François Protais

Robust Quantization for Polycube Maps

Fig. 1. Polycube-based hexahedral meshing algorithms are able to produce very regular grids (left), but fail to capture important geometric features with a coarse grid (left → middle). Our method allows to produce a coarse mesh preserving important geometric features (right).

An important part of recent advances in hexahedral meshing focuses on the deformation of a domain into a polycube; the polycube deformed by the inverse map fills the domain with a hexahedral mesh. These methods are appreciated because they generate highly regular meshes. In this paper we address a robustness issue that systematically occurs when a coarse mesh is desired: algorithms produce deformations that are not one-to-one, leading to collapse of large portions of the model when trying to apply the (undefined) inverse map. The origin of the problem is that the deformation requires to perform a mixed integer optimization, where the difficulty to enforce the integer constraints is directly tied to the expected coarseness. Our solution is to introduce sanity constraints preventing the loss of bijectivity due to the integer constraints.

CCS Concepts: • Computing methodologies → Volumetric models; Mesh models.

Additional Key Words and Phrases: hexahedral meshing, PolyCube-Map, rounding

INTRODUCTION

Hexahedral meshes exhibit superior performances than tetrahedral meshes in certain types of numerical simulations. They are commonly used for industrial applications like geological simulations, large deformations and non-linear elasto-plastic structural *Corresponding author: francois.protais@inria.fr analyses [START_REF] Cplex ; Dheeravongkit | Inverse Adaptation of Hex-dominant Mesh for Large Deformation Finite Element Analysis[END_REF][START_REF] Moritz Lessmann | Methods for Complex Cracked Body Finite Element Assessments[END_REF][START_REF] Wheeler | A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra[END_REF]. In practice, engineers make use of semi-automatic tools to precisely control cells orientation and quality. They often rely on coarse block decomposition of a domain which is then refined according to the simulation's need. A block decomposition allows them to generate a structured mesh, i.e. a mesh in which all internal nodes have identical connectivity, thus allowing to store little data and generate sparse FEM matrices [START_REF] Armstrong | Common Themes in Multi-block Structured Quad/Hex Mesh Generation[END_REF]. Overall this process is very time consuming and can take days, weeks or even months.

Automatic hexahedral meshing is an active research area but remains a challenging task especially when looking for coarse block decompositions. One of the most promising approach comes from global parameterization. The idea is to design a 3D steering field prescribing the orientation of the hexahedra to produce, and then to compute a deformation of a regular grid with prescribed (local) orientation.

This approach faces two main obstacles: first, existing frame field-based methods cannot guarantee the validity of the singularity structure, resulting in degenerated parameterizations [START_REF] Li | All-Hex Meshing Using Singularity-Restricted Field[END_REF][START_REF] Nieser | CubeCover-Parameterization of 3D Volumes[END_REF][START_REF] Ray | Practical 3D Frame Field Generation[END_REF]]. Second, current algorithms lack robustness when trying to produce meshes with arbitrarily large cells. In practice, mixed integer solvers often choose to allocate a negative or zero number of layers of hexahedra between two constrained sheets (boundaries of the object, internal constraints or singularities). Moreover, even having computed a parametrization, the extraction of the hexahedral mesh is a challenging problem [START_REF] Lyon | HexEx: robust hexahedral mesh extraction[END_REF] as corrections of local non-bijectiveness of the map tend to break when generating coarse meshes.

One possible way to alleviate the first issue is to generate steering fields without (inner) singularities. This limitation trades some genericity against simpler and more robust algorithms. The idea is to deform the input shape into a polycube, i.e. a solid formed by joining multiple cubes of same size face to face [START_REF] Gregson | All-Hex Mesh Generation via Volumetric PolyCube Deformation[END_REF][START_REF] Tarini | PolyCube-Maps[END_REF].

In this article we focus on robust polycube generation enabling as coarse as possible polycube hexahedral remeshing. So, starting from a volume Ω, we want to compute a hexahedral mesh. Polycube methods are usually split into three parts (Figure 2):

(1) Flagged deformation -The boundary 𝜕Ω of the volume Ω is segmented into charts assigned with one of the six possible flags {ì 𝑢, -ì 𝑢, ì 𝑣, -ì 𝑣, ì 𝑤, -ì 𝑤 }. A continuous, positive Jacobian mapping to the parametric space ì 𝑢, ì 𝑣, ì 𝑤, is then computed such that its distortion is minimized and the image of each chart is planar and perpendicular to the axis of flagging. Formal definitions of the flagging and the map (to a polycuboid) are given in §3.1.

(2) Quantization -This second step makes sure that the faces of the polycuboid are aligned with the integer grid to obtain a Polycube. At this step, the volume can be filled by a unit grid.

(3) Inversion -The polycube deformation is inverted to extract the final hexahedral mesh. All three steps have robustness issues, in this paper we address the quantization and the inversion problem. The first step (computing a flagging leading to a valid polycuboid) is very challenging [START_REF] Sokolov | Fixing normal constraints for generation of polycubes[END_REF][START_REF] Zhao | Polycube Shape Space[END_REF], and no existing algorithm is guaranteed to produce a positive Jacobian polycuboid map. Solving these issues is an active research topic, that is orthogonal to the robustness issues treated in this paper. Therefore we assume that a valid polycuboid is given as an input.

So, given a continuous, positive Jacobian mapping 𝔤 of the object Ω to the parametric space, we do the following:

• We quantize the mapping, i.e. we find a valid set of integer boundary constraints. • We compute the combinatoral structure of the hexahedral mesh induced by these integer constraints.

Fig. 3. Simply snapping variables to the nearest integer is not problematic for producing a high resolution mesh (Left), but becomes critical for a coarser mesh (Middle). Our constraints prevents such geometric collapses (Right).

Fig. 4. A straightforward approach to compute the mapping of the interior is to first fix the boundary (initialization in [START_REF] Livesu | PolyCut: monotone graph-cuts for PolyCube base-complex construction[END_REF]). It produces highly distorted hexes when dealing with very coarse meshes (upper image). Moreover, hex mesh extraction may fail in presence of inverted elements. Our mappings have a much better geometry (bottom image) on the same mesh, and its extraction is more robust, because it does not rely on computing valid global parameterizations.

• We recover the geometry of the hexahedral mesh.

The usual approach to quantize the parameterization (step (2)) is to snap the polycube's faces to the closest integer coordinate plane. This is very damageable as several faces can be snapped together, leading to topological changes of the domain. This makes the inversion the deformation and extraction of a valid hexahedral mesh impossible. This technique typically collapses small geometric details of the model, but when looking for coarse polycubes it becomes so dramatic that the entire geometry is considered as a detail and collapsed to a point. In this article, we provide theoretical and practical guarantees preventing collapsing (see Fig. 3). Given a valid polycuboid (step (1)), we output a valid hexahedral mesh regardless of the level of coarseness.

To invert the polycube map (step (3)), the usual approach [START_REF] Gregson | All-Hex Mesh Generation via Volumetric PolyCube Deformation[END_REF][START_REF] Livesu | PolyCut: monotone graph-cuts for PolyCube base-complex construction[END_REF] is to compute the mapping as a piecewise linear map on a tetrahedral mesh of Ω. It was sufficient to produce previous work results, but we are facing a more challenging situation: extremely coarse meshes imply much higher distortion (see Figure 4). To robustly handle this extreme situation, we compute the inverse map i.e. a transformation of the polycube to Ω. Namely, we extract the combinatorial structure of the resulting hexahedral mesh from the quantized map, and we optimize for its geometry. It removes the step of re-computing a global parametrization prone to have degeneracies/inverted elements that even HexEx [START_REF] Lyon | HexEx: robust hexahedral mesh extraction[END_REF] would not be able to recover.

CONTRIBUTIONS

To sum up, we propose an approach which, given a positive Jacobian flagged deformation 𝔤 (step (1)), produces a valid hexahedral mesh, even for very coarse meshes. This paper contributes to three aspects of polycube-based hexahedral meshing:

• We guarantee to quantize well the flagged deformation. Namely, we construct a positive Jacobian parameterization with integer boundaries. • We generate hexahedral meshes in a robust way: the positivity of the Jacobian for the input flagged deformation 𝔤 is not necessary, refer to §6. • We generate hexahedral meshes in a robust way: our mesh generation does not rely on computing positive Jacobian global parameterizations for the inversion step.

PREVIOUS WORK

Polycubes were introduced in computer graphics for seamless texturing of triangulated surfaces [START_REF] Tarini | PolyCube-Maps[END_REF]]. The first automatic algorithm for polycube generation [START_REF] He | A divide-and-conquer approach for automatic polycube map construction[END_REF]] computes a scalar field on the object that constrains the 𝑧-coordinate of the deformed object. The remaining dimensions are solved by a 2D rasterization.

Recent methods [START_REF] Fu | Efficient Volumetric PolyCube-Map Construction[END_REF][START_REF] Gregson | All-Hex Mesh Generation via Volumetric PolyCube Deformation[END_REF][START_REF] Huang | l1Basedd Construction of Polycube Maps from Complex Shapes[END_REF][START_REF] Zhao | Robust edgepreserving surface mesh polycube deformation[END_REF] prefer to optimize all the coordinates of the deformation simultaneously. The idea is to progressively deform the model in a way that each boundary triangle of the deformed object has one of its coordinates constant and integer. At each iteration, the triangle's normal becomes more and more aligned with one of the axes of the coordinate system. Each triangle would basically have to be aligned with the closest axis to its normal, but more elaborate strategies [START_REF] Livesu | PolyCut: monotone graph-cuts for PolyCube base-complex construction[END_REF] can improve the results. The final hexahedral mesh is typically improved by padding, possibly with a global optimization [START_REF] Cherchi | Selective Padding for Polycube-Based Hexahedral Meshing[END_REF]]. These algorithms have two major sources of failure. First of all, there may not exist a valid deformation aligning all triangles w.r.t a given flagging. Many failure cases can be fixed by heuristics [START_REF] Fu | Efficient Volumetric PolyCube-Map Construction[END_REF][START_REF] Gregson | All-Hex Mesh Generation via Volumetric PolyCube Deformation[END_REF][START_REF] Huang | l1Basedd Construction of Polycube Maps from Complex Shapes[END_REF]], but solving it in the general case is very difficult [START_REF] Sokolov | Fixing normal constraints for generation of polycubes[END_REF] and beyond the scope of this paper. Second, respecting the flagging is only a half of the story: the integer coordinates of the boundary are to be chosen in a way that allows us to produce a valid hexahedral mesh. In this article we are focusing on the second issue.

The finer a hexmesh is, the easier it is to produce, so a natural way to approach the problem of coarse block decomposition is to generate a fine hexahedral mesh, and to decimate it with a general hexahedral mesh simplification algorithm [START_REF] Gao | Hexahedral mesh reparameterization from aligned base-complex[END_REF][START_REF] Gao | Robust structure simplification for hex re-meshing[END_REF]. At each step, the algorithm applies a simplification operation (sheets or chords collapse) to the hexahedral mesh. The geometry of the new mesh is obtained by a reparameterization.

It is also possible to obtain a coarse structure prior to the mesh generation phase, by working directly on coordinates of charts representing the polycube. Cherchi et al. [START_REF] Cherchi | Polycube Simplification for Coarse Layouts of Surfaces and Volumes[END_REF]] locally align a pair of polycube corners along one coordinate. [START_REF] Zhao | Polycube Shape Space[END_REF]] optimize the polycube edge lengths and Chen et al. [START_REF] Chen | Constructing volumetric parameterization based on directed graph simplification of l1 polycube structure from complex shapes[END_REF]] optimize the position of charts, but both consider only the boundary of the polycube, which is insufficient to prevent loss of bijectivity (as illustrated in Figure 13). [START_REF] Hao-Xiang | Cut-enhanced PolyCube-maps for feature-aware all-hex meshing[END_REF]] extend [START_REF] Chen | Constructing volumetric parameterization based on directed graph simplification of l1 polycube structure from complex shapes[END_REF]] approach, considering charts that are opposite to one another, but their constraints are still not exhaustive. Our algorithm has lower expectations on the input, and provides an optimal solution (instead of a greedy strategy), and is guaranteed to deliver a valid output.

The polycube approach can be extended by introducing cuts in the deformation to remove some unnecessary constraints, as Fang et al. [START_REF] Fang | All-hex meshing using closed-form induced polycube[END_REF][START_REF] Hao-Xiang | Cut-enhanced PolyCube-maps for feature-aware all-hex meshing[END_REF] propose to do. Interestingly if we consider all possible cuts, we fall back to the family of hexahedral remeshing algorithms based on global parameterizations [START_REF] Nieser | CubeCover-Parameterization of 3D Volumes[END_REF]]. Global parameterizations have robustness issues similar to those of polycube remeshing: frame fields problems replace flagging problems, and the requirement on the bijectivity of the deformation is replaced by the positivity of the Jacobian of the global parameterization. Frame field design is currently the bottleneck of the process and is an active research area [START_REF] Li | All-Hex Meshing Using Singularity-Restricted Field[END_REF][START_REF] Liu | Singularity-Constrained Octahedral Fields for Hexahedral Meshing[END_REF]] and as in the polycube case, bijectivity becomes critical when a coarse mesh is desired.

It has to be noted that for the 2D case (i.e. quad mesh generation) [START_REF] Kälberer | QuadCover -Surface Parameterization using Branched Coverings[END_REF][START_REF] Ray | Periodic Global Parameterization[END_REF]], there exists robust algorithms based on global parameterizations [START_REF] Campen | Quantized global parametrization[END_REF][START_REF] Myles | Robust Field-aligned Global Parametrization[END_REF]. The main ingredient of these algorithms is the decomposition of the domain into quad-shaped charts by cutting the domain along a motorcycle graph (for example, by tracing frame field streamlines). With this decomposition one can generate a quad mesh respecting the structure of these charts.

Our work can be understood as an extension of this approach to 3D. The fact that we restrict our attention to polycubes only simplifies the task: 3D motorcycle graphs are simply a set of axis-aligned planes in the parametric domain, the block decomposition has the combinatorial structure of a polycube (no T-junctions) and the edge lengths are manipulated by the coordinates of their extremities, which are directly the variables of the parameterization problem.

QUANTIZATION: PROBLEM STATEMENT

N.B. For the sake of clarity, we present the quantization problem in 2D; it is trivial to extend it to 3D (§6).

As mentionned earlier, parameterization methods give great results for quad mesh generation. The idea is to compute a parameterization 𝑓 , or, in other words, two scalar fields 𝑓 1 and 𝑓 2 over the domain Ω (refer to Fig. 5). Integer iso-lines of these scalar fields form a structured quad mesh.

For a quad mesh to be well defined, these scalar fields must have following properties (refer to Fig. 6): (1) They must be well behaved: the Jacobian of the map 𝑓 must be positive.

(2) They must be aligned with the boundary 𝜕Ω, i.e. the boundary must be on an iso-line of one of the scalar fields.

(3) Moreover, on each point of the boundary 𝜕Ω, at least one of the scalar fields must be integer.

In this work, we propose to start from a parametrization that respects the properties (1) and (2), but violates (3); we will compute another parameterization that holds all three properties. In §3.1 we introduce few notations necessary to formalize the problem (§3.2).

Notations

We denote the domain as Ω ⊂ R 2 , and its boundary as 𝜕Ω. Let 𝑋 = (𝑥, 𝑦) be a point of R 2 . The Jacobian matrix of a parameterization

𝑓 : (𝑥, 𝑦) → (𝑓 1 , 𝑓 2) ∈ R 2 is denoted as 𝐷 𝑓 = 𝜕𝑓 1 𝜕𝑥 𝜕𝑓 1 𝜕𝑦 𝜕𝑓 2 𝜕𝑥 𝜕𝑓 2 𝜕𝑦
, and its determinant as det(𝐷 𝑓) =

𝜕𝑓 1 𝜕𝑥 𝜕𝑓 2 𝜕𝑦 - 𝜕𝑓 1 𝜕𝑦 𝜕𝑓 2 𝜕𝑥 .
Definition 1 (Real polycube maps 𝒫 R). We say that the map

𝑓 : Ω → R 2 is in 𝒫 R if: • 𝑓 ∈ 𝐶 0 Ω, R 2 (continuity) • det(𝐷 𝑓) > 0 (positive Jacobian) • ∀𝑋 ∈ 𝜕Ω, 𝑓 1 (𝑋) ∈ 𝐿 𝑟 1 or (inclusive) 𝑓 2 (𝑋) ∈ 𝐿 𝑟 2 (boundary is a set of iso-lines), where 𝐿 𝑟 = 𝐿 𝑟 1 , 𝐿 𝑟 2 a finite set of real values.
Definition 2 (Integer polycube maps 𝒫 Z). We say that 𝑓 ∈ 𝒫 R is in 𝒫 Z if 𝐿 𝑟 ⊂ Z (and we will denote 𝐿 𝑟 = 𝐿) Let us take 𝑓 ∈ 𝒫 R . The boundary 𝜕Ω can be broken down into a set of charts 𝑈 𝑖 for the first dimension and 𝑉 𝑗 for the second dimension. Charts are iso-lines of 𝑓 such as

𝑓 1 | 𝑈 𝑖 ∈ 𝐿 𝑟 1 and 𝑓 2 | 𝑉 𝑗 ∈ 𝐿 𝑟 2 .
To simplify the notations, we refer to these constant values as

𝑓 1 | 𝑈 𝑖
and 𝑓 2 | 𝑉 𝑗 (refer to Fig. 7). Throughout the paper, whenever possible, we put the expressions for the 1st dimension only, and we mention "resp 𝑉 𝑗 " to signify that it is trivial to retrieve the 2nd expression.

Problem statement

Given an input real polycube map 𝔤 ∈ 𝒫 R , the quantization problem is to find a similar (but integer!) polycube map f ∈ 𝒫 Z , solution of: 𝐸 (𝐹 𝐿).

f = arg min 𝑓 ∈𝒫 Z        𝐸 (𝑓) := ∫ Ω ∥∇𝑓 1 -∇𝔤 1 ∥ + ∥∇𝑓 2 -∇𝔤 2 ∥𝑑𝑋        (
(2)

In the rest of the section we show the construction of 𝐹 𝐿 for a given set of integer boundary constraints 𝐿 (§4.1) and we describe the optimization process in §4.2.

Construction of 𝐹 𝐿

Recall that a triangulated domain Ω and a positive Jacobian real polycube map 𝔤 ∈ 𝒫 R are given as an input. First we show how to construct a function 𝐹 𝐿 for a given set 𝐿 ⊂ Z, and then we prove that 𝐹 𝐿 is a valid integer polycube map (𝐹 𝐿 ∈ 𝒫 Z) if and only if 𝐿 respects [C1]and [C2].

For each chart 𝑈 𝑖 (resp. 𝑉 𝑗), we can extract the iso-lines of 𝔤 1 such that 𝔤 1 (𝑋) = 𝔤 1 | 𝑈 𝑖

. Since det(𝐷𝔤) > 0, these iso-lines decompose the domain Ω into quadrangular blocks (see Fig. 9). To simplify a bit the input block decomposition, we ignore the connected components of the iso-lines that do not touch the corresponding chart (bottom row of Fig. 9).

Each block is mapped by 𝔤 to an axis-aligned rectangle limited by the values of four charts 𝑈 𝑖 , 𝑈 𝑖 ′ , 𝑉 𝑗 , 𝑉 𝑗 ′ that delimited it. N.B. Without loss of generality, we consider that

𝔤 1 |𝑈 𝑖 < 𝔤 1 |𝑈 𝑖 ′ ⇐⇒ 𝑖 < 𝑖 ′ (resp. 𝑉 𝑗).
Relying on this block decomposition, we define 𝐹 𝐿 as a sum of two functions:

𝐹 𝐿 := ℎ -𝛿.
(3)

The underlying idea is to define the function ℎ that is almost an integer polycube map. If 𝐿 satisfies the constraint [C1], the function ℎ is still a (valid) real polycube map (ℎ ∈ 𝒫 R), but it maps the boundary 𝜕Ω very close to the integer values given by 𝐿. The function ℎ does most of the work: it has a positive Jacobian (det(𝐷ℎ) > 0), and a small correction 𝛿 is needed to make ℎ -𝛿 a valid integer

𝑓 (𝑝) = 𝑖,𝑗 ∈ {1,2} 𝜆 𝑖 𝜇 𝑗 (𝜆 1 + 𝜆 2)(𝜇 1 + 𝜇 2) 𝑓 (𝑝 𝑖 𝑗)
So, the block decomposition allows us to represent continuous blockwise bi-linear functions; ℎ (§4.1.1) and 𝛿 are (§4.1.2) defined in this way.

Construction of ℎ.

As mentionned previously, we represent ℎ by specifying its values at the vertices of the block decomposition. Thus, for every vertex generated by two charts 𝑈 𝑖 and 𝑉 𝑗 , we define ℎ to be equal to (𝑙 𝑈 𝑖 + 𝑖𝜀, 𝑙 𝑉 𝑗 + 𝑗𝜀) with 𝜀 > 0 and the bi-linear interpolation does the rest of the job.

It is easy to verify that det(𝐷ℎ) > 0 (refer to Appendix A) if 𝐿 satisfies the constraint [C1] expressed as follows:

Definition 3. we say that 𝐿 respects [C1]if : Given a block limited by 𝑈 𝑖 and 𝑈 𝑖 ′ (resp. 𝑉 𝑗):

𝑖 < 𝑖 ′ ⇒ 𝑙 𝑈 𝑖 ≤ 𝑙 𝑈 𝑖 ′ ([C1])
Thus, under the constraint [C1]the mapping ℎ ∈ 𝒫 R , i.e. it is a positive Jacobian real polycube map; it is easy to see that it is almost integer: it differs only by 𝑂 (𝜀) from the target, and only a small correction 𝛿 is needed so that 𝐹 𝐿 := ℎ -𝛿 is an integer polycube map.

Construction of 𝛿.

We need to compute a small correction function 𝛿 such that:

(1) ℎ -𝛿 has desired integer values 𝐿 on the boundary 𝜕Ω;

(2) the Jacobian det(𝐷𝐹 𝐿) is positive.

Like ℎ, the function 𝛿 is represented by its values on the vertices of the block decomposition, and is interpolated elsewhere. Alg. 1 shows how to compute the values by iterating over the edges of the block decomposition.

N.B.

In our implementation we do not actually compute 𝛿 everywhere, but only for the boundary; nevertheless, we provide its explicit construction because it allows us to state the constraint [C2], which is useful to avoid degeneracies.

The construction is straightforward: first we guarantee that ℎ -𝛿 has the desired values 𝐿 on the boundary (lines 3-4 of Alg. 1). Then, to ensure the positivity of the Jacobian det(𝐷 (ℎ -𝛿)) > 0, we perform a front propagation (lines 5-7) over the edges of the block decomposition starting from each chart. The idea is to have all variations of 𝛿 situated where the variation of ℎ is sufficient to keep the positivity of the Jacobian.

More precisely, our algorithm guarantees that if an edge (𝑠, 𝑡) of the block decomposition is "short" under action of ℎ (i.e. ∥ℎ(𝑠)ℎ(𝑡)∥ < |𝐿|𝜀), then the correction 𝛿 keeps its length unchanged, i.e. 𝛿 (𝑠) = 𝛿 (𝑡). In Appendix B we demonstrate that this condition implies the positivity of the Jacobian det(𝐷 (ℎ -𝛿)) > 0.

There is one caveat though. The algorithm propagates fronts starting from the charts, the propagation is made along "short" edges of the block decomposition. What happens if two different fronts, say, from charts 𝑈 𝑖 and 𝑈 𝑗 meet across an edge? By construction, that would imply that there is a path made entirely of "short" edges that links a vertex of 𝑈 𝑖 with a vertex of 𝑈 𝑗 . It implies the equality of integer boundary constraints 𝑙 𝑈 𝑖 = 𝑙 𝑈 𝑗 and 𝑙 𝑉 𝑖 ′ = 𝑙 𝑉 𝑗 ′ ; in turn, it implies that it is impossible to build a valid integer polycube map represented as a bi-linear interpolation over the block decomposition.

Fig. 8 provides a typical example of the violated constraint: two different points of Ω are placed in the same place in the parametric space, leading to a degenerate Jacobian. To avoid this, we put constraints on the set 𝐿: we force certain paths over the edges of the block decomposition to contain "long" edges. It is sufficient to consider only monotonic paths, i.e., paths that do not go back and forth in each of the dimensions.

Definition 4. We say that a path 𝑃 over the edges of the block decomposition is monotonic if its coordinate functions ℎ 1 (𝑃) and ℎ 2 (𝑃) are (non-strictly) monotonic.

Thus, we put a constraint that every monotonic path between any two points of different charts in the same dimension, must contain a "long" edge. We call this constraint [C2] and it is formulated as follows:

Definition 5. We say that 𝐿 respects [C2] if: Given two vertices issued from charts 𝑈 𝑖 , 𝑉 𝑗 and 𝑈 𝑖 ′ , 𝑉 𝑗 ′ . If the vertices are both situated on same dimension charts and if there exists monotone path between them, then:

sign(𝑖 ′ -𝑖)(𝑙 𝑈 𝑖 ′ -𝑙 𝑈 𝑖) + sign(𝑗 ′ -𝑗)(𝑙 𝑉 𝑗 ′ -𝑙 𝑉 𝑗) > 0 ([C2])
Let us sum up: given a positive Jacobian real polycube map 𝔤 ∈ 𝒫 R and a set of integer constraints 𝐿; if 𝐿 respects [C1] and [C2], then 𝐹 𝐿 , whose construction we give explicitly, is a valid positive Jacobian integer polycube map (𝐹 𝐿 ∈ 𝒫 Z).

Estimating 𝐸 (𝐹 𝐿) and optimization

Having defined a construction of a function 𝑃 𝐿 for a given set of integer constraints 𝐿, we need to evaluate the energy 𝐸 (𝐹 𝐿) to be able to solve our optimization problem (2).

For a given value of 𝜀, evaluation of 𝐸 (𝐹 𝐿) is quite cumbersome. Fortunately, we can notice the following fact:

lim 𝜀→0 𝐸 (𝐹 𝐿) = lim 𝜀→0 𝐸 (ℎ)
The behavior of 𝐸 (ℎ) at the limit with 𝜀 → 0 is easy to study, some straightforward calculations (see Appendix C) give following expression:

lim 𝜀→0 𝐸 (𝐹 𝐿) = 𝑏 block of Ω       𝛼 1 𝑙 𝑈 𝑖 ′ -𝑙 𝑈 𝑖 -(𝔤 1 |𝑈 𝑖 ′ -𝔤 1 |𝑈 𝑖) +𝛼 2 𝑙 𝑉 𝑗 ′ -𝑙 𝑉 𝑗 -(𝔤 2 |𝑉 𝑗 ′ -𝔤 2 |𝑉 𝑗)       , (4)
where 𝛼 1 and 𝛼 2 are constant per block:

𝛼 1 = ∫ 𝑏 ∥∇𝔤 1 (𝑋)∥ 𝑑𝑋 |𝔤 1 |𝑈 𝑖 ′ -𝔤 1 |𝑈 𝑖 | 𝛼 2 = ∫ 𝑏 ∥∇𝔤 2 (𝑋)∥ 𝑑𝑋 |𝔤 2 |𝑉 𝑗 ′ -𝔤 2 |𝑉 𝑗 | .
It allows us to reformulate the problem (2) as follows:

𝑓 = arg min 𝐹 𝐿 : 𝐿 respects [C1] and [C2] lim 𝜀→0 𝐸 (𝐹 𝐿). (5
)
Under a proper change of variables, this optimization problem boils down to a mixed-integer linear program, i.e. a minimization of a linear energy under linear and integer constraints.

N.B. This problem always has a solution; as a matter of fact, the choice 𝑙 𝑈 𝑖 = 𝑖 (resp. 𝑙 𝑉 𝑗 = 𝑗) is a feasible set of constraints.

IMPLEMENTATION

For the sake of clarity, so far our method was presented in 2 dimensions, but it is straightforward to extend it to 3D. We discuss our implementation and results in 3 dimensions.

It is important to notice that the construction we proposed in Section 4 relies on a (local) bijectivity of 𝔤 everywhere over the domain. In practice, it is a lot to ask: usually real polycube maps have small defects that undermine our construction, particularly if we actually wanted to cut the input mesh along the iso-surfaces generated by the charts in order to extract the block decomposition.

To circumvent this issue, we do not compute the iso-surfaces, but rather we:

• § 5.1: extract the combinatorial structure of the block decomposition by rasterizing the image of Ω by 𝔤; • § 5.2: this information suffices to deduce the combinatorial structure of the resulting hex mesh by solving the mixedinteger linear program given by Eq. (5); • § 5.3: finally, we use 𝐹 𝐿 to recover the geometry of the hex mesh. Note that with the information in our hands, 𝐹 -1 𝐿 is not defined everywhere in the domain, however it is possible to evaluate it at the vertices of the hex mesh.

Extracting the block decomposition

As pointed out earlier, 𝔤 often presents small defects like inverted or degenerated tetrahedra. It is not an issue as long as at least all the charts are well defined and the image 𝔤 {𝑈 𝑖 } {𝑉 𝑗 } {𝑊 𝑘 } forms a valid boundary of a volume. In this case, we can cut R 3 with axis-aligned planes placed at the values 𝔤 1 |𝑈 𝑖) (resp. 𝑉 𝑗 ,𝑊 𝑘). This defines an axis-aligned grid in the parametric space, and by a simple rasterization we can find whether a current grid cell is in the image of Ω by 𝔤, or out. Having extracted all inner blocks, we obtain the combinatory structure of the block decomposition.

Computing hexahedral combinatory

The combinatorial structure of the resulting hexahedral mesh is completely defined by the quantization 𝐿, and it can be found by solving Eq. (5). We solve the mixed-integer linear program by using [CPLEX 2019], and the implementation is rather straightforward, but we must pay attention to two details:

• the proposed energy (Eq. (5)) relies on the computation of weights 𝛼 𝑖 , which requires to integrate ∇𝔤 𝑖 over each block of Ω. Note that for robustness reasons we have chosen not to compute the block decomposition of Ω explicitly, therefore we approximate 𝛼 𝑖 in each block 𝑏 ∈ Ω by the volume of the block under action of 𝔤, which is readily available.

• the constraint [C2] represents a lot of inequalities (𝑂 (𝑁 2),
where 𝑁 the number of vertices of the block decomposition).

In our implementation, we treat them as "lazy" constraints.

More precisely, we solve the problem without enforcing entirely [C2], i.e. we start by only constraining charts that are opposite to one another, similarly to [START_REF] Hao-Xiang | Cut-enhanced PolyCube-maps for feature-aware all-hex meshing[END_REF]. Then, if the solution violates [C2], we add the "least respected" inequality to the problem, and restart until we find a solution that respects [C2]. In practice we never encountered a case where more than few iterations were necessary, refer to the right column of Table 1.

To compute the final combinatorial structure of the resulting hexahedral mesh, first we create the hexahedral mesh (still not endowed with geometry) inherited from the block decomposition. Then we remove or split hexahedra based on the quantization 𝐿. So far we have computed the connectivity of the output hexahedral mesh but we are still missing the vertex positions. In §5.3 we will apply 𝐹 -1 𝐿 to find the final mesh.

Computing hexahedral geometry

The last step of the process is to compute the geometry of the final hexahedral mesh. We have already computed its image under 𝐹 𝐿 , and therefore we need to apply 𝐹 -1 𝐿 to the previous result. The problem, however, is that we have chosen to compute only the combinatorial structure of the block decomposition and not its geometry in Ω; therefore 𝐹 𝐿 is not defined everywhere in the domain with the information we have in our hands. Fortunately, it is welldefined for the vertices of our hexahedral mesh. Applying 𝐹 -1 𝐿 to the vertices of the hexahedral mesh boils down to mapping the mesh onto 𝔤(Ω) and then to applying 𝔤 -1 to the vertices. Since in practice 𝔤 may present local imperfections (e.g. foldovers), the resulting mesh might not be perfectly conforming with the boundary, or possess poor quality elements. In this case, we can apply a mesh optimisation algorithm such as [START_REF] Livesu | Practical Hex-Mesh Optimization via Edge-Cone Rectification[END_REF] to improve the boundary compliance and get rid of poor quality elements.

RESULTS

We tested our algorithm on a i7 4.3GHz CPU with 64GB of RAM on a single thread implementation. We compute the initial real polycube map 𝔤 with the algorithm [START_REF] Gregson | All-Hex Mesh Generation via Volumetric PolyCube Deformation[END_REF].

Hexahedral meshing

We use our algorithm to generate hexahedral meshes minimizing the distortion with respect to the initial real polycube map 𝔤. The resolution of the meshes is determined by the scale of the input real polycube map 𝔤. Fig. 11 shows the results for two different resolutions. Unlike the naive snapping technique sometimes used for quantization (Fig. 3), our quantization produces valid hexahedral meshes (no missing hexes) without loss of geometric features. We ran our code on 1000+ models from the dataset [START_REF] Hu | Tetrahedral Meshing in the Wild[END_REF].

Results are provided in the supplementary material1 . Concerning our claims on robustness to local non-bijectivity, it should be noted that from the 1391 model tested, 815 (59%) had at least one flipped tetrahedron through 𝔤.

6.2 As coarse as possible block decomposition.

To challenge the robustness of our algorithm, we generate as coarse as possible hexahedral meshes by using a down-scaled 𝔤, i.e. , replace the input 𝔤 by 𝜂𝔤 with 𝜂 ≈ 0. The result can be interpreted as a block decomposition that minimizes the distance between pairs of charts. Table 1 provides statistics on 7 models, the decompositions are shown in Fig. 12. Note that 𝔤 was computed with [Gregson et al. 2011] for all models except the two first models from Table 1 that come from the supplemental material of [START_REF] Livesu | PolyCut: monotone graph-cuts for PolyCube base-complex construction[END_REF]].

We reported the number of blocks in the input polycuboid, the number of blocks in the output generated with global overlaps as well as the timings and the number of times we had to call CPLEX. It can be seen that we achieve a significant simplification of the mesh structure, and that our algorithm is robust to extreme simplifications, being able to recover valid meshes even for highly distorted polycube maps.

Comparison with polycube simplification methods. [START_REF] Zhao | Polycube Shape Space[END_REF], [START_REF] Chen | Constructing volumetric parameterization based on directed graph simplification of l1 polycube structure from complex shapes[END_REF][START_REF] Hao-Xiang | Cut-enhanced PolyCube-maps for feature-aware all-hex meshing[END_REF] propose a set of constraints to guarantee the validity of the polycube. The problem, however is that their constraints are not sufficient and can potentially lead to degenerate polycube during simplification. They only guarantee the integrity of the boundary of the polycube, missing the deformation inside the domain. Fig 13 shows a failure example: the bottom of the cup collapses into a plane without violating their constraints, whereas our set of constraints guarantees the validity of the polycube map. [START_REF] Cherchi | Polycube Simplification for Coarse Layouts of Surfaces and Volumes[END_REF] attempt to locally align corners of the polycube. As a consequence they fail to align vertices that are far away from each other. In contrast, our method considers all possible chart alignments. For example, the Research Report, LORIA 2020. model 4 in Fig. 12 we are able to align the hole with one of the top dents, and this cannot be done by [START_REF] Cherchi | Polycube Simplification for Coarse Layouts of Surfaces and Volumes[END_REF]].

Comparison with [START_REF] Gao | Robust structure simplification for hex re-meshing[END_REF]. Another way of computing a minimal block decomposition is to compute a fine hexahedral mesh and to decimate it using a generic mesh simplification algorithm. The state-of-the-art method [START_REF] Gao | Robust structure simplification for hex re-meshing[END_REF]] recursively collapses sheets and chords of the mesh until no further simplification is possible. In their algorithm each operation is given a score and the operations are done in a greedy manner. This approach is strictly local and this sequence of simplification does not always yield the coarsest mesh, as illustrated in Fig. 14. It is to be noted that in [START_REF] Gao | Robust structure simplification for hex re-meshing[END_REF]] the mesh geometry is recomputed at each step to take into account the simplification operation. In our method the constraints ensure the validity of the polycube map at all time so the mesh geometry can be computed once at the very end of the process. This leads to the considerable speed up reported in Table 2. Finally, the chord simplification introduces new singularities that are not always desirable. For instance in Fig. 14

CONCLUSION

This work provides an important robustness guarantee, but it assumes that a one-to-one 𝔤 is given as input. To achieve a fully robust hexahedral remeshing method based on polycubes, the main remaining difficulty is to solve the flagging problem.

It also opens interesting research opportunities for the general case of hexahedral remeshing based on global parameterizations. Basically, we need to introduce new integer variables corresponding to the (grid preserving) discontinuities in the mapping. The main problem is that the block decomposition is less straightforward to obtain: the parameteric domain becomes an universal covering where the intersection of a plane with the model can be infinite, and tracing it in the geometric domain is an ill-posed problem [START_REF] Kowalski | Block-structured Hexahedral Meshes for CAD Models Using 3D Frame Fields[END_REF][START_REF] Kowalski | Smoothness driven frame field generation for hexahedral meshing[END_REF].

We have also seen that the combinatorial structure of the hexahedral mesh can be derived from our integer variables. Is it possible to extend this to the general global parameterization case? Our goal is to show that, under these assumptions, det(𝐷𝐹 𝐿) > 0.

Let's study the determinant of the Jacobian of 𝐹 𝐿 , using results of Appendix A:

det(𝐷𝐹 𝐿) = det(𝐷ℎ -𝐷𝛿) = det 𝑎 1 0 0 𝑎 2 - 𝜕ℎ 1 𝜕𝔤 1 𝜕ℎ 1 𝜕𝔤 2 𝜕ℎ 2 𝜕𝔤 1 𝜕ℎ 2 𝜕𝔤 2 𝐷𝔤 = det(𝐷𝔤) 𝑎 1 - 𝜕𝛿 1 𝜕𝔤 1 𝑎 2 - 𝜕𝛿 2 𝜕𝔤 2 - 𝜕𝛿 1 𝜕𝔤 2 𝜕𝛿 2 𝜕𝔤 1
Recalling that, by construction (see Sec. 4.1.2), | 𝜕𝛿 𝑖 𝜕𝔤 𝑗 | < |𝐿|𝜀, we can distinguish two cases : 1. 𝑎 1 ≥ 1 and 𝑎 2 ≥ 1:

In this case, 𝜀 can be chosen sufficiently small such that 𝑎 1 -𝜕𝛿 1 𝜕𝔤 1 and 𝑎 2 -𝜕𝛿 2 𝜕𝔤 2 are positive, and 𝜕𝛿 1 𝜕𝔤 2 𝜕𝛿 2 𝜕𝔤 1 is negligible against 𝑎 1 𝑎 2 . 2. 1 > 𝑎 1 > 0 or (inclusive) 1 > 𝑎 2 > 0: This case is the most difficult. By construction of ℎ, having 1 > 𝑎 𝑖 > 0 implies that 𝑎 𝑖 is of order 𝜀. In the following, using assumption (2), we will show that if 𝑎 𝑖 is of order 𝜀, then 𝜕𝛿 1 𝜕𝔤 𝑖 = 𝜕𝛿 2 𝜕𝔤 𝑖 = 0, which will allow us to concludes that det(𝐹 𝐿) > 0.

First, we must recall that each block of Ω is mapped to a rectangle, with (𝔤 1 , 𝔤 2) the new coordinate system, refer to Fig. 15. From this, we notice that along an edge (𝑠, 𝑡) of direction 𝔤 1 we have ∥ℎ(𝑠)ℎ(𝑡) ∥ = 𝑎 1 (𝔤 1 (𝑠) -𝔤 1 (𝑡)), which means that ∥ℎ(𝑠)ℎ(𝑡)∥ < |𝐿|𝜀 implies that 𝑎 1 is of order 𝜀, and reciprocally as 𝔤 is a constant here.

Subsequently, using the assumption (2), along an edge (𝑠, 𝑡) of direction 𝔤 1 , ∥ℎ(𝑠)ℎ(𝑡)∥ < |𝐿|𝜀 =⇒ 𝛿 (𝑠) = 𝛿 (𝑡). Remark that 𝛿 (𝑠) = 𝛿 (𝑡) is equivalent to 𝜕𝛿 1 𝜕𝔤 1 = 𝜕𝛿 2 𝜕𝔤 1 = 0 along the edge due to the linearity of 𝛿 along (𝑠, 𝑡). This means that 𝑎 1 of order 𝜀 implies

𝜕𝛿 1 𝜕𝔤 1 = 𝜕𝛿 2
𝜕𝔤 1 = 0. The same reasoning holds for 𝑎 2 and 𝔤 2 . The final problem is to generalize this propriety to the rest of the block (not just along edges). Our construction of 𝛿 is bilinear, using the coordinate of each vertex of the block. As the block is a rectangle in ℎ, both opposite edges behave the same, and the behavior of those edge will be interpolated linearly in the block. If 𝜕𝛿 𝑖 𝜕𝔤 𝑗 = 0 on both opposite edges, then 𝜕𝛿 𝑖 𝜕𝔤 𝑗 = 0 in the whole block. Which means that our result on the edge is also true in the block. ■

What about 3D ? In 3-dimension the proof is strictly equivalent. The only struggle is the development of the det, which is a bit more tedious, but in the end, we find the same results.

C CALCULATION OF 𝐸 (ℎ)

The function ℎ is defined per block, 𝐸 (ℎ) can be expressed as follows:

𝐸 We do the same calculation for ℎ 2 with 𝛼 2 and it results in equation (4).

Fig. 2 .

 2 Fig. 2. Pipeline of hexahedral mesh generation with polycube.

Fig. 5 .

 5 Fig. 5. Example of a parametrization 𝑓 = (𝑓 1 , 𝑓 2) of a domain Ω, displayed by its level-sets.

Fig. 6 .

 6 Fig. 6. Top row: a mesh extracted from a map in 𝒫 R (refer to §3.1) has non boundary-aligned elements (in red). Bottom row: To obtain valid meshes, map in 𝒫 Z must be considered.

Fig. 7 .

 7 Fig. 7. Given a real polycube map 𝔤 over the domain Ω, the boundary 𝜕Ω is split into a set of charts 𝑈 𝑖 (resp. 𝑉 𝑗); corresponding iso-values of 𝔤 1 and 𝔤 2 are denoted by 𝔤 1 |𝑈 𝑖 and 𝔤 2 |𝑉 𝑗 .

Fig. 8 .

 8 Fig.8. Given a real polycube map (an element of 𝒫 R), a naive approach to compute an integer polycube map (an element of 𝒫 Z) is to round the boundary values to the nearest integer, and then to recompute the parameterization in order to spread out the resulting distortion. In certain cases it is impossible to generate a positive Jacobian integer polycube map, and thus the quad mesh extraction fails.

Fig. 9 .

 9 Fig.9. The input real polycube map 𝔤 allows to decompose the domain Ω into quadrangular blocks. We do not extract connected components of the isolines that do not touch "corners" of the domain Ω (bottom row, right).

Fig. 10 .

 10 Fig. 10. Each quadrangular block is mapped to an axis-aligned rectangle by 𝔤. For every point 𝑝 in a block we can find barycentric coordinates of its image 𝔤(𝑝) w.r.t. the axis-aligned rectangle; this allows us to define bi-linear functions over the original block by prescribing 4 values at the block vertices.

Fig. 11 .

 11 Fig. 11. Our robust quantization process allows for multi resolution meshes, without risk of collapses of the geometry.

Fig. 12 .

 12 Fig. 12. For each model, we optimize the block decomposition to get an as coarse as possible polycube. The associated mesh will give a very coarse decomposition of the original domain Ω.

Fig. 13 .

 13 Fig. 13. Quantization without volumic constraints [Chen et al. 2019; Zhao et al. 2019] can not detect the collapse of the bottom of the cup (middle). We take them into account (right). [Guo et al. 2020] would succeed on this model, but would fail on more tricky set-up (such as Fig 8).

 middle, Gao et al. create at the boundary of the mesh valency 4 near valency 2 vertices leading to highly distorted cells.

Fig. 14 .

 14 Fig. 14. Visual comparison between our method and the mesh simplification method[START_REF] Gao | Robust structure simplification for hex re-meshing[END_REF]. Quantitative data are reported in Table2. Our block decomposition creates nicer cells when Gao et al. create valency 4 vertices at the boundary of the mesh (middle close-up).

Fig. 15 .

 15 Fig. 15. Each of block of Ω is mapped to a rectangle by 𝔤, which gives a change of coordinate system.

 ℎ) = 𝑏 block of Ω ∫ 𝑏 ∥∇ℎ 1 (𝑋) -∇𝔤 1 (𝑋)∥ + ∥∇ℎ 2 (𝑋) -∇𝔤 2 (𝑋) ∥𝑑𝑋 With 𝑏 a block of Ω limited by the iso-lines from the charts 𝑈 𝑖 , 𝑈 𝑖 ′ , 𝑉 𝑗 and 𝑉 𝑗 ′ (cf. fig 9), ℎ 1 is defined such that ℎ 1(𝑋) = 𝑙 𝑈 𝑖 ′ -𝑙 𝑈 𝑖 +(𝑖 ′ -𝑖)𝜀 𝔤 1 |𝑈 𝑖 ′ -𝔤 1 |𝑈 𝑖 𝔤 1 (𝑋)+ const (see Appendix A). This give us the following :∫ 𝑏 ∥∇ℎ 1 (𝑋) -∇𝔤 1 (𝑋)∥𝑑𝑋 = ∫ 𝑏 𝑙 𝑈 𝑖 ′ -𝑙 𝑈 𝑖 + (𝑖 ′ -𝑖)𝜀 𝔤 1 |𝑈 𝑖 ′ -𝔤 1 |𝑈 𝑖 -1 ∇𝔤 1 (𝑋) 𝑑𝑋 = 𝑙 𝑈 𝑖 ′ -𝑙 𝑈 𝑖 + (𝑖 ′ -𝑖)𝜀 𝔤 1 |𝑈 𝑖 ′ -𝔤 1 |𝑈 𝑖 -1 ∫ 𝑏 ∥∇𝔤 1 (𝑋) ∥ 𝑑𝑋 = 𝑙 𝑈 𝑖 ′ -𝑙 𝑈 𝑖 + (𝑖 ′ -𝑖)𝜀 -(𝔤 1 |𝑈 𝑖 ′ -𝔤 1 |𝑈 𝑖) 𝔤 1 |𝑈 𝑖 ′ -𝔤 1 |𝑈 𝑖 ∫ 𝑏 ∥∇𝔤 1 (𝑋)∥ 𝑑𝑋 = 𝑙 𝑈 𝑖 ′ -𝑙 𝑈 𝑖 + (𝑖 ′ -𝑖)𝜀 -(𝔤 1 |𝑈 𝑖 ′ -𝔤 1 |𝑈 𝑖) ∫ 𝑏 ∥∇𝔤 1 (𝑋)∥ 𝑑𝑋 |𝔤 1 |𝑈 𝑖 ′ -𝔤 1 |𝑈 𝑖 | We denote 𝛼 1 = ∫ 𝑏 ∥ ∇𝔤 1 (𝑋) ∥𝑑𝑋 |𝔤 1 |𝑈 𝑖 ′ -𝔤1 |𝑈 𝑖 | and passing to the limits, it gives : lim 𝜀→0 ∫ 𝑏 ∥∇ℎ 1 (𝑋) -∇𝔤 1 (𝑋)∥𝑑𝑋 = 𝛼 1 𝑙 𝑈 𝑖 ′ -𝑙 𝑈 𝑖 -(𝔤 1 |𝑈 𝑖 ′ -𝔤 1 |𝑈 𝑖)

 1)with ∥ • ∥ the Euclidean norm, and 𝐸 (𝑓) is an energy measuring the distance between 𝑓 and 𝔤.A common approach to solve this problem is to greedily find a set 𝐿 of new values for the boundary, such that 𝑙 𝑈 𝑖 ≈ 𝔤 1 | 𝑈 𝑖 (resp.

	𝑉 𝑗). Then a new map constrained by these boundary values and
	minimizing (1) is computed. The problem, however, is that for some
	sets 𝐿 = 𝑙 𝑈 𝑖	|𝐿 𝑟 1 | 𝑖=1 , 𝑙 𝑉 𝑗	𝑗=1 |𝐿 𝑟 2 |	, it is impossible to define a smooth
	positive Jacobian polycube map i.e. the set 𝒫

Z is empty. Thus the quantization fails. The trivial example is to set all constraints to zero (𝑙 𝑈 𝑖 = 0, ∀𝑖); a quite common non-trivial failure case is shown in Fig 8

.

Table 1 .

 1 Statistics for the models shown in Fig 12.

	Id	Model name	size (tets) # blocks # hexahedra total time (sec) CPLEX calls
	1	kiss	302292	2558	410	150	2
	2	Bunny	731085	426	58	130	2
	3	grid	6718	285	56	2.1	1
	4	street	2327	483	55	3.0	3
	5 connecting rod	14380	203	54	2.6	1
	6	engine1	18864	6151	219	4.6	1
	7	engine2	56789	9415	404	9.2	1

Table 2 .

 2

Comparison with mesh simplification method

[START_REF] Gao | Robust structure simplification for hex re-meshing[END_REF]

]: number of blocks before and after simplification and timing. Models are rendered in Fig 14

.

Our method leads to similar number of blocks with a considerable speed-up (∼ 20×). For the top model Gao et al. has fewer blocks only because they allow non-polycube deformation (close-up).

Research Report, LORIA 2020.Robust Quantization for Polycube Maps • 3

Research Report, LORIA 2020.

Contact: francois.protais@inria.fr

A POSITIVITY OF det(𝐷ℎ) In this section gives a proof that [C1] assures the positivity of det(𝐷ℎ). We will proceed in two steps, first we will give an mathematical definition for ℎ and then, from it, deduce the necessity of constraint [C1].

A.1 definition of ℎ

In this section, we give a definition of ℎ that is equivalent to the one given in Sec. 4.1.1, but brings another intuition.

We know that each block created by four charts 𝑈 𝑖 , 𝑈 𝑖 ′ , 𝑉 𝑗 , 𝑉 𝑗 ′ is mapped by 𝔤 to an axis-aligned rectangle (Fig. 15) delimited by

It is easy to stretch this rectangle to any other axis-aligned rectangle by modifying each axis independently. We can therefore define ℎ as ℎ(𝑋) := (𝐴 1 (𝔤 1 (𝑋)), 𝐴 2 (𝔤 2 (𝑋))) with 𝐴 1 , 𝐴 2 : R → R being two continuous block-wise affine functions.

By definition, ℎ maps each block defined by four charts 𝑈 𝑖 , 𝑈 𝑖 ′ , 𝑉 𝑗 , 𝑉 𝑗 ′ to the axis-aligned rectangle delimited by 𝑙 𝑈 𝑖 + 𝑖𝜀, 𝑙 𝑈 𝑖 ′ + 𝑖 ′ 𝜀, 𝑙 𝑉 𝑗 + 𝑗𝜀, 𝑙 𝑉 𝑗 ′ + 𝑗 ′ 𝜀 for some small 𝜀 > 0.

On a block defined by 𝑈 𝑖 , 𝑈 𝑖 ′ , 𝑉 𝑗 , 𝑉 𝑗 ′ , the function 𝔤 1 is bounded by 𝔤 1 |𝑈 𝑖 and 𝔤 1 |𝑈 𝑖 ′ in the first dimension. The affine transformation 𝐴 1 is defined as follows :

The values of 𝔤 1 |𝑈 𝑖 and 𝑙 𝑈 𝑖 being defined along the iso-lines, ℎ is continuous at the interface between blocks (but not differentiable). The affine transformation in the second dimension, 𝐴 2 , is given by the same construction.

A.2 Computation of det(𝐷ℎ)

The variation of ℎ are strictly linked to 𝐴 1 , 𝐴 2 and 𝔤, i.e. 𝐷ℎ can be expressed as follow :