. 2017] recursively collapses sheets
and chords of the mesh until no further simplification is possible. In
their algorithm each operation is given a score and the operations
are done in a greedy manner. This approach is strictly local and
this sequence of simplification does not always yield the coarsest
mesh, as illustrated in Fig. 14. It is to be noted that in [Gao et al.
2017] the mesh geometry is recomputed at each step to take into
account the simplification operation. In our method the constraints
ensure the validity of the polycube map at all time so the mesh
geometry can be computed once at the very end of the process.
This leads to the considerable speed up reported in Table 2. Finally,
the chord simplification introduces new singularities that are not
always desirable. For instance in Fig. 14 middle, Gao et al. create at
the boundary of the mesh valency 4 near valency 2 vertices leading
to highly distorted cells.

CONCLUSION
This work provides an important robustness guarantee, but it as-
sumes that a one-to-one 𝔤 is given as input. To achieve a fully
robust hexahedral remeshing method based on polycubes, the main
remaining difficulty is to solve the flagging problem.
It also opens interesting research opportunities for the general

case of hexahedral remeshing based on global parameterizations.
Basically, we need to introduce new integer variables corresponding
to the (grid preserving) discontinuities in the mapping. The main
problem is that the block decomposition is less straightforward

Fig. 14. Visual comparison between ourmethod and themesh simplification
method [Gao et al. 2017]. Quantitative data are reported in Table 2. Our
block decomposition creates nicer cells when Gao et al. create valency 4
vertices at the boundary of the mesh (middle close-up).

to obtain: the parameteric domain becomes an universal covering
where the intersection of a plane with the model can be infinite, and
tracing it in the geometric domain is an ill-posed problem [Kowalski
et al. 2014, 2016].
We have also seen that the combinatorial structure of the hexa-

hedral mesh can be derived from our integer variables. Is it possible
to extend this to the general global parameterization case?

REFERENCES
Cecil G. Armstrong, Harold J. Fogg, Christopher M. Tierney, and Trevor T. Robinson.

2015. Common Themes in Multi-block Structured Quad/Hex Mesh Generation.
Procedia Engineering 124 (Jan. 2015), 70–82. https://doi.org/10.1016/j.proeng.2015.
10.123

Marcel Campen, David Bommes, and Leif Kobbelt. 2015. Quantized global parametriza-
tion. ACM Transactions on Graphics 34, 6 (Oct. 2015), 1–12. https://doi.org/10.1145/
2816795.2818140

Long Chen, Gang Xu, Shiyi Wang, Zeyun Shi, and Jin Huang. 2019. Constructing
volumetric parameterization based on directed graph simplification of l1 polycube
structure from complex shapes. Computer Methods in Applied Mechanics and Engi-
neering 351 (July 2019), 422–440. https://doi.org/10.1016/j.cma.2019.01.036

G. Cherchi, P. Alliez, R. Scateni, M. Lyon, and D. Bommes. 2019. Selective Padding
for Polycube-Based Hexahedral Meshing. Computer Graphics Forum 38, 1 (2019),
580–591. https://doi.org/10.1111/cgf.13593

Gianmarco Cherchi, Marco Livesu, and Riccardo Scateni. 2016. Polycube Simplification
for Coarse Layouts of Surfaces and Volumes. Computer Graphics Forum 35, 5 (Aug.
2016), 11–20. https://doi.org/10.1111/cgf.12959

CPLEX 2019. IBM ILOG CPLEX Optimization Studio 12.9.0.0. https://www.ibm.com/
products/ilog-cplex-optimization-studio

Arbtip Dheeravongkit and Kenji Shimada. 2006. Inverse Adaptation of Hex-dominant
Mesh for Large Deformation Finite Element Analysis. In Geometric Modeling and
Processing - GMP 2006, Myung-Soo Kim and Kenji Shimada (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 189–206.

Xianzhong Fang, Weiwei Xu, Hujun Bao, and Jin Huang. 2016. All-hex meshing using
closed-form induced polycube. ACM Transactions on Graphics 35, 4 (July 2016), 1–9.
https://doi.org/10.1145/2897824.2925957

Research Report, LORIA 2020.

https://doi.org/10.1016/j.proeng.2015.10.123
https://doi.org/10.1016/j.proeng.2015.10.123
https://doi.org/10.1145/2816795.2818140
https://doi.org/10.1145/2816795.2818140
https://doi.org/10.1016/j.cma.2019.01.036
https://doi.org/10.1111/cgf.13593
https://doi.org/10.1111/cgf.12959
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://doi.org/10.1145/2897824.2925957

10 • François Protais*, Maxence Reberol, Nicolas Ray, Etienne Corman, Franck Ledoux, and Dmitry Sokolov

Xiao-Ming Fu, Chong-Yang Bai, and Yang Liu. 2016. Efficient Volumetric PolyCube-Map
Construction. Computer Graphics Forum 35, 7 (2016), 97–106. https://doi.org/10.
1111/cgf.13007

Xifeng Gao, Zhigang Deng, and Guoning Chen. 2015. Hexahedral mesh re-
parameterization from aligned base-complex. ACM Transactions on Graphics 34, 4
(July 2015), 142:1–142:10. https://doi.org/10.1145/2766941

Xifeng Gao, Daniele Panozzo, Wenping Wang, Zhigang Deng, and Guoning Chen. 2017.
Robust structure simplification for hex re-meshing. ACM Transactions on Graphics
36, 6 (Nov. 2017), 1–13. https://doi.org/10.1145/3130800.3130848

James Gregson, Alla Sheffer, and Eugene Zhang. 2011. All-Hex Mesh Generation via
Volumetric PolyCube Deformation. Computer Graphics Forum 30, 5 (Aug. 2011),
1407–1416. https://doi.org/10.1111/j.1467-8659.2011.02015.x

Hao-Xiang Guo, Xiaohan Liu, Dong-Ming Yan, and Yang Liu. 2020. Cut-enhanced
PolyCube-maps for feature-aware all-hex meshing. ACM Transactions on Graphics
39, 4 (July 2020). https://doi.org/10.1145/3386569.3392378

Ying He, Hongyu Wang, Chi-Wing Fu, and Hong Qin. 2009. A divide-and-conquer
approach for automatic polycube map construction. Computers & Graphics 33, 3
(June 2009), 369–380. https://doi.org/10.1016/j.cag.2009.03.024

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4 (July 2018),
60:1–60:14. https://doi.org/10.1145/3197517.3201353

Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu Desbrun.
2014. l1Basedd Construction of Polycube Maps from Complex Shapes. ACM Trans.
Graph. 33, 3 (June 2014), 25:1–25:11. https://doi.org/10.1145/2602141

Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. QuadCover - Surface
Parameterization using Branched Coverings. Computer Graphics Forum 26, 3 (2007),
375–384. https://doi.org/10.1111/j.1467-8659.2007.01060.x

N. Kowalski, F. Ledoux, and P. Frey. 2014. Block-structured Hexahedral Meshes for
CAD Models Using 3D Frame Fields. Procedia Engineering 82 (Jan. 2014), 59–71.
https://doi.org/10.1016/j.proeng.2014.10.373

N. Kowalski, F. Ledoux, and P. Frey. 2016. Smoothness driven frame field generation
for hexahedral meshing. Computer-Aided Design 72 (March 2016), 65–77. https:
//doi.org/10.1016/j.cad.2015.06.009

Moritz Lessmann, John Sawyer, and David Knowles. 2018. Methods for Complex
Cracked Body Finite Element Assessments. Procedia Structural Integrity 13 (2018),
1232 – 1237. https://doi.org/10.1016/j.prostr.2018.12.253 ECF22 - Loading and
Environmental effects on Structural Integrity.

Yufei Li, Yang Liu, Weiwei Xu,WenpingWang, and Baining Guo. 2012. All-HexMeshing
Using Singularity-Restricted Field. ACM Trans. Graph. 31, 6, Article Article 177 (Nov.
2012), 11 pages. https://doi.org/10.1145/2366145.2366196

Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes. 2018.
Singularity-Constrained Octahedral Fields for Hexahedral Meshing. ACM Trans.
Graph. 37, 4, Article Article 93 (July 2018), 17 pages. https://doi.org/10.1145/3197517.
3201344

Marco Livesu, Alla Sheffer, Nicholas Vining, and Marco Tarini. 2015. Practical Hex-
Mesh Optimization via Edge-Cone Rectification. Transactions on Graphics (Proc.
SIGGRAPH 2015) 34, 4 (2015). https://doi.org/10.1145/2766905

Marco Livesu, Nicholas Vining, Alla Sheffer, James Gregson, and Riccardo Scateni. 2013.
PolyCut: monotone graph-cuts for PolyCube base-complex construction. ACM
Transactions on Graphics 32, 6 (Nov. 2013), 1–12. https://doi.org/10.1145/2508363.
2508388

Max Lyon, David Bommes, and Leif Kobbelt. 2016. HexEx: robust hexahedral mesh
extraction. ACM Transactions on Graphics 35, 4 (July 2016), 1–11. https://doi.org/
10.1145/2897824.2925976

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust Field-aligned Global
Parametrization. ACM Trans. Graph. 33, 4 (July 2014), 135:1–135:14. https://doi.
org/10.1145/2601097.2601154

M. Nieser, U. Reitebuch, and K. Polthier. 2011. CubeCover- Parameterization of 3D
Volumes. Computer Graphics Forum 30, 5 (Aug. 2011), 1397–1406. https://doi.org/
10.1111/j.1467-8659.2011.02014.x

Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic
Global Parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006), 1460–1485. https:
//doi.org/10.1145/1183287.1183297

Nicolas Ray, Dmitry Sokolov, and Bruno Levy. 2016. Practical 3D Frame Field Generation.
ACM Trans. Graph. 35, 6, Article Article 233 (Nov. 2016), 9 pages. https://doi.org/
10.1145/2980179.2982408

Dmitry Sokolov and Nicolas Ray. 2015. Fixing normal constraints for generation of
polycubes. Research Report. LORIA. https://hal.inria.fr/hal-01211408

Marco Tarini, Kai Hormann, Paolo Cignoni, and ClaudioMontani. 2004. PolyCube-Maps.
In ACM SIGGRAPH 2004 Papers (SIGGRAPH ’04). ACM, New York, NY, USA, 853–860.
https://doi.org/10.1145/1186562.1015810 event-place: Los Angeles, California.

Mary Wheeler, Guangri Xue, and Ivan Yotov. 2012. A multipoint flux mixed finite
element method on distorted quadrilaterals and hexahedra. Numer. Math. 121 (05
2012). https://doi.org/10.1007/s00211-011-0427-7

Hui Zhao, Na Lei, Xuan Li, Peng Zeng, Ke Xu, and Xianfeng Gu. 2018. Robust edge-
preserving surface mesh polycube deformation. Computational Visual Media 4, 1

(March 2018), 33–42. https://doi.org/10.1007/s41095-017-0100-x
Hui Zhao, Xuan Li, Wencheng Wang, Xiaoling Wang, Shaodong Wang, Na Lei, and

Xiangfeng Gu. 2019. Polycube Shape Space. Computer Graphics Forum 38, 7 (Oct.
2019), 311–322. https://doi.org/10.1111/cgf.13839

A POSITIVITY OF det(𝐷ℎ)
In this section gives a proof that [C1] assures the positivity of
det(𝐷ℎ). We will proceed in two steps, first we will give an mathe-
matical definition for ℎ and then, from it, deduce the necessity of
constraint [C1].

A.1 definition of ℎ
In this section, we give a definition of ℎ that is equivalent to the one
given in Sec. 4.1.1, but brings another intuition.
We know that each block created by four charts 𝑈𝑖 ,𝑈𝑖′,𝑉𝑗 ,𝑉𝑗 ′

is mapped by 𝔤 to an axis-aligned rectangle (Fig. 15) delimited by
𝔤1|𝑈𝑖

, 𝔤1|𝑈𝑖′
, 𝔤2|𝑉𝑗

and 𝔤2|𝑉𝑗′
. It is easy to stretch this rectangle to any

other axis-aligned rectangle by modifying each axis independently.
We can therefore define ℎ as ℎ(𝑋) := (𝐴1 (𝔤1 (𝑋)), 𝐴2 (𝔤2 (𝑋))) with
𝐴1, 𝐴2 : R→ R being two continuous block-wise affine functions.

By definition,ℎmaps each block defined by four charts𝑈𝑖 ,𝑈𝑖′,𝑉𝑗 ,𝑉𝑗 ′

to the axis-aligned rectangle delimited by 𝑙𝑈𝑖
+ 𝑖𝜀, 𝑙𝑈𝑖′ + 𝑖 ′𝜀, 𝑙𝑉𝑗

+
𝑗𝜀, 𝑙𝑉𝑗′ + 𝑗 ′𝜀 for some small 𝜀 > 0.
On a block defined by𝑈𝑖 ,𝑈𝑖′,𝑉𝑗 ,𝑉𝑗 ′ , the function 𝔤1 is bounded

by 𝔤1 |𝑈𝑖
and 𝔤1 |𝑈𝑖′ in the first dimension. The affine transformation

𝐴1 is defined as follows :

𝐴1 (𝒙) : =
𝑙𝑈𝑖′ + 𝑖

′𝜀 − (𝑙𝑈𝑖
+ 𝑖𝜀)

𝔤1 |𝑈𝑖′ − 𝔤1 |𝑈𝑖

𝒙 + 𝑏1

= 𝑎1𝔤1 (𝑥) + 𝑏1

with𝑏1 constant chosen such that𝐴1 maps
[
𝔤1 |𝑈𝑖

, 𝔤1 |𝑈𝑖′
]
on

[
𝑙𝑈𝑖

+ 𝑖𝜀, 𝑙𝑈𝑖′ + 𝑖
′𝜀
]
.

The values of 𝔤1 |𝑈𝑖
and 𝑙𝑈𝑖

being defined along the iso-lines, ℎ is
continuous at the interface between blocks (but not differentiable).
The affine transformation in the second dimension, 𝐴2, is given

by the same construction.

A.2 Computation of det(𝐷ℎ)
The variation of ℎ are strictly linked to 𝐴1, 𝐴2 and 𝔤, i.e. 𝐷ℎ can be
expressed as follow :

𝐷ℎ = 𝐷

(
𝐴1 (𝔤1 (𝑋))
𝐴2 (𝔤2 (𝑋))

)
=

(
𝜕ℎ1
𝜕𝔤1

𝜕ℎ1
𝜕𝔤2

𝜕ℎ2
𝜕𝔤1

𝜕ℎ2
𝜕𝔤2

)
𝐷𝔤 =

(
𝑎1 0
0 𝑎2

)
𝐷𝔤

meaning that

det(𝐷ℎ) = 𝑎1𝑎2 det(𝐷𝔤) .

Remembering that 𝑎1 =
𝑙𝑈𝑖′ +𝑖

′𝜀−(𝑙𝑈𝑖
+𝑖𝜀)

𝔤1 |𝑈𝑖′−𝔤1 |𝑈𝑖

, since 𝔤1 |𝑈𝑖′ −𝔤1 |𝑈𝑖
> 0 and

𝔤2 |𝑉𝑗′ −𝔤2 |𝑉𝑗
> 0, for det(𝐷ℎ) to be positive, 𝑙𝑈𝑖′ +𝑖

′𝜀− (𝑙𝑈𝑖
+𝑖𝜀) and

𝑙𝑉𝑗′ + 𝑗 ′𝜀 − (𝑙𝑉𝑗
+ 𝑗𝜀) must be of the same sign. This being necessary

for all blocks, and by continuity, it means signs must be the same
on all the blocks. Being able to consider that 𝑙𝑈𝑖

= −𝑙𝑈𝑖
, resp.𝑉𝑗 , for

all charts, we deduce constraint [C1], i.e. 𝑙𝑈𝑖
≤ 𝑙𝑈𝑖′ and 𝑙𝑉𝑗

≤ 𝑙𝑉𝑗′

on each block.

Research Report, LORIA 2020.

https://doi.org/10.1111/cgf.13007
https://doi.org/10.1111/cgf.13007
https://doi.org/10.1145/2766941
https://doi.org/10.1145/3130800.3130848
https://doi.org/10.1111/j.1467-8659.2011.02015.x
https://doi.org/10.1145/3386569.3392378
https://doi.org/10.1016/j.cag.2009.03.024
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/2602141
https://doi.org/10.1111/j.1467-8659.2007.01060.x
https://doi.org/10.1016/j.proeng.2014.10.373
https://doi.org/10.1016/j.cad.2015.06.009
https://doi.org/10.1016/j.cad.2015.06.009
https://doi.org/10.1016/j.prostr.2018.12.253
https://doi.org/10.1145/2366145.2366196
https://doi.org/10.1145/3197517.3201344
https://doi.org/10.1145/3197517.3201344
https://doi.org/10.1145/2766905
https://doi.org/10.1145/2508363.2508388
https://doi.org/10.1145/2508363.2508388
https://doi.org/10.1145/2897824.2925976
https://doi.org/10.1145/2897824.2925976
https://doi.org/10.1145/2601097.2601154
https://doi.org/10.1145/2601097.2601154
https://doi.org/10.1111/j.1467-8659.2011.02014.x
https://doi.org/10.1111/j.1467-8659.2011.02014.x
https://doi.org/10.1145/1183287.1183297
https://doi.org/10.1145/1183287.1183297
https://doi.org/10.1145/2980179.2982408
https://doi.org/10.1145/2980179.2982408
https://hal.inria.fr/hal-01211408
https://doi.org/10.1145/1186562.1015810
https://doi.org/10.1007/s00211-011-0427-7
https://doi.org/10.1007/s41095-017-0100-x
https://doi.org/10.1111/cgf.13839

Robust Quantization for Polycube Maps • 11

Fig. 15. Each of block of Ω is mapped to a rectangle by 𝔤, which gives a
change of coordinate system.

B POSITIVITY OF det(𝐷𝐹𝐿) UNDER [C1] AND [C2]
By hypothesis [C1] and [C2]are satisfied by 𝐿. Formally it means
that:

(1) the coefficient 𝑎1, 𝑎2 are positive (see Appendix A),
(2) for any given edge of the block structure (𝑠, 𝑡), ∥ℎ(𝑠)−ℎ(𝑡)∥ <

|𝐿 |𝜀 =⇒ 𝛿 (𝑠) = 𝛿 (𝑡).
Our goal is to show that, under these assumptions, det(𝐷𝐹𝐿) > 0.
Let’s study the determinant of the Jacobian of 𝐹𝐿 , using results of
Appendix A:

det(𝐷𝐹𝐿) = det(𝐷ℎ − 𝐷𝛿)

= det

([(
𝑎1 0
0 𝑎2

)
−

(
𝜕ℎ1
𝜕𝔤1

𝜕ℎ1
𝜕𝔤2

𝜕ℎ2
𝜕𝔤1

𝜕ℎ2
𝜕𝔤2

)]
𝐷𝔤

)
= det(𝐷𝔤)

[(
𝑎1 −

𝜕𝛿1
𝜕𝔤1

) (
𝑎2 −

𝜕𝛿2
𝜕𝔤2

)
− 𝜕𝛿1

𝜕𝔤2

𝜕𝛿2
𝜕𝔤1

]
Recalling that, by construction (see Sec. 4.1.2), | 𝜕𝛿𝑖𝜕𝔤𝑗

| < |𝐿 |𝜀, we can
distinguish two cases :
1. 𝑎1 ≥ 1 and 𝑎2 ≥ 1:

In this case, 𝜀 can be chosen sufficiently small such that
(
𝑎1 − 𝜕𝛿1

𝜕𝔤1

)
and

(
𝑎2 − 𝜕𝛿2

𝜕𝔤2

)
are positive, and 𝜕𝛿1

𝜕𝔤2
𝜕𝛿2
𝜕𝔤1

is negligible against 𝑎1𝑎2.
2. 1 > 𝑎1 > 0 or (inclusive) 1 > 𝑎2 > 0:
This case is the most difficult. By construction of ℎ, having 1 > 𝑎𝑖 >

0 implies that 𝑎𝑖 is of order 𝜀. In the following, using assumption
(2), we will show that if 𝑎𝑖 is of order 𝜀, then 𝜕𝛿1

𝜕𝔤𝑖
=

𝜕𝛿2
𝜕𝔤𝑖

= 0, which
will allow us to concludes that det(𝐹𝐿) > 0.

First, we must recall that each block of Ω is mapped to a rectangle,
with (𝔤1, 𝔤2) the new coordinate system, refer to Fig. 15. From this,
we notice that along an edge (𝑠, 𝑡) of direction 𝔤1 we have ∥ℎ(𝑠) −
ℎ(𝑡)∥ = 𝑎1 (𝔤1 (𝑠) − 𝔤1 (𝑡)), which means that ∥ℎ(𝑠) − ℎ(𝑡)∥ < |𝐿 |𝜀
implies that 𝑎1 is of order 𝜀, and reciprocally as 𝔤 is a constant here.
Subsequently, using the assumption (2), along an edge (𝑠, 𝑡) of

direction 𝔤1, ∥ℎ(𝑠) − ℎ(𝑡)∥ < |𝐿 |𝜀 =⇒ 𝛿 (𝑠) = 𝛿 (𝑡). Remark that
𝛿 (𝑠) = 𝛿 (𝑡) is equivalent to 𝜕𝛿1

𝜕𝔤1
=

𝜕𝛿2
𝜕𝔤1

= 0 along the edge due to
the linearity of 𝛿 along (𝑠, 𝑡). This means that 𝑎1 of order 𝜀 implies
𝜕𝛿1
𝜕𝔤1

=
𝜕𝛿2
𝜕𝔤1

= 0. The same reasoning holds for 𝑎2 and 𝔤2.
The final problem is to generalize this propriety to the rest of the

block (not just along edges). Our construction of 𝛿 is bilinear, using
the coordinate of each vertex of the block. As the block is a rectangle
in ℎ, both opposite edges behave the same, and the behavior of those
edge will be interpolated linearly in the block. If 𝜕𝛿𝑖

𝜕𝔤𝑗
= 0 on both

opposite edges, then 𝜕𝛿𝑖
𝜕𝔤𝑗

= 0 in the whole block. Which means that
our result on the edge is also true in the block. ■

What about 3D ? In 3-dimension the proof is strictly equiv-
alent. The only struggle is the development of the det, which
is a bit more tedious, but in the end, we find the same results.

C CALCULATION OF 𝐸 (ℎ)
The functionℎ is defined per block, 𝐸 (ℎ) can be expressed as follows:

𝐸 (ℎ) =
∑

𝑏 block of Ω

∫
𝑏

∥∇ℎ1 (𝑋) −∇𝔤1 (𝑋)∥ + ∥∇ℎ2 (𝑋) −∇𝔤2 (𝑋)∥𝑑𝑋

With𝑏 a block of Ω limited by the iso-lines from the charts𝑈𝑖 ,𝑈𝑖′,𝑉𝑗

and𝑉𝑗 ′ (cf. fig 9),ℎ1 is defined such thatℎ1 (𝑋) = 𝑙𝑈𝑖′−𝑙𝑈𝑖
+(𝑖′−𝑖)𝜀

𝔤1 |𝑈𝑖′−𝔤1 |𝑈𝑖

𝔤1 (𝑋)+
const (see Appendix A). This give us the following :∫

𝑏

∥∇ℎ1 (𝑋) − ∇𝔤1 (𝑋)∥𝑑𝑋

=

∫
𝑏

(𝑙𝑈𝑖′ − 𝑙𝑈𝑖
+ (𝑖 ′ − 𝑖)𝜀

𝔤1 |𝑈𝑖′ − 𝔤1 |𝑈𝑖

− 1
)
∇𝔤1 (𝑋)

𝑑𝑋
=

����� 𝑙𝑈𝑖′ − 𝑙𝑈𝑖
+ (𝑖 ′ − 𝑖)𝜀

𝔤1 |𝑈𝑖′ − 𝔤1 |𝑈𝑖

− 1

����� ∫𝑏 ∥∇𝔤1 (𝑋)∥ 𝑑𝑋

=

����� 𝑙𝑈𝑖′ − 𝑙𝑈𝑖
+ (𝑖 ′ − 𝑖)𝜀 − (𝔤1 |𝑈𝑖′ − 𝔤1 |𝑈𝑖

)
𝔤1 |𝑈𝑖′ − 𝔤1 |𝑈𝑖

����� ∫𝑏 ∥∇𝔤1 (𝑋)∥ 𝑑𝑋

=
��𝑙𝑈𝑖′ − 𝑙𝑈𝑖

+ (𝑖 ′ − 𝑖)𝜀 − (𝔤1 |𝑈𝑖′ − 𝔤1 |𝑈𝑖
)
�� ∫𝑏 ∥∇𝔤1 (𝑋)∥ 𝑑𝑋
|𝔤1 |𝑈𝑖′ − 𝔤1 |𝑈𝑖

|

We denote 𝛼1 =

∫
𝑏
∥∇𝔤1 (𝑋) ∥𝑑𝑋
|𝔤1 |𝑈𝑖′−𝔤1 |𝑈𝑖

| and passing to the limits, it gives :

lim
𝜀→0

∫
𝑏

∥∇ℎ1 (𝑋) − ∇𝔤1 (𝑋)∥𝑑𝑋 = 𝛼1
��𝑙𝑈𝑖′ − 𝑙𝑈𝑖

− (𝔤1 |𝑈𝑖′ − 𝔤1 |𝑈𝑖
)
��

We do the same calculation for ℎ2 with 𝛼2 and it results in equa-
tion (4).

Research Report, LORIA 2020.

	Abstract
	1 Introduction
	2 Previous work
	3 Quantization: problem statement
	3.1 Notations
	3.2 Problem statement

	4 Quantization: our approach
	4.1 Construction of FL
	4.2 Estimating E(FL) and optimization

	5 Implementation
	5.1 Extracting the block decomposition
	5.2 Computing hexahedral combinatory
	5.3 Computing hexahedral geometry

	6 Results
	6.1 Hexahedral meshing
	6.2 As coarse as possible block decomposition.

	References
	A Positivity of det(Dh)
	A.1 definition of h
	A.2 Computation of det(Dh)

	B Positivity of det(DFL) under [C1] and [C2]
	C Calculation of E(h)

