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a b s t r a c t 

The ability to swiftly and accurately respond to others’ non-verbal signals, such as their emotional expressions, 
constitutes one of the building blocks for social adaptation. It is debated whether rapid action tendencies to socio- 
emotional signals solely depend upon stimulus-evoked pre-decisional motor bias or can also engage goal-directed 
(decisional) processes that involve the arbitration between action alternatives. Here, we used drift diffusion mod- 
els (DDMs) of choice and electroencephalography (EEG) to investigate the impact of threat-signaling individuals 
(angry or fearful) on spontaneous approach-avoidance decisions. Participants choose to avoid angry individuals 
more often than fearful ones and this effect was stronger for intense expressions. Diffusion models showed that 
this pattern of choice was accounted for by a process of value-based evidence accumulation, suggesting an active 
competition between action options. At the brain level, we found that EEG activity preceding movement initiation 
(200 ms) in a mid-frontal cluster of electrodes – sourced in the orbital and ventromedial frontal cortices – encoded 
value difference between chosen and unchosen options, thus predicting participant’s choices on a trial-by-trial 
basis. Furthermore, value difference also modulated EEG signal during feedback about the decision. Altogether, 
the present findings convincingly support the underestimated influence of implicit goal-directed mechanisms in 
approach-avoidance responses to socio-emotional signals. 
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. Introduction 

Emotional facial expressions inform others about the affective states
nd potential behavioral intentions of the emitter ( Waller et al., 2017 ),
onveying action demands to the perceiver ( Horstmann, 2003 ). Accord-
ngly, perceiving emotional expressions has a direct influence on the
bserver’s behavior ( Dezecache et al., 2015 ) generating, for instance,
ction tendencies to approach or avoid ( Hammer and Marsh, 2015 ;
arsh et al., 2005 ). Such action tendencies to emotional displays are ul-

imately thought to facilitate social interactions and adaptive behavior
 Keltner and Haidt, 1999 ). Despite their importance, the neuro-cognitive
echanisms underlying the generation of approach-avoidance tenden-

ies to emotional displays are not fully understood, being currently a
ubject of debate ( Bach and Dayan, 2017 ). 

One the one hand, action tendencies may consist in the direct acti-
ation of a response representation (e.g., avoidance) by some features
f the perceived emotional display (e.g., eye frowning of an angry face),
ue to a pre-existing stimulus-response association (e.g., Frijda, 1986 ;
ang et al., 1990 ; Öhman, 1986 ). In this scenario, the perceived emo-
ional display would automatically strengthen the motor representation
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f the action that leads to threat avoidance and this stimulus-evoked pre-
ecisional bias would influence the final action choice. Although they
an be overridden or refined through top-down control mechanisms,
re-decisional motor biases are nonetheless expected to have an influ-
nce on people’s responses to emotional displays (e.g., Bramson et al.,
018 ; Roelofs et al., 2009 ). Such biases undeniably promote survival,
otably in high threat situations but, as such, they might contribute
nly to a small degree to the action repertoire adopted in realistic envi-
onments ( Cain, 2019 ). 

On the other hand, converging research on defensive behavior in
nimals ( Evans et al., 2019 ; LeDoux and Daw, 2018 ) and on approach-
voidance in humans ( Eder and Hommel, 2013 ; Moors et al., 2019 ,
017 ; Rotteveel and Phaf, 2004 ; Schlund et al., 2016 ) suggested that ac-
ion tendencies might not always be automatically elicited by emotional
timuli in a pre-decisional manner, but that they can be the result of
oal-directed processes. Goal-directed behaviors are said to be emitted,
s opposed to be elicited or triggered, since they are actively selected
n the basis of the value assigned to learned action-outcome contin-
encies ( LeDoux and Daw, 2018 ). Interestingly, goal-directed processes
ubtending approach-avoidance tendencies to emotion are suggested to
. Grèzes). 
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ften take place very rapidly outside consciousness in both human and
onhuman animals ( LeDoux and Daw, 2018 ). Here, we use the term
decisional ” process to describe this rapid arbitration between action
lternatives, which leads to goal-directed behaviors, in opposition to
pre-decisional motor biases ”, which precede arbitration between alter-
atives and underlie stimulus-evoked behaviors. 

Important insights on the neurocognitive processes subtending
pproach-avoidance behaviors to emotional stimuli in healthy humans
e.g., Chen and Bargh, 1999 ; De Houwer et al., 2001 ; Solarz, 1960 ) and
n clinical populations (e.g., Jones et al., 2013 ; Taylor and Amir, 2012 ;

iers et al., 2011 ) have been brought so far by studies employing clas-
ical paradigms, such as the Approach Avoidance Tasks (AAT) and the
anikin Task. Nonetheless, the forced-choice nature of these tasks in-

rinsically limits the influence of decisional processes, which select the
est option among action alternatives on the basis of the value of their
xpected outcomes. To reveal both pre-decisional and decisional compo-
ents of behavioral responses to emotional stimuli, approach-avoidance
aradigms involving spontaneous decision-making are needed ( Paré
nd Quirk, 2017 ). Similarly to what happens in everyday life, this im-
lies requiring participants to choose among different options for ac-
ion ( Moors et al., 2017 ). We therefore developed a new paradigm to
ssess the impact of task-irrelevant threat-signaling expressions (anger
nd fear) on action decisions between two alternative targets for action
 Vilarem et al., 2019 ). This task revealed that the presence of emotional
ndividuals influenced spontaneous approach-avoidance responses
ith anger, but not fear, being clearly associated with behavioral
voidance. 

In agreement with the idea that approach-avoidance behaviors are
ubtended by a rapid value-based decision, we originally suggested that
he presence of task-irrelevant threat-signaling expressions (anger and
ear) might implicitly change the value of each available action option
 Vilarem et al., 2019 ). In particular, anger, a direct signal of aggression,
ould increase the expected value of the action leading to avoidance.
e thus hypothesized that avoiding an angry individual is a desirable

utcome for most subjects, who implicitly choose it over its alternative.
In the present study, we aimed at testing this hypothesis more di-

ectly, elucidating the neuro-cognitive mechanisms underlying the ob-
erved pattern of behavioral results. Firstly, it has recently been ar-
ued that computational models of decision offer the opportunity to
ormalize classic theoretical concepts from affective sciences into quan-
itative mathematical parameters ( Roberts and Hutcherson, 2019 ). For
nstance, in simple two-choice tasks, Drift Diffusion Models (DDMs)
 Ratcliff and McKoon, 2008 ) allow translating the raw proportion of
hoice and the distribution of response times into parameters repre-
enting the contribution of different cognitive processes. In our task,
he observed behavior may have emerged from a modulation of (1) the
re-decisional bias, i.e. the starting point of the accumulation process,
hich would reduce the amount of stimulus evidence needed for pro-
ucing the response (e.g., avoidance); (2) the decisional process itself,
.e. the rate of evidence accumulation; or (3) both. Following the inter-
retation proposed in Vilarem et al. (2019 ), we expected subjects’ be-
avior in the presence of emotional displays to be better accounted for
y changes in the decisional process, i.e. increased rate of evidence accu-
ulation, rather than by a shift in pre-decisional bias toward avoidance

esponses. 
Secondly, to further test this hypothesis, we used the high tempo-

al resolution of electroencephalography (EEG) to assess whether the
ifference in the value of the action alternatives is represented in the
rain. Accordingly, such neural encoding of value differences would
e expected in case the tendency to approach/avoid follows a value-
ased decision. More precisely, we expected to observe an early neu-
al encoding of the difference in value between chosen vs. unchosen
ction options in brain regions known to correlate with option values
 Bartra et al., 2013 ), between stimulus presentation and movement initi-
tion ( Hunt et al., 2015 , 2013 , 2012 ), as well as after providing feedback
bout the decision ( McCoy et al., 2003 ). 
. Material and methods 

.1. Participants 

As we consistently replicated the main effect of Emotion (anger
s. fear) in our previous studies ( Vilarem et al., 2019 ), we calculated
he a-priori of required sample size for detecting a significant effect
f Emotion on the proportion of choice for the present experiment (al-
ha = 0.05; power = 0.80). We used the raw data of the study presented
n the supplementary material of Vilarem and colleagues’ paper, which
ad the larger sample size, i.e. 40 subjects. We recalculated the ANOVA
n the proportion of away responses, obtaining an 𝜂2 

p = 0.268 for the ef-
ect of Emotion, corresponding to a required sample size of 25 subjects.

e aimed at enrolling 32 participants into the study, to compensate for
otential withdrawal and technical problems . One subject never showed
p, four were excluded due to noisy EEG data and one due to a techni-
al failure in the synchronization of stimulus markers. The final sample
 N = 26, 14 females) had a mean age of 23.7 ± 3.4 (age range = 19–34).

All participants involved in the study reported no history of neu-
ological or psychiatric disorders. The experimental protocol was ap-
roved by INSERM and the local research ethics committee (Comité de
rotection des personnes Ile de France III – Project CO7-28, N° Eudract:
07-A01125-48), and was carried out in accordance with the Declara-
ion of Helsinki. The participants provided informed written consent and
ere compensated for their participation. 

.2. The social free-choice task 

The social free-choice task ( Fig. 1 a) was adapted from a previous
tudy from our lab ( Vilarem et al., 2019 ). Subjects were presented with
 scene representing a waiting room with four seats, where the two mid-
le seats were occupied by two individuals (a pair of females or males)
nd the outer seats were empty. Each scene was the composite of one
emplate female or male hemi-scene (photograph depicting either one
emale or one male sitting next to an empty seat; 835 × 1050 pixels) jux-
aposed to its mirrored version, on which the faces were superimposed.
aces were selected from the RadBoud Faces Database ( Langner et al.,
010 ) before being adapted to the template female or male body. One
ctor of the pair always displayed a neutral expression, while the other
isplayed either a neutral, angry or a fearful expression. We used ten
five males, five females) fixed pairs of identities matched for facial
rustworthiness and threat traits (for details see Vilarem et al., 2019 ).
aces varied in emotion (neutral, angry or fearful expressions) and in in-
ensity (4 levels of morphs for anger and fear were created from the neu-
ral to the emotional expression using a simple linear morphing trans-
ormation). Each morph level was equalized between anger and fear in
erceived emotional intensities (for details see El Zein et al., 2015 ). 

At the beginning of each trial, a grey screen appeared for 1000 ms,
hen a fixation cross was superimposed upon the grey screen for a time
arying between 500 and 750 ms. After the fixation, the scene (lumi-
ance centered on the mean across all the images; on Matlab, mean =
.428, sd = 0.202) appeared and remained on the screen until a cor-
ect response was registered, or until a maximum time of 1400 ms in
he case of no response. Participants were asked to indicate the seat
hey would like to occupy, maintaining fixation on the cross displayed
etween the faces throughout the trial. In order to make their choice,
articipants had to left-click on the mouse, move the cursor from the bot-
om center of the scene and release the click on the chosen seat. The cur-
or was automatically re-centered at every new trial. Participants were
equired to make spontaneous choices and were informed that there
ere no correct or incorrect responses. Nevertheless, their movements
eeded to be properly performed for their responses to be registered. A
roper movement was defined by the release of the click on one of the
eats within 1400 ms after scene onset. After a response, a picture of
he participant’s face – taken prior to the beginning of the experiment
was superimposed on the scene at the release location for 300 ms,
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Fig. 1. Task and behavioral results. (a) The 
social free-choice task. Time course of a trial 
where participants are asked to indicate where 
they would like to sit. The identities dis- 
played were not used in the real experiment 
and were selected for illustration purposes 
only, following the guidelines of the Redboud 
Faces Database. (b) Behavioral results. Left 
plot: black dots and vertical lines represent the 
mean and the within-subject confidence inter- 
val of the mean proportion of away responses 
for each subject (smaller colored dots). Grey 
lines connect subjects’ means across conditions. 
Right plot: black dots and vertical lines rep- 
resent the median and the confidence inter- 
val of the median RTs for each subject, cen- 
tered on the subject mean to get rid of between- 
subject variability (smaller colored dots). Grey 
lines connect subjects’ medians across condi- 
tions. ∗ ∗ ∗ = p < .001; ∗ ∗ = p < .01; ∗ = p < 
.05; n.s. = p > .05. 
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roviding a feedback that the choice had been correctly registered. All
actors were fully counterbalanced and pseudorandomized across par-
icipants. This resulted in 480 trials – 10 actor pairs × (2 emotional
xpressions × 4 levels of morphs + 1 neutral expression × 4 repetitions)
2 emotional actor’s identity × 2 emotional actor’s side – which we

oubled to increase the number of trials for computational modelling.
hus, the entire experiment consisted in 960 trials, subdivided into ten
locks of 96 trials. The experiment was run using Psychtoolbox on Mat-
ab R2012b. 

.3. Procedure 

Upon arrival at the laboratory, the participants read and signed an
nformed consent form. Participants were then seated in a dimly lit,
ound-attenuated room and EEG electrodes were attached. The distance
rom eye to screen was 60 cm, so that the eccentricity to the central
xation cross was of 4.5° for the center of the faces, and of 8° for the
enter of the seats. Participants were given the instructions for the so-
ial free-choice task, and were also instructed to avoid blinking during
icture presentation and to maintain fixation. Before completing the ex-
eriment, all the subjects went through training blocks depicting only
eutral individuals to practice with the task and the response required,
ntil accuracy reached at least 60%. Both during the training and the
ask, they were informed of their percentage of correct executions at the
nd of each block and were asked to maximize it. 

.4. EEG recording and processing 

Using a BioSemi headcap with active electrodes, the EEG was contin-
ously recorded from 64 scalp sites, with CMS/DRL reference electrodes.
he EEG signal was amplified using an ActiveTwo AD-box amplifier
BioSemi), low-pass filtered online (250 Hz) and digitized at 1000 Hz.
re-processing of the EEG signal was run in EEGlab ( Delorme and
akeig, 2004 ). The signal was referenced offline to an average refer-

nce, down-sampled at 512 Hz, band-pass filtered between 1 and 32 Hz
nd epoched from 2 s before to 3 s after stimulus’ onset. Epochs were
isually inspected and discarded if containing muscular artifacts and
oisy electrodes were interpolated averaging the adjacent electrodes.
inally, blink artifacts were corrected through manual removal of the
orresponding ICA components. The EEG signal was further epoched
etween − 1.5 s and 2 s around stimulus’ appearance and between − 2
o 1.2 s around release time (i.e., when the cursor was released on the
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hosen chair), and further down-sampled to 250 Hz, to facilitate data
andling for statistical analyses. 

Source analysis was performed using Brainstorm ( Tadel et al., 2011 ).
ull noise covariance matrices were computed using the − 0.5 to − 0.1
ime-window before stimulus’ onset. A source space consisting of 7001
ipoles constrained to the cortical mantle of the standard ICBM152 tem-
late brain provided in Brainstorm was chosen, and the forward model
as calculated using a 3D overlapping sphere method. Kernel inversion
atrices (7001 vertices ∗ 64 electrodes) were computed for each sub-

ect, based on a "depth-weighted" linear L2-minimum norm estimate,
sing Brainstorm default settings (depth weighting (Order[0,1]) = 0.5,
aximal amount = 10; Noise covariance regularization = 0.1; 1/ 𝜆 = 3).

ubjects’ kernels were then extracted and multiplied to each trial to per-
orm single trial regressions at the source level. 

.5. Statistical analyses: behavioral data 

.5.1. Linear models 
Behavioral data analysis was run on the same epochs accepted for the

nal EEG analysis, to allow EEG-behavior correlations. EEG accepted tri-
ls were filtered within each subject below the 1 st and above the 99th
ercentile of both click time (i.e., time between stimulus’ appearance
nd mouse click) and movement time (i.e., time between mouse click
nd mouse release on the chosen chair), to eliminate response anticipa-
ions and atypical movements. 

Median click times (from now on “Reaction Times; RTs ”) and move-
ent times for each subject were calculated and then log-transformed

o normalize their distribution. Responses were coded as follows: if the
ubject sat on the chair far from the individual displaying threat-related
acial expressions, the response was coded “away ”. On the other hand,
f the subject sat on the chair close to the individual displaying threat-
elated facial expressions, the response was coded “toward ”. To facilitate
he fitting of our DDM models, the Intensity factor was re-coded on 2
evels (i.e., low-intensity = level1 + level2 and high-intensity = level3 +
evel4), obtaining a minimum number of 111 trials per subject for each
ondition of the interaction between Emotion and Intensity. 

First, repeated-measures ANOVAs were fitted on the variables of
nterest using the “EzANOVA ” function of the “Ez ” package in R
 Lawrence, 2016 ). For the proportion of choice, a repeated-measures
NOVA on the mean proportion of away responses was employed, with
motion (Anger, Fear) and Intensity (High, Low) as within-subject fac-
ors. 

For both RTs and movement times, repeated-measures ANOVAs on
he log-transformed median scores for each subject were fitted, with
motion, Intensity and Side (Away, Toward) as within-subject factors. 

In order to substantiate our behavioral results, we also fitted gener-
lized mixed effects models on full-trial database, with the same fixed
ffects as the ANOVAs, allowing a random intercept to each subject
 “EzMixed ” function of the “Ez ” package). A binomial distribution was
ssumed to predict away (1) vs. toward (0) responses at each trial, and a
aussian distribution was assumed to predict log-transformed RTs. As-

essment of each effect of interest was inferred by comparing a model
hat contained the effect of interest plus any lower order effects with a
restricted ” model with only the lower order effects. Comparison was
ade through a likelihood ratio, corrected for the different complexity

f the two models ( Glover and Dixon, 2004 ). To correct the likelihood,
e choose the Akaike’s Information Criterion (AIC), which in the con-

ext of mixed effects models has been demonstrated to be asymptotically
quivalent to cross-validation ( Fang, 2011 ). The complexity-corrected
ikelihood ratio was converted in the log-base-2 scale, so that resulting
alues can be discussed as representing “bits of evidence ” for or against
he evaluated effect ( Lawrence, 2016 ). 

.5.2. Drift diffusion models 
We employed the fast-dm software (version 30.2) ( Voss et al., 2015 ;

oss and Voss, 2008 , 2007 ) to fit DDMs on the subjects’ choices and RTs.
DMs are used to infer the cognitive processes involved in binary de-
ision tasks: the decision process itself, defined as the rate ( 𝜈) at which
vidence for one of the choices is accumulated, the threshold ( a ) that
epresents the amount of information which separates the two alterna-
ive choices, the pre-decisional bias which is mapped on the starting
oint ( z ) – the closer the starting point to a threshold, the less infor-
ation is needed to decide for that option, and finally the non-decision

ime ( t 0) that captures stimulus encoding and response execution, which
espectively precede and follow the decision process ( Voss et al., 2015 ).

In DDMs the bias parameter z is typically thought to represent a pre-
ecisional preference for one of the two action options, for instance to
espond with our left or right hand and this irrespective of the stimulus.
ere, we consider a slightly different interpretation of the pre-decisional
ias, which takes into considerations knowledge from affective neuro-
ciences ( Roberts and Hutcherson, 2019 ). Indeed, it is suggested that
he process of highly salient stimuli, such threatening ones, takes place
ery rapidly ( LeDoux, 2012 , 1996 ). Automatic tendencies to approach
r avoid emotional stimuli are suggested to be sustained by amygdala’s
irect connections to subcortical (e.g., Hashemi et al., 2019 ) and corti-
al motor centers (e.g., Grèzes et al., 2014 ; Toschi et al., 2017 ). Here,
e propose that, in everyday situation, where the movements that will
llow us to approach or avoid are not predetermined, the praecox iden-
ification of the source of the salient stimuli can result in a rapid action
isposition (pre-decisional motor bias) toward approach or avoidance,
aptured by the z parameter of the model. 

On the base of this assumption, four models were run to disam-
iguate between the pre-decisional and decisional hypotheses: (1) a null
odel, where none of the parameters varied as a function of our factors

f interest (Emotion and Intensity); (2) a model where only the starting
oint ( z ) was allowed to vary as a function of our factors of interest; (3)
 model where only the drift rate ( 𝜈) was allowed to vary as a function
f our factors of interest; (4) a model where both z and 𝜈 were allowed
o vary as a function of our factors of interest. Due to the moderate num-
er of trials per condition, we simplified the models as much as possible,
n several ways: the thresholds of the model were associated with away
upper threshold) and toward responses (lower threshold); furthermore,
he inter-trial variabilities of drift rate and threshold (but not of the non-
ecision time) were fixed to zero, since a proper fit of these parameters
s particularly challenging, especially with small to medium-sized trials
umber ( Lerche and Voss, 2016 ). 

The Minimum-Norm optimization was used for parameter’s estima-
ion. The AIC was extracted for each subject and the mean AIC for each
odel was computed to allow model comparison. In addition to the
ean AIC, which could be affected by subjects’ heterogeneity, we relied

n a hierarchical Bayesian model selection criterion, in which models
re random variables ( Rigoux et al., 2014 ; Stephan et al., 2009 ). The
odel estimates the parameters of a Dirichlet distribution which de-

cribes models’ probabilities, which in turn define a multinomial distri-
ution over model space, allowing to calculate the exceedance proba-
ility of the winning model being more likely than the others. Finally,
arameter estimates from the winning drift diffusion model were tested
sing repeated-measures ANOVAs. 

.6. Statistical analyses: EEG data 

For EEG analyses, we used a General Linear Models approach (GLM),
reviously validated in our laboratory ( El Zein et al., 2015 ; Patron et al.,
019 ; Wyart et al., 2015 , 2012 ). In brief, this method consists in fitting
ingle-trial regressions models in order to evaluate the encoding of ex-
erimental factors in the EEG signal, at each electrode and time point,
or each subject: 

 𝐸 𝐺 ∼ 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 

Such GLMs produce an electrode by time matrix of beta values for
ach subject, which represents the strength of the linear relation be-
ween predictors and dependent variables. All regression-based analyses
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f  
f the EEG data were followed by a second-level analysis at the group
evel, to assess the significance of the observed effects across partici-
ants. In order to perform second-order statistics, we choose a cluster-
ased approach ( Maris and Oostenveld, 2007 ) to control over the type I
rror rate arising from multiple comparisons across electrodes and time
oints. First, standard parametric tests ( t -tests against zero) were run
cross electrodes and time points. The resulting values were thresholded
 p thresh = .05), and the pairing between experimental conditions and
EG signals was shuffled pseudo-randomly 2000 times. The maximal
luster-level statistics (e.g., the sum of t- values across contiguously sig-
ificant time points at the threshold level) were extracted for each shuf-
e to compute a ‘null’ distribution of effect sizes. For each significant
luster in the original (non-shuffled) data, we computed the proportion
f clusters in the null distribution whose statistics exceeded the one ob-
ained for the cluster in question, corresponding to its cluster-corrected
 -value. Clusters with a p corr < .05 were considered significant. 

For each subject, in order to control for the influence of movement
n EEG activity, we first calculated the residuals of the EEG activity
redicted by the movement parameters (i.e., RTs and movement times),
og-transformed to normalize their distribution and z-scored across con-
itions: 

 𝐸 𝐺 ∼ 𝑧𝑠𝑐 𝑜𝑟𝑒 ( log ( 𝑅𝑇 ) ) + 𝑧𝑠𝑐 𝑜𝑟𝑒 ( log ( 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑇 𝑖𝑚𝑒 ) ) 

at each electrode and time point (or at each voxel and time point for
EG sources). Subsequent GLMs were run on the residuals of this model.

In order to test whether the difference in value between the chosen
s. the unchosen action options was represented in the brain, we built
 “Value Difference ” regressor based on the intensity of the emotion
isplayed, its side on the scene and the response of the subject. To do
o, the seat close to the threatening individual was considered as the
unishing option, which would have a negative value proportionate to
he level of emotional intensity of the threatening expression (coded as
.5 = level 1, 1.5 = level 2, 2.5 = level 3, 3.5 = level 4). The other seat,
lose to the neutral individual, would have a non-negative value (i.e.,
ero). Therefore, if for instance the subject decided to sit far from an
ndividual expressing anger at level 3 (i.e. away response), the difference
n value for her choice would correspond to Chosen option – Unchosen
ption = 0 – (–2.5) = + 2.5, therefore a positive value difference. On

he contrary, if in the same trial she chose to sit close to the individual
xpressing anger (i.e. toward response), the difference in value for her
hoice would correspond to Chosen option – Unchosen Option = –2.5 –
 = –2.5, therefore a negative value difference. Such calculation directly
ollows our hypothesis that emotion has a role in changing the respective
alue of competing action plans ( Vilarem et al., 2019 ). 

Separately for anger and fear, we ran the following GLM on stimulus-
ocked data (i.e., residuals) for each subject: 

EG ∼ Value Differen ce ( −3 . 5 to 3 . 5 ) 

For stimulus-locked analysis, we selected a time window ranging
rom stimulus appearance to the longest of the median RTs across sub-
ects (i.e., from 0 to 580 ms). For feedback-locked analysis, we selected
 time window ranging from the longest median movement time (i.e.,
80 ms) to the end of the response-related feedback (i.e., 300 ms) (total
ange = − 680 to 300 ms). 

Finally, the same models were run on each voxel’s residual source
ctivity, after controlling for movement parameters. Regression param-
ters at the source levels were smoothed (6 mm) and then contrasted to
ero with a t -test. 

.7. Statistical analyses: EEG-behavior 

We further tested whether the EEG encoding of value differences
ere related to the quality of evidence accumulation, across subjects.
EG activity in the significant clusters for both stimulus- and feedback-
ocked analyses was therefore correlated with difference in drift rate
etween high and low intensity trials. Moreover, since the duration of
he non-decision phase could have an impact on the availability of time
ecessary for comparing the value of the alternatives, we also tested the
orrelation between t0 and the EEG encoding of value. 

.8. Data and code availability 

Due to constraints of our ethical agreement, data and custom code
re available by contacting the corresponding author JG by email. 

. Results 

.1. Behavioral data 

.1.1. Linear models 
Repeated measures ANOVA on the proportion of choice ( Fig. 1 b)

ighlighted a main effect of Emotion, [ F (1,25) = 13.77, p = .001,
2 

G = 0.10], as well as a main effect of Intensity, [ F (1,25) = 25.02, p <
001, 𝜂2 

G = 0.17], respectively indicating that the proportion of “away ”
esponses was greater for anger than for fear, and for high vs. low emo-
ional intensity. The interaction between the two factors was also signif-
cant, [ F (1,25) = 16.06, p < .001, 𝜂2 

G = 0.06]. Paired t -tests and Cohen’s
 effect sizes showed that the difference between high vs. low emotional
ntensity was large for anger trials, [ t (25) = 5.36, p < .001, d = 1.09, d CI =
.57–1.60], and medium for fear ones, [ t (25) = 2.49, p = .020, d = 0.54,
 CI = 0.07–1.00], suggesting that the effect of Intensity was stronger for
nger vs. fear. 

Repeated measures ANOVA on RTs ( Fig. 1 b) revealed a main effect of
ntensity, [ F (1,25) = 5.38, p = .029, 𝜂2 

G = 0.0003], further characterized
y an interaction between Intensity and Side, [ F (1,25) = 14.37, p < .001,
2 

G = 0.0005]. The difference between high vs. low emotional intensity
n RTs was negligible but significant when participants chose to avoid
he emotional individual, [ t (25) = 3.78, p < .001, d = 0.08, d CI = 0.04–
.12], and not significant when the participants decided to approach,
 t (25) = − 0.87, p = .395, d = − 0.01, d CI = − 0.04–0.02], suggesting that
he level of emotional intensity impacted RTs only for away and not for
oward responses. 

No main effects or interactions were significant for movement times
all F ’s < 1.38, all p ’s > .251). 

The comparison of mixed models for both the proportion of choice
nd the RTs confirmed the above-mentioned ANOVA results. In partic-
lar, for the mixed logistic models on choice, the Emotion model, the
ntensity model and the Emotion by Intensity model were more probable
han their respective restricted models, respectively of 29.46, 58.65 and
5.37 bits of evidence (see Supplemental Material, Table S1). Similarly,
or RTs, the model including the Side by Intensity interaction was fa-
ored compared to its restricted one by 5.01 bits of evidence (see Table
2). 

.1.2. Drift diffusion models 
The mean AIC indicated that overall the model where only the drift

ate ( v ) varied over the Emotion and Intensity factors (model 3, mean
IC = − 450.34) fitted better the data compared to the model where
nly the pre-decisional bias (starting point z ) varied over the Emotion
nd Intensity factors (model 2, mean AIC = − 447.68). Importantly, this
odel also fitted better the data compared to the model were both start-

ng point and drift rate varied over the Emotion and Intensity factors
model 4, mean AIC = − 446.98) as well as compared to the null model
model 1, mean AIC = − 447.79). Critically, the exceedance probability
f model 3 was of 0.9997 compared to model 2, of 1 compared to model
 and of 0.6603 compared to model 1. Overall, there is good support for
he hypothesis that model 3 better explains the data compared to the
ther models tested. Finally, the fit of the winning model (model 3) was
lso assessed visually, ensuring that it could reproduce the main features
f the data (see Fig. S1). 

Repeated-measures ANOVA on the drift rate parameter extracted
rom the winning model 3 ( Fig. 2 ) highlighted a significant main effect
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Fig. 2. Drift rate. Black dots and vertical lines represent the mean and the 
within-subject confidence interval of the mean values for each subject (smaller 
colored dots). Thinner grey lines connect the values in the “low ” and “high ”
emotional intensity conditions within subjects. ∗ ∗ ∗ = p < .001; ∗ ∗ = p < .01; 
∗ = p < .05; n.s. = p > .05. 
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f Emotion, [ F (1,25) = 17.69 , p = .001, 𝜂2 
G = 0.04], indicating that evi-

ence accumulation for away vs. toward responses was higher for anger
han for fear trials. The main effect of Intensity [ F (1,25) = 21.53, p < .001,
2 

G = 0.06] indicated that evidence accumulation for away vs. toward
esponses increased with emotional intensity. A significant interaction
etween Emotion and Intensity also emerged, [ F (1,25) = 12.45, p = .002,
2 

G = 0.02]: paired t -tests and Cohen’s d effect sizes showed that the dif-
erence between high vs. low emotional intensity was medium for anger
rials, [ t (25) = 4.92, p < .001, d = 0.67, d CI = 0.37–0.97], and small for
ear ones, [ t (25) = 2.37, p = .03, d = 0.28, d CI = 0.04–0.52], suggesting
hat the effect of Intensity on evidence accumulation was stronger for
nger vs. fear. 

.2. EEG data 

.2.1. Anger trials: value encoding 
The cluster-based analysis on the betas for the stimulus-locked EEG

ncoding of value difference for anger trials revealed a significant neg-
tive centro-frontal cluster (cluster t- value sum 

= − 479.03, p corr = .033,
ime window = 160–248 ms, electrodes = F1, F3, FC3, FC1, C1 C3, CP3,
P1, P1, PO3, Pz, CPz, AFz, Fz, F2, F4, F6, FC4, FC2, FCz, Cz, C2, C4,
P4, CP2, P2, P4; Fig. 3 , upper part). The average beta coefficients in
he significant cluster for anger differed significantly from those for fear
ver the same time-window and electrodes ( t (25) = − 2.82, p = .009).
ource analysis revealed that this effect was mainly associated with ac-
ivation of bilateral orbitofrontal cortex (OFC) and the left ventromedial
refrontal cortex (vmPFC). Fig. S2 illustrates the same results in a dif-
erent way: Anger trials that showed strong EEG negativity (i.e., high
ncoding) on average in the significant spatio-temporal cluster (within-
ubject median split) were associated with a higher probability to result
n an avoidance response, and this more strongly with increasing emo-
ional intensity. Importantly, such early stimulus-locked neural encod-
ng of value difference peaked before selective attention was allocated
o emotional displays, as indicated by the peak of the Early Posterior
egativity of the Event-Related Potentials around 290 ms (Figs. S3 and
4). 

The cluster-based analysis on the betas for the feedback-locked EEG
ncoding of value difference for anger trials revealed a significant neg-
tive centro-parietal cluster (cluster t -value sum 

= − 555.67, p corr = .026,
ime window = 145–265 ms, electrodes = FC1, C1, CP3, CP1, P1, P3,
O7, PO3, Oz, POz, Pz, CPz, Cz, C2, CP4, CP2, P2, P4, P6, PO8, O2;
ig. 3 , lower part). The average beta coefficients in the significant clus-
er for anger differed significantly from those for fear over the same
ime-window and electrodes ( t (25) = − 4.77, p < .001). Source analysis
evealed that this effect was mainly associated with activation of bilat-
ral posterior cingulate cortex (PCC) and less pronounced activation was
lso found in the OFC and the vmPFC. 

.2.2. Fear trials: value encoding 
Neither the stimulus-locked (cluster t -value sum 

= 128.49, p corr = .99)
or the feedback-locked (cluster t -value sum 

= − 237.24, p corr = .712) anal-
ses revealed any significant cluster for value difference encoding for
ear trials. 

.3. EEG-behavior 

Correlation analyses revealed that the average stimulus-locked EEG
ctivity over the value difference encoding significant cluster for anger
rials correlated positively with the non-decision time ( 𝜌 = 0.47,
 = .017; Fig. 4 b). In other words, subjects for which stimulus encoding
and/or response preparation) took longer showed reduced early EEG
ncoding of value. No correlations emerged with the difference in drift
ate between high and low intensity trials ( 𝜌 = 0.08, p = .686). 

On the other hand, the feedback-locked EEG cluster negatively
orrelated with the high minus low intensity difference in drift rate
 𝜌 = − 0.44, p = .026). In other words, higher evidence accumulation
or high vs. low intensity anger trials was associated to a stronger EEG
ncoding of value difference during feedback, after response termina-
ion. Feedback-locked activity did not correlate with non-decision time
 𝜌 = − 0.00, p = .984). 

. Discussion 

Recent evidence from both animal and human experiments suggests
hat, in most real-life situations, approach/avoidance tendencies to emo-
ional stimuli can be under the influence of decisional, goal-directed,
rocesses ( Moors et al., 2017 ), as opposed to being solely the result of
utomatic pre-decisional motor ones. Here, we aimed at providing a
recise understanding of the cognitive and neural mechanisms under-
ying spontaneous approach/avoidance decisions in a realistic context,
ffering competing targets for action in the presence of a threat-related
ignal (an angry or fearful individual). Our results are threefold. First,
articipant’s choices to avoid were more frequent in the presence of un-
mbiguously threatening individuals (anger) and of emotional displays
f high intensity. Second, participants’ choices were accounted for by
 process of value-based evidence accumulation, more than by a pre-
ecisional bias. Third, for unambiguous threat-signaling anger displays,
eural encoding of the difference in value between chosen vs. unchosen
ction options was observed between stimulus presentation and move-
ent initiation. Altogether, the present findings convincingly support

he underestimated influence of goal-directed processes on action deci-
ions to threat-signaling expressions. 

To tackle the issue of action-related decisions in response to threat-
ignaling emotional displays, we employed a task in which participants
ere asked to freely decide between two competing targets for ac-

ion, in the presence of a neutral individual and another one display-
ng a threat-related expression ( Vilarem et al., 2019 ). This free-choice
aradigm differs in several ways from existing forced-choice compat-
bility tasks (e.g. AAT). In these tasks, participants are instructed to
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Fig. 3. Value encoding in anger trials. The top 
part of the figure represents the results for the 
stimulus-locked analysis, while the bottom part 
results for the feedback-locked one. For both 
top and bottom parts, topo-plots (average of 
the parameter estimates of the GLM over time) 
and time-courses (average over sensors, mean 
± se) of the significant cluster for anger trials 
(red), with the corresponding (non-significant) 
parameter estimates for fear trials (blue) are 
shown. Bar plots (mean ± se) show the aver- 
age over time and sensors between anger and 
fear in the same cluster. Brain activations rep- 
resents the results from a t -test against zero 
on the average over the clusters’ significant 
time-window of the parameter estimates at the 
source level for anger trials ( p < .005 unc , min 
voxel = 2). vmPFC = ventromedial prefrontal 
cortex, OFC = orbitofrontal cortex, PCC = pos- 
terior cingulate cortex. ∗ ∗ ∗ < .001, ∗ ∗ < .01, ∗ < 
.05. 
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Fig. 4. EEG-DDM correlations for anger trials. On the y axis clusters means are represented for each subject, either in the stimulus-locked (first row) and feedback- 
locked (second row) clusters encoding for value. The x axis are represents the difference in drift rate between high and low emotional intensity trials, left column) 
and the non-decision time ( t 0; right column). 
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espond following an explicit rule, which leads them to approach pos-
tive stimuli/avoid negative ones in compatible trials and to approach
egative stimuli/avoid positive ones in incompatible trials. Faster reac-
ion times are typically observed for compatible vs. incompatible trials
e.g., Chen and Bargh, 1999 ; De Houwer et al., 2001 ; Marsh et al., 2005 ;
olarz, 1960 ). This effect is often interpreted as the result of a conflict
etween the instructed action and the action tendency automatically
licited by the emotional stimulus, in the form of a pre-decisional mo-
or bias. 

Such interpretation has nonetheless been recently challenged
 Eder and Hommel, 2013 ; Moors et al., 2019 , 2017 ; Rotteveel and
haf, 2004 ; Schlund et al., 2016 ). Firstly, there is evidence that compat-
bility effects can depend on the ultimate goal of the action being per-
ormed: for instance, individuals respond faster in order to ultimately
voiding negative stimuli, even when this implies initially approach-
ng them ( Reichardt, 2018 ). Secondly, a number of other factors were
hown to have an influence on how subjects respond to the very same
motional stimulus, such as the explicit label ( “approach ”/ ”avoidance")
ssigned to the movement ( Kozlik et al., 2015 ; Laham et al., 2015 ),
ubject’s self-representation in space ( Seibt et al., 2008 ) and the pres-
nce of other emotional stimuli in the task ( Paulus and Wentura, 2016 ).
ach of these factors might explain why AAT paradigms yielded some
iscrepant results regarding action tendencies to angry and fearful ex-
ressions ( Bossuyt et al., 2014 ; Krieglmeyer et al., 2013 ; Marsh et al.,
005 ; Paulus and Wentura, 2016 ; Wilkowski and Meier, 2010 ). Further-
ore, it suggests that approach and avoidance tendencies are not al-
ays automatically evoked by the stimulus in a pre-decisional manner
ut might depend, at least in part, on goal-directed decisional processes
 Moors et al., 2017 ; Moors and Fischer, 2018 ). 

In order to investigate to what extent goal-directed processes con-
ribute to approach-avoidance decisions in emotion, our paradigm had
he advantageous characteristics that participants where free to choose
mong alternatives in a scene representing an everyday environment,
he waiting room, without the constraint of instructions, arbitrary move-
ents or response labels. In our opinion, this allowed to simulate more

losely how in everyday life different alternatives for action compete to
etermine spontaneous approach-avoidance responses to emotion dis-
lays. Our results indicate that participants exhibited the expected pref-
rence to choose the chair that allowed avoiding individuals displaying
hreat-signaling expressions, in line with previous AAT results. Nonethe-
ess, contrary to what is typically observed in AAT studies, we did not
bserve a decrease in reaction times when avoiding high vs. low threat-
ning stimuli, a result which appears inconsistent with the existence of
 pre-decisional motor bias. 
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Participant’s approach/avoidance decisions were influenced by the
resence of facial displays of emotion, as a function of their implied
hreat, i.e. their behavioral relevance to them ( Sander et al., 2007 ).
eplicating previous findings from our team, avoidance was more com-
on when facing angry compared to fearful individuals ( Vilarem et al.,
019 ) and increased as a function of the intensity of the expressed emo-
ion. Although angry and fearful displays are of negative valence, they
iffer in their social meaning and therefore in their action requests to
he perceiver ( Horstmann, 2003 ). Angry expressions are clear signals
f impending verbal or physical assault ( Sander et al., 2007 ), which in
ost contexts leads to avoidance. Fearful expressions, in contrast, sig-
al both the presence of a potential danger ( Paulus and Wentura, 2016 )
nd a need for affiliation ( Marsh et al., 2005 ) and are therefore more
mbiguous in terms of avoidance and approach decisions. We propose
hat the above-described influence of threat-related expressions on par-
icipant’s approach/avoidance decisions is mediated by changing the
xpected value of each available action option ( Vilarem et al., 2019 ).
rucially, as our task did not use monetary or point incentives (explicit
ewards), we anticipated that being seated next to or far from an emo-
ional individual would be a high motivational outcome per se, even in
he context of a laboratory task. Therefore, in agreement with a goal-
irected perspective, anger, and to a lesser extent fear, would increase
he value of the action leading to the most desirable outcome, i.e. threat
voidance. 

A goal-directed perspective entails that decisions between action op-
ions depend on valuation and comparison between available options
o generate a choice (e.g., Wunderlich et al., 2009 ; Xie and Padoa-
chioppa, 2016 ), a mechanism characterized as evidence accumulation
e.g., Polanía et al., 2014 ). As multiple cognitive processes can give rise
o similar patterns of participant performance, we fitted drift-diffusion
odels to participant choice behavior and RTs. We found a higher rate

f evidence accumulation, i.e. higher value estimates, when participants
pontaneously decided to avoid (compared to approach) individuals dis-
laying angry expressions (compared to fearful ones), especially at high
motional intensity. While replicating previous findings from computa-
ional modeling of participants’ non-spontaneous approach-avoidance
esponses and RTs during AAT ( Krypotos et al., 2015 ; Tipples, 2018 ),
e suggest here that a change in evidence accumulation provides strong

vidence for a rapid and implicit decisional process, underlying ap-
roach/avoidance responses to emotional stimuli, rather than a pre-
ecisional one. 

The early neural encoding of the key decision variable guiding
hoice, i.e. the difference in value between a choice taken and a choice
ntaken ( Papageorgiou et al., 2017 ) when facing unambiguous angry
isplays, further confirms our interpretation. This early value difference
ignal was observed in fronto-central medial electrodes, around 200 ms
fter the onset of a scene with an angry individual and before movement
nitiation. Importantly, this implies that EEG activity in this spatiotem-
oral cluster predicted subsequent participant choices on a trial-by trial
asis. Furthermore, the encoding of the value difference was sourced
n the ventromedial prefrontal and orbitofrontal cortices (vmPFC/OFC).
oth regions have been identified as especially important in value-based
ecisions, notably contributing to encode value differences between al-
ernatives (e.g., Boorman et al., 2009 ; FitzGerald et al., 2009 ; Lim et al.,
011 ; Rushworth et al., 2011 ; Hunt et al., 2012 , 2013 , 2015 ; Levy and
limcher, 2012 ; Jocham et al., 2014 ; Setogawa et al., 2019 ), a sig-
al found to be predictive of subsequent choices (e.g., Howard and
ahnt, 2017 ). Here, in accordance with previous findings, the stronger

he neural signal in this early spatiotemporal cluster, the higher the
robability that the participant chooses the action leading to the most
esirable outcome, i.e. avoiding individuals displaying angry expres-
ions. Interestingly, these results are consistent with a previous AAT
tudy, investigating the neural correlates of approach vs. avoidance in
lcohol-dependent patients compared to controls ( Wiers et al., 2014 ).
n this study, BOLD activations in the vmPFC and nucleus accumbens
ere stronger when approaching vs. avoiding each group’s most desir-
ble outcome, i.e., alcohol for patients and soft drinks for controls. Our
esults replicate and extend these findings, endorsing the role of the
alue comparison process in driving approach/avoidance decisions in
he presence of threatening individuals. 

The early neural encoding of value difference peaked before selec-
ive attention was allocated to emotional displays. This is in agree-
ent with the recent proposal that flexible decisional processes can in-

lude implicit forecasting of action outcomes ( LeDoux and Daw, 2018 ),
hus combining speed with optimality, contrary to the common intu-
tion that equates goal-directed behaviors to slow and costly responses
 Hommel and Wiers, 2017 ; Moors, 2017 ; Moors et al., 2019 ; Moors and
ischer, 2018 ). For instance, it has been recently shown that humans
re able to rapidly respond, within around 200 ms, to evolving sensory
nformation in a manner consistent with value-based decision-making
 Carroll et al., 2019 ). In our study, we confirm and extend these re-
ults, by showing that emotional displays in the environment play an
mportant role in this rapid value-based arbitration between action al-
ernatives. Of note, the inverse correlation between the non-decision
ime parameter, which captures stimulus encoding and response exe-
ution, and the early value difference signal suggests that the longer
articipants took to process the scene and prepare their responses, the
ess efficient their value comparison process. This implies that, despite
eing extremely rapid, implicit decisional processes still require some
vailability of cognitive and time resources ( Marien et al., 2012 ). 

Finally, in agreement with our assumption that being seated far from
n angry individual was a highly desirable outcome, the value differ-
nce between chosen and unchosen options modulated the EEG signal
round 200 ms after choice feedback (i.e., a picture of the participant
n the chosen chair). Furthermore, the more efficient the participant’s
ecision process was in the presence of angry expressions of high com-
ared to low intensity (i.e. higher rate of evidence accumulation), the
tronger their neural encoding of value difference during feedback. This
ffect was sourced in the posterior cingulate cortex and in vmPFC/OFC.
ctivity in these brain areas which, together with the ventral striatum,
onstitute the brain’s valuation system, not only “scales with the sub-
ective value of the available alternatives during choice ” ( Bartra et al.,
013 , p. 412), but “also responds when reward is received, implicat-
ng a common set of regions in the evaluation of both prospects and
utcomes ” ( Bartra et al., 2013 , p. 412) (see also Mccoy et al., 2003 ;
trait et al., 2014 ). Our correlational findings are further consistent with
he observation that the more the predicted consequences of a choice
atches its real outcome, the more the vmPFC is active ( Blanchard and
ershman, 2018 ). 

The conclusions of this study ought to be interpreted in light of some
imitations. Theoretically, while our results support the idea that the
elative value of each action was indeed computed before choice, they
o not guarantee that at each trial subjects were responding based on
he forecasted consequence of their action. In the literature, truly goal-
irected actions are supposed to be sensitive to changes in (i) the causal
elationship to their consequences and (ii) the value of those conse-
uences ( Balleine and Dickinson, 1998 ). Common tests to assess whether
n action demonstrates sensitivity to these changes involve devaluation
rocedures, which modify the value of the associated outcome (e.g. sa-
iation for food rewards) and contingency degradation procedures that
odify the contingency between action and outcome (e.g., lowering the
robability that by pressing a lever, one will obtain food). 

In future versions of the present task, devaluation could be imple-
ented by building trials in which, after the choice, the emotional ex-
ressions of the seated individuals change in the feedback phase, thus
endering the consequence of the action less predictable. If subjects’
voidance really depends on forecasted consequence of each action pos-
ibility, it should strongly diminish in a context of low predictability. On
he other hand, contingency degradation could be implemented by un-
redictably switching mouse coordinates on the x -axis in some trials,
o test whether, in the condition of total unpredictability, subjects’ ini-
ial hand movement would still be most of the times in the direction of
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hreat avoidance. We believe that this is an interesting research line for
uture studies. 

From a methodological point of view, the very nature of the feedback
mployed in the present experiment ought to be studied in more de-
ails. On the basis of previous results showing that approach-avoidance
f emotional stimuli can be motivated by the anticipated desirable con-
equences associated with the actions themselves ( Eder et al., 2015 ),
e presented participants’ own picture on the chosen chair after a
roper movement, to embody the consequence of participant’s choice
nd strengthen the impression of an accomplished movement. Our EEG
esults indeed show that participants took into account this feedback,
s they encoded the value associated with the chosen vs. unchosen op-
ion during the feedback phase, similarly to what happens in classic
reference-based choice ( Bartra et al., 2013 ). Nonetheless, we never di-
ectly tested whether the behavioral results would change in the absence
f the feedback, leaving open the possibility that this explicit feedback
as not necessary for participants to forecast the consequences of their
ctions. Moreover, while EEG allowed to precisely test our hypotheses
n the temporal characteristics of brain activation during choice, our
onclusions about brain sources are inherently limited in terms of spa-
ial localization and ought to be substantiated by future studies using
ore spatially accurate imaging techniques. Finally, this study largely

eplicated results regarding the proportion of choice found in our previ-
us work using the same paradigm ( Vilarem et al., 2019 ). Results on RT
eem overall smaller and more variable, therefore they ought to be inter-
reted with caution, awaiting for future replications with larger sample
izes. 

. Conclusions 

Overall, the present study strongly supports the idea that approach-
voidance tendencies to emotion depend, at least in part, on implicit
alue-based decisions. Such a conclusion, if substantiated, might have
mportant theoretical and clinical implications. Theoretically, the fact
hat an emotion-based process of value attribution can influence ac-
ion selection very rapidly, and possibly outside consciousness (e.g.,
essiglione et al., 2007 ; Wimmer and Shohamy, 2012 ), reinforces
he idea that our implicit motivations, goals and expectancies about
ur interactions with others are likely to have a profound impact on
ow we spontaneously navigate our socio-emotional environment. This
motion-based process of value attribution seems far from being highly
emanding cognitively and computationally, and the way social ex-
ectancies are built likely depends on several types of learning and mem-
ry processes ( Amodio, 2019 ). Explaining how precisely these different
rocesses contribute to implicit value assignment is an exciting topic for
uture research. 

We agree with the idea that the relationship between emotion and ac-
ion goes beyond simple stimulus-driven pre-decisional reactions, such
s species typical reactions and habits ( LeDoux and Daw, 2018 ), and the
ay we inhibit or refine them ( Moors et al., 2017 ). This broadened per-

pective might impact how we deal with emotional disturbance in psy-
hopathology. Indeed, it would speak in favor of therapeutic approaches
imed at understanding and eventually modifying implicit expectancies
f future action outcomes in response to emotional signals, rather than
ocusing on instantiating new stimulus-driven associations or promoting
xplicit top-down control. 
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