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where only sparsewall-pressure data,measured in awind tunnel, are available. The evaluation12
of the data model coupling cost functional gradient is efficiently carried out with the exact13
continuous adjoint of the RANS model. Particular attention is given to the derivation of14
the adjoint turbulence model and the adjoint wall law. Given the dual description of the15
dynamics, composed of the RANS model and its adjoint, some methodological settings that16
enable diagnosis of the turbulence closure are explored here. They range from adjoint maps17
analysis to global constants calibration and finally consider the adjunction of a distributed18
parameter. Numerical results on a high-rise building reveal a high reconstruction ability of19
the adjoint method. A good agreement in wind load and wake extension was obtained. As20
with sparse observations, the sensitivity field is generally not very regular for distributed21
parameters, seeking these parameters in a space of more regular functions belonging to the22
Sobolev space (𝐻1) is also proposed to strengthen the efficiency of the method. This has23
been shown to lead to a very efficient data assimilation procedure as it provides an efficient24
descent direction as well as a useful regularisation mechanism. Beyond providing an efficient25
data-driven reconstruction technique, the proposed adjoint methodology enables an in-depth26
analysis of the turbulence closure and finally improves it significantly.27
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1. Introduction30

During there lifetime, buildings are continuously exposed to wind coming from all directions.31
Particularly, due to their extended exposed surface, high-rise buildings and high slender32
structures undergo extremely strong lateral aerodynamic forces. As a consequence, large33
lateral deflections or, even worst, some problematic tearing affecting security may be34
observed. Yet, by having a prior understanding of the airflow surrounding these big structures,35
wind loads can be predicted and such issues avoided. To understand how theses turbulent36
flows affect the structures, physical models along with numerical simulations are usually37
deployed. On the one hand, for more than a century, experiments with scaled models of38
buildings have been carried out in wind tunnels (Cermak & Koloseus 1954; Jensen 1958).39
After years of advancement onmeasurement techniques togetherwith an increased knowledge40
onwind dynamics, tunnel experiments have proven their reliability for loads prediction issues41
(Surry 1999; Cochran & Derickson 2011). High-Frequency Force Balance method (HFFB)42
(Tschanz & Davenport 1983) and High-Frequency Pressure Integration (HFPI) (Irwin &43
Kochanski 1995) are two examples of techniques employed for such force measurements.44
Despite many improvements brought to deal with turbulent flows, such techniques provide45
only partial information of the complex wind-structure interactions involved. For instance,46
when the structure has a complex geometrical shape, the very sparse nature of the cladding47
pressure measurements brought by HFPI techniques may lead to a misrepresentation of the48
local pressure field.49

On the other hand, more recently, thanks to the significant progress of computational50
capabilities, computational fluid dynamics (CFD) techniques have proven their value to give51
a complete representation of these flows, enabling a better understanding of the relation52
between the flow structures and the wind loads. However, since an accurate description53
of such turbulent flows requires a fine enough resolution, this technique may rapidly54
become impractical due to the large computational resources required. To go beyond55
this computational limitation, turbulence model closures associated with the Reynolds56
averaged Navier–Stokes (RANS) simulation were widely adopted to give some insight57
into the time-averaged flow profile. With such models, turbulence characteristics can be58
reasonably represented at lower computational costs. Over the years, motivated by the59
available computational wind engineering guidelines (Tominaga et al. 2008; EN 2005),60
several established turbulence models have been deeply investigated (Cochran & Derickson61
2011; Meroney & Derickson 2014). While RANS simulations offer good qualitative results62
that are physically relevant, due to their inherent assumptions built from accumulated63
knowledge on real turbulent flows, close inspection on wind loads reveals typical failures in64
their prediction. For instance, early studies byMurakami (1990, 1997) compared the standard65
𝑘−𝜖 model (Launder & Sharma 1974) with unsteady large-eddy simulations (LES) and wind66
tunnel experiments. They revealed the model’s poor accuracy resulting in an over-production67
of turbulent kinetic energy in the flow impingement region. Various revisions of the model68
(e.g., RNG by Yakhot et al. (1992), realizable by Shih et al. (1994), MMK by Tsuchiya et al.69
(1997)) have provided results close to measurements obtained in wind tunnels. Yet, recent70
studies have shown that such models still fail to reproduce an accurate recirculation region71
behind the building (Yoshie et al. 2007; Tominaga & Stathopoulos 2010, 2017).72
This accuracy issue may strongly hinder the model predictive skill when compared to73
real-world measurements. One way to correct this deficiency consists in devising methods74
allowing to couple turbulence modelling with measurements.75

Indeed, during the last decades, a wide variety of coupling techniques has been increasingly76
considered in fluid mechanics applications. Such techniques, commonly refered-to as data77
assimilation (DA), have been employed to estimate an optimal flow state provided by a78
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given dynamical model such that it remains close enough to observations. So far, two79
different classes of DA techniques have been applied to that end. On the one hand, Bayesian80
techniques, often referred to as sequential DA techniques, have been used to estimate81
optimal flow parameters from data affected by a high uncertainty level (Meldi & Poux82
2017; Mons et al. 2016). On the other hand, optimal control techniques, like variational83
DA or ensemble-variational DA, have been proposed for direct and large eddy numerical84
description models (Mons et al. 2016; Gronskis et al. 2013; Yang et al. 2015; Mons et al.85
2017; Li et al. 2020; Chandramouli et al. 2020; Mons et al. 2021). In this latter kind of86
approaches, DA is formulated as a constrained optimisation problem (Bryson & Ho 2018).87
A cost functional, reflecting the discrepancies between some (incomplete) measurements88
of the flow variables and a numerical representation of the flow dynamics, is minimised89
using a gradient-based descent method. In such an optimisation problem, the functional90
gradient’s evaluation is efficiently carried out through the dynamical model’s adjoint instead91
of a costly finite difference approach (Errico 1997; Plessix 2006). At this point, these92
DA methods were often used to reconstruct initial conditions and/or boundary conditions93
for nonstationary flow simulation issues (such as large eddy simulations). In the last few94
years, mean flow reconstruction problems have also been considered with data assimilation95
techniques. In some studies (Foures et al. 2014; Symon et al. 2017), built from variational DA96
techniques, the authors considered laminar steady Navier–Stokes equations corrected by an97
unknown volume-force to directly model the turbulence effects. These studies showed that, in98
laminar or transitional flows, such models perform well to assimilate synthetic particle image99
velocimetry (PIV) data. Other DA studies at high Reynolds number were performed with100
RANS turbulencemodels (Li et al. 2017; Singh&Duraisamy 2016; Franceschini et al. 2020).101
In these works, mean flow DA approaches exploited the turbulence models’ structure, which102
results from a trade-off between asymptotic theories on turbulence mixing and empirical103
tuning to fit experimental data. This was expressed through a calibration process of the104
closure constants or of a corrective source term added to the turbulence model. Experimental105
knowledge plays here a crucial role. Such studies dealtmainlywith fundamental and industrial106
oriented flow configurations in which turbulence is often generated at a unique integral107
scale. However, to the authors’ knowledge, for flow configurations involving complex flow108
interactions as in the case of an atmospheric boundary layer around a bluff-body, turbulence109
closure structure analysis using DA techniques are still largely unexplored. Nevertheless, it110
is noteworthy that formal uncertainty quantification (UQ) techniques have been employed to111
interpret these closure models in probabilistic terms (Etling et al. 1985; Duynkerke 1988;112
Tavoularis & Karnik 1989; Edeling et al. 2014; Margheri et al. 2014). For example, in a113
recent work by Shirzadi et al. (2017), global coefficients of the standard 𝑘 − 𝜖 model were114
adapted for unstable atmospheric boundary layer (ABL) flow around high-rise buildings115
using a forward UQ technique (e.g., Monte Carlo simulations).116
In the present work, we propose investigating one of the most common turbulence closure117

models for RANS modelling in a variational data assimilation procedure framework. A118
continuous adjoint approach is considered and then discretised using a 3D finite volume119
scheme.120
A special attention has been paid to the wall treatment during the derivation of the121

ajoint RANS model in order to ensure consistency between the two dual dynamics. One122
way of tackling this can be found in the work of Zymaris et al. (2010) in the context of123
shape optimization. However, in the present work, the second-order finite volume numerical124
scheme implies specificities of the formulation of atmospheric boundary layer wall law at125
the continuous level. Especially, relationships at the wall boundary expressed at the ground126
(face value), and within the logarithmic layer (cell-centered value) coexist. Since atmospheric127
boundary layer interactswith the building,wall law is crucial andwe propose a fully consistent128
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continuous adjoint approach for this model. Without loss of generality, we will, first, use129
this methodology to investigate the sensitivity fields of the global closure coefficients of130
the high Reynolds realizable revision of the 𝑘 − 𝜖 model (Shih et al. 1994). Their physical131
interpretation will enable us to point out limits on such closure models’ applicability for132
data-model coupling purposes, particularly for wind flows around buildings.133
Contrary to previous data-model studies in which velocity measurements were considered134

on significant parts of the flow domain, we only rely on sparse pressure data measured on135
the building surface. This difference is far from being cosmetic as it leads so far to a much136
more practical experimental setting for large-scale volumetric measurements. Besides, we137
point out some difficulties faced in the literature in coupling RANS modeled 3D flows with138
only parietal experimental measurements. Within that framework we will discuss limitations139
and improvements in estimating wind loads and mean velocities surrounding a high-rise140
building. To address the limitations of common turbulence modelling more efficiently, we141
will then relax the model rigidity by considering a distributed additive control parameter in142
the turbulent dissipation transport equation, where the closure is performed. Beyond the fact143
that it provides a better agreement with real flow data due to the richer control parameter space144
and avoids overfitting to the data thanks to the prior information brought by the RANSmodel145
structure, the optimal control parameter enables us to identify features that are missing in the146
initial RANS closure hypotheses. To that end, a modified dissipation rate equation and its147
adjoint equation are introduced. A physical interpretation of the reconstructed field will then148
be addressed to point out the limits of models’ closure applicability for data-model coupling149
purposes. In the optimisation procedure, the adjoint sensitivity field and the associated cost150
functional gradient is generally irregular for distributed control parameters due to the lack151
of specific treatment. This lack of regularity often even hinders a proper estimation of the152
sensitivity map and requires the adjunction of regularisation terms whose calibration is not153
straightforward. In contrast to this conventional approach, searching the control parameters in154
a space of regular functions: the Sobolev space 𝐻1(Ω), is proposed to regularise the descent155
direction. As will be shown, this leads to a very efficient data assimilation procedure.156
The paper is organised as follows.We first describe the adjoint-based turbulencemodel and157

wall-pressure measurements coupling for flow reconstruction around a high-rise building.158
The next section improves the adjoint-based turbulence models’ sensitivity analysis tool and159
proposes a corrective turbulence model. Then, the case studied is described. The models’160
sensitivities are discussed, and their performances for flow reconstruction fromwall-pressure161
data are presented. Finally, a summary and further outlook are given.162

2. Development for an adjoint-based diagnostics163

In this section, we set up the variational data-model coupling framework, based on optimal164
control techniques. A particular attention is given to the analytical derivation of the adjoint165
model of one of the most common turbulencemodels, the realizable revision of 𝑘−𝜖 , coupled166
with near wall closure.167

2.1. Variational approach168

A generic variational data-coupling problem can be formally described by the following169
optimisation problem :171

min
𝛼

J (𝛼,X(𝛼),Yobs)

subject to 𝑀𝑖 (𝛼,X(𝛼)) = 0 𝑖 = 1, . . . , 𝑁
(2.1)172
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where J () is the cost function that quantifies the misfit between observations and the model,173
i.e. here measurements and CFD solution respectively, penalised by an a priori statistical174
knowledge of these discrepancies in the form of a covariance matrix. Here we refer to the175
flow measurements Yobs, and the predicted flow X. The bound 𝑁 stands for the number176
of independent variables necessary for a full description of the flow. The minimisation of177
this function is constrained by the set of flow governing equations 𝑀𝑖 . Such problem may178
be solved using a gradient-based algorithm. It consists in iteratively evaluating the cost179
functional and its sensitivity derivatives in order to find the minimum by successive updates180
of the control variables 𝛼. The sketch of the procedure is given in algorithm 1.

Algorithm 1 min
𝛼

J (𝛼,X(𝛼),Yobs)

Initialisation: 𝛼𝑚 = 𝛼b and m=0
repeat
SolveM(X𝑚, 𝛼𝑚) = 0
Compute sensitivity 𝜕J

𝜕𝛼
(X𝑚, 𝛼𝑚)

update 𝛼 → 𝛼𝑚+1 ; 𝑚 + 1→𝑚

until
J𝑚 − J𝑚−1 < Y

181
In order to properly define the cost function, onemay proceed as follows. The only available182

experimental inputs are wall-pressure measurements. Ideally, the discrepancy between the183
experimental pressure measure and the model wall-pressure can be expressed as 𝛿𝑃𝑤 =184
𝑃𝑤
obs −H(𝑃𝑤) whereH(.) restricts the pressure fields, 𝑃, at the measurement positions (the185
subscript 𝑤 stands for wall). However, due to measurement errors, this difference must be186
weighted by their associated uncertainties. Having no access to the real pressure values, these187
uncertainties have to be estimated. By assuming a normal distribution around the measured188
value, this can be introduced by means of an empirical covariance matrix. Concerning the189
operatorH(.), in this work, we have considered interpolation by aGaussian kernel of half size190
of the building width 𝐷, from the computational grid to the position of the measurements191
to ensure consistency between estimated observation and pressure measurements. So far,192
it should be pointed out that under the assumption of incompressible flow, the pressure193
solved numerically is only defined up to a constant. Thus, the experimental and numerical194

pressures can be compared through respective pressure coefficient 𝐶𝑝 =
𝑃−𝑃ref
1/2𝜌𝑈2ref

with 𝑃ref195

denoting the reference static pressure at the inlet of the domain and𝑈ref stands for the inlflow196
velocity. We note the difference between numerical and experimental wall pressure values197
by 𝛿𝐶𝑤

𝑝 = 𝐶𝑤
𝑝𝑜𝑏𝑠

− 𝐶𝑤
𝑝 .198

To ensure that the set of parameters 𝛼 remains in a realistic set of values, we define a199
physically likely range for each component 𝛼𝑖 . This can be formalised by a penalisation term200
on the cost functional, leading to201

J (𝑃, 𝛼) = | | 1
2
𝜌𝑈2ref𝛿𝐶

𝑤
𝑝 | |2𝑅−1 + ||𝛼 − 𝛼𝑏 | |2𝐵−1 , (2.2)202

Wenote theMahalanobis norm | | 𝑓 | |2
𝐴−1 = ⟨ 𝑓 , 𝐴−1 𝑓 ⟩, inwhich 𝐴−1 is an inverse covariance203

matrix and ⟨., .⟩ is the 𝐿2 inner product. Note here that 𝑅 is the covariance matrix defined204
from measurement’s uncertainties, 𝐵 is the covariance matrix associated to the parameter205
validity range. Without loss of generality, a diagonalmeasurement covariancewith a constant206
standard deviation

√
𝑅𝑖𝑖 = 1 is used. This uniformity represents an equal degree of confidence207

for each measurement, and the diagonal structure ensues from an assumption of spatially208
uncorrelated errors, which can be assumed for sufficiently distant measurements. Matrix 𝐵209
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corresponds to a priori knowledge on the range of values of the parameters. In practice, it210
is worth noting that the role of 𝐵 matrix is twofold. In the one hand, it imposes a realistic211
interval in which the parameters can be optimised; while, on the other hand, it ensures a212
consistent scaling between inhomogeneous terms.213

2.2. A RANS model214

The incompressible airflow surrounding the building can be fully described by its velocity u215
and pressure 𝑝 . This unsteady state, solution of the Navier–Stokes equations, can be further216
decomposed in terms of its mean, (U, 𝑃𝜙), that will be resolved and a modeled fluctuation217
(u′, 𝑝′). By applying time averaging to the Navier–Stokes equations, one can obtain the218
partial differential equations (PDEs) of the RANS equations in a conservative form, whose219
solution provides the mean wind flow :220

𝜕 (𝜌𝑈 𝑗𝑈𝑖)
𝜕𝑥 𝑗

= −
𝜕𝑃𝜙

𝜕𝑥𝑖
+ `

𝜕

𝜕𝑥 𝑗

[
𝜕𝑈𝑖

𝜕𝑥 𝑗

]
− 𝜕

𝜕𝑥 𝑗

(
𝜌𝑢′

𝑖
𝑢′
𝑗

)
, (2.3)221

222
𝜕𝑈 𝑗

𝜕𝑥 𝑗

= 0.223

, where 𝜌 stands for the fluid density and ` the kinematic viscosity. Due to the non-linear224

term, the averaging procedure leads to a second-order moment 𝑢′
𝑖
𝑢′
𝑗
, called the Reynolds225

stress. Since all the unsteadiness and turbulence effects of the wind flow are contained in this226
term, without a priori specification of this term, the above system is not closed and cannot227
be solved. The immediate solution for the closure is to include additional transport equations228
to predict the turbulence second-order statistics. Relying on the Boussinesq analogy between229
large-scale dissipation and molecular friction, Reynolds stresses are commonly modeled230
using a turbulent diffusion-like term, so-called eddy viscosity model. Several models have231
been proposed to relate quantities describing turbulent fluctuations. A common practice232
associates the turbulent kinetic energy 𝑘 = 1/2∑𝑖

{
𝑢′
𝑖
𝑢′
𝑖

}
, representing the isotropic part of233

the exact Reynolds stress, with the turbulence length scale 𝑙. Due to their simple structures,234
these models often require empirical closure functions or constants which are established and235
determined from experimental knowledge, with an attempt to ensure their widest possible236
applications. For instance, the steady realizable k− 𝜖 turbulence model (Shih et al. 1994), in237

which 𝜖 ∼ 𝑘3/2

𝑙
models the turbulence dissipation rate at the viscous scale, is often adopted238

for wind flow expertise around real-world buildings. The Reynolds stress is assumed linearly239
linked to the mean shear stress by an eddy viscosity as follows:240

− 𝜌𝑢′
𝑖
𝑢′
𝑗
= `𝑡

(
𝜕𝑈𝑖

𝜕𝑥 𝑗

+
𝜕𝑈 𝑗

𝜕𝑥𝑖

)
− 2
3
𝛿𝑖 𝑗𝜌𝑘, (2.4)241

where `𝑡 stands for the isotropic (i.e. assuming that length and time scales of turbulence are242
smaller than those of the mean flow with no preferential direction) eddy viscosity coefficient.243
Its value is calculated using the relation244

`𝑡 = 𝐶`𝜌
𝑘2

𝜖
. (2.5)245

The coefficient𝐶`, following the work of Shih et al. (1994), is a non uniform constant defined246
by247

𝐶` =
1

𝐴0 + 𝐴𝑠𝑈𝑠
𝑘
𝜖

, (2.6)248
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where 𝐴𝑠 and𝑈𝑠 are functions of the mean strain and rotation rates and 𝐴0 is a closure tuning249
coefficient. Substituting the Reynolds stress model (2.4) in the mean momentum equation250
(2.3) yields to251

𝜕 (𝜌𝑈 𝑗𝑈𝑖)
𝜕𝑥 𝑗

= − 𝜕

𝜕𝑥𝑖

(
𝑃𝜙 + 2

3
𝜌𝑘

)
+ 𝜕

𝜕𝑥 𝑗

[
`𝑒 𝑓 𝑓

(
𝜕𝑈𝑖

𝜕𝑥 𝑗

+
𝜕𝑈 𝑗

𝜕𝑥𝑖

)]
, (2.7)252

where `𝑒 𝑓 𝑓 = (`𝑡 + `) stands for an effective viscosity. It can be noted that the isotropic253

component 23 𝜌𝑘 is absorbed in a modified mean pressure 𝑃 = 𝑃𝜙 + 2
3 𝜌𝑘 and only the254

anisotropic part of the Reynolds stress plays an effective role in transporting momentum.255
It is worth noting that anisotropy here arises only from the mean flow strain and does not256
depend on the turbulent fluctuations. Moreover, in the computation of the pressure coefficient257
(required for the observation error in the cost functional (2.2)), we subtract the isotropic part258

to obtain𝐶𝑝 =
𝑃− 23𝜌𝑘−𝑃ref+

2
3𝜌𝑘ref

1/2𝜌𝑈2ref
where 𝑘ref stands for the inflow kinetic energy.With regards259

to the turbulence closuremodel, the transport ofmean turbulent kinetic energy, 𝑘 , is described260
by261

𝜕 (𝜌𝑈 𝑗 𝑘)
𝜕𝑥 𝑗

=
𝜕

𝜕𝑥 𝑗

[(
` + `𝑡

𝜎𝑘

)
𝜕𝑘

𝜕𝑥𝑖

]
+ `𝑡

(
𝜕𝑈𝑖

𝜕𝑥 𝑗

+
𝜕𝑈 𝑗

𝜕𝑥𝑖

)
𝜕𝑈𝑖

𝜕𝑥 𝑗

− 𝜌𝜖, (2.8)262

where 𝜎𝑘 is a closure constant that enables the scalar mixing of 𝑘 to be affected by other263
mechanisms than eddy viscosity. The hypothesis, associated to the value 𝜎𝑘 = 1, in which264
the eddy diffusion affects in the same way the momentum and the turbulent kinetic energy265
𝑘 , is analysed in section 5.2.266

The turbulent dissipation rate transport is described by the model proposed by Shih et al.267
(1994)268

𝜕 (𝜌𝑈 𝑗𝜖)
𝜕𝑥 𝑗

=
𝜕

𝜕𝑥 𝑗

[(
` + `𝑡

𝜎𝜖

)
𝜕𝜖

𝜕𝑥𝑖

]
+ 𝐶1(𝑆, 𝑘, 𝜖)𝑆𝜖 − 𝐶2

𝜖2

𝑘 +√`𝜖
, (2.9)269

where 𝑆 = 2(𝑆𝑖 𝑗𝑆𝑖 𝑗)
1
2 is the magnitude of mean strain rate where 𝑆𝑖 𝑗 = 1

2

(
𝜕𝑈𝑖

𝜕𝑥 𝑗
+ 𝜕𝑈 𝑗

𝜕𝑥𝑖

)
and270

𝐶1 = max (0.43, [/(5 + [)) where [ = 𝑆𝑘/𝜖 is the normalised strain rate. The constants 𝜎𝜖271
and 𝐶2 are closure coefficients that need to be calibrated. Assuming that the generation of272
𝜖 is linked to its redistribution everywhere, as it is established in the log-layer, leads to a273
relationship between these coefficients (details in section 5.2.2). This closure hypothesis is274
analysed as well in section 5.2.275

To properly close this set of equations (since the model is valid only for high Reynolds276
regimes), an asymptotic behaviour has to be imposed near the wall. Indeed, for large scale277
configurations (i.e., ABL, high-rise buildings), the first grid centre of the finite volume278
discretisation closest to the wall usually falls in the logarithmic layer. The domain covered279
by the first grid cell is noted Ω𝑐, and the values of the flow variables taken at the center of280
these cells are marked |𝑐. The wall boundary at the ground and on the tower are respectively281
𝜕Ωgr and 𝜕Ωtower. Following Pope (2001) and recommendations specific to ABL flows in282
Richards & Norris (2011), we consider the following wall-law283
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𝑢𝜏 = 𝐶
1/4
` 𝑘 |1/2𝑐 , (2.10)284

𝑦+ |𝑐 =
𝜌𝑢𝜏𝑦 |𝑐

`
, (2.11)285

𝑈+ |𝑐 =
1
^
𝑓 (𝑦+ |𝑐), (2.12)286

𝑈𝑖𝑡𝑖 |𝑐 = 𝑢𝜏𝑈
+ |𝑐, (2.13)287

𝑃𝑘 |𝑐 = 𝜌𝜖 |𝑐 =
𝜌𝑢3𝜏
^𝑦 |𝑐

, (2.14)288

𝜕𝑘

𝜕𝑥 𝑗

𝑛 𝑗 = 0 at 𝜕Ωtower ∪ 𝜕Ωgr, (2.15)289
290

where 𝑈+, 𝑦+ are the dimensionless wall unit tangential velocity component and distance291
from wall, respectively, 𝑛𝑖 and 𝑡𝑖 = 1 − 𝑛𝑖 are the projections of normal and tangential unit292
vectors onto the boundary face in the orthonormal frame (𝑥, 𝑦, 𝑧). The log function 𝑓 is293
an empirical function parametrised by constants which depends on the wall type (such as294
smooth or rough); and ^ = 0.41 is the Von Kármán constant. The expression of 𝑓 is different295
at the ground and on the tower. At the ground rugosity is considered, while the tower is296
assumed to be smooth. This leads to the following wall law297

𝑈+ |𝑐 =
1
^
ln

(
𝐸𝑦+ |𝑐

)
at 𝜕Ωtower, (2.16)298

and299

𝑈+ |𝑐 =
1
^
ln

(
𝑦 |𝑐 + 𝑧0

𝑧0

)
at 𝜕Ωgr, (2.17)300

the eddy viscosity in the cell closest to the wall is then defined such that301

`𝑡 = `

(
1

𝜕𝑈+
𝜕𝑦+ |𝑐

− 1
)

at 𝜕Ωgr ∪ 𝜕Ωtower, (2.18)302

where 𝐸 = 9.8 is the roughness parameter for smooth walls (Versteeg &Malalasekera 2007)303
and 𝑧0 = 0.02m is the roughness length which is relevant for an ABL flow scale.304
In the first grid cell within the log-region, viscous effects are neglected (𝑦+ ≫ O(1)), and305

then the friction velocity 𝑢𝜏 is scaled by the square root of the fluctuations, following the306

empirical expression 𝑢𝜏 = 𝐶
1/4
` 𝑘1/2 with 𝐶` = 0.09 in (2.10). In this region, production307

and dissipation balance leads to (2.14). In this equation, the exact expression for a rough308

wall is 𝜖 |𝑐 =
𝑢3𝜏

^ (𝑦 |𝑐+𝑧0 ) , and we have neglected the roughness length since 𝑧0 ≈ 0.02𝑦 |𝑐.309

In addition to enforcing the value of 𝜖 at the boundary, equation (2.14) specifies the value310
of production 𝑃𝑘 in Ω𝑐, which corresponds to the second term of the RHS in (2.8). In311
the transport equation of 𝑘 , the diffusion term is zero in the log-layer, which implies, under312
energy balance assumption, that 𝑘 is uniform. This constitutes a good physical approximation313
(Pope 2001), and leads to (2.15). Finally, constant shear stress assumption across the wall-314
normal direction allows to deduce the eddy viscosity in the first grid cell from the logarithmic315
velocity profile (equation (2.18)), consistently with Kalitzin et al. (2005).316
A similar boundary condition is considered in Zymaris et al. (2010), but considering the317

possibility to have a first grid point within the viscous layer (that is in practice never the case318
for ABL flows). In this latter formulation, a Dirichlet boundary condition is considered for319
𝑘 through (2.10). For wind engineering applications, a well documented unphysical peak of320
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turbulent kinetic energy close to the wall can be observed and some more advanced near-321
wall modelling formulations have been proposed to reduce this artefact (see for instance322
Hargreaves & Wright 2007; Parente et al. 2011; Richards & Norris 2011). Since we need323
to derive the adjoint equations, we have chosen to focus on a more simple and general324
formulation, where the Neumann boundary condition for 𝑘 is enforced in equation (2.15)325
(since 𝑘 is constant in 𝑦 within the log-layer), and equation (2.10) is used to obtain 𝑢𝜏 . Let326
us note that this implementation is designed for high Reynolds numbers. It is standard in327
OpenFOAM and is used for instance in Tominaga et al. (2008).328

2.3. A continuous adjoint RANS model329

The optimisation problem (2.1) can be solved increasing the cost function with the constraint,330
i.e. the RANSmodel. This is done through Lagrange multipliers also called adjoint variables.331
The resulting unconstrained optimisation problem can be written in a compact form as332

L(X,X∗, 𝛼) = J (𝑃, 𝛼) + ⟨X∗,M(X, 𝛼)⟩Ω, (2.19)333

where ⟨., .⟩Ω stands for the spatial 𝐿2 inner-product in the flow domain Ω. The mean flow334
state X is defined by the set (U, 𝑃, 𝑘, 𝜖 , `𝑡 ). As for the adjoint state X∗, we define it as335
(U∗, 𝑃∗, 𝑘∗, 𝜖∗, `∗𝑡 ). The term U∗ stands for the adjoint velocity, 𝑃∗ is the adjoint pressure336
field, 𝑘∗ is the adjoint turbulent kinetic energy, 𝜖∗ the adjoint kinetic dissipation rate and `∗𝑡337
the adjoint eddy-viscosity.338
Solving the optimisation problem implies to find the set of parameters, the state vector339

and the adjoint state such that the derivatives of L with respect to all variables vanish. To340
this end, based on the application of the Green-Gauss theorem and the use of integrations341
by parts – see the Appendix and the work of Othmer (2008) – the adjoint system reads as342
follows:343

− 𝜌
𝜕𝑈 𝑗𝑈

∗
𝑖

𝜕𝑥 𝑗

− 𝜌𝑈 𝑗

𝜕𝑈∗
𝑗

𝜕𝑥𝑖
− 𝜕

𝜕𝑥 𝑗

[
`𝑒 𝑓 𝑓

(
𝜕𝑈∗

𝑖

𝜕𝑥 𝑗

+
𝜕𝑈∗

𝑗

𝜕𝑥𝑖

)]
+ 𝜕𝑃∗

𝜕𝑥𝑖
= 𝐷𝑈∗ ,𝑖 (2.20)344

𝜕𝑈∗
𝑗

𝜕𝑥 𝑗

= 0 (2.21)345

−
𝜕𝜌𝑈 𝑗 𝑘

∗

𝜕𝑥 𝑗

− 𝜕

𝜕𝑥𝑖

[(
` + `𝑡

𝜎𝑘

)
𝜕𝑘∗

𝜕𝑥 𝑗

]
− 𝜌
2
3
𝜕𝑈𝑖

𝜕𝑥𝑖
𝑘∗ = 𝐷𝑘∗ (2.22)346

−
𝜕𝜌𝑈 𝑗𝜖

∗

𝜕𝑥 𝑗

− 𝜕

𝜕𝑥𝑖

[(
` + `𝑡

𝜎𝜖

)
𝜕𝜖∗

𝜕𝑥 𝑗

]
− 𝜌

𝜕𝑃𝜖

𝜕𝜖
𝜖∗ + 𝜌

𝜕𝑠𝜖

𝜕𝜖
𝜖∗ = 𝐷 𝜖 ∗ (2.23)347

𝜕𝑃𝑘

𝜕`𝑡
𝑘∗ −

(
𝜕𝑈𝑖

𝜕𝑥 𝑗

+
𝜕𝑈 𝑗

𝜕𝑥𝑖
−
)
𝜕𝑈∗

𝑗

𝜕𝑥𝑖
− 1
𝜎𝑘

𝜕𝑘

𝜕𝑥𝑖

𝜕𝑘∗

𝜕𝑥𝑖
− 1
𝜎𝜖

𝜕𝜖

𝜕𝑥𝑖

𝜕𝜖∗

𝜕𝑥𝑖
= `∗𝑡 . (2.24)348

349

The right-hand sides are expressed as

𝐷𝑈∗ ,𝑖 = 𝜌𝑘
𝜕𝑘∗

𝜕𝑥𝑖
+ 𝜌𝜖

𝜕𝜖∗

𝜕𝑥𝑖
+ 𝜌
2
3
𝜕𝑘𝑘∗

𝜕𝑥𝑖
− 𝜕𝑃𝜖

𝜕𝑈𝑖

𝜖∗ − 𝜕𝑃𝑘

𝜕𝑈𝑖

𝑘∗ − 𝜕

𝜕𝑥𝑖

(
𝜕`𝑡

𝜕𝑈𝑖

`∗𝑡

)
𝐷𝑘∗ = 𝜌

𝜕𝑃𝜖

𝜕𝑘
𝜖∗ − 𝜌

𝜕𝑠𝜖

𝜕𝑘
𝜖∗ − 𝜕`𝑡

𝜕𝑘
`∗𝑡

𝐷 𝜖 ∗ = −𝜕`𝑡

𝜕𝜖
`∗𝑡 ,

where 𝑃𝑘 and 𝑃𝜖 stand for the production terms of turbulent energy (second term in the350
RHS of (2.8)) and for the turbulence dissipation rate (second term in the RHS of (2.9)),351
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𝑈𝑛 = 𝑈𝑖𝑛𝑙𝑒𝑡
𝑘 = 𝑘𝑖𝑛𝑙𝑒𝑡
𝜖 = 𝜖𝑖𝑛𝑙𝑒𝑡
∇𝑛𝑃 = 0

𝑛𝑜 𝑠𝑙𝑖𝑝
∇𝑛𝑃 = 0
𝑤𝑎𝑙𝑙 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛

∇𝑛𝑈 = 0
∇𝑛𝑘 = 0
∇𝑛𝜖 = 0
𝑃 = 0

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

6𝐻

12𝐻6𝐻

12𝐻

𝐻

𝑈∗ = 0
𝑘∗ = 0
𝜖∗ = 0
∇𝑛𝑃

∗ = 0
𝑈∗ = 0
∇𝑛𝑃

∗ = 0
𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑤𝑎𝑙𝑙 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑈∗ = 𝑈∗
𝑜𝑢𝑡𝑙𝑒𝑡

𝑘∗ = 𝑘∗
𝑜𝑢𝑡𝑙𝑒𝑡

𝜖∗ = 𝜖∗
𝑜𝑢𝑡𝑙𝑒𝑡

𝑃∗ = 𝑃∗
𝑜𝑢𝑡𝑙𝑒𝑡

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

𝐷

𝑈∗
𝑛 = − 𝜕J

𝜕𝑃

(a) (b)

Figure 1: Settings and boundary conditions of the direct (a) and adjoint (b) problems.

respectively. As for 𝑠𝜖 , it denotes the modeled sink of turbulence dissipation rate (third term352
in the RHS of (2.9)).353

Note that as both production terms are functions of the velocity, then chain rule allows to354
obtain 𝜕𝑃𝜖 /𝜕𝑈𝑖 and 𝜕𝑃𝑘/𝜕𝑈𝑖 , see the appendix. Moreover, the system (2.20-2.23) is quite355
similar to the one obtained in Zymaris et al. (2010), yet, with some differences arising from356
the realizability condition of the eddy viscosity expression (last term of 𝐷𝑈𝑖

). Furthermore,357
unlike the derivation of Zymaris et al. (2010) in which the eddy viscosity expression is358
directly replaced in the RANS equations, the augmentation of the Lagrangian with (2.5),359
leading to equation (2.24), has shown to offer better numerical stability in solving the adjoint360
system. Indeed, similarly as the iterative computation of the direct RANS system, `∗𝑡 is361
updated at each step after solving the equations for 𝑘∗ and 𝜖∗. To solve this adjoint system,362
adjoint boundary conditions have to be derived consistently with the boundary conditions of363
the direct problem. The next section is dedicated to this crucial point.364

2.4. Adjoint boundary conditions365

The treatment of the adjoint boundary conditions is a central piece in adjoint methods in order366
to obtain consistency in the gradient computation. In our case with the transport equations367
of turbulent quantities, some treatments are not standard, particularly at the adjoint wall368
law. Moreover, some specific treatments are performed at the discrete level of the finite369
volume formulation. In this section, we propose to recall the general procedure to obtain370
adjoint boundary conditions, and then to detail the conditions to enforce at each boundary.371
Boundary conditions for the flow and adjoint fields are summarised in figure 1.372

Derivation of (2.19) leads, in addition to system (2.20)-(2.23), to a system of boundary373
terms. Directional derivative with respect to 𝑃, leads to374 [

𝑈∗
𝑖 𝑛𝑖𝛿𝑃

]
𝛿Ω

= −𝜕J
𝜕𝑃

𝛿𝑃, (2.25)375

where the boundary integral is defined as [·]𝜕Ω =
∫
𝜕Ω

(·) d𝜕Ω.376

Note that differentiation of the cost function, (2.2), w.r.t. 𝑃 is computed through the377

Rapids articles must not exceed this page length
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definition of the pressure coefficient. By differentiating with respect to𝑈𝑖 , we obtain379

[𝑃∗𝛿𝑈𝑖𝑛𝑖] 𝛿Ω −
[
𝜌

(
(𝑈∗

𝑖 𝑛𝑖) (𝑈𝑖𝑛𝑖) +𝑈 𝑗𝑈
∗
𝑗𝑛𝑖

)
𝛿𝑈𝑖𝑛𝑖

]
𝛿Ω

−
[
`𝑒 𝑓 𝑓 (𝑈∗

𝑖 𝑛𝑖 +𝑈∗
𝑗𝑛 𝑗)

𝜕𝛿𝑈𝑖

𝜕𝑥 𝑗

]
𝛿Ω

−
[
𝛿𝑈𝑖`𝑒 𝑓 𝑓

(
𝜕𝑈∗

𝑖
𝑛𝑖

𝜕𝑥 𝑗

𝑛𝑖 +
𝜕𝑈∗

𝑗
𝑛 𝑗

𝜕𝑥𝑖
𝑛𝑖

)]
𝛿Ω

−
[
𝛿𝑈𝑖

(
5
3
𝜌𝑘𝑘∗𝑛𝑖 +

(
𝜕𝑃𝑘

𝜕𝑈 𝑗

𝑛𝑖

)
𝑘∗ + 𝜌𝜖𝜖∗𝑛𝑖 +

(
𝜕𝑃𝜖

𝜕𝑈 𝑗

𝑛𝑖

)
𝜖∗ +

(
𝜕`𝑡

𝜕𝑈 𝑗

𝑛𝑖

)
`∗𝑡

)]
𝛿Ω

.

(2.26)

380

Derivative with respect to 𝑘 , leads to381 [
−2
3
𝜌𝑈∗

𝑖 𝑛𝑖𝛿𝑘

]
𝛿Ω

+ [𝜌𝑈𝑖𝑛𝑖𝑘
∗𝛿𝑘] 𝛿Ω −

[(
` + `𝑡

𝜎𝑘

)
𝑘∗

𝜕𝛿𝑘

𝜕𝑥 𝑗

𝑛 𝑗

]
𝛿Ω

+

𝜕

(
` + `𝑡

𝜎𝑘

)
𝑘∗

𝜕𝑥 𝑗

𝑛 𝑗𝛿𝑘

 𝛿Ω ,

(2.27)382
and with respect to 𝜖 to383

[𝜌𝑈𝑖𝑛𝑖𝜖
∗𝛿𝜖] 𝛿Ω −

[(
` + `𝑡

𝜎𝑘

)
𝜖∗

𝜕𝛿𝜖

𝜕𝑥 𝑗

𝑛 𝑗

]
𝛿Ω

+

𝜕

(
` + `𝑡

𝜎𝑘

)
𝜖∗

𝜕𝑥 𝑗

𝑛 𝑗𝛿𝜖

 𝛿Ω . (2.28)384

Finally by deriving with respect to `𝑡 , we obtain385 [
𝛿`𝑡

(
`∗𝑡 −

(
𝜕𝑈 𝑗

𝜕𝑥𝑖
𝑛 𝑗 +

𝜕𝑈𝑖

𝜕𝑥 𝑗

𝑛 𝑗

)
𝑈∗
𝑖 −

𝜌

𝜎𝑘

𝑘∗
𝜕𝑘

𝜕𝑥 𝑗

𝑛 𝑗 −
𝜌

𝜎𝜖

𝜖∗
𝜕𝜖

𝜕𝑥 𝑗

𝑛 𝑗

)]
𝛿Ω

. (2.29)386

Then at each boarder, variations of the direct boundary conditions are injected in the387
system (2.25)–(2.29), to obtain the corresponding adjoint boundary conditions.388

2.4.1. Inlet389

At the inlet, the direct boundary conditions lead to390

𝛿𝑈𝑖𝑡𝑖 = 0 ; 𝛿𝑈𝑖𝑛𝑖 = 0 ; 𝛿𝑘 = 0 ; 𝛿𝜖 = 0. (2.30)391

Substituting this in (2.25)–(2.28), the system reduces to392

𝑈∗
𝑖 𝑡𝑖 = 0 ; 𝑈∗

𝑖 𝑛𝑖 = 0 ; 𝑘∗ = 0 ; 𝜖∗ = 0. (2.31)393

This quite standard result at the continuous level is not straightforward to implement in the394
finite volume formulation. No condition is imposed on 𝑃∗ and the inlet boundary condition395
for the adjoint pressure is left arbitrary. But, in accordance with (Zymaris et al. 2010;396
Othmer 2008) and identically as the numerical treatment of the direct inlet pressure 𝑃, zero397
Neumann condition on 𝑃∗ is imposed to ensure numerical stability. To obtain the other398
boundary conditions, the same approach is employed.399

2.4.2. Outlet400

At the outlet, the pressure value is prescribed while the other flow variables have their normal401
gradient imposed, leading to402

𝑃∗𝑛𝑖 = (𝑈∗
𝑖 𝑛𝑖) (𝑈𝑖𝑛𝑖) + (𝑈∗

𝑗𝑈 𝑗)𝑛𝑖 + `𝑒 𝑓 𝑓
𝜕 (𝑈∗

𝑗
𝑛 𝑗)

𝜕𝑥𝑖
𝑛𝑖 +

5
3
𝜌𝑘𝑘∗𝑛𝑖 + 𝜌𝜖𝜖∗𝑛𝑖 +

(
𝜕`𝑡

𝜕𝑈 𝑗

𝑛 𝑗

)
𝑛𝑖`

∗
𝑡 .

(2.32)403
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This provides a constraint on the boundary condition to determine the adjoint pressure at the404
outlet. In equation (2.32), the adjoint pressure at the next iteration is determined explicitly by405
evaluating𝑈∗ at the previous iteration. Projecting then the fluxes on the outlet tangent plane,406
we obtain:407

`𝑒 𝑓 𝑓
𝜕 (𝑈∗

𝑗
𝑡 𝑗)

𝜕𝑥𝑖
𝑛𝑖 + (𝑈∗

𝑖 𝑡𝑖) (𝑈𝑖𝑛𝑖) = −
(
𝜕`𝑡

𝜕𝑈𝑖

𝑛𝑖

)
𝑡𝑖`

∗
𝑡 −

(
𝜕𝑃𝑘

𝜕𝑈 𝑗

𝑛 𝑗

)
𝑡𝑖𝑘

∗ −
(
𝜕𝑃𝜖

𝜕𝑈 𝑗

𝑛 𝑗

)
𝑡𝑖𝜖

∗. (2.33)408

This equation provides a boundary condition for the tangential component of the adjoint409
velocity.410
It is worth noting that, instead, an alternative choice could be made by imposing 𝑃∗ = 0411

and determining the adjoint velocity by solving equations (2.32) and (2.33). Previous works,412
for a different turbulence model (Zymaris et al. 2010) or for frozen turbulence assumption413
(Othmer 2008), showed that both implementations yields to identical sensitivities.414
Derivation w.r.t. 𝑘 , 𝜖 and `𝑡 leads, respectively, to415

𝜌𝑘∗𝑈𝑖𝑛𝑖 + 𝜌𝐷𝑘

𝜕𝑘∗

𝜕𝑥𝑖
𝑛𝑖 =

𝜕`𝑡

𝜕𝑘
`∗𝑡 , (2.34)416

𝜌𝜖∗𝑈𝑖𝑛𝑖 + 𝜌𝐷 𝜖

𝜕𝜖∗

𝜕𝑥𝑖
𝑛𝑖 =

𝜕`𝑡

𝜕𝜖
`∗𝑡 , (2.35)417 (

𝜕𝑈 𝑗

𝜕𝑥𝑖
𝑛 𝑗 +

𝜕𝑈𝑖

𝜕𝑥 𝑗

𝑛 𝑗

)
𝑈∗
𝑖 = `∗𝑡 . (2.36)418

419

Therefore, for known outlet direct and adjoint velocities, the adjoint eddy viscosity is updated420
through equation (2.36). Then, conditions (2.34) and (2.35) can be imposed to solve 𝑘∗ and421
𝜖∗ respectively.422

2.4.3. Symmetry423

As for the side and top free-stream boundaries under symmetry condition, we assume a zero424
flux of all flow variables,425

𝜕𝑃

𝜕𝑥𝑖
𝑛𝑖 =

𝜕 (𝑈 𝑗 𝑡 𝑗)
𝜕𝑥𝑖

𝑛𝑖 =
𝜕𝑘

𝜕𝑥𝑖
𝑛𝑖 =

𝜕𝜖

𝜕𝑥𝑖
𝑛𝑖 = 0, (2.37)426

and zero normal velocity,427

𝑈𝑖𝑛𝑖 = 0. (2.38)428

We thus obtain the following boundary conditions for the adjoint variables:429

𝑈∗
𝑖 𝑛𝑖 = 0,

𝜕 (𝑈∗
𝑖
𝑡𝑖)

𝜕𝑥 𝑗

𝑛 𝑗 = 0,
𝜕𝑘∗

𝜕𝑥𝑖
𝑛𝑖 = 0,

𝜕𝜖∗

𝜕𝑥𝑖
𝑛𝑖 = 0, `∗𝑡 = 0. (2.39)430

This shows that symmetric boundary conditions are conserved with the adjoint model.431

2.4.4. Walls432

The wall boundaries are split into two parts, namely 𝜕Ωtower for the part where data are433
provided, i.e. the tower, and 𝜕Ωgr for the walls at the ground modelling the surrounding434
environment, for which there is no data. Based on equation (2.25) we have435

𝑈∗
𝑖 𝑛𝑖 =

𝜕J
𝜕𝑃

at 𝜕Ωtower, (2.40)436

𝑈∗
𝑖 𝑛𝑖 = 0 at 𝜕Ωgr, (2.41)437

𝑈∗
𝑖 𝑡𝑖 = 0 at 𝜕Ωtower ∪ 𝜕Ωgr. (2.42)438439
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Therefore exactly in the same way as for the inlet, the no-slip condition on the velocity,440
associated with a zero Neumann condition on the mean pressure, implies a homogeneous441
Dirichlet boundary condition for the adjoint velocity and a zero Neumann condition for442
the adjoint pressure at the ground walls 𝜕Ωgr. Let us note that due to the wall-pressure443
measurements, the Dirichlet condition on the adjoint variable 𝑈∗ is inhomogeneous on the444
normal component along 𝜕Ωtower at the sensor positions.445
Considering the adjoint turbulence variables (𝑘∗, 𝜖∗, `∗𝑡 ), it is important to consider the446

expression of the wall-law in order to derive their boundary conditions. As we impose a447
homogeneous Neumann boundary condition for 𝑘 in equation (2.15), it can be observed that448
this leads to the same set of conditions as in the outlet (equations (2.34), (2.35) and (2.36)).449
Moreover, with the no slip condition and the set of conditions for the adjoint velocity ((2.40),450
(2.41), (2.42)), the wall boundary conditions for the adjoint kinetic energy, dissipation rate451
and eddy viscosity read as452

𝑘∗ |𝑐 =
𝜕`𝑡

𝜕𝑘

`∗𝑡
𝜌𝑈𝑖𝑛𝑖

at 𝜕Ωtower ∪ 𝜕Ωgr (2.43)453

𝜕𝜖∗

𝜕𝑥𝑖
𝑛𝑖 = 0 at 𝜕Ωtower ∪ 𝜕Ωgr, (2.44)454

`∗𝑡 = 2
(
𝜕 (𝑈𝑖𝑛𝑖)
𝜕𝑥 𝑗

𝑛 𝑗

)
𝑈∗
𝑖 𝑛𝑖 at 𝜕Ωtower, (2.45)455

`∗𝑡 = 0 at 𝜕Ωgr. (2.46)456457

Here, 𝜕`𝑡
𝜕𝑘
is obtained by differentiating the algebraic equation (2.18) using chain rule458

formulae.459
Furthermore in the direct model, inertial energy balance (2.14) leads to a modification of460

the source terms in (2.8) within the first cell in Ω𝑐. A similar procedure has to be performed461
in the adjoint equation:462

𝐷𝑘∗ = 𝜌
𝜕𝑃𝜖

𝜕𝑘
𝜖∗ − 𝜌

𝜕𝑠𝜖

𝜕𝑘
𝜖∗ + 𝜌

(
𝜕𝑃𝑘

𝜕𝑘
|𝑐 −

𝜕𝜖

𝜕𝑘
|𝑐
)
𝑘∗ |𝑐 and 𝐷 𝜖 ∗ = 0 in Ω𝑐 .

(2.47)463
At the boundary, the wall law allows to express 𝑃𝑘 , 𝜖 , 𝑃𝜖 and 𝑠𝜖 as an explicit function of 𝑘464
and then to evaluate explicitly the derivatives with respect to 𝑘 (not shown here for sake of465
compactness).466
Hence, with this treatment, wall conditions for the adjoint system are now fully consistent467

with the initial RANS model and leads us thus to a consistent minimisation procedure.468
Now that we have at our disposal a dual description of the dynamics composed of a469

RANS direct model and the adjoint of its tangent linear representation, we explore three470
methodological settings for an in-depth diagnosis of the turbulence closure. The first tool at471
hand consists simply to inspect the adjoint state maps. The second one consists in optimising472
global constants parameters of the turbulence model for reducing the observation error; and473
to relax/enforce constraints on these parameters to test physical hypotheses. The last one,474
goes one step further and considers the adjunction of distributed unknowns which enables475
to identify a missing term in the equation where the turbulence closure is performed, i.e., in476
the transport equation for the energy dissipation rate in the model considered here. In order477
to conduct an efficient structural inspection, the distributed parameter is sought in a Sobolev478
space and further estimated through a data-assimilation procedure. These three settings are479
described in section 3 and applied then to a high-rise building case study described section480
4. The numerical results on this case study for the three different sensitivity analyses are481
presented in section 5.482
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3. Adjoint-based diagnostic tool for turbulence models483

In the previous section we detailed the construction of a continuous adjoint model (together484
with its consistent boundary conditions) of the tangent linear operator of a RANS model for485
very high Reynolds flow, associated with large integral/body length scales. In this section, we486
present some methodological tools derived from this adjoint operator. Beyond providing a487
data-driven flow reconstruction, it enables us an in-depth analysis of the turbulence closure.488

3.1. Adjoint state as a basis for sensitivity analysis489

While in general, adjoint variables are usually considered as a purely mathematical object,
they do have physicalmeaning as shown in several works (Hall &Cacuci 1983; Giles&Pierce
2000; Gunzburger 2003). Although we know that RANS models (at least with Boussinesq
eddy viscosity hypothesis for its closure) does not allow an accurate representation of complex
flows, they nevertheless provide some usefull global insights on the flow state. With this in
mind, the reconstructed adjoint state enables to highlight a misrepresentation of the turbulent
flow by the RANS model, hence, pointing where it is possible to optimise the RANS
model parameters to optimally reduce the difference between the CFD state and a given
experimental dataset. Moreover, from an optimisation perspective, one may interpret them as
a steepest descent direction of an objective cost function, for a particular control parameter.
For instance, the adjoint velocity can be seen as the influence of an arbitrary forcing f𝑢 acting
on the mean momentum equation. This can be shown when deriving an optimality condition
by a perturbation of this force,

Mu(X, 𝛼) = f𝑢 → 𝜕J
𝜕f𝑢

= U∗.

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 → 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛.

Then, as we perform a first update of this forcing by a gradient-descent minimisation490
algorithm, one obtain491

f𝑖𝑡1𝑢 = (f𝑖𝑡0𝑢 = 0) − _𝑈∗,492

while _ is a positive non-dimensional marching step factor. Through dimensional analysis,
one may scale U∗, which has the dimension of an acceleration, as 𝑈∗ ∼ 𝑈2ref

𝐻ref
. The adjoint

velocity features are thus immediately representing a missing term, that can be interpreted
as a correction of the Reynolds stress. Examining the adjoint turbulence variables of a 𝑘 − 𝜖

model, namely 𝑘∗, 𝜖∗ and `∗𝑡 , similar interpretations can be drawn as we consider arbitrary
forcing such as

𝑀𝑘 (X, 𝛼) = 𝑓𝑘 → 𝜕J
𝜕 𝑓𝑘

= 𝑘∗,

𝑀𝜖 (X, 𝛼) = 𝑓𝜖 → 𝜕J
𝜕 𝑓𝜖

= 𝜖∗,

𝑀`𝑡 (X, 𝛼) = 𝑓`𝑡 → 𝜕J
𝜕 𝑓`𝑡

= `∗𝑡 .

The adjoint variables shed some light on the flow regions that are sensitive to an eventual493
correction of the turbulence model. As this will be shown in the case study of section 5,494
this interpretation is very helpfull to analyze the incorporation of additional variables to495
define efficient data-driven turbulence closure. These forcings can indeed be associated to496
any of modeled terms meant to adress a particular turbulence modelling error (e.g. energy497
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production, backscaterring, redistribution or dissipation). The sensitivity of the associated498
parametric shapes and hyper-parameter can be efficiently obtained and inspected through the499
adjoint operator.500

3.2. Adjoint diagnosis on global closure coefficients501

Given the adjoint dynamics, the sensitivity of any parameter can be obtained from the502
optimality condition (6.4). Free constants of the RANS model can be finely tuned knowing503
their sensitivities. As we will show for a particular turbulence model (realizable 𝑘 − 𝜖), the504
quality of the associated numerical reconstructions appears to be quite restricted, for a range505
of physically acceptable values of these parameters. The reason of the inefficiency of the506
calibration procedure is interpreted below in terms of a too strong model “rigidity”. This507
hindering facts will be later illustrated when we will perform the sensitivity analysis and data508
assimilation on the high-rise building case.509

3.2.1. A sensitivity field510

Considering the vector 𝛼 = (𝐴0, 𝐶2, 𝜎𝑘 , 𝜎𝜖 ) of closure parameters, the optimality con-511
dition (6.4) is obtained by differentiating the Lagrangian (2.19) in the directions 𝛿𝛼 =512
(𝛿𝐴0, 𝛿𝐶2, 𝛿𝜎𝑘 , 𝛿𝜎𝜖 ):513

𝜕L
𝜕𝐴0

𝛿𝐴0 =

〈
𝜕𝑀`𝑡

𝜕𝐴0
𝛿𝐴0, `

∗
𝑡

〉
Ω

= ⟨−`𝑡𝐶`𝛿𝐴0, `
∗
𝑡 ⟩Ω =

〈
−`𝑡𝐶`, `

∗
𝑡 ,

〉
Ω
𝛿𝐴0

𝜕L
𝜕𝐶2

𝛿𝐶2 =

〈
𝜖2

𝑘 +√`𝜖
, 𝜖∗

〉
Ω

𝛿𝐶2

𝜕L
𝜕𝜎𝑘

𝛿𝜎𝑘 =

〈
− 𝜕

𝜕𝑥 𝑗

[
`𝑡

𝜎2
𝑘

𝜕𝑘

𝜕𝑥𝑖

]
, 𝑘∗

〉
Ω

𝛿𝜎𝑘

𝜕L
𝜕𝜎𝜖

𝛿𝜎𝜖 =

〈
− 𝜕

𝜕𝑥 𝑗

[
`𝑡

𝜎2𝜖

𝜕𝜖

𝜕𝑥𝑖

]
, 𝜖∗

〉
Ω

𝛿𝜎𝜖 .

(3.1)514

So far, this does not include any explicit dependency of the cost on the set of parameters, such515
as a penalisation term. It can be observed that the optimality conditions reduce drastically516
the high dimensional dependency of the model to the lower dimensional parameter space.517
This reduction, performed via the inner product ⟨., .⟩Ω, does reflect the global compromising518
character of the closure coefficients. This results in a rather rigid situation when seeking data-519
model fitting. However, this rigidity can be understood as a strong confidence in the model520
structure. This strongly constrains the solutions but enables, on the other hand, to assimilate521
very sparse measurements. The examination of the spatially varying adjoint variables to522
diagnose the parameter sensitivity provides useful piece of information even though we deal523
with a rigid parametric model for the reconstruction. This type of analysis will be exploited524
in our case study.525

3.2.2. Penalty range526

To ensure realistic numerical solutions, relevant physical range for each of the closure527
coefficients is defined. These constraints are introduced via penalty terms on the control528
parameters through an error covariancematrix, in cost function (2.2).Values of the parameters529
outside of a range defined by the standard deviation are hence strongly penalised. These530
standard deviations are in practice fixed from experiments on prototypical configurations531
of boundary layer or decaying turbulence. This may become questionable in regions where532
the fluid and building interact and near flow separations associated with strong shears. As533
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a matter of fact, the assumptions underlying the concept of eddy viscosity starts to be less534
reasonable in these regions (Pope 2001). Thus, as a compromise, the range limits are fixed535
from experiments as intervals Δ𝛼𝑖 centered around the background a priori value. The536
covariance matrix is finally expressed as follows537

𝐵−1
𝑖𝑖 = Z𝑖

(
| 𝜕J0
𝜕𝛼

|
Δ𝛼𝑖

)
.538

As mentioned earlier, this covariance has two roles: first, to impose the trusted (or recom-539
mended) ranges Δ𝛼𝑖 and secondly, to ensure a dimensional homogeneity of the cost function540

through the norm of the sensitivity derivative given at the first minimisation iteration | 𝜕J0
𝜕𝛼

|.541
The importance of control variables with high values of sensitivity derivatives is strengthen542
in the objective function in comparison to less sensitive parameters. The parameters Z𝑖 are543
dimensionless free parameters allowing to give more or less global a priori confidence on544
each parameter. In practice these parameters can be fixed from a priori considerations.545

3.3. Adjoint diagnosis on spatially distributed closure: correction in the dissipation546
transport equation547

In contrast to the previous section, we consider now the adjoint system as a basis for548
the inspection of the model misrepresentations through a distributed parameter. Instead of549
correcting coefficients of the model, we consider here the adjunction of a force to one of550
the model equations. We consider a corrective forcing term at the level of the dissipation551
transport equation, where the closure takes place. Then, with the aim to further investigate552
such a closure through a data-assimilation procedure, a specific optimisation in the 𝐻1(Ω)553
Sobolev space is proposed in order to provide a regularisation procedure that guaranties an554
efficient descent direction as well as an implicit spatial smoothing of the forcing. With this555
regularisation, a significant improvement of the results will be shown in our study case.556

3.3.1. A corrective model557

As it was noted in the previous section, due to the model rigidity arising from the drastically558
small parameter space, the flow is not free to visit a sufficiently large domain of the state559
space that is too far from the basic RANS model. To overcome such restrictions, one560
may straightforwardly consider a set of closure parameters with a higher dimension. Still561
maintaining the validity of the Boussinesq approximation, a strategy consists in enriching562
the turbulence model structure. We choose to add a forcing term in the transport equation563
of 𝜖 (equation (2.9)) in order to correct what we may call structural errors, i.e. error arising564
from the choice of the turbulence model equation. We could have considered as well a565
control parameter defined directly as the forcing of equation (2.9), however, we preferred to566
introduce some dependency of this forcing to the state variable. We choose a forcing term of567

the form −𝜌𝑈ref
𝐻ref

𝜖 𝑓𝜖 , where 𝑓𝜖 is the dimensionless control parameter. The sign convention568

is chosen so as the added forcing corresponds to a sink of dissipation. The objective of the569
pre-multiplication by 𝜖 is to prevent unphysical dissipation corrections at locations where570
there is no turbulence and to focus specifically on relevant regions such as the shear layers571

and the wake. The constant term 𝜌𝑈ref
𝐻ref

ensures the proper physical dimension. Numerical572

tests presented in section 5.3.1, demonstrate that this term behaves indeed much better than a573
direct forcing term. With this additional forcing, the dissipation transport equation becomes574

𝜕𝜌𝑈 𝑗𝜖

𝜕𝑥 𝑗

− 𝜕

𝜕𝑥 𝑗

[(
` + `𝑡

𝜎𝜖

)
𝜕𝜖

𝜕𝑥𝑖

]
− 𝐶1(𝑆, 𝑘, 𝜖)𝑆𝜖 + 𝐶2

𝜖2

𝑘 +√`𝜖
= − 𝜌𝑈ref

𝐻ref
𝜖 𝑓𝜖 . (3.2)575
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This model remains close to the RANS structure as to avoid overfitting effects in the context576
of severe differences between the state space and measurements.577

3.3.2. Sensitivity field578

The fact that the added distributed parameter depends on the state variable 𝜖 , requires some579
modifications of the adjoint equations. In compact form, the adjoint equation on 𝜖∗ reads580
now as581

𝑀𝜖 ∗ = − 𝜌𝑈ref

𝐻ref
𝑓𝜖 𝜖

∗, (3.3)582

where 𝑀𝜖 ∗ contains all the adjoint terms derived from equation (2.23). Regarding the adjoint
boundary conditions, since no face flux are involved through the additive term, no changes
have to be made. The optimality condition associated with the control parameter 𝑓𝜖 is
obtained by considering the directional derivative〈

𝜕L
𝜕 𝑓𝜖

, 𝛿 𝑓𝜖

〉
Ω

=

〈
𝜌𝑈ref

𝐻ref
𝜖𝛿 𝑓𝜖 , 𝜖

∗
〉
Ω

,

leading straightforwardly to express the Lagrangian sensitivity to 𝑓𝜖 as583

𝜕L
𝜕 𝑓𝜖

=
𝜌𝑈ref

𝐻ref
𝜖𝜖∗. (3.4)584

585

3.3.3. Descent direction586

With very sparse partial observations and the consideration of spatially distributed control
parameters, the risks of obtaining local minima or unphysical flow reconstructions is much
stronger. The control parameter can be any function of 𝐿2(Ω), which allows highly irregular
functions. Regularisation is a classical way to reduce the number of local minima eventually
associated to unphysical solutions. To that purpose, penalty of the spatial gradients of
the control parameter is often considered (Franceschini et al. 2020). Such regularisations
introduces a smoothing penalty parameter on which the solution strongly depends and whose
value is in general non-trivial to choose. In the following, we consider as an alternative a
Sobolev gradient regularisation (Protas et al. 2004; Tissot et al. 2020). It consists to define
the control parameter in the Sobolev space 𝐻1(Ω) which is more regular than 𝐿2(Ω). With
this approach the functional is still defined in its basic form as

J (𝑃) = 1
2

𝜌𝑈2ref𝛿𝐶𝑤
𝑝

2
𝑅−1 .

Provided the optimality condition (3.4) and for an arbitrary functions 𝜓 and 𝜙 in 𝐻1(Ω), the587
Sobolev gradient is defined such that588 〈

𝜕L
𝜕 𝑓𝜖

, 𝜓

〉
Ω

=

〈
𝜕L
𝜕 𝑓𝜖

𝐻1

, 𝜓

〉
𝐻1

, (3.5)589

590

with the inner product definition

⟨𝜙, 𝜓⟩𝐻1 =
∫
Ω

𝜙𝜓 + 𝑙2𝑠𝑜𝑏 (∇𝜙 · ∇𝜓)𝑑Ω,

in which 𝑙𝑠𝑜𝑏 is a free parameter homogeneous to a length scale. Through integration by part591
of the second term of the inner product (involving the function at gradients), the equality592
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(3.5) leads to the new optimality condition593

𝜕L
𝜕 𝑓𝜖

𝐻1

=

(
1

1 + 𝑙2
𝑠𝑜𝑏

(I − 𝑙2𝑠𝑜𝑏∇
2)

)−1
𝜕L
𝜕 𝑓𝜖

, (3.6)594

595

in which ∇2 stands for the Laplacian operator. Equation (3.6) is a filtering of the sensitivity596
in 𝐿2(Ω) to the Sobolev space. With this approach, the sensitivity field is consequently597
regularised through the solution of a modified Helmoltz equation. Since matrix inversion598
is not an option in such large system, the Poisson equation (3.6) is here solved through an599
iterative technique expressed within the same finite volume scheme as for the direct RANS600
equations. The additional cost is of the order of magnitude of one additional iteration of601
the RANS solver, but as we shall see it, this clearly leads overall to a gain due to a faster602
convergence of the outer loop optimisation problem. It is worth to mention that this type of603
formulation offers two main advantages compared to classical regularisation terms. In the604
one hand, as opposed to the global penalty coefficient introduced in those latter, the free605
parameter involved in the Sobolev gradient approach is a physical quantity. As a matter of606
fact, this parameter can be seen as a filtering length scale below which the sensitivity field607
is smoothed. It provides us a way to introduce a characteristic length scale relevant with608
the flow (e.g., the building width for instance). In the other hand, the Sobolev gradient does609
ensure a descent direction. Indeed, applying a Taylor expansion of the cost function around610

an initial guess 𝑓𝜖 in the direction 𝛿 𝑓𝑒𝑝𝑠 = − 𝜕L
𝜕 𝑓𝜖

𝐻1 can be expressed as follows611

J ( 𝑓𝜖 + ℎ𝛿 𝑓𝜖 ) = J ( 𝑓𝜖 ) + ℎ

〈
𝜕L
𝜕 𝑓𝜖

, 𝛿 𝑓𝜖

〉
Ω

+ O(ℎ2).612

Substituting the second term in the RHS and by using the equality (3.5) yields to613

J ( 𝑓𝜖 + ℎ𝛿 𝑓𝜖 ) = J ( 𝑓𝜖 ) − ℎ

 𝜕L𝜕 𝑓𝜖 𝐻1
2
𝐻1

+ O(ℎ2),614

in which we define the norm ∥𝑎∥2
𝐻1

= ⟨𝑎, 𝑎⟩𝐻1 . Thus, for a small enough perturbation ℎ𝛿 𝑓𝜖 ,615
we have J ( 𝑓𝜖 + ℎ𝛿 𝑓𝜖 ) < J ( 𝑓𝜖 ). Now, injecting this optimality condition into a steepest616
descent algorithm, an update of the forcing at an iteration 𝑛 reads:617

𝑓 𝑛+1𝜖 = 𝑓 𝑛𝜖 − _
𝜕L
𝜕 𝑓𝜖

𝐻1
�����
𝑛

, (3.7)618

619

in which the step size is constrained by _ = 𝛽/max( 𝜕L
𝜕 𝑓𝜖

𝐻1) |𝑛=0 where 𝛽 = 2 · 10−2 is chosen620

based on the sensitivity validation. In the next section, we present some numerical results621
obtained on a realistic case study in terms of the turbulence model parameters estimation and622
in terms of their sensitivity analysis, with the objective of analysing the closure hypotheses623
of a given RANS model using the data assimilation framework.624

4. Case study625

In this section, we first describe the wind tunnel experiments. Then, we present the numerical626
setup.627
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4.1. Description of the wind tunnel experiment628

Experimental data were provided by the CSTB (Nantes, France) from the work of Sheng629
et al. (2018). Measurements were performed in the atmospheric boundary layer wind tunnel630
(NSA) with a test section of 20m long, 4m wide and 2m high. Upstream of the isolated631
building, roughness elements and turbulence generator were set to reproduce the wind profile632
perceived by the full scale building. The floor of the wind tunnel is equipped with a turntable633
that enables the flow incidence to vary from 0 to 360𝑜. In the present paper, only one wind634
direction is considered. In these experiments, the building was modeled with a wall-mounted635
prism of square cross-section with the dimensions: 10 cm×10 cm×49 cmwhich corresponds636
to a tower of height𝐻 = 147m and a width 𝐷 = 30m at full scale. To performmeasurements,637
two tower models were built. The first model was made of Plexiglas which allows for optical638
access and, thus, to use particle image velocimetry (PIV). The second model was equipped639
with 265 pressure taps tomeasure the unsteady pressure distribution on themodeled building.640

4.2. Numerical setup641

The open source library OpenFOAM (5th version of the OpenFOAM foundation) (Weller642
et al. 1998) was used to implement the CFD and adjoint governing equations. The library643
utilizes a second order finite volume discretisation approach (Moukalled et al. 2016) and a644
fully implicit first order method for time integration. A prediction-correction procedure is645
used for the pressure-velocity coupling based on the Rhie-Chow interpolation (Rhie & Chow646
1983). Correction for mesh non orthogonality was applied for the Poisson solver. A full scale647
building is modeled and a neutral atmospheric boundary model was used (Richards & Hoxey648
1993) to enforce the inlet wind profiles. Profiles for𝑈, 𝑘 and 𝜖 are defined as649

𝑈𝑖𝑛 =

𝑢𝐴𝐵𝐿
𝜏 ln

(
𝑧+𝑧0
𝑧0

)
^

, 𝑘𝑖𝑛 =

(
𝑢𝐴𝐵𝐿
𝜏

)√︁
𝐶`

2

𝑎𝑛𝑑 𝜖𝑖𝑛 =
(𝑢𝐴𝐵𝐿

𝜏 )3
^(𝑧 + 𝑧0)

, (4.1)650

where 𝑢𝐴𝐵𝐿
𝜏 is the friction velocity associated with the constant shear stress along the ABL651

width652

𝑢𝐴𝐵𝐿
𝜏 =

^𝑈𝑟𝑒 𝑓

ln( 𝐻𝑟𝑒 𝑓 +𝑧0
𝑧0

)
653

in which 𝑈𝑟𝑒 𝑓 and 𝐻𝑟𝑒 𝑓 = 2
3𝐻 are, respectively, reference velocity and height chosen to654

match with the experimental profiles (and thus the eurocode (EN 2005)) (see figure 2). These655
profiles are consistent with the wall treatment as we prescribe eddy viscosity’s ground-value656
by (2.18), such that 𝑢𝜏 = 𝑢𝐴𝐵𝐿

𝜏 . As for the roughness height 𝑧0, it was set to 0.02, as an657
intermediate between the roughness class I and class II (EN 2005).658
The size of the computational domain was fixed to ensure that the blockage effects are659

inferior to 3% (Tominaga et al. 2008; EN 2005). Grid refinement was chosen to ensure a660
good representation of the wind gradient at the inlet. Unstructured grid was then adopted661
with the minimum distance of the centroid of the cell adjacent to the building walls set to662
0.001𝐻. This grid refinement reached approximately 3.5 million cells.663
The adjoint differential equations were discretised using the same CFD library as for the664

direct equations. As for the direct simulation, the adjoint pressure and velocitywere iteratively665
solved using a prediction-correction procedure. The discretisation schemes used for the flow666
equations were maintained. Moreover, we note that the derivation of the non-linear terms667
leads to an explicit dependency of the adjoint solution on the direct flow solutions that668
prevents a parallel computation of the two solvers.669
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Figure 2: Profile of the neutral atmospheric boundary layer: (a), mean wind velocity; (b),
turbulent intensity 𝐼 as defined in (EN 2005).

5. Results670

In this section, we validate the proposed data assimilation scheme for global and distributed671
turbulence model parameters. An adjoint state analysis is conducted to obtain the sensitivities672
to both model control closure parameters, global and distributed coefficients. We assess the673
limits of global closure optimization performances and exhibit the ability of the proposed674
distributed closure method not only to reconstruct wall-pressure-driven wake flow accurately675
but also to enable turbulence closure analysis.676

5.1. Adjoint state analysis677

The normalised adjoint fields (by theirmaximum in-plane values), shown in figures 3, 4 and 5,678
highlight the areas of interest in terms of turbulence modelling on two horizontal plans (at679
normalised height 𝑧/𝐻𝑟𝑒 𝑓 = {0.19, 1}) and on the symmetry plane (at 𝑦/𝐷 = 0). These areas680
correspond to regions, whose state is observable by the sensors, and where the turbulence681
closure model fails to reproduce the physical behaviour of the flow; this corresponds to the682
recirculation regions behind and at the top of the building (as seen in the centered streamwise683
vertical plans on figure 5), the area of the vortex shedding due to flow separation (seen in684
the horizontal plans on figure 3 and 4) and the flow impingement region of the building.685
Based on these adjoint fields, the cost functional’s sensitivity to any control parameter (be686
distributed or not) can be obtained through its associated optimality condition.687

5.2. Results for the global coefficients688

This section exhibits the adjoint approach’s capability to provide a complete information689
on the cost sensitivity to the model’s global coefficients. First, we analyse the sensitivity690
fields to highlight the spatial locations where a modification of these global coefficients691
could efficiently correct the model errors. Then, we discuss the results of a data assimilation692
procedure. The data assimilation is performed to investigate some closure hypotheses validity693
in the RANS modelling.694
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Figure 3: Adjoint turbulence variables at horizontal plane with normalised height
𝑧/𝐻𝑟𝑒 𝑓 = 0.19:(a), 𝜖∗; (b), 𝑘∗; (c), `∗𝑡 . Variables are normalised by their in-plane peak

values.

Figure 4: Adjoint turbulence variables at horizontal plane with normalised height
𝑧/𝐻𝑟𝑒 𝑓 = 1:(a), 𝜖∗; (b), 𝑘∗; (c), `∗𝑡 . Variables are normalised by their in-plane peak

values.

Figure 5: Adjoint turbulence variables at symmetry plane :(a), 𝜖∗; (b), 𝑘∗; (c), `∗𝑡 .
Variables are normalised by their in-plane peak values.

5.2.1. Sensitivity analysis695

In order to explore the effect of the turbulence model’s global coefficients, their associated696
sensitivity maps (plotted in figure 6, 7, and 8, and defined by the spatially distributed operand697
inside the integral in the optimality condition (3.1)) are discussed. Sensitivities have been698
validated with finite differences, leading to a good agreement.699
We can see that there is a high interest in optimising these coefficients at the shear700

layers resulting from flow separations at the leading lateral edges and on top of the building.701
However, there is very little sensitivity in the bulk of the recirculation wake region.Moreover,702

with regards to the regularity of the sensitivity fields, 𝜕J
𝜕𝜎𝑘

and 𝜕J
𝜕𝜎𝜖

(Figures 6 and 7 (a)703
and (b)) have the largest local variations compared to the others. In fact, this is explained by704
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Figure 6: Closure coefficient sensitivities at horizontal plane with normalised height
𝑧/𝐻𝑟𝑒 𝑓 = 0.19: (a), sensitivity to 𝐴0, (b), 𝜎𝑘 , 𝜎𝜖 (c), and, (d), 𝐶2 (d). Sensitivities are

normalised by their in-plane peak values.

Figure 7: Closure coefficient sensitivities at horizontal plane with normalised height
𝑧/𝐻𝑟𝑒 𝑓 = 1: (a), sensitivity to 𝐴0, (b), 𝜎𝑘 , 𝜎𝜖 (c), and, (d), 𝐶2 (d). Sensitivities are

normalised by their in-plane peak values.
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Figure 8: Closure coefficient sensitivities on the symmetry plane with normalised: (a),
sensitivity to 𝐴0, (b), 𝜎𝑘 , 𝜎𝜖 (c), and, (d), 𝐶2 (d). Sensitivities are normalised by their

in-plane peak values.

the high (second) order derivative associated with the diffusion of 𝑘 and 𝜖 , in the optimality705
conditions. Now, regarding the local signs and overall values of each sensitivity field, we706
observe systematic change of sign over the domain. The 𝐿2 inner product in (3.1) leads to707
an averaged compromise solution over the whole domain for the global coefficient values.708
This compromise is likely to provide a far too weak amplitude for these coefficients in key709
regions of the flow.710

5.2.2. Closure hypothesis analysis through data assimilation711

In this section, the optimisation problem is solved iteratively by following Algorithm 1, and712
we discuss the data assimilation procedure’s ability to estimate the flow state. Guided by the713
work of Shih et al. (1994), we intend here to devise some penalty ranges for the coefficients.714
Concerning the coefficients which are involved in the energy dissipation rate budget, referring715
to the work (Shih et al. 1994), the 𝐶2 coefficient is actually expressed as 𝐶2 = 𝛽/[, in which716
𝛽 = [ + 1 is the dissipation decay rate (such as 𝜖/𝜖𝑡0 = (𝑡/𝑡0)−𝛽 where 𝑡0 is an initial time)717
and [ is the energy decay exponent (such as 𝑘/𝑘𝑡0 = (𝑡/𝑡0)−[) that varies from 1.08 to 1.3718
in decaying homogeneous turbulence experiments (Shih et al. 1994). Thus, a range for this719
coefficient can be set as 𝐶2 ∈ [1.76, 1.93], where the background value is 1.9.720
For 𝜎𝜖 , the inertial turbulence assumption near the wall allows to establish721

𝜎𝜖 =
^2

𝐶2
√︁
𝐶` − 𝐶1

(5.1)722

were the von Kármán constant ^ = 0, 41, the eddy viscosity coefficient 𝐶` = 0.09 and723
𝐶1 = 0.43. Assuming a quasi-linear dependency between the two constants (see figure 10),724
knowing the range on 𝐶2 we obtain 𝜎𝜖 ∈ [1.14, 1.71]. To possibly relax the underlying725
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Scenario 𝜎𝑘 𝜎𝜖 𝐶2 𝐴0
J−J0
J0

Default value 1.0 1.2 1.9 4.0
A 1.10 1.07 1.95 4.03 10.6%
B 1.0 0.92 1.98 4.05 13.2%
C 1.04 1.05 1.97 3.99 10.7%

Table 1: Summary of the optimisation results, closure coefficients and the relative
decrease of cost function.

assumption of decaying turbulence for this range, two cases study will be considered for this726
constant. In the first scenario, it will be assumed that relation (5.1) holds beyond the inertial727
layer, as established by Shih et al. (1994). On the second scenario, this constraint is relaxed728
and coefficient𝜎𝜖 is assumed to be an independent control parameter. In that case, the closure729
is thus performed by the data. The second case is expected to bring more degree of freedom730
in the optimisation process, due to the independent adaptation of the two coefficients.731
In the transport equation of 𝑘 , the coefficient𝜎𝑘 , which adjusts the level of turbulent energy732

mixing with respect to the momentum eddy diffusivity, is commonly fixed to unity (as in733
any 𝑘 − 𝜖 turbulent model). This generally assumes a quasi-equality between the scalar and734
the momentum mixing. Due to the lack of comparative studies in the literature between the735
𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 model results and experiments, estimating a physical range for this coefficient is736
not possible. Therefore, we considered two optimisation procedures where in the first one737
we maintain 𝜎𝑘 = 1 while in the other case we relax this constraint letting 𝜎𝑘 evolve in the738
arbitrary chosen range: 𝜎𝑘 ∈ [0.9, 1.1]. Similarly, for the bounds on 𝐴0, without any a priori739
informations on its physical range, we fixed a larger range of possible value: 𝐴0 ∈ [3.6, 4.4],740
where the background usual value is 4.0.741
Based on the remarks of the previous section, the results of three data-assimilation742

scenarios are discussed and compared. A first straightforward approach corresponds to the743
optimisation of the four coefficients independently. This is referred to as scenarioA. Then, two744
scenarios are considered to investigate the two closure assumptionsmentioned in the previous745
section. First, we consider the equality between the mixing of turbulent kinetic energy and746
momentum, referred as scenario B. Secondly, keeping 𝜎𝑘 a free parameter, the scenario C747
consists in enforcing the inertial constraint and defining 𝜎𝜖 using (5.1). Three criteria are748
considered to evaluate the agreement between the CFD results and the measurements. The749

first is the relative reduction of cost function J−J0
J0 , J0 being the initial cost. This depicts750

the improvement of the global effect of wind on the building. Next, 𝐶𝑝, the dimensionless751
pressure, is compared locally on the facades of the building. Third, to quantify the accuracy752
of the recovered mean flow field, the streamwise length of the recirculation region behind753
the building is compared to the one observed from the PIV plans.754
Regarding the update of the coefficients, a steepest descent algorithm is used with an adaptive755
step. A maximum step size is set to 10−2 while a minimum step size inferior to 10−4756
is considered as an optimisation convergence criteria. The confidence coefficients are all757
set to Z𝑖 = 5 × 10−2. This low uniform values represent a relative degree of confidence758
on the background closure values. The variations of the closure coefficients along the759
optimisation iterations are shown in figure 9. The maximum reduction of the cost and the760
optimal coefficients values for the three considered scenarios are summarised in table 1. In761
terms of mismatch between CFD and experimental mean pressure, it is shown that the highest762
reduction can be achieved through the optimisation scenario B. Conversely, scenarioC leads763
to the least improvement in the cost function. However, we note a faster convergence rate for764
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Figure 9: Cost function reduction, (a), and closure coefficient variations: (b), scenario A;
(c), scenario B; (d), scenario C.

C, for which the optimal solution is reached 5 times faster than for B. Furthermore, a shift765
between the two regimes can be noticed in scenarios A and B. Indeed, this shifting occurs766
when the penalisation on the variation of𝐶2 becomes of the same order of magnitude than the767
required advancement for the cost minimisation. Whereas in B, 𝜎𝑘 is not optimised and the768
trend on 𝐶2 until convergence is mainly dominated by its penalisation. In all scenarios, the769
optimal value of 𝐶2 increases while it stays within 5% of the background value. Considering770
𝐴0, a minor variation is observed during optimisation in all scenarios. On the contrary, a771
higher variation of𝜎𝜖 below the recommended range is necessary to reduce the cost function.772
In figure 10, we show the variation of 𝜎𝜖 with respect to 𝐶2. In scenario C, a quasi-linear773
dependency is established through relation (5.1). However, we retrieve the two regimes in B774
and A where this dependency is broken.775
In general, it can be concluded that a better agreement between the turbulence model (e.g776
𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 𝑘 − 𝜖) and wind tunnel experiments, in terms of wind load on the facades of777
high-rise buildings, can be achieved through optimisation of the closure coefficients. Even778
if it offers less degrees of freedom in the optimisation, better results are obtained when779
enforcing the constraint that equals turbulence mixing in the equation of transport of 𝑘 to780
momentum mixing by the eddy viscosity (scenario B). This suggests that it is a physically781
valid hypothesis in our case study. It helps structuring the data assimilation process and782
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Figure 10: 𝜎𝜖 variations with respect to 𝐶2 for all scenarios.

leads to a robust procedure. It states that the turbulent mixing of the momentum and kinetic783
energy are of same nature. At the opposite, by relaxing the constraint and establishing784
relation (5.1) as valid out of the inertial layer (scenario C) may lead to lower agreement785
with measurements. Indeed, this assumption may hold reasonably in flows where turbulence786
behaviour is isotropic. However, in the presence of bluff body, e.g flows with separation787
and recirculation dynamics, this assumption is undoubtedly unrealistic. Scenario Bmight be788
considered as the best optimisation choice to get better wind load representation on high-rise789
building given the considered turbulence closure (i.e. realizable 𝑘 − 𝜖). Following the best790
optimisation scenario, 13% gain on the overall predicted loads are obtained. Furthermore, a791
comparison of the predicted pressure coefficient at the building facades (see figure 11) this792
gain is associated to the slight improvement observed especially along the side facades.793
Nearly no change at the front facade and along the upfront corners is observed. As a matter794

of fact, this observations confirms what was earlier mentioned in the sensitivity analysis795
where the rigidity of the considered turbulence model is shown to play a major role on the796
degree of improvement that can be achieved to fit with measurements.797
With regard to the mean flow reconstruction, adopting the best optimisation scenario798

(scenario B), the contours of the mean velocity field are compared with the available PIV799
plans reported from the work of Sheng et al. (2018). It is a strong validation since these800
mesurements are not used in the data assimilation. Figures 12, 13 and 14 show the normalised801
streamwise velocity at the streamwise central plane (top) and at two horizontal plans, i.e.802
𝑧/𝐻𝑟𝑒 𝑓 = 0.19 and 𝑧/𝐻ref = 1. The CFD with background values and optimised values803
following B are compared with the PIV measurements.804
In order to show the effect of data assimilation, velocity contours are superimposed805

(right column) and thicker lines are plotted to track the size of the recirculation region.806
The reattachment length on the ground, is reported in table 2. After optimisation, velocity807
contours show a better estimation of the recirculation region lengthwhich is shorter compared808
to the non-optimised model. This improvement is more affirmed near the ground, where the809

relative error of reattachment length 𝑌 with respect to PIV, Y𝑌 =
𝛿𝑌0
𝛿𝑌end
, with the default810

(𝑌0) and the optimised (𝑌end), is reduced by 26%. Despite this enhancement, it should be811
pointed out that CFD model still under-predicts the flow in the wake region. This is the812
best improvement of this specific turbulence model we obtained by assimilating the pressure813
measurements. The two limiting ingredients are the model rigidity and the partial sparse814
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Figure 11: Comparison of pressure coefficient profiles between CFD (scenario B) and
experimental results along building facades. Contours are token at building symmetry
plane, (a) and three horizontal plans at 𝑧/𝐻𝑟𝑒 𝑓 = 1 , (b), 𝑧/𝐻𝑟𝑒 𝑓 = 0.27, (c) and

𝑧/𝐻𝑟𝑒 𝑓 = 0.19, (d), respectively.

Figure 12: Comparison of mean stream-wise contour between CFD (scenario B) and Re.
Sheng (PIV) experiments at horizontal plane with normalised height 𝑧

𝐻𝑟𝑒 𝑓
= 0.19.

Figure 13: Comparison of mean stream-wise contour between CFD (scenario B) and Re.
Sheng (PIV) experiments at horizontal plane with normalised height 𝑧

𝐻𝑟𝑒 𝑓
= 1.
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Figure 14: Comparison of mean stream-wise contour between CFD (scenario B) and Re.
Sheng (PIV) experiments at symmetry plane with normalised height 𝑧

𝐻𝑟𝑒 𝑓
= 1.

Exp 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 𝑘 − 𝜖 𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑

𝑌 𝑓 (𝑚) ∼ 50 139.8 116.1
𝑌𝑟 (𝑚) - 13.6 11.7

Table 2: Comparison of the (dimensional) reattachment lengths on the roof and floor, CFD
optimised with global constant calibration (scenario B).

observations (pressure at the boundary) of the complex flow. In the next section, spatially815
distributed control parameters in the transport equation of dissipation are considered in order816
to relax this structural constraint.817

5.3. Distributed closure parameter in the energy dissipation budget818

This section is dedicated to the results related to the investigation of the adjunction on 𝑘 − 𝜖819
(realizable) model of a distributed control parameter in the energy dissipation rate budget.820
First, we analyse the sensitivity fields to highlight the spatial locations where the closure821
form of 𝜖 budget appears inadequate to reproduce the measurements and would require a822
structural correction. Then, the data-assimilation results of this spatially corrected model are823
analysed.824

5.3.1. Sensitivity analysis825

We analyse the parameter sensitivity fields given by the proposed closure model, which826
corresponds to the first iteration step of the data assimilation procedure. Indeed, we are827
interested in the gradient of the cost functional with respect to the distributed control828
parameters for 𝑓𝜖 = 0. Figures 15, 16, and 17 compare the sensitivity maps for the added829
control parameter against a direct forcing (which corresponds to the adjoint variable on 𝜖∗).830
Globally, sensitivity to the proposed parameter 𝑓𝜖 shows a strong response in a restricted831
flow area. In contrast with very diffused sensitivity maps for the direct forcing, the sensitivity832
maps of the additional forcing do highlight the regions of great relevance for the model833
improvement. They correspond to the same regions as those designated by the sensitivity834
maps of the global constants in the previous section. For instance, we note a tendency to835
bring significant dissipation rate adjustments starting from the leading edges and continuing836
into the lateral shear layers and more downstream at the wake region edges. Let us note that837
multiplication by the variable 𝜖 has damped sensitivties at regions nonrelevant for turbulence838
energy budget, such as the high peaks of sensitivity observed around the wake centerline839
for the direct forcing (see figure 15). As we span upward, as shown at height 𝑧/𝐻𝑟𝑒 𝑓 = 1840
in figure 16, the maps actually reveal a step function tendency as we go from separated841
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Figure 15: Adjoint turbulence dissipation and the constrained control at horizontal plane
with normalised height 𝑧

𝐻𝑟𝑒 𝑓
= 0.19. Variables are normalised by their in-plane peak

values.

Figure 16: Adjoint turbulence dissipation and the constrained control at horizontal plane
with normalised height 𝑧

𝐻𝑟𝑒 𝑓
= 1. Variables are normalised by their in-plane peak values.

flow regions, i.e., the lateral and top shear layers, toward the wake region. Furthermore,842
with regard to the sign, eventual contributions to the 𝜖 budget are interpreted as follows.843
A negative value of 𝑓𝜖 would tend to increase the dissipation rate, while a positive value844
would instead decrease it. Hence, on both lateral and top separated flows, the parameter845
suggests there an increase of the dissipation rate. The sensitivity analysis points here an846
over-production of turbulent kinetic energy, which is a known common default of the 𝑘 − 𝜖847
closure models in such flow configurations reported, for instance, in (Murakami 1990, 1997;848
Shirzadi et al. 2017). Moreover, along the outer edges of the lateral shears toward the wake849
edges, the sensitivity maps suggest reducing the dissipation rate. This tendency is consistent850
with a rather under-predicted turbulent mixing, resulting in the overly extended wake region851
behind the building (Shirzadi et al. 2017).852

5.3.2. Closure analysis through data-assimilation853

We consider now the solution of a data-model coupling using the modified closure equation854
(3.2). Regarding the assimilation procedure’s setting, the steepest descent algorithm is used855
with the Sobolev gradient computed in (3.6) as a descent direction. Regarding the filtering856
choice, two values 𝑙𝑠𝑜𝑏 = 0.1𝐷 and 0.2𝐷 were tested. Let us note that with 𝑙𝑠𝑜𝑏 = 0, i.e857
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Figure 17: Adjoint turbulence dissipation and the constrained control at symmetry plan.
Variables are normalised by their in-plane peak values.

no smoothing of the 𝐿2 gradient, the procedure was notably unstable, showing the need for858
regularisation. As for a higher value of 𝑙𝑠𝑜𝑏 = 0.2𝐷 = 6m, this choice yielded to an over859
smoothing. As the sensitivity varies by length scales that are quite small in comparison to860
this length, this advocates a value of 𝑙𝑠𝑜𝑏 ∼ lateral recirculation width. Therefore, a filtering861
length scale equivalent to 10% of the building’s width seems to give a good compromise to862
filter the small-scales, as suggested also in Tissot et al. (2020).863
Sobolev gradient regularisation has been compared with standard 𝑙2-norm penalty (results864

not shown here for sake of conciseness), the latter requiring an a posteriori tuning of the865

hyper parameter. Sobolev gradient leads to the lowest discrepancy ( JJ0 ≃ 0.42) compared to866

the best gradient penalisation ( JJ0 ≃ 0.56), the hyper parameter value being selected using867
L-curve criteria (Hansen 1992). Moreover, Sobolev gradient requires 3 times less iterations868
than penalty method. A too large value of the 𝑙2-penalty parameter leads a drastic increase of869
the number of iterations with a slight loss of performances with respect to the best 𝑙2-penalty870
parameter, while a too low penalty leads to a premature cessation of iterations with poor871
performances.872

Wind load profiles The reconstructed pressure loads are compared with the experimental873
data (Sheng et al. 2018) and the non-assimilated model in figure 18. We can see that, in874
comparison with the coefficient calibration, the modified closure model produces far better875
results in most of the building’s wall regions. In terms of pressure discrepancy, the modified876
closure model manages to capture well suction at both top leading edge in the symmetry877
plane (point B in sub-figure(a)) and lateral leading edges (see figure 18(b), (c), and (d)).878
However, while a good agreement with the data is obtained along the lateral facades, minor879
to important deviations are apparent as we get closer to the trailing edges and especially880
when we approach the high-end. This gradually leads to poorer pressure interpolation as the881
discrepancy reaches a maximum value at the upper back facade around 𝐻𝑟𝑒 𝑓 (sub-figure(a)882
and (b)). Yet, the modified closure model shows a slightly better prediction near the top-883
trailing edge than the calibrated default model. Therefore, at this level of comparison, such884
closure model does improve the data-model capability. The remaining regions where no885
improvement is seen might reflect the limited controllability of such turbulence model with886
wall pressure measurement.887

Flow topology Regarding the spanwise flow structure, figures 19 and 20 show sectional888
streamlines at both 𝑧/𝐻𝑟𝑒 𝑓 = 0.19 and 𝑧/𝐻𝑟𝑒 𝑓 = 1 height, respectively. Here it is noteworthy889
to mention that these sectional streamlines are computed for in-plane velocity components.890
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Figure 18: Pressure coefficient profiles along building facades. Comparison is made
between an 𝜖 budget correction and global calibration using scenario B. Contours are
token at building symmetry plan, (a) and three horizontal plans at 𝑧/𝐻𝑟𝑒 𝑓 = 1 , (b),

𝑧/𝐻𝑟𝑒 𝑓 = 0.27, (c) and 𝑧/𝐻𝑟𝑒 𝑓 = 0.19, (d), respectively.

In each sub-figure, streamlines predicted with the non-assimilated model (sub-figure (a)) is891
compared with the calibrated model (scenario B) (b), with 𝑓𝜖 closure correction (c) and PIV892
experiments from Sheng et al. (2018) (d). At both levels, the model’s reconstructed flow ( 𝑓𝜖 )893
still preserves the symmetry of the two distinct pairs of averaged vortex structure. Moreover,894
an excellent agreement with experiments is obtained in the wake transverse extension and895
the vortices focal point positions in comparison with the calibrated model.896
Figure 21 shows time-averaged sectional streamlines at the 𝑦/𝐷 = 0 symmetry plane in897

the transverse-wise structure. As can be seen from figure 21, the two distinct types of average898
streamlines are also observed on both reconstructed flows ((b) and (c)). It is constituted by an899
upper recirculation starting at the roof-top and a lower recirculation region raised from the900
ground wall, separated by a saddle point. Thus, regarding the wake’s extension, the modified901
closure model leads to a drastic reduction of the recirculating flow compared to the calibrated902
mode, thus reaching a realistic size. This can be quantified by the position of the saddle point903
(𝑥/𝐷 = 4,𝑧/𝐷 = 2) in the RANS model which has been moved around (𝑥/𝐷 = 2,𝑧/𝐷 = 2).904
This striking result is mitigated by the fact that this saddle point has been pulled slightly too905
far upstream. It should be recalled that only pressure measurements in the facade have been906
available and that PIV measurements are used here only for validation. This good agreement907
with external data proves that we are neither in overfitting nor in an over-constrained situation.908
Indeed, the two-dimensional vortices at both elevations ( 𝑧

𝐻𝑟𝑒 𝑓
= 0.19, 1) are a transverse909

projections of the three-dimensional rolls, one on each side of thewake symmetry plan, which910
connects near the free end. Such structure is consistent with somemodel descriptions brought911
on wakes of finite length square cylinders, with similar height/width ratio, that are subject to912
boundary layer flows of various thickness (Kawamura et al. 1984; Wang & Zhou 2009). A913
global three-dimensional picture gathering the two-dimensional previous plots is shown in914
figure 22). Examining the optimal forcing fields in figure 23, we retrieve the same tendencies915
observed in the sensitivity analysis before the reconstruction. After the optimisation, the916
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Figure 19: Flow topology (2D) on horizontal plane at normalised height 𝑧
𝐻𝑟𝑒 𝑓

= 0.19 with
local constraint correction. Comparison is made between an 𝜖 budget correction and

global calibration using scenario B.

Figure 20: Flow topology (2D) on horizontal plane at normalised height 𝑧
𝐻𝑟𝑒 𝑓

= 1 with
local constraint correction. Comparison is made between an 𝜖 budget correction and

global calibration using scenario B.
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Figure 21: Flow topology (2D) on symmetry plane with local constraint correction.
Comparison is made between an 𝜖 budget correction and global calibration using scenario

B.

parameter 𝑓𝜖 still keeps advocating less turbulence production in the shear layers of the917
lateral separated flow (see 23(a) and (b)), while, conversely, more mixing at the edges of the918
wake downstream. Corrections are performed where strong turbulence inhomogeneity and919
anisotropy occur. It acts in a way to redistribute dissipation rate, by the means of sources920
and sinks, from the upstream region toward the downstream region. When considering only921
calibration of the global coefficients, the model structure prevents this redistribution. This922
suggests that some turbulence mechanisms related to anisotropy and inhomogeneity effects923
are not properly taken into account in the model closure and need to be included to represent924
accurately some key regions of the flow.925

6. Conclusions926

The use of steadyRANSmodels under the eddy viscosity hypothesis is known to be inaccurate927
for practical applications such as micro-climate studies (at urban scale). For instance, in the928
prediction of wind-loads on a high-rise building, most of the state-of-the-art 𝑘 − 𝜖 turbulence929
models (including the realizable revision studied here) tend to give poor wake flow accuracy930
estimations, as well as an inaccurate wall-pressure value, when compared to wind tunnel931
experiments. One way to tackle this deficiency consists in adopting data-model coupling932
techniques such as the variational DA approach based on optimal control. To set up such a933
framework in our context we devised a consistent analytical derivation of one of the most934
common turbulence models (i.e. realizable revision of 𝑘 − 𝜖) coupled with near wall closure.935
This has resulted in the definition of a continuous adjoint model (together with its consistent936
boundary conditions) of the tangent linear operator of the RANS model. Given the dual937
description of the dynamics composed of the RANS direct model and the adjoint of its938
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Figure 22: Flow topology (3D) of the realizable 𝑘 − 𝜖 model, global coefficient calibration
and 𝜖 budget correction against PIV plane at 𝑧/𝐻𝑟𝑒 𝑓 = 1.

Figure 23: Converged parameter 𝑓𝜖 , with Sobolev gradient (𝑙𝑠𝑜𝑏 = 0.1𝐷); (a), at
horizontal plane at 𝑧/𝐻𝑟𝑒 𝑓 = 0.19, (b) 𝑧/𝐻𝑟𝑒 𝑓 = 1 and, (c) at symmetry plane 𝑦/𝐷 = 0.
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tangent linear representation, we have explored three methodological settings that provides939
an efficient sensitivity analysis and an in-depth diagnosis of the turbulence closure adopted940
on such flows.941
The first tool consisted in the inspection of the adjoint state variables in relation with their942

physical meaning. The second one was dedicated to providing a better understanding of the943
model output’s variabilities in terms of the model’s closure global constants. With the last944
one, we went one step further. We considered the adjunction of a distributed parameter which945
enables the reanalysis of the closure at a structural level (such as the choice of the transport946
equation for the energy dissipation rate on the 𝑘 −𝜖 model as considered here). To conduct an947
efficient structural inspection, a distributed parameter is sought in a Sobolev space and further948
estimated through a data-assimilation procedure. As a sensitivity field is generally not very949
regular for distributed parameters, the use of Sobolev gradient was proposed here for both950
a regularisation purpose and to define an improved descent direction for the minimisation951
technique. These three settings have then been applied to a high-rise building case study.952
Sensitivity maps of the 𝑘 − 𝜖 global coefficients had revealed high interest in optimising953

themmainly at the shear layers resulting from flow separations at the leading lateral edges and954
on top of the building. Moreover, little sensitivity in the bulk of the recirculation wake region955
was observed. Despite all the spatial variability of the sensitivity fields, it was shown that956
the optimality condition drastically reduces the high dimensional dependency of the model957
to each coefficient. Regarding the model hypotheses which guided the choice for closed958
default values, a better data coupling is obtained by enforcing the constraint that equates959
turbulence energy mixing to momentum mixing, even if it offers fewer degrees of freedom in960
the optimisation. This suggests that it is a physically valid hypothesis that structures themodel961
and then helps for convergence. Conversely, by relaxing this constraint and establishing the962
relation (5.1), which dictates a strong bound limiting the production of energy dissipation963
rate to its redistribution (supposedly valid in the inertial layer near the wall), this leads to964
lower agreement with experiments. As both assumptions constitute a common practice for965
closure to most eddy viscosity models, it is expected that these results extend to several966
other models of similar forms. The limited performance of the DA procedure, achieved when967
controling global turbulence parameters, points out the rigidity of the considered turbulence968
model when used with realistic wall pressure measurements.969
Considering a distributed parameter to the 𝜖 budget, in order to complement the model in970

terms of local source/sink process, sensitivity maps highlight regions where global constants971
are not too sensitive (for instance, the wake region) and exhibit relatively less variability in972
term of sign changes.Maps had actually revealed binary tendencies, separating the lateral and973
top shear regions and the wake flow. Regarding the regularisation, a comparison of the cost974
reduction results with a conventional penalisation approach showed that Sobolev gradient975
yields amuch faster convergence and lower discrepancy levels. Let us note that, alongwith the976
Sobolev gradient, the robustness of the DA procedure was enabled as a first order numerical977
scheme to solve the dual dynamics. Regarding the reconstruction ability, compared with978
coefficient calibration, the modified closure model produced better results in most of the979
building’s wall regions in terms of wind load profiles, yet, results suggest some remaining980
restrictions as reconstructed profiles tend toward the original model in some regions. An981
excellent agreement with PIV experiments was obtained in wake transverse extension. It982
should be recalled that only pressure measurements in the facade have been assimilated.983
This good agreement with measurements of different nature and that have not been used in984
the assimilation proved that we are neither overfitting the data nor in an over-constrained985
situation.986
This work thus illustrates the capabilities of adjoint methods. Beyond providing a data-987

driven flow reconstruction, they enable an in-depth analysis of the turbulence closure. Indeed,988
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by regarding adjoint fields as a physical forcing, rather than as a purely mathematical object,989
these data-driven reconstructed fields allows to highlight a misrepresentation of the turbulent990
flow by the RANS model, and hence, to address errors within a particular turbulence991
modelling form (e.g. energy production, backscatterring, redistribution or dissipation).992
Although the results presented were for a particular turbulence model and on a specific993
bluff-body-like case, over-estimation of the recirculation length in bluff bodies is a common994
features in RANS models, and the proposed methodology could be employed without loss995
of generality. Provided sparse wall pressure measurements, the technique can be directly996
applied to any complex wake flow embedded in the atmospheric boundary layer.997
Beyond the demonstration of an efficient data assimilation method, the results show998

that in a 3D wake flow immersed in an atmospheric boundary layer, sparse wall pressure999
measurements located on the building facades carry enough information to perform relevant1000
estimations of the wake velocity field, while RANS simulations alone systematically1001
overestimate the recirculation length.1002
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APPENDIX1010

Under differentiability condition, it can be shown (Le Dimet & Talagrand 1986; Gunzburger1011
2003) that the problem of determining the optimal set of flow state variables,1012

X = (𝑈𝑥 ,𝑈𝑦 ,𝑈𝑧 , 𝑃, 𝑘, 𝜖 , `𝑡 )1013

and the set of parameters 𝛼, of the cost function J (X, 𝛼) under the constraint1014

M(X, 𝛼) = 01015

is equivalent to the problem of determining the optimal set of these variables in addition to1016
an adjoint state1017

X∗ = (𝑈∗
𝑥 ,𝑈

∗
𝑦 ,𝑈

∗
𝑧 , 𝑃

∗, 𝑘∗, 𝜖∗, `∗𝑡 )1018

of the Lagrangian functional L(X,X∗, 𝛼). With the inner product defined as ⟨𝜓, 𝜙⟩Ω =1019 ∫
Ω
𝜓𝑇𝜙 dΩ where 𝜓 and 𝜙 are any two regular vectorial functions defined on the domain Ω,1020

the Lagrangian, is1021

L(X,X∗, 𝛼) = J (𝑃, 𝛼) +
∫
Ω

(X∗)𝑇M(X, 𝛼) dΩ. (6.1)1022
1023
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The first order variation 𝛿L resulting from perturbation (𝛿X, 𝛿X∗, 𝛿𝛼) of (X,X∗, 𝛼), in1024
compact form, is equal to1025

𝛿L =
𝜕J
𝜕𝑃

𝛿𝑃 + 𝜕J
𝜕𝛼

𝛿𝛼 +
∫
Ω

(X∗)𝑇
(
𝜕M
𝜕𝑈𝑥

𝛿𝑈𝑥

)
dΩ +

∫
Ω

(X∗)𝑇
(
𝜕M
𝜕𝑈𝑦

𝛿𝑈𝑦

)
dΩ1026

+
∫
Ω

(X∗)𝑇
(
𝜕M
𝜕𝑈𝑧

𝛿𝑈𝑧

)
dΩ +

∫
Ω

(X∗)𝑇
(
𝜕M
𝜕𝑃

𝛿𝑃

)
dΩ +

∫
Ω

(X∗)𝑇
(
𝜕M
𝜕𝑘

𝛿𝑘

)
dΩ1027

+
∫
Ω

(X∗)𝑇
(
𝜕M
𝜕𝜖

𝛿𝜖

)
dΩ +

∫
Ω

(X∗)𝑇
(
𝜕M
𝜕`𝑡

𝛿`𝑡

)
dΩ +

∫
Ω

(𝛿X∗)𝑇M(X, 𝛼) dΩ. (6.2)1028
1029

Using the duality identity defined as1030 ∫
Ω

(L𝜙) 𝜓dΩ =

∫
𝜕Ω

(B𝜙) (C𝜓) d𝜕Ω −
∫
Ω

𝜙 (L∗𝜓) dΩ1031

where L is a linear differential operator and (B,C) are lower order differential operators,
resulting from the integration by part, that embed the natural boundary condition, 𝛿L
becomes

𝛿L =
𝜕J
𝜕𝑃

𝛿𝑃 + 𝜕J
𝜕𝛼

𝛿𝛼 −
∫
Ω

(
𝜕M
𝜕𝑈𝑥

∗
X∗

)𝑇
𝛿𝑈𝑥 dΩ −

∫
Ω

(
𝜕M
𝜕𝑈𝑦

∗
X∗

)𝑇
𝛿𝑈𝑦 dΩ

−
∫
Ω

(
𝜕M
𝜕𝑈𝑧

∗
X∗

)𝑇
𝛿𝑈𝑧 dΩ −

∫
Ω

(
𝜕M
𝜕𝑃

∗
X∗

)𝑇
𝛿𝑃 dΩ −

∫
Ω

(
𝜕M
𝜕𝑘

∗
X∗

)𝑇
𝛿𝑘 dΩ

−
∫
Ω

(
𝜕M
𝜕𝜖

∗
X∗

)𝑇
𝛿𝜖 dΩ −

∫
Ω

(
𝜕M
𝜕`𝑡

∗
X∗

)𝑇
𝛿`𝑡 dΩ +

∫
Ω

(𝛿X∗)𝑇M(X, 𝛼) dΩ

+
∫
𝜕Ω

(𝛿X)𝑇 (CX∗) d𝜕Ω +
∫
𝜕Ω

(B𝛿X)𝑇X∗ d𝜕Ω.

Since the perturbations are arbitrary, setting the first variation of L with respect to the
Lagrangian arguments equal to zero leads to an optimality system. With respect to an
arbitrary variation of the adjoint state, we recover the constraint equations; while for an
arbitrary variation of the state X all the terms that include the product of adjoint state to the
tangent linear of the constraint has to vanish. Further, with respect to the set of parameters,
vanishing the total variation leads to an optimality condition that enclose the optimality
system. Collecting these results yields to

𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 ⇒ M(X, 𝛼) = 0

𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 ⇒
(
𝜕M
𝜕X

)∗
X∗ = 0

𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ⇒ 𝜕J
𝜕𝛼

+
(
𝜕M
𝜕𝛼

)∗
X∗ = 0,

where
(
𝜕M
𝜕𝛼

)∗
is the adjoint of the model derivative with respect to the parameters. If it is1032

possible to solve this coupled optimality system through one-shot methods, then optimal1033
states and parameters can be obtained without an optimisation iteration. However, due to1034
non linearity and the very large size of this system (∼ 3 × 𝑠𝑖𝑧𝑒(X)) one still have to iterate1035
in order to solve the optimality system. Thus, having solved the state equations for X and1036
then X∗ solution of the adjoint system, model parameters can be iterated by a gradient based1037
optimisation algorithm until optimality condition is satisfied. In a steepest descent algorithm,1038
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the parameter is updated at an iteration 𝑛 according to:1039

𝛼𝑛+1 = 𝛼𝑛 − _𝑛 𝑑𝑛 (6.3)10401041

where 𝑑𝑛 is the descent direction which is defined recursively by:1042

𝑑𝑛 =
𝜕L
𝜕𝛼

=

(
𝜕M
𝜕𝛼

)∗
X∗ + 𝜕J

𝜕𝛼
, (6.4)1043

Concerning adjoint based optimisation methods, we refer the reader to (Gunzburger 2003;1044
Gronskis et al. 2013).1045

Duality with the realizable 𝑘 − 𝜖1046

In this section, more details regarding the derivation of the adjoint model are brought. We1047
illustrate the manner in which model specificities are treated in the adjoint procedure. Thus,1048
expanding the integrands, the expression (6.1) is rewritten as follow,1049

L(X,X∗, 𝛼) = J (𝑃, 𝛼) +
∫
Ω

3∑︁
𝑖=1

𝑈∗
𝑖

(
𝜕 (𝜌𝑈 𝑗𝑈𝑖)

𝜕𝑥 𝑗
+ 𝜕

𝜕𝑥𝑖
𝑃 − 𝜕

𝜕𝑥 𝑗

[
`𝑒 𝑓 𝑓

(
𝜕𝑈𝑖

𝜕𝑥 𝑗
+
𝜕𝑈 𝑗

𝜕𝑥𝑖

)] )
︸                                                                ︷︷                                                                ︸

𝑀𝑈𝑖

dΩ1050

+
∫
Ω

𝑃∗
(
𝜕𝑈 𝑗

𝜕𝑥 𝑗

)
︸  ︷︷  ︸

𝑀𝑃

dΩ +
∫
Ω

𝑘∗
(
𝜕𝜌𝑈 𝑗 𝑘

𝜕𝑥 𝑗
− 𝜕

𝜕𝑥 𝑗

[(
` + `𝑡

𝜎𝑘

)
𝜕𝑘

𝜕𝑥𝑖

]
− `𝑡

(
𝜕𝑈𝑖

𝜕𝑥 𝑗
+
𝜕𝑈 𝑗

𝜕𝑥𝑖

)
𝜕𝑈𝑖

𝜕𝑥 𝑗
+ 𝜌𝜖

)
︸                                                                                  ︷︷                                                                                  ︸

𝑀𝑘

dΩ1051

+
∫
Ω

𝜖∗

©«
𝜕𝜌𝑈 𝑗𝜖

𝜕𝑥 𝑗
− 𝜕

𝜕𝑥 𝑗

[(
` + `𝑡

𝜎𝜖

)
𝜕𝜖

𝜕𝑥𝑖

]
− 𝐶1 (𝑆, 𝑘, 𝜖)𝑆𝜖︸          ︷︷          ︸

𝑃𝜖

+𝐶2
𝜖2

𝑘 +√`𝜖︸       ︷︷       ︸
𝑆𝜖

ª®®®®®®¬︸                                                                                 ︷︷                                                                                 ︸
𝑀𝜖

dΩ1052

+
∫
Ω

`∗𝑡

(
`𝑡 − 𝐶` (𝑈𝑖 , 𝑘, 𝜖)𝜌

𝑘2

𝜖

)
︸                          ︷︷                          ︸

𝑀`𝑡

dΩ. (6.5)1053

1054

In fact, upon a first variation of the Lagrangian w.r.t each state component, each one of1055
the terms in (6.2) is indeed the weighted sum of partial derivative of the designated terms1056
(𝑀𝑈𝑖

− 𝑀`𝑡 ) in (6.5). For the sake of concisness, in what follows, directional derivatives of1057
(6.5) are only expressed upon perturbation of the velocity. Indeed, we intend her to point1058
out the differentiation of the turbulence sources terms w.r.t. the velocity. Thus, the partial1059
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derivative of (6.5) in direction 𝛿𝑈𝑖 leads to the following:1060 〈
𝜕L
𝜕𝑈𝑖

, 𝛿𝑈𝑖

〉
Ω

=

∫
Ω

[ 3∑︁
𝑖=1

𝑈∗
𝑖

(
𝜕 (𝜌𝛿𝑈 𝑗𝑈𝑖 +𝑈 𝑗𝛿𝑈𝑖)

𝜕𝑥 𝑗
− 𝜕

𝜕𝑥 𝑗

[
`𝑒 𝑓 𝑓

(
𝜕𝛿𝑈𝑖

𝜕𝑥 𝑗
+
𝜕𝛿𝑈 𝑗

𝜕𝑥𝑖

)] )
︸                                                                       ︷︷                                                                       ︸

𝜕𝑀𝑈𝑖
𝜕𝑈𝑖

1061

+ 𝑃∗
(
𝜕𝛿𝑈 𝑗

𝜕𝑥 𝑗

)
︸    ︷︷    ︸

𝜕𝑀𝑃
𝜕𝑈𝑖

+𝑘∗
(
𝜕𝜌𝛿𝑈 𝑗 𝑘

𝜕𝑥 𝑗
− `𝑡

(
𝜕𝛿𝑈𝑖

𝜕𝑥 𝑗
+
𝜕𝛿𝑈 𝑗

𝜕𝑥𝑖

)
𝜕𝑈𝑖

𝜕𝑥 𝑗
− `𝑡

(
𝜕𝑈𝑖

𝜕𝑥 𝑗
+
𝜕𝑈 𝑗

𝜕𝑥𝑖

)
𝜕𝛿𝑈𝑖

𝜕𝑥 𝑗

)
︸                                                                                   ︷︷                                                                                   ︸

𝜕𝑀𝑘
𝜕𝑈𝑖

1062

+ 𝜖∗
(
𝜕𝜌𝛿𝑈 𝑗𝜖

𝜕𝑥 𝑗
− 𝜕𝑃𝜖

𝜕𝑈𝑖
𝛿𝑈𝑖

)
︸                        ︷︷                        ︸

𝜕𝑀𝜖
𝜕𝑈𝑖

−`∗𝑡
(
𝜕𝐶`

𝜕𝑈𝑖
𝛿𝑈𝑖𝜌

𝑘2

𝜖

)
︸              ︷︷              ︸

𝜕𝑀`𝑡
𝜕𝑈𝑖

]
dΩ (6.6)1063

1064

where
𝜕𝑃𝜖

𝜕𝑈𝑖
𝛿𝑈𝑖 =

𝜕𝐶1
𝜕𝑈𝑖

𝛿𝑈𝑖𝑆𝜖 + 𝐶1
𝜕𝑆

𝜕𝑈𝑖
𝛿𝑈𝑖𝜖

=

(
5𝑘

𝜖 (5 + [)2
+ 1

)
𝜕𝑆

𝜕𝑈𝑖
𝛿𝑈𝑖

=
1
2𝑆

(
5𝑘

𝜖 (5 + [)2
+ 1

)
𝑆𝑖 𝑗

(
𝜕𝛿𝑈𝑖

𝜕𝑥 𝑗
+
𝜕𝛿𝑈 𝑗

𝜕𝑥𝑖

)
,

while
𝜕𝐶`

𝜕𝑈𝑖
𝛿𝑈𝑖 = −𝐶2`

𝑘

𝜖

(
𝜕𝐴𝑠

𝜕𝑈𝑖
𝛿𝑈𝑖𝑈𝑠 + 𝐴𝑠

𝜕𝑈𝑠

𝜕𝑈𝑖
𝛿𝑈𝑖

)
,

which, after applying the chain rule, can be rewritten as

𝜕𝐶`

𝜕𝑈𝑖
𝛿𝑈𝑖 = −𝐶2`

𝑘

𝜖

©«
𝜕𝐴𝑠

𝜕𝜙

𝜕𝜙

𝜕𝑊

𝜕𝑊

𝜕𝑆𝑖 𝑗︸            ︷︷            ︸
𝜕𝐴𝑠
𝜕𝑆𝑖 𝑗

𝜕𝑆𝑖 𝑗

𝜕𝑈𝑖
𝛿𝑈𝑖︸    ︷︷    ︸

𝛿𝑆𝑖 𝑗

+𝐴𝑠


𝜕𝑈𝑠

𝜕𝑆𝑖 𝑗
𝛿𝑆𝑖 𝑗 +

𝜕𝑈𝑠

𝜕Ω̃𝑖 𝑗

𝜕Ω̃𝑖 𝑗

𝜕𝑈𝑖
𝛿𝑈𝑖︸     ︷︷     ︸

𝛿Ω̃𝑖 𝑗



ª®®®®®®®®¬
,

for which

𝜕𝐴𝑠

𝜕𝑆𝑖 𝑗
=

(
−
√
6 sin(𝜙)

) ©«−
√
6
6

[
tanh(𝑠(

√
6𝑊 + 1)) − tanh(𝑠(

√
6𝑊 − 1))

]
√︃
1 −min(max(

√
6𝑊,−1), 1)

ª®®¬(
2
√
2

[
3𝑆𝑖 𝑗𝑆 𝑗𝑘𝑆

3 − 𝑆𝑖 𝑗𝑆 𝑗𝑘𝑆𝑘𝑙 (2𝑆 + 4)𝑆𝑖 𝑗
𝑆6

])
,

and
𝜕𝑈𝑠

𝜕𝑆𝑖 𝑗
=

𝑆𝑖 𝑗

𝑈𝑠
,

𝜕𝑈𝑠

𝜕Ω̃𝑖 𝑗

=
Ω̃𝑖 𝑗 + Ω̃ 𝑗𝑖

2𝑈𝑠
.

Note that 𝑠 >> 1 is a free parameter to the hyperbolic step function, thus dealing with local
discontinuity resulting frommin/max operators. As 𝑆𝑖 𝑗 and Ω̃𝑖 𝑗 being linear operators of𝑈𝑖 ,
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their total variations are straightforward,

𝛿Ω̃𝑖 𝑗 =
𝜕Ω̃𝑖 𝑗

𝜕𝑈𝑖
𝛿𝑈𝑖 =

1
2

(
𝜕𝛿𝑈𝑖

𝜕𝑥 𝑗
−

𝜕𝛿𝑈 𝑗

𝜕𝑥𝑖

)
,

𝛿𝑆𝑖 𝑗 =
𝜕Ω̃𝑖 𝑗

𝜕𝑈𝑖
𝛿𝑈𝑖 =

1
2

(
𝜕𝛿𝑈𝑖

𝜕𝑥 𝑗
+
𝜕𝛿𝑈 𝑗

𝜕𝑥𝑖

)
.

It is worth mentioning that 𝜕𝑀`𝑡/𝜕𝑈𝑖 in (6.6) arises from the so called "realizable form"1065
of the eddy viscosity relation in (Shih et al. 1994), which for other revisions of 𝑘 − 𝜖 model1066
vanishes naturally.1067
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