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In this study we investigate the closure of a common turbulence model for Reynolds averaged9
Navier-Stokes (RANS) in the framework of variational data assimilation prediction of wind10
flows around big structures. This study considers practical experimental settings where only11
sparse wall-pressure data, measured in a wind tunnel, are available. The evaluation of a cost12
functional gradient is efficiently carried out with the exact continuous adjoint of the RANS13
model. Particular attention is given to the derivation of the adjoint turbulence model and the14
adjoint wall law. Given the dual description of the dynamics, composed of the RANS model15
and its adjoint, some methodological settings that enable diagnosis of the turbulence closure16
are explored here. They range from adjoint maps analysis to global constants calibration and17
finally consider the adjunction of a distributed parameter. Numerical results on a high-rise18
building reveal a high reconstruction ability of the adjoint method. A good agreement in wind19
load and wake extension was obtained. As with sparse observations, the sensitivity field is20
generally not very regular for distributed parameters, a projection onto a space ofmore regular21
functions belonging to the Sobolev space (H1) is also proposed to strengthen the efficiency22
of the method. This has been shown to lead to a very efficient data assimilation procedure23
as it provides an efficient descent direction as well as a useful regularisation mechanism.24
Beyond providing an efficient data-driven reconstruction technique, the proposed adjoint25
methodology enables an in-depth analysis of the turbulence closure and finally improves it26
significantly.27
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1. Introduction30

During there lifetime, buildings are continuously exposed to wind coming from all directions.31
Particularly, due to their extended exposed surface, high-rise buildings and big structures32
undergo extremely strong lateral aerodynamic forces. As a consequence, large lateral33
deflections or, even more, some problematic tearing affecting security may be observed.34
Yet, by having a prior understanding of the airflow surrounding these big structures, wind35
loads can be predicted and such issues avoided. To understand how theses turbulent flows36
affect the structures, physical models along with numerical simulations are usually deployed.37
On the one hand, for more than a century, experiments with scaled models of buildings38
have been carried out in wind tunnels (Cermak & Koloseus 1954; Jensen 1958). After39
years of advancement on measurement techniques together with an increased knowledge on40
wind dynamics, tunnel experiments have proven their reliability for loads prediction issues41
(Surry 1999; Cochran & Derickson 2011). High-Frequency Force Balance method (HFFB)42
(Tschanz & Davenport 1983) and High-Frequency Pressure Integration (HFPI) (Irwin &43
Kochanski 1995) are two examples of techniques employed for such effort measurements.44
Despite many improvements brought to deal with turbulent flows, such techniques provide45
only partial information of the complex wind-structure interactions involved. For instance,46
when the structure has a complex geometrical shape, the very sparse nature of the cladding47
pressure measurements brought by HFPI techniques may lead to a misrepresentation of the48
local pressure field.49

On the other hand, more recently, thanks to the significant progress of computational50
capabilities, computational fluid dynamics (CFD) techniques have proved their value to give51
a complete representation of these flows, enabling a better understanding of the relation52
between the flow structures and the wind loads. However, since an accurate description53
of such turbulent flows requires a fine enough resolution, this technique may rapidly54
become impractical due to the large computational resources required. To go beyond this55
computational limitation, turbulence model closures associated with the Reynolds averaged56
Navier-Stokes (RANS) simulation were widely adopted to give an insight into the time-57
averaged flow profile. With such models, turbulence characteristics can be reasonably58
represented at lower computational costs. Over the years, motivated by the available59
computational wind engineering guidelines (Tominaga et al. 2008; EN 2005), several60
established turbulence models have been deeply investigated (Cochran & Derickson 2011;61
Meroney &Derickson 2014). While RANS simulations offer good qualitative results that are62
physically relevant, due to their inherent assumptions built from accumulated knowledge on63
real turbulent flows, close inspection on wind loads reveals typical failures in their prediction.64
For instance, early studies by Murakami (1990, 1997) compared the standard k − ε model65
(Launder & Sharma 1974) analysis with unsteady large-eddy simulations (LES) and wind66
tunnel experiments. They revealed the model’s poor accuracy resulting in an over-production67
of turbulent kinetic energy in the flow impingement region. Various revisions of the model68
(e.g., RNG by Yakhot et al. (1992), realizable by Shih et al. (1995), MMK by Tsuchiya et al.69
(1997)) have provided results close to measures obtained in wind tunnels. Yet, recent studies70
have shown that such models still fail to reproduce an accurate recirculation region behind71
the building (Tominaga & Stathopoulos 2010, 2017; Yoshie et al. 2007).72
This accuracy issue may strongly hinder the model predictive skill when compared to73
real-world measurements. One way to correct this deficiency consists in devising methods74
allowing to couple turbulence modelling with measurements.75

Indeed, during the last decades, a wide variety of coupling techniques has been increasingly76
considered in fluid mechanics applications. Such techniques, commonly termed as data77
assimilation (DA), have been employed to estimate an optimal flow state provided by a78
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given dynamical model such that it remains close enough to observations. So far, two79
different classes of DA techniques have been applied to that end. On the one hand, Bayesian80
techniques, often referred to as sequential DA techniques, have been used to estimate optimal81
flow parameters from data affected by a high uncertainty level (Meldi & Poux 2017; Mons82
et al. 2016). On the other hand, optimal control techniques, like variational DA or ensemble-83
variational DA, have been proposed for direct and large eddy numerical description models84
(Mons et al. 2016; Gronskis et al. 2013; Yang et al. 2015; Mons et al. 2017; Li et al. 2020;85
Chandramouli et al. 2020). In this latter kind of approaches, DA is formulated as a constrained86
optimisation problem (Bryson 1975). A cost functional, reflecting the discrepancies between87
some (incomplete) measurements of the flow variables and a numerical representation of the88
flow dynamics, is minimised using a gradient-based descent method. In such an optimisation89
problem, the functional gradient’s evaluation is efficiently carried out through the dynamical90
model’s adjoint instead of a costly finite difference approach (Errico 1997; Plessix 2006). At91
this point, theseDAmethodswere often used to reconstruct initial conditions and/or boundary92
conditions for nonstationary flow simulation issues (such as large eddy simulations). In the93
last few years, mean flow reconstruction problems have also been considered with data94
assimilation techniques. In some studies (Foures et al. 2014; Symon et al. 2017), built from95
variational DA techniques, the authors considered laminar steady Navier-Stokes equations96
corrected by an unknown volume-force to directly model the turbulence effects. These97
studies showed that, in laminar or transitional flows, such models perform well to assimilate98
synthetic particle image velocimetry (PIV) data. Other DA studies at high Reynolds number99
were performed with RANS turbulence models (Li et al. 2017; Singh & Duraisamy 2016;100
Franceschini et al. 2020). In these works, mean flow DA approaches exploited the turbulence101
models’ structure, which results from a trade-off between asymptotic theories on turbulence102
mixing and empirical tuning to fit experimental data. Thiswas expressed through a calibration103
process of the closure constants or of a corrective source term added to the turbulence model.104
Experimental knowledge plays here a crucial role. Such studies dealtmainlywith fundamental105
and industrial oriented flow configurations in which turbulence is often generated at a106
unique integral scale. However, to the authors’ knowledge, for flow configurations involving107
complex flow interactions as in the case of an atmospheric boundary layer around a bluff-108
body, turbulence closure structure analysis using DA techniques are still largely unexplored.109
Nevertheless, it is noteworthy that formal uncertainty quantification (UQ) techniques have110
been employed to interpret these closure models in probabilistic terms (Etling et al. 1985;111
Duynkerke 1988; Tavoularis & Karnik 1989; Edeling et al. 2014; Margheri et al. 2014). For112
example, in a recent work by Shirzadi et al. (2017), global coefficients of the standard k − ε113
model were adapted for unstable atmospheric boundary layer (ABL) flow around high-rise114
buildings using a forward UQ technique (e.g., Monte Carlo simulations).115
In the present work, we propose investigating one of the most common turbulence closure116

models for RANS modelling in a variational data assimilation procedure framework. A117
continuous adjoint approach is considered and then discretised using a 3D finite volume118
scheme. Without loss of generality, we will, first, use this methodology to investigate the119
sensitivity fields of the global closure coefficients of the high Reynolds realizable revision120
of the k − ε model (Shih et al. 1995). Their physical interpretation will enable us to121
point out limits on such closure models’ applicability for data-model coupling purposes,122
particularly for wind flows around buildings. Contrary to previous data-model studies in123
which velocity measurements were considered on significant parts of the flow domain, we124
rely on sparse pressure data measured on the building surface. This difference is far from125
being cosmetic as it leads so far to a much more practical experimental setting for large-scale126
volumetric measurements. Besides, we point out some difficulties faced in the literature127
in coupling RANS modeled 3D flows with only parietal experimental measurements. This128
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framework will discuss limitations and improvements in estimating wind loads and mean129
velocities surrounding a high-rise building. To address the limitations of common turbulence130
modelling more efficiently, we will then relax the model rigidity by considering a distributed131
additive control parameter in the turbulent dissipation transport equation, where the closure132
is performed. Beyond the fact that it provides a better agreement with real flow data due133
to the richer control parameter space and avoids overfitting to the data thanks to the134
prior information brought by the RANS model structure, the optimal control parameter135
enables us to identify features that are missing in the initial RANS closure hypotheses.136
To that end, a modified dissipation rate equation and its adjoint equation are introduced.137
A physical interpretation of the reconstructed field will then be addressed to point out the138
limits of models’ closure applicability for data-model coupling purposes. In the optimisation139
procedure, the adjoint sensitivity field and the associated cost functional gradient is generally140
irregular for distributed control parameters due to the lack of specific treatment. This lack141
of regularity often even hinders a proper estimation of the sensitivity map and requires the142
adjunction of regularisation terms whose calibration is not straightforward. In contrast to143
this conventional approach, a projection onto a space of regular functions: the Sobolev space144
H1(Ω), is proposed to regularise the descent direction. As will be shown, this leads to a very145
efficient data assimilation procedure.146
The paper is organised as follows.We first describe the adjoint-based turbulencemodel and147

wall-pressure measurements coupling for flow reconstruction around a high-rise building.148
The next section improves the adjoint-based turbulence models’ sensitivity analysis tool and149
proposes a corrective turbulence model. Then, the case studied is described. The models’150
sensitivities are discussed, and their performances for flow reconstruction fromwall-pressure151
data are presented. Finally, a summary and further outlook are given.152

2. Development for an adjoint-based diagnostics153

In this section, we set up the variational data-model coupling framework, based on optimal154
control techniques. A particular attention is given to the analytical derivation of the adjoint155
model of one of the most common turbulence models, the realizable revision of k−ε , coupled156
with near wall closure.157

2.1. Variational approach158

A generic variational data-coupling problem can be formally described by the following159
optimisation problem :161

min
α

J(α,X(α),Yobs)

subject to Mi(α,X(α)) = 0 i = 1, . . . , N
(2.1)162

where J() is the cost function that quantifies the misfit between observations and the model,163
i.e. here measurements and CFD solution respectively, penalised by an a priori statistical164
knowledge of these discrepancies in the form of a covariance matrix. Here we refer to the165
flow measurements Yobs, and the predicted flow X. N stands for the number of independent166
variables necessary for a full description of the flow. The minimisation of this function is167
constrained by the set of flow governing equations Mi . Such problem may be solved using168
a gradient-based algorithm. It consists in iteratively evaluating the cost functional and its169
sensitivity derivatives in order to find the minimum by successive updates of the control170
variables α. The sketch of the procedure is given in algorithm 1.171
In order to properly define the cost function, onemay proceed as follows. The only available172

experimental inputs are wall-pressure measurements. Ideally, the discrepancy between the173

Focus on Fluids articles must not exceed this page length
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Algorithm 1 min

α
J(α,X(α),Yobs)

Initialisation: αm = αb and m=0
repeat

Solve M(Xm, αm) = 0
Compute sensitivity DJ

Dα (X
m, αm)

update α→ αm+1 ; m = m + 1
until



Jm − Jm−1


 < ε

experimental pressure measure and the model wall-pressure can be expressed as ∆Pw =174
Pw

obs −H(P
w) whereH(.) restricts the pressure at the measurement positions (the subscript175

w stands for wall). However, due to measurement errors, this difference must be weighted by176
their associated uncertainties. Having no access to the real pressure values, these uncertainties177
have to be estimated. By assuming a normal distribution around the measured value, this178
can be introduced by means of an empirical covariance matrix. Concerning the projector179
H(.), in this work, we have considered interpolation by a Gaussian kernel of half size D,180
i.e. the building diameter, from the computational grid to the position of the measurements181
to ensure consistency between estimated observation and pressure measurements. So far, it182
should be pointed out that under the assumption of incompressible flow, the pressure solved183
numerically is only defined up to a constant. Thus, the experimental and numerical pressures184
can best be collated by comparing their respective pressure coefficient Cp =

P−P∞
1/2ρU2

ref
with185

P∞ denoting the reference static pressure. We note the difference between numerical and186
experimental value by ∆Cp = Cw

pobs
− Cw

p .187
To ensure that the set of parameters α remains in a realistic set of values, we define a188

physically likely range for each component αi . This can be formalised by a penalisation term189
on the cost functional, leading to190

J(P, α) = | |
1
2
ρU2

ref∆Cw
p | |

2
R−1 + | |α − αb | |

2
B−1, (2.2)191

where R is the covariance matrix defined from measurement’s uncertainties, B denotes the192
covariance matrix associated to the parameter validity range, and Uref stands for a reference193
velocity. Without loss of generality, a diagonal measurement covariance with a constant194
standard deviation

√
Rii = 1 is used. This uniformity represents an equal degree of confidence195

for each measurement, and the diagonal structure ensues from an assumption of spatially196
uncorrelated errors, which can be assumed for sufficiently distant measurements. Matrix B197
corresponds to a prior knowledge on the range of values of the parameters. In practice, it198
is worth noting that the role of B matrix is twofold. In the one hand, it imposes a realistic199
interval in which the parameters can be optimised; while, on the other hand, it ensures a200
consistent scaling between inhomogeneous terms.201

2.2. A RANS model202

The incompressible airflow surrounding the building can be fully described by its velocity u203
and pressure p . This unsteady state, solution of the Navier-Stokes equations, can be further204
decomposed in terms of its mean, (U, P), that will be resolved and a modeled fluctuation205
(u′, p′). By applying time averaging to the Navier-Stokes equations, one can obtain the partial206
differential equations (PDEs) of the RANS equations in a conservative form, whose solution207
provides the mean wind flow :208

∂(ρUjUi)

∂xj
= −

∂P
∂xi
+ µ

∂

∂xj

[
∂Ui

∂xj

]
−

∂

∂xj

(
ρu′iu

′
j

)
, (2.3)209
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∂Uj

∂xj
= 0.210

Due to the non-linear term, the averaging procedure leads to a second-order moment u′iu
′
j ,211

called the Reynolds stress. Since all the unsteadiness and turbulence effects of the wind212
flow are contained in this term, without a priori specification of this term, the above system213
is not closed and cannot be solved. The immediate solution for the closure is to include214
additional transport equations to predict the turbulence second-order statistics. Relying on the215
Boussinesq analogy between large-scale dissipation andmolecular friction, Reynolds stresses216
are commonly modeled using a turbulent diffusion-like term, so-called eddy viscosity model.217
Several models have been proposed to relate quantities describing turbulent fluctuations. A218
common practice associates the turbulent kinetic energy k, representing the isotropic part of219
the exact Reynolds stress, with the turbulence length scale l. Due to their simple structures,220
these models often require empirical closure functions or constants which are established and221
determined from experimental knowledge, trying to ensure their widest possible applications.222

For instance, the steady realizable k−ε turbulencemodel (Shih et al. 1995), in which ε ∼ k3/2
l223

models the turbulence dissipation rate at the viscous scale, is often adopted for wind flow224
expertise around real-world buildings. The Reynolds stress is linearly linked to the mean225
shear stress by an eddy viscosity as follows:226

− ρuiu j = µt

(
∂Ui

∂xj
+
∂Uj

∂xi

)
−

2
3
δi j ρk, (2.4)227

where µt stands for the isotropic (i.e. assuming that length and time scales of turbulence are228
smaller than those of the mean flow with no preferential direction) eddy viscosity coefficient.229
Its value is calculated using the relation230

µt = Cµρ
k2

ε
.231

The coefficientCµ, following the work of Shih et al. (1995), is a non uniform constant defined232
by233

Cµ =
1

A0 + AsUs
k
ε

, (2.5)234

where As andUs are functions of the mean strain and rotation rates and A0 is a closure tuning235
coefficient. Substituting the Reynolds stress model (2.4) in the mean momentum equation236
(2.3) yields to237

∂(ρUjUi)

∂xj
= −

∂

∂xi

(
P +

2
3
ρk

)
+

∂

∂xj

[
µe f f

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
, (2.6)238

where µe f f = (µt + µ) stands for an effective viscosity. It can be noted that the isotropic239

component 2
3 ρk is absorbed in a modified mean pressure and only the anisotropic part plays240

an effective role in transporting momentum. It is worth noting that anisotropy here arises241
only from the mean flow strain and does not depend on the turbulent fluctuations. Moreover,242
in the computation of the pressure coefficient (required for the observation error in the cost243

functional (2.2)), we subtract the isotropic part to obtain Cp =
P−P∞−

2
3ρk

1/2ρU2
ref

. With regards to244

the turbulence closure model, the transport of mean turbulent kinetic energy, k, is described245
by246

∂ρUj k
∂xj

=
∂

∂xj

[(
µ +

µt
σk

)
∂k
∂xi

]
+ µt

(
∂Ui

∂xj
+
∂Uj

∂xi

)
∂Ui

∂xj
− ρε, (2.7)247
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where σk is a closure constant that enables the scalar mixing of k to be affected by other248
mechanisms than eddy viscosity. The hypothesis, associated to the value σk = 1, in which249
the eddy diffusion affects in the same way the momentum and the turbulent kinetic energy250
k, is analysed in section 5.2.251
The turbulent dissipation rate transport is described by the model proposed by Shih et al.252

(1995)253

∂ρUjε

∂xj
=

∂

∂xj

[(
µ +

µt
σε

)
∂ε

∂xi

]
+ C1(S, k, ε)Sε − C2

ε2

k +
√
µε
, (2.8)254

where S = 2(Si jSi j)
1
2 is the magnitude of mean strain rate where Si j = 1

2

(
∂Ui

∂x j
+
∂Uj

∂xi

)
and255

C1 = max (0.43, η/(5 + η)) where η = Sk/ε is the normalised strain rate. The constants σε256
and C2 are closure coefficients that need to be calibrated. Assuming that the generation of ε257
is linked to its redistribution everywhere, as it is was established in an inertial layer, leads to258
a relationship between these coefficients (details in section 5.2.2). This closure hypothesis259
is analysed as well in section 5.2. To properly close this set of equations (since the model is260
valid only for high Reynolds regimes), an asymptotic behaviour has to be imposed near the261
wall where this assumption is no longer valid in the viscous and buffer layers. Indeed, for262
large scale configurations (i.e., ABL, high-rise buildings), the first grid centre closest to the263
wall usually falls at the high end of the logarithmic layer. Thus, with a finite volume scheme,264
in the domain Ωc , covered by the first grid cell closest to the wall centered on |c and with a265
boundary face centered on | f (see figure 1), these relations hold266

U+ |c =
1
κ

f (y+ |c), (2.9)267

∂k
∂xj

nj | f =
∂ε

∂xj
nj | f = 0, (2.10)268

Pk |c = ε |c =
u3
τ |c

κy |c
(2.11)269

y+ |c =
ρuτ |cy |c

µ
, (2.12)270

τwall |c = ρu2
τ |c = µe f f

Uiti |c
y |c

, (2.13)271

U+ |c =
Uiti |c
uτ |c

, (2.14)272
273

where U+, y+ are the dimensionless wall unit tangential velocity component and distance274
from wall, respectively, ni and ti = 1 − ni are the projections of normal and tangential unit275
vectors onto the boundary face in the orthonormal frame (x, y, z). The log function f is an276
empirical function parametrised by constants which depend on the wall type (such as smooth277
or rough); and κ = 0.41 is the Von Karman constant. As viscous effects is being neglected at278
the center of the first cell where y+ >> O(1), the friction velocity uτ is scaled by the square279

root of the fluctuations, following the empirical expression uτ = C1/4
µ k1/2 withCµ = 0.09. Let280

us note that (2.13) extends the constant shear stress to the wall as we assume linear behaviour281
(in second order finite volume scheme FVM) inside the cell Ωc . In practice, this extension282
is of great importance as it enables the enforcement of the logarithmic law while providing283
numerical stability for FVM scheme. For instance, in evaluating the production term Pk |c in284
(2.11), the friction velocity to the power three is often split into two contributions: turbulence285
and the mean flow shears.286
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∂Ωw

Ωc
c

f

Figure 1: First grid cell close to the wall.

2.3. A continuous adjoint RANS model287

The optimisation problem (2.1) can be solved by augmenting the cost function with the288
constraint, i.e. the RANS model. This is done through Lagrange multipliers also called289
adjoint variables. The resulting unconstrained optimisation problem can be written in a290
compact form as291

L(X,X∗, α) = J(P, α) + 〈X∗,M(X, α)〉Ω, (2.15)292

where 〈., .〉Ω stands for the spatial L2 inner-product in the flow domain Ω. The mean flow293
state X is defined by the set (U, P, k, ε, µt ). As for the adjoint state X∗, we define it as294
(U∗, P∗, k∗, ε∗, µ∗t ). The term U∗ stands for the adjoint velocity, P∗ is the adjoint pressure295
field, k∗ is the adjoint turbulent kinetic energy, ε∗ the adjoint kinetic dissipation rate and µ∗t296
the adjoint eddy-viscosity.297
Solving the optimisation problem implies to find the set of parameters, the state vector298

and the adjoint state such that the derivatives of L with respect to all variables vanish. To299
this end, based on the application of the Green-Gauss theorem and the use of integrations300
by parts – see the Appendix and the work of (Othmer 2008)– the adjoint system reads as301
follows:302

− ρ
∂UjU∗i
∂xj

− ρUj

∂U∗j
∂xi
−

∂

∂xj

[
µe f f

(
∂U∗i
∂xj
+
∂U∗j
∂xi

)]
+
∂P∗

∂xi
= DU∗,i (2.16)303

∂U∗j
∂xj
= 0 (2.17)304

−
∂ρUj k∗

∂xj
−

∂

∂xi

[(
µ +

µt
σk

)
∂k∗

∂xj

]
− ρ

2
3
∂Ui

∂xi
k∗ = Dk∗ (2.18)305

−
∂ρUjε

∗

∂xj
−

∂

∂xi

[(
µ +

µt
σε

)
∂ε∗

∂xj

]
− ρ

∂Pε
∂ε

ε∗ + ρ
∂sε
∂ε

ε∗ = Dε ∗ (2.19)306

∂Pk

∂µt
k∗ −

(
∂Ui

∂xj
+
∂Uj

∂xi
−

) ∂U∗j
∂xi
−

1
σk

∂k
∂xi

∂k∗

∂xi
−

1
σε

∂ε

∂xi

∂ε∗

∂xi
= µ∗t . (2.20)307

308

The right-hand sides are expressed as

DU∗,i = k
∂k∗

∂xi
+ ε

∂ε∗

∂xi
+

2
3
∂kk∗

∂xi
−
∂Pε
∂Ui

ε∗ −
∂Pk

∂Ui
k∗ −

∂

∂xi

(
∂µt
∂Ui

µ∗t

)
Dk∗ = ρ

∂Pε
∂k

ε∗ − ρ
∂sε
∂k

ε∗ −
∂µt
∂k

µ∗t

Dε ∗ = −
∂µt
∂ε

µ∗t ,

where Pk and Pε stand for the production terms of turbulent energy (second term in the309
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Un = Uinlet
k = kinlet
ε = εinlet
∇nP = 0 no slip

∇nP = 0
wall f unction

∇nU = 0
∇nk = 0
∇nε = 0
P = 0

symmetry

6H

12H6H

12H

H

U∗ = 0
k∗ = 0
ε∗ = 0
∇nP∗ = 0 U∗ = 0

∇nP∗ = 0
adjoint wall f unction

U∗ = U∗
outlet

k∗ = k∗
outlet

ε∗ = ε∗
outletP∗ = P∗
outlet

symmetry

D

U∗n = −
∂J
∂P

(a) (b)

Figure 2: Settings and boundary conditions of flow solution (a) and adjoint solution (b).

RHS of (2.7)) and for the turbulence dissipation rate (second term in the RHS of (2.8)),310
respectively. As for sε , it denotes the modeled sink of turbulence dissipation rate (third term311
in the RHS of (2.8)). To solve this adjoint system, adjoint boundary conditions have to be312
derived consistently with the boundary conditions of the direct problem. The next section is313
dedicated to this crucial point.314

2.4. Adjoint boundary conditions315

The treatment of the adjoint boundary conditions is a central piece in adjoint methods in order316
to obtain consistency in the gradient computation. In our case with the transport equations317
of turbulent quantities, some treatments are not standard, particularly at the adjoint wall318
law. Moreover, some specific treatments are performed at the discrete level of the finite319
volume formulation. In this section, we propose to recall the general procedure to obtain320
adjoint boundary conditions, and then to detail the conditions to enforce at each boundary.321
Boundary conditions for the flow and adjoint fields are summarised in figure 2.322

Derivation of (2.15) leads, in addition to system (2.16)-(2.19), to a system of boundary323
terms. Directional derivative with respect to P, leads to324 [

U∗i niδP
]
δΩ
= −

∂J
∂P

δP, (2.21)325

where the boundary integral is defined as [·]∂Ω =
∫
∂Ω
(·) d∂Ω. By deriving with respect to326

Ui , we obtain328

[P∗δUini]δΩ −
[
ρ
(
(U∗i ni)(Uini) +UjU∗j ni

)
δUini

]
δΩ
−

[
µe f f (U∗i ni +U∗j nj)

∂δUi

∂xj

]
δΩ

−

[
δUiµe f f

(
∂U∗i ni
∂xj

ni +
∂U∗j nj

∂xi
ni

)]
δΩ

−

[
δUi

(
5
3
ρkk∗ni +

(
∂Pk

∂Uj
ni

)
k∗ + ρεε∗ni +

(
∂Pε
∂Uj

ni

)
ε∗ +

(
∂µt
∂Uj

ni

)
µ∗t

)]
δΩ

.

(2.22)

329
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Derivative with respect to k, leads to330 [
−

2
3
ρU∗i niδk

]
δΩ

+ [ρUinik∗δk]δΩ −
[(
µ +

µt
σk

)
k∗
∂δk
∂xj

nj

]
δΩ

+


∂

(
µ +

µt
σk

)
k∗

∂xj
njδk

δΩ ,
(2.23)331

and with respect to ε to332

[ρUiniε∗δε]δΩ −
[(
µ +

µt
σk

)
ε∗
∂δε

∂xj
nj

]
δΩ

+


∂

(
µ +

µt
σk

)
ε∗

∂xj
njδε

δΩ . (2.24)333

Finally by deriving with respect to µt , we obtain334 [
δµt

(
µ∗t −

(
∂Uj

∂xi
nj +

∂Ui

∂xj
nj

)
U∗i −

ρ

σk
k∗
∂k
∂xj

nj −
ρ

σε
ε∗
∂ε

∂xj
nj

)]
δΩ

. (2.25)335

Then at each boarder, variations of the direct boundary conditions are injected in the336
system (2.21)–(2.25), to obtain the corresponding adjoint boundary conditions.337
At the inlet, the direct boundary conditions lead to338

δUiti = 0 ; δUini = 0 ; δk = 0 ; δε = 0. (2.26)339

Substituting this in (2.21)–(2.24), the system reduces to340

U∗i ti = 0 ; U∗i ni = 0 ; k∗ = 0 ; ε∗ = 0. (2.27)341

This quite standard result at the continuous level is not straightforward to implement in the342
finite volume formulation. No condition is imposed on P∗ and the inlet boundary condition343
for the adjoint pressure is left arbitrary. But, in accordance with (Zymaris et al. 2010;344
Othmer 2008) and identically as the numerical treatment of the direct inlet pressure P, zero345
Neumann condition on P∗ is imposed to ensure numerical stability. To obtain the other346
boundary conditions, the same approach is employed.347
At the outlet, the pressure value is prescribed while the other flow variables have their348

normal gradient imposed, leading to349

P∗ni = (U∗i ni)(Uini)+ (U∗jUj)ni + 2 ∗ µe f f
∂(U∗j nj)

∂xi
ni +

5
3
ρkk∗ni + ρεε∗ni +

(
∂µt
∂Uj

nj

)
niµ∗t .

(2.28)350
This provides a constraint on the boundary condition to determine the adjoint pressure at the351
outlet. In equation (2.28), the adjoint pressure at the next iteration is determined explicitly352
by evaluating U∗ at the previous iteration. Projecting then the fluxes on the outlet tangent353
plane, we obtain:354

µe f f
∂(U∗j tj)

∂xi
ni + (U∗i ti)(Uini) = −

(
∂µt
∂Ui

ni

)
tiµ∗t −

(
∂Pk

∂Uj
nj

)
tik∗ −

(
∂Pε
∂Uj

nj

)
tiε∗. (2.29)355

This equation provides a boundary condition for the tangential component of the adjoint356
velocity.357
It is worth noting that, instead, an alternative choice could be made by imposing P∗ = 0358

and determining the adjoint velocity by solving equations (2.28) and (2.29). Previous works,359
for a different turbulence model (Zymaris et al. 2010) or for frozen turbulence assumption360
(Othmer 2008), showed that both implementations yields to identical sensitivities.361

Rapids articles must not exceed this page length
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Derivation w.r.t. k, ε and µt leads, respectively, to362

ρk∗Uini + ρDk
∂k∗

∂xi
ni =

∂µt
∂k

µ∗t , (2.30)363

ρε∗Uini + ρDε
∂ε∗

∂xi
ni =

∂µt
∂ε

µ∗t , (2.31)364 (
∂Uj

∂xi
nj +

∂Ui

∂xj
nj

)
U∗i = µ

∗
t . (2.32)365

366

Therefore, for known outlet direct and adjoint velocities, the adjoint eddy viscosity is updated367
through equation (2.32). Then, conditions (2.30) and (2.31) can be imposed to solve k∗ and368
ε∗ respectively.369
As for the side and top free-stream boundaries under symmetry condition, we assume a370

zero flux of all flow variables,371

∂P
∂xi

ni =
∂(Uj tj)
∂xi

ni =
∂k
∂xi

ni =
∂ε

∂xi
ni = 0, (2.33)372

and zero normal velocity,373

Uini = 0. (2.34)374

We thus obtain the following boundary conditions for the adjoint variables:375

U∗i ni = 0,
∂(U∗i ti)
∂xj

nj = 0,
∂k∗

∂xi
ni = 0,

∂ε∗

∂xi
ni = 0, µ∗t = 0. (2.35)376

This shows that symmetric boundary conditions are conserved with the adjoint model.377
The wall boundaries are split into two parts, namely ∂Ωtower for the part where data are378

provided, i.e. the tower, and ∂Ωgr for the walls at the ground modelling the surrounding379
environment, for which there is no data. Based on equation (2.21) we have380

U∗i ni =
∂J

∂P
at ∂Ωtower, (2.36)381

U∗i ni = 0 at ∂Ωgr, (2.37)382

U∗i ti = 0 at ∂Ωtower ∪ ∂Ωgr. (2.38)383384

Therefore exactly in the same way as for the inlet, the no-slip condition on the velocity,385
associated with a zero Neumann condition on the mean pressure, implies a homogeneous386
Dirichlet boundary condition for the adjoint velocity and a zero Neumann condition for387
the adjoint pressure at the ground walls ∂Ωgr. Let us note that due to the wall-pressure388
measurements, the Dirichlet condition on the adjoint variable U∗ is inhomogeneous on the389
normal component along ∂Ωtower at the sensor positions.390
Considering the adjoint turbulence variables (k∗, ε∗, µ∗t ), it is important to consider the391

expression of the wall-law in order to derive their boundary conditions. From the equality392
(2.13), the log law is imposed by re-evaluating the wall viscous fluxes through a prescribed393
value of the eddy-viscosity. From the relations394

U+ =
1
κ

ln(E y+) at ∂Ωtower,395

and396

U+ =
1
κ

ln(
y + z0

z0
) at ∂Ωgr,397
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the eddy viscosity is then defined such that398

µt = µ

(
y+κ

ln(E y+)
− 1

)
at ∂Ωtower, (2.39)399

µt = µ

(
y+κ

ln( y+z0
z0
)
− 1

)
at ∂Ωgr, (2.40)400

401

where E = 9.8 is the roughness parameter for smooth walls (Versteeg &Malalasekera 2007)402
and z0 = 0.02 m is the roughness length which is relevant for an ABL flow scale. Recalling403
from figure 1 that |c and | f denote respectively the first cell centre and the boundary face404
values, on both walls µt | f is seen to be dependent on k |c solely. Furthermore, by imposing the405
inertial balance (2.11) we observe that ε |c is an explicit function of k |c . As a consequence,406
we conclude that the logarithmic wall-closure can actually be defined uniquely through the407
knowledge of the turbulent kinetic energy value at the first cell-center only. We propose thus408
to reconsider the derivation of these terms inside the domain included in the cells adjacent to409
the wall. Replacing ε |c by its function of k |c (equation (2.11)), we are led to consider a zero410
Neumann boundary condition, which is fully consistent with the homogeneity assumption411
near the wall. This yields to the following modification to the sources terms at the wall412
adjacent cell413

Dk∗ = ρ
∂Pε
∂k

ε∗ − ρ
∂sε
∂k

ε∗ + ρ

(
∂Pk

∂k
|c −

∂ε

∂k
|c

)
k∗ |c and Dε ∗ = 0 in Ωc,

(2.41)414
with Pε and sε , the dissipation production and sink terms, being modified accordingly. At415
the continuous level, the third term in the RHS vanishes assuming turbulence homogeneity.416
However, at the discrete level, as discussed in section 2.2, it is kept for numerical consistency.417
Furthermore, as we impose a homogeneous Neumann boundary condition for k in equation418

(2.10), it can be observed that this leads to the same set of conditions as in the outlet (equations419
(2.30), (2.31) and (2.32)). Moreover, with the no slip condition and the set of conditions for420
the adjoint velocity ((2.36), (2.37), (2.38)), the wall boundary conditions for the adjoint421
dissipation rate and eddy viscosity reads as422

∂ε∗

∂xi
ni = 0 at ∂Ωtower ∪ ∂Ωgr, (2.42)423

µ∗t = 2
(
∂(Uini)
∂xj

nj

)
U∗i ni at ∂Ωtower, (2.43)424

µ∗t = 0 at ∂Ωgr. (2.44)425426

Concerning the boundary condition on k∗, we propose to consider (2.30) at |c while we427
impose zero Neumann condition at | f . This leads to the following boundary condition for k∗:428

∂k∗

∂xj
nj | f = 0 at ∂Ωw (2.45)429

and430

k∗ |c =
∂µt
∂k
| f
µ∗t | f

ρUini
in Ωc . (2.46)431

Some numerical tests have shown that this alternative solution led to identical results on432
the initial sensitivity field than the non-homogeneous Neumann boundary condition. Hence,433
with this treatment, wall conditions for the adjoint system are now fully consistent with the434
initial RANS model and leads us thus to a consistent minimisation procedure.435
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Now that we have at our disposal a dual description of the dynamics composed of a436
RANS direct model and the adjoint of its tangent linear representation, we explore three437
methodological settings for an in-depth diagnosis of the turbulence closure. The first tool at438
hand consists simply to inspect the adjoint state maps. The second one consists in optimising439
global constants parameters of the turbulence model for reducing the observation error; and440
to relax/enforce constraints on these parameters to test physical hypotheses. The last one,441
goes one step further and considers the adjunction of distributed unknowns which enables to442
identify a missing term in the equation where the turbulence closure is performed, here, in the443
transport equation for the energy dissipation rate. In order to conduct an efficient structural444
inspection, distributed parameter is sought in the Sobolev space and further estimated through445
a data-assimilation procedure. These three settings are described in section 3 and applied446
then to a high-rise building case study described section 4. The numerical results on this447
case study for the three different sensitivity analyses are presented in section 5.448

3. Adjoint-based diagnostic tool for turbulence models449

In the previous section we detailed the construction of a continuous adjoint model (together450
with its consistent boundary conditions) of the tangent linear operator of a RANS model for451
very high Reynolds flow, associated with large integral/body length scales. In the current452
section,we presentmethodological tools derived from this adjoint operator. Beyond providing453
a data-driven flow reconstruction, it enables us an in-depth analysis of the turbulence closure.454

3.1. Adjoint state as a basis for sensitivity analysis455

While in general, adjoint variables are usually considered as a purely mathematical object,
they do have physical meaning which have been explored in several works (Hall & Cacuci
1983; Giles & Pierce 2000; Gunzburger 2003). Although we know that RANS models (at
least with Boussinesq eddy viscosity hypothesis for its closure) does not allow an accurate
representation of complex flows, they nevertheless provide some usefull global insights on the
flow.With this inmind, the reconstructed adjoint state enables to highlight amisrepresentation
of the turbulent flow by the RANS model, hence, pointing where it is possible to optimise
the RANS model parameters to optimally reduce the difference between the CFD state and a
given experimental dataset. Moreover, from an optimisation perspective, one may interpret
them as a steepest descent direction of an objective cost function, for a particular control
parameter. For instance, the adjoint velocity can be seen as the influence of an arbitrary
forcing fu acting on the mean momentum equation. This can be shown when deriving an
optimality condition by a perturbation of this force,

Mu(X, α) = fu →
∂J

∂fu
= U∗.

Momentum equation → Optimality condition.

Then, as we perform a first update of this forcing by a gradient-descent minimisation456
algorithm, one obtain457

fit1u = (f
it0
u = 0) − λU∗,458

while λ is a positive non-dimensional marching step factor. Through dimensional analysis,
one may scale U∗, which has the dimension of an acceleration, as U∗ ∼

U2
ref

Href
. The adjoint

velocity features are thus immediately representing a missing term, that can be interpreted
as a correction of the Reynolds stress. Examining the adjoint turbulence variables of a k − ε
model, namely k∗, ε∗ and µ∗t , similar interpretations can be drawn as we consider arbitrary
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forcing such as

Mk(X, α) = fk →
∂J

∂ fk
= k∗,

Mε (X, α) = fε →
∂J

∂ fε
= ε∗,

Mµt (X, α) = fµt →
∂J

∂ fµt
= µ∗t .

The adjoint variables shed some light on the flow regions that are sensitive to an eventual459
correction of the turbulence model. As this will be shown in the case study of section 5,460
this interpretation is very helpfull to analyze the incorporation of additional variables to461
define efficient data-driven turbulence closure. These forcings can indeed be associated to462
any of modeled terms meant to adress a particular turbulence modelling error (e.g. energy463
production, backscaterring, redistribution or dissipation). The sensitivity of the associated464
parametric shapes and hyper-parameter can be efficiently obtained and inspected through the465
adjoint operator.466

3.2. Adjoint diagnosis on global closure coefficients467

Given the adjoint dynamics, the sensitivity of any parameter can be obtained from the468
optimality condition (6.3). Free constants of the RANS model can be finely tuned knowing469
their sensitivities. As we will show for a particular turbulence model (realizable k − ε), the470
quality of the associated numerical reconstructions appears to be quite restricted, for a range471
of physically acceptable values of these parameters. The reason of the inefficiency of the472
calibration procedure is interpreted below in terms of a too strong model “rigidity”. This473
hindering facts will be later illustrated when we will perform the sensitivity analysis and data474
assimilation on the high-rise building case.475

3.2.1. A sensitivity field476

Considering the vector α = (A0,C2, σk, σε ) of closure parameters, the optimality con-477
dition (6.3) is obtained by differentiating the Lagrangian (2.15) in the directions δα =478
(δA0, δC2, δσk, δσε ):479

∂L

∂A0
δA0 =

〈
∂Mµt

∂A0
δA0, µ

∗
t

〉
Ω

= 〈−µtCµδA0, µ
∗
t 〉Ω =

〈
−µtCµ, µ∗t ,

〉
Ω
δA0

∂L

∂C2
δC2 =

〈
ε2

k +
√
µε
, ε∗

〉
Ω

δC2

∂L

∂σk
δσk =

〈
−
∂

∂xj

[
µt

σ2
k

∂k
∂xi

]
, k∗

〉
Ω

δσk

∂L

∂σε
δσε =

〈
−
∂

∂xj

[
µt

σ2
ε

∂ε

∂xi

]
, ε∗

〉
Ω

δσε .

(3.1)480

So far, this does not include any explicit dependency of the cost on the set of parameters, such481
as a penalisation term. It can be observed that the optimality conditions reduce drastically482
the high dimensional dependency of the model to the lower dimensional parameter space.483
This reduction, performed via the inner product 〈., .〉Ω, does reflect the global compromising484
character of the closure coefficients. This results in a rather rigid situation when seeking data-485
model fitting. However, this rigidity can be understood as a strong confidence in the model486
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structure. This strongly constrains the solutions but enables, on the other hand, to assimilate487
very sparse measurements. The examination of the spatially varying adjoint variables to488
diagnose the parameter sensitivity provides useful piece of information even though we deal489
with a rigid parametric model for the reconstruction. This type of analysis will be exploited490
in our case study.491

3.2.2. Penalty range492

To ensure realistic numerical solutions, relevant physical range for each of the closure493
coefficients is defined. These constraints are introduced via penalty terms on the control494
parameters through an error covariancematrix, in cost function (2.2).Values of the parameters495
outside of a range defined by the standard deviation are hence strongly penalised. These496
standard deviations are in practice fixed from experiments on prototypical configurations497
of boundary layer or decaying turbulence. This may become questionable in regions where498
the fluid and building interact and near flow separations associated with strong shears. As499
a matter of fact, the assumptions underlying the concept of eddy viscosity starts to be500
less reasonable in these regions (Pope 2001). Thus, as a compromise, the range limits are501
fixed from experiments as intervals ∆αi centered around the background a priori value. The502
covariance matrix is finally expressed as follows503

B−1
ii = ζi

(
|
∂J0
∂α |

∆αi

)
.504

As mentioned earlier, this covariance has two roles: first, to impose the trusted (or recom-505
mended) ranges ∆αi and secondly, to ensure a dimensional homogeneity of the cost function506

through the norm of the sensitivity derivative given at the first minimisation iteration | ∂J0
∂α |.507

The importance of control variables with high values of sensitivity derivatives is strengthen508
in the objective function in comparison to less sensitive parameters. The parameters ζi are509
dimensionless free parameters allowing to give more or less global a priori confidence on510
each parameter. In practice these parameters can be fixed from a priori considerations.511

3.3. Adjoint diagnosis on spatially distributed closure: correction in the dissipation512
transport equation513

In contrast to the previous section, we consider now the adjoint system as a basis for514
the inspection of the model misrepresentations through a distributed parameter. Instead of515
correcting coefficients of the model, we consider here the adjunction of a force to one of516
the model equations. We consider a corrective forcing term at the level of the dissipation517
transport equation, where the closure take place. Then, with the aim to further investigate518
such a closure through a data-assimilation procedure, a specific optimisation in the H1(Ω)519
Sobolev space is proposed in order to provide a regularisation procedure that guaranties an520
efficient descent direction as well as an implicit spatial smoothing of the forcing. With this521
regularisation, a significant improvement of the results will be shown in our study case.522

3.3.1. A corrective model523

As it was noted in the previous section, due to the model rigidity arising from the drastically524
small parameter space, the flow is not free to visit a sufficiently large domain of the state525
space that is too far from the basic RANS model. To overcome such restrictions, one526
may straightforwardly consider a set of closure parameters with a higher dimension. Still527
maintaining the validity of the Boussinesq approximation, a strategy consists in enriching528
the turbulence model structure. We choose to add a forcing term in the transport equation529
of ε (equation (2.8)) in order to correct what we may call structural errors, i.e. error arising530
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from the choice of the turbulence model equation. We could have considered as well a531
control parameter defined directly as the forcing of equation (2.8), however, we preferred to532
introduce some dependency of this forcing to the state variable. We choose a forcing term533
of the form − fε ε , where fε is the control parameter. The sign convention is chosen so as the534
added forcing corresponds to a sink of dissipation. The objective of the pre-multiplication535
by ε is to prevent unphysical dissipation corrections at locations where there is no turbulence536
and to focus specifically on relevant regions such as the shear layers and the wake. Numerical537
tests presented in section 5.3.1, demonstrate that this term behaves indeed much better than a538
direct forcing term. With this additional forcing, the dissipation transport equation becomes539

∂ρUjε

∂xj
−

∂

∂xj

[(
µ +

µt
σε

)
∂ε

∂xi

]
− C1(S, k, ε)Sε + C2

ε2

k +
√
µε
= − fε ε . (3.2)540

This model remains close to the RANS structure as to avoid overfitting effects in the context541
of severe differences between the state space and measurements.542

3.3.2. Sensitivity field543

The fact that the added distributed parameter depends on the state variable ε , requires some544
modifications of the adjoint equations. In compact form, the adjoint equation on ε∗ reads545
now as546

Mε ∗ = − fε ε∗, (3.3)547

where Mε ∗ contains all the adjoint terms derived from equation (2.19). Regarding the adjoint
boundary conditions, since no face flux are involved through the additive term, no changes
have to bemade. The optimality condition associatedwith the control parameter fε is obtained
by considering the directional derivative〈

∂L

∂ fε
, δ fε

〉
Ω

= 〈εδ fε, ε∗〉Ω ,

leading straightforwardly to express the Lagrangian sensitivity to fε as548

∂L

∂ fε
= εε∗. (3.4)549

550

3.3.3. Descent direction551

With very sparse partial observations and the consideration of spatially distributed control
parameters, the risks of obtaining local minima or unphysical flow reconstructions is much
stronger. The control parameter can be any function of L2(Ω), which allows highly irregular
functions. Regularisation is a classical way to reduce the number of local minima eventually
associated to unphysical solutions. To that purpose, penalty of the spatial gradients of
the control parameter is often considered (Franceschini et al. 2020). Such regularisations
introduces a smoothing penalty parameter on which the solution strongly depends and whose
value is in general non-trivial to choose. In the following, we consider as an alternative a
Sobolev gradient regularisation (Protas et al. 2004; Tissot et al. 2020). It consists to define
the control parameter in the Sobolev space H1(Ω) which is more regular than L2(Ω). With
this approach the functional is still defined in its basic form as

J(P) =
1
2



ρU2
ref∆Cw

p



2
R−1 .
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Provided the optimality condition (3.4) and for an arbitrary functions ψ and φ in H1(Ω), the552
Sobolev gradient is defined such that553 〈

∂L

∂ fε
, ψ

〉
=

〈
∂L

∂ fε

H1

, ψ

〉
H1

, (3.5)554

555

with the inner product definition

〈φ, ψ〉H1 =

∫
Ω

φψ + l2
sob(∇φ · ∇ψ)dΩ,

in which l2
sob

is a free parameter. Through integration by part of the second term of the inner556
product (involving the function at gradients), the equality (3.5) leads to the new optimality557
condition558

∂L

∂ fε

H1

=

(
1

1 + l2
sob

(I − l2
sob∇

2)

)−1
∂L

∂ fε
, (3.6)559

560

in which ∇2 stands for the Laplacian operator. Equation (3.6) is a projection of the sensitivity561
in L2(Ω) onto the Sobolev space. With this approach, the sensitivity field is consequently562
regularised through the solution of an Helmoltz equation. Since Matrix inversion is not an563
option in such large system, the Poisson equation (3.6) is here solved through an iterative564
technique expressed within the same finite volume scheme as for the direct RANS equations.565
It is worth to mention that this type of formulation offers two main advantages compared to566
classical regularisation terms. In the one hand, as opposed to the global penalty coefficient567
introduced in those latter, the free parameter involved in the projection approach is indeed568
a physical quantity. As a matter of fact, it is easy to see through dimensional analysis of569
(3.6) that lsob has the dimensions of a length. More precisely this parameter can be seen as570
a filtering length scale below which the sensitivity field is smoothed. It provides us a way571
to introduce a characteristic length scale relevant with the flow (e.g., the building width for572
instance). In the other hand, the Sobolev gradient does ensure a descent direction. Indeed,573
applying a Taylor expansion of the cost function around an initial guess fε in the direction574

δ feps = −∂L∂ fε
H1

can be expressed as follows575

J( fε + hδ fε ) = J( fε ) + h
〈
∂L

∂ fε
, δ fε

〉
+ O(h2).576

Substituting the second term in the RHS by using the equality (3.5) yields to577

J( fε + hδ fε ) = J( fε ) − h






 ∂L∂ fε

H1





2

H1

+ O(h2),578

in which we define the norm ‖a‖2
H1 = 〈a, a〉H1 . Thus, for a small enough perturbation hδ fε ,579

we have J( fε + hδ fε ) < J( fε ). Now, injecting this optimality condition into a steepest580
descent algorithm, an update of the forcing at an iteration n reads:581

f n+1
ε = f nε − λ

∂L

∂ fε

H1
�����
n

, (3.7)582

583

in which the step size is constrained by λ = β 1

max( ∂L∂ fε

H1
)

where β = 2 · 10−2 is chosen based584

on the sensitivity validation. In the next section, we present some numerical results obtained585



18

on a realistic case study in terms of the turbulence model parameters estimation and in terms586
of their sensitivity analysis, with the objective of analysing the closure hypotheses of a given587
RANS model using the data assimilation framework.588

4. Case study589

In this section, we first describe the wind tunnel experiments. Then, we present the numerical590
setup.591

4.1. Description of the wind tunnel experiment592

Experimental data were provided by the CSTB (Nantes, France) from the work of Sheng et al.593
(2018). Measurements were performed in the atmospheric wind tunnel (NSA) with a test594
section of 20 m long, 4 m wide and 2 m high. Upstream of the isolated building, roughness595
elements and turbulence generator were set to reproduce the wind profile perceived by the596
full scale building. The floor of the wind tunnel is equipped with a turntable that enables597
the flow incidence to vary from 0 to 360o. In the present paper, only one wind direction is598
considered. In these experiments, the building was modeled with a wall-mounted prism of599
square cross-section with the dimensions: 10 cm × 10 cm × 49 cm which corresponds to a600
tower of height H = 147 m and a width D = 30 m at full scale. To perform measurements,601
two tower models were built. The first model was made of Plexiglas which allows for optical602
access and, thus, to use particle image velocimetry (PIV). The second model was equipped603
with 265 pressure taps tomeasure the unsteady pressure distribution on themodeled building.604

4.2. Numerical setup605

The open source library OpenFOAM (Jasak 1996) was used to implement the CFD and606
adjoint governing equations. The library utilizes a second order finite volume discretisation607
approach (Moukalled et al. 2016) and a fully implicit first order method for time integration.608
A prediction-correction procedure is used for the pressure-velocity coupling based on the609
Rhie-Chow interpolation (Rhie & Chow 1983). Correction for mesh non orthogonality was610
applied for the Poisson solver. A full scale building is modeled and a neutral atmospheric611
boundary model was used (Richards & Hoxey 1993) to enforce the inlet wind profiles.612
Profiles for U, k and ε are defined as613

Uin =
uABL
τ ln

(
z+z0
z0

)
κ

, kin =
(

uABL
τ

Cµ

)2

and εin =
(uABL
τ )3

κ(z + z0)
, (4.1)614

where uABL
τ is the friction velocity associated with the constant shear stress along the ABL615

width616

uABL
τ =

κUre f

ln(Hre f +z0
z0
)

617

in which Ure f and Hre f =
2
3 H are, respectively, reference velocity and height chosen to618

match with the experimental profiles (and thus the eurocode (EN 2005)) (see figure 3). These619
profiles are consistent with the wall treatment as we prescribes eddy viscosity’s ground-value620
by (2.40), such that uτ = uABL

τ . As for the roughness height z0, it was set to 0.02, as an621
intermediate between the roughness class I and class II (EN 2005).622
The size of the computational domain was fixed to ensure that the blockage effects are623

inferior to 3% (Tominaga et al. 2008; EN 2005). Grid refinement was chosen to ensure a624
good representation of the wind gradient at the inlet. Unstructured grid was then adopted625
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Figure 3: Profile of the neutral atmospheric boundary layer: (a), mean wind velocity; (b),
turbulent intensity I as defined in (EN 2005).

with the minimum distance of the centroid of the cell adjacent to the building walls set to626
0.001 H. This grid refinement reached approximately 3.5 million cells.627
The adjoint differential equations were discretised using the same CFD library as for the628

direct equations. As for the direct simulation, the adjoint pressure and velocitywere iteratively629
solved using a prediction-correction procedure. The discretisation schemes used for the flow630
equations were maintained. Moreover, we note that the derivation of the non-linear terms631
leads to an explicit dependency of the adjoint solution on the direct flow solutions that632
prevents a parallel computation of the two solvers.633

5. Results634

In this section, we validate the proposed data assimilation scheme for global and distributed635
turbulence model parameters. An adjoint state analysis is conducted to obtain the sensitivities636
to both model control closure parameters, global and distributed coefficients. We assess the637
limits of global closure optimization performances and exhibit the ability of the proposed638
distributed closure method not only to reconstruct wall-pressure-driven wake flow accurately639
but also to enable turbulence closure analysis.640

5.1. Adjoint state analysis641

The normalised adjoint fields (by theirmaximum in-plane values), shown in figures 4, 5 and 6,642
highlight the areas of interest in terms of turbulence modelling on two horizontal plans (at643
normalised height z/Hre f = {0.19, 1}) and on the symmetry plan (at y/D = 0). These areas644
correspond to regions, whose state is observable by the sensors, and where the turbulence645
closure model fails to reproduce the physical behaviour of the flow; this corresponds to the646
recirculation regions behind and at the top of the building (as seen in the centered streamwise647
vertical plans on figure 6), the area of the vortex shedding due to flow separation (seen in648
the horizontal plans on figure 4 and 5 ) and the flow impingement region of the building.649
Based on these adjoint fields, the cost functional’s sensitivity to any control parameter (be650
distributed or not) can be obtained through its associated optimality condition.651
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Figure 4: Adjoint turbulence variables at horizontal plan with normalised height
z/Hre f = 0.19:(a), ε∗; (b), k∗; (c), µ∗t . Variables are normalised by their in-plan peak

values.

Figure 5: Adjoint turbulence variables at horizontal plan with normalised height
z/Hre f = 1:(a), ε∗; (b), k∗; (c), µ∗t . Variables are normalised by their in-plan peak values.

Figure 6: Adjoint turbulence variables at symmetry plan :(a), ε∗; (b), k∗; (c), µ∗t . Variables
are normalised by their in-plan peak values.

5.2. Results for the global coefficients652

This section exhibits the adjoint approach’s capability to provide a complete information653
on the cost sensitivity to the model’s global coefficients. First, we analyse the sensitivity654
fields to highlight the spatial locations where a modification of these global coefficients655
could efficiently correct the model errors. Then, we discuss the results of a data assimilation656
procedure. The data assimilation is performed to investigate some closure hypotheses validity657
in the RANS modelling.658
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∂J
∂A0
(×107) ∂J

∂σk
(×107) ∂J

∂σε
(×107) ∂J

∂C2
(×107)

AD 1.371 -2.756 0.712 -8.583
FD (δαi = 10−1) 2.39 -3.11 0.683 -6.699
FD (δαi = 10−2) 2.07 -3.76 0.77 -11.4
FD (δαi = 10−3) 2.05 -3.04 – -11.9

Table 1: Sensitivity derivative values computed from the proposed adjoint model (AD)
and the finite difference (FD).

5.2.1. Sensitivity analysis659

First, a validation test has to be done to check the validity of the sensitivity fields. To that660
end, a specific innerproduct is employed in the variational formulation by considering an661
integration over a volume of interest, where the sensitivities are the most important. This662
volume of interest, Ωin, is centred around the building and has a size of 2.5H × 4H × 1.5H.663
It is introduced in equation (2.15), and used to compute the optimality condition through the664
following weighted sum665

∂J

∂αi

����
AD

=

〈
∂M

∂αi
,X∗

〉
Ωin

≡

nCells∑
j

(
∂M

∂αi
.X∗

)
ωj,666

where ωj denotes the volume of the j th cell. The validation metric is chosen to be the error667
between this weighted sum and the finite difference gradient computed by the cost function668
variations resulting from a small variation of the global coefficients in the volume of interest,669

∂J

∂αi

����
FD

=
(J(αi + δαi) − J(αi))

δαi
.670

The sensitivity (gradient) of J with respect to the four closure coefficients computed using671
the proposed adjoint approach and the finite differences are given in table 1. The comparison672
shows that the adjoint-based sensitivities are very close to the finite difference values. A673
fair agreement is obtained for the sensitivity associated with the coefficients involved in the674
redistribution of k and ε . However, deviations appear to be notably more important for the675
eddy viscosity pre-factor A0. These deviations are typical of the error levels associated to676
continuous adjoint methods. (Othmer 2008; Zymaris et al. 2010). This validates hence the677
procedure.678
In order to explore the effect of the turbulence model’s global coefficients, their associated679

sensitivity maps (plotted in figure 7, 8, and 9, and defined by the spatially distributed operand680
inside the integral in the optimality condition (3.1)) are discussed.681
We can see there is high interest in optimising these coefficients at the shear layers resulting682

from flow separations at the leading lateral edges and on top of the building. However, there683
is very little sensitivity in the bulk of the recirculation wake region. Moreover, with regards684

to the regularity of the sensitivity fields, ∂J
∂σk

and ∂J
∂σε

(Figures 7 and 8 (a) and (b))685

have the largest local variations compared to the others. In fact, this is explained by the686
high (second) order derivative associated with the diffusion of k and ε , in the optimality687
conditions. Now, regarding the local signs and overall values of each sensitivity field, we688
observe systematic change of sign over the domain. The L2 inner product in (3.1) leads to689
an averaged compromise solution over the whole domain for the global coefficient values.690
This compromise is likely to provide a far too weak amplitude for these coefficients in key691
regions of the flow.692
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Figure 7: Closure coefficient sensitivities at horizontal plan with normalised height
z/Hre f = 0.19: (a), sensitivity to A0, (b), σk , σε (c), and, (d), C2 (d). Sensitivities are

normalised by their in-plan peak values.

Figure 8: Closure coefficient sensitivities at horizontal plan with normalised height
z/Hre f = 1: (a), sensitivity to A0, (b), σk , σε (c), and, (d), C2 (d). Sensitivities are

normalised by their in-plan peak values.

As shown in table 1, C2 is the most sensitive coefficient. Its large value suggests that the693
coefficient is less subject to sign cancellations in the sensitivity maps. This is especially694
observed in the horizontal map at lower elevations far enough from the high-end (plot at695
z/Hre f = 0.19 where Hre f = 2/3H = 3.3D). With regards the other coefficients, their696
global sensitivity derivatives suggest, a decrease of both the eddy-viscosity pre-factor A0, the697
turbulent energy diffusivity pre-factor 1/σk and an increase of the diffusivity pre-factor 1/σε698
of the energy dissipation. This implies, in the one hand, that the turbulence dissipation rate699
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Figure 9: Closure coefficient sensitivities on the symmetry plan with normalised: (a),
sensitivity to A0, (b), σk , σε (c), and, (d), C2 (d). Sensitivities are normalised by their

in-plan peak values.

is under-predicted all over the domain and that a better redistribution of the flow field can be700
obtained by increasing C2. Inversely, by decreasing the eddy viscosity pre-factor A0 (which701
increases Cµ), this trend shows that the original turbulence model tends globally to under-702
estimates the momentummixing and thus it globally advocates higher turbulent diffusion. By703
looking at local sensitivities to this coefficients, these global directions are strongly driven704
by the high interest giving to the lateral free-stream (surrounding lateral recirculating flow)705
entrained toward the wake region. Thus, upon calibration, we may expect some preferential706
improvement of the wake extension and, inversely, a retrogression in the extension of lateral707
separated flow.708

5.2.2. Closure hypothesis analysis through data assimilation709

In this section, the optimisation problem is solved iteratively by following Algorithm 1, and710
we discuss the data assimilation procedure’s ability to estimate the flow state. Guided by the711
work of Shih et al. (1995), we intend here to devise some penalty ranges for the coefficients.712
Concerning the coefficients which are involved in the energy dissipation rate budget, referring713
to the work (Shih et al. 1995), the C2 coefficient is actually expressed as C2 = β/η, in which714
β = η + 1 is the dissipation decay rate (such as ε/εt0 = (t/t0)−β where t0 is an initial time)715
and η is the energy decay exponent (such as k/kt0 = (t/t0)

−η) that varies from 1.08 to 1.3716
in decaying homogeneous turbulence experiments (Shih et al. 1995). Thus, a range for this717
coefficient can be set as C2 ∈ [1.76, 1.93], where the background value is 1.9.718
For σε , the inertial turbulence assumption near the wall allows to establish719

σε =
κ2

C2
√

Cµ − C1
(5.1)720

were the von Kármán constant κ = 0, 41, the eddy viscosity coefficient Cµ = 0.09 and721
C1 = 0.43. Assuming a quasi-linear dependency between the two constants (see figure 11),722
knowing the range on C2 we obtain σε ∈ [1.14, 1.71]. To possibly relax the underlying723
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Scenario σk σε C2 A0
J−J0
J0

Default value 1.0 1.2 1.9 4.0
A 1.14 0.99 1.92 4.05 10.7%
B 1.0 0.74 1.96 4.08 15.7%
C 1.03 1.07 1.95 3.99 9.8%

Table 2: Summary of the optimisation results, closure coefficients and the relative
decrease of cost function.

assumption of decaying turbulence for this range, two cases study will be considered for this724
constant. In the first scenario, it will be assumed that relation (5.1) holds beyond the inertial725
layer, as established by Shih et al. (1995). On the second scenario, this constraint is relaxed726
and coefficientσε is assumed to be an independent control parameter. In that case, the closure727
is thus performed by the data. The second case is expected to bring more degree of freedom728
in the optimisation process, due to the independent adaptation of the two coefficients.729
In the transport equation of k, the coefficientσk , which adjusts the level of turbulent energy730

mixing with respect to the momentum eddy diffusivity, is in commonly fixed to unity (as in731
any k − ε turbulent model). This generally assumes a quasi-equality between the scalar and732
the momentum mixing. Due to the lack of comparative studies in the literature between the733
realizable model results and experiments, estimating a physical range for this coefficient is734
not possible. Therefore, we considered two optimisation procedures where in the first one735
we maintain σk = 1 while in the other case we relax this constraint letting σk evolves in the736
arbitrary chosen range: σk ∈ [0.9, 1.1]. Similarly, for the bounds on A0, without any a priori737
informations on its physical range, we fixed a larger range of possible value: A0 ∈ [3.6, 4.4],738
where the background usual value is 4.0.739
Based on the remarks of the previous section, the results of three data-assimilation740

scenarios are discussed and compared. A first straightforward approach corresponds to the741
optimisation of the four coefficients independently. This is referred to as scenarioA. Then, two742
scenarios are considered to investigate the two closure assumptionsmentioned in the previous743
section. First, we consider the equality between the mixing of turbulent kinetic energy and744
momentum, referred as scenario B. Secondly, keeping σk a free parameter, the scenario C745
consists in enforcing the inertial constraint and defining σε using (5.1). Three criteria are746
considered to evaluate the agreement between the CFD results and the measurements. The747

first is the relative reduction of cost function J−J0
J0

, J0 being the initial cost. This depicts748
the improvement of the global effect of wind on the building. Next, Cp, the dimensionless749
pressure, is compared locally on the facades of the building. Third, to quantify the accuracy750
of the recovered mean flow field, the streamwise length of the recirculation region behind751
the building is compared to the one observed from the PIV plans.752
Regarding the update of the coefficients, a steepest descent algorithm is used with an adaptive753
step. A maximum step size is set to 10−2 while a minimum step size inferior to 10−4 is754
considered as an optimisation convergence criteria. The confidence coefficients are all set755
to ζi = 5 × 10−2. This low uniform values represent a relative degree of confidence on the756
background closure values. The variations of the closure coefficients along the optimisation757
iterations are shown in figure 10. The maximum reduction of the cost and the optimal758
coefficients values for the three considered scenarios are summarised in table 2. In terms759
of mismatch between CFD and experimental mean pressure, it is shown that the highest760
reduction can be achieved through the optimisation scenario B. Conversely, scenarioC leads761
to the least improvement in the cost function. However, we note a faster convergence rate for762
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Figure 10: Cost function reduction, (a), and closure coefficient variations: (b), scenario A;
(c), scenario B; (d), scenario C.

C, for which the optimal solution is reached 10 times faster than for B. Furthermore, a shift763
between the two regimes can be noticed in scenarios A and B. Indeed, this shifting occurs764
when the penalisation on the variation ofC2 becomes of the same order of magnitude than the765
required advancement for the cost minimisation. Whereas in B, σk is not optimised and the766
trend on C2 until convergence is mainly dominated by its penalisation. In all scenarios, the767
optimal value of C2 increases while it stays within 5% of the background value. Considering768
A0, a minor variation is observed during optimisation in all scenarios. On the contrary, a769
higher variation ofσε below the recommended range is necessary to reduce the cost function.770
In figure 11, we show the variation of σε with respect to C2. In scenario C, a quasi-linear771
dependency is established through relation (5.1). However, we retrieve the two regimes in B772
and A where this dependency is broken.773
In general, it can be concluded that a better agreement between the turbulence model (e.g774

realizable k − ε) and wind tunnel experiments, in terms of wind load on the facades of775
high-rise buildings, can be achieved through optimisation of the closure coefficients. Even776
if it offers less degrees of freedom in the optimisation, better results are obtained when777
enforcing the constraint that equals turbulence mixing in the equation of transport of k to778
momentum mixing by the eddy viscosity (scenario B). This suggests that it is a physically779
valid hypothesis in our case study. It helps structuring the data assimilation process and780
leads to a robust procedure. It states that the turbulent mixing of the momentum and kinetic781
energy are of same nature. At the opposite, by relaxing the constraint and establishing782
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Figure 12: Comparison of pressure coefficient profiles between CFD (scenario B) and
experimental results along building facades. Contours are token at building symmetry

plan, (a) and three horizontal plans at z/Hre f = 1 , (b), z/Hre f = 0.27, (c) and
z/Hre f = 0.19, (d), respectively.

relation (5.1) as valid out of the inertial layer (scenario C) may lead to lower agreement783
with measurements. Indeed, this assumption may hold reasonably in flows where turbulence784
behaviour is isotropic. However, in the presence of bluff body, e.g flows with separation785
and recirculation dynamics, this assumption is undoubtedly unrealistic. Scenario Bmight be786
considered as the best optimisation choice to get better wind load representation on high-rise787
building given the considered turbulence closure (i.e. realizable k − ε). Following the best788
optimisation scenario, 15% gain on the overall predicted loads are obtained. Furthermore, a789
comparison of the predicted pressure coefficient at the building facades (see figure 12) this790
gain is associated to the slight improvement observed especially along the side facades.791
Nearly no change at the front facade and along the upfront corners is observed. As a matter792

of fact, this observations confirms what was earlier mentioned in the sensitivity analysis793
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Figure 13: Comparison of mean stream-wise contour between CFD (scenario B) and Re.
Sheng (PIV) experiments at horizontal plan with normalised height z

Hre f
= 0.19.

Figure 14: Comparison of mean stream-wise contour between CFD (scenario B) and Re.
Sheng (PIV) experiments at horizontal plan with normalised height z

Hre f
= 1.

Figure 15: Comparison of mean stream-wise contour between CFD (scenario B) and Re.
Sheng (PIV) experiments at symmetry plan with normalised height z

Hre f
= 1.

where the rigidity of the considered turbulence model is shown to play a major role on the794
degree of improvement that can be achieved to fit with measurements.795
With regard to the mean flow reconstruction, adopting the best optimisation scenario796

(scenario B), the contours of the mean velocity field are compared with the available PIV797
plans reported from the work of Sheng et al. (2018). It is a strong validation since these798
mesurements are not used in the data assimilation. Figures 13, 14 and 15 show the normalised799
streamwise velocity at the streamwise central plan (top) and at two horizontal plans, i.e.800
z/Hre f = 0.19 and z/Href = 1. The CFD with background values and optimised values801
following B are compared with the PIV measurements.802
In order to show the effect of data assimilation, velocity contours are superimposed803

(right column) and thicker lines are plotted to track the size of the recirculation region.804
The reattachment length on the ground, is reported in table 3. After optimisation, velocity805
contours show a better estimation of the recirculation region lengthwhich is shorter compared806
to the non-optimised model. This improvement is more affirmed near the ground, where the807

relative error of reattachment length Y with respect to PIV, εY = ∇Y0
∇Yend

, with the default808
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Exp realizable k − ε optimised
Y f (m) ∼ 50 139.8 117.1
Yr (m) - 13.6 11.7

Table 3: Comparison of the (dimensional) reattachment lengths on the roof and floor, CFD
optimised with global constant calibration (scenario B).

∂J
∂ fε
(×108)

AD -3.55
FD (δ fε = 10−1) -14.03
FD (δ fε = 10−2) -4.03
FD (δ fε = 10−3) -4.45
FD (δ fε = 10−4) -4.43
FD (δ fε = 10−5) -4.19

Table 4: Sensitivity derivative w.r.t. fε computed from the proposed adjoint model (AD)
and the finite difference (FD) with different perturbation sizes.

(Y0) and the optimised (Yend), is reduced by 25%. Despite this enhancement, it should be809
pointed out that CFD model still under-predicts the flow in the wake region. This is the810
best improvement of this specific turbulence model we obtained by assimilating the pressure811
measurements. The two limiting ingredients are the model rigidity and the partial sparse812
observations (pressure at the boundary) of the complex flow. In the next section, spatially813
distributed control parameters in the transport equation of dissipation are considered in order814
to relax this structural constraint.815

5.3. Distributed closure parameter in the energy dissipation budget816

This section is dedicated to the results related to the investigation of the adjunction on k − ε817
(realizable) model of a distributed control parameter in the energy dissipation rate budget.818
First, we analyse the sensitivity fields to highlight the spatial locations where the closure819
form of ε budget appears inadequate to reproduce the measurements and would require a820
structural correction. Then, the data-assimilation results of this spatially corrected model are821
analysed.822

5.3.1. Sensitivity analysis823

For quantitative validation, adjoint sensitivities are compared with finite differences in table 4824
for different perturbations, δ fε = {10−5, . . . , 10−1} inside Ωin and zero elsewhere. Thus, the825
lower deviation obtained for a step size of 10−2, for which rounding errors are less effective,826
confirms the validity of the implementation.827
We analyse the parameter sensitivity fields given by the proposed closure model, which828

corresponds to the first iteration step of the data assimilation procedure. Indeed, we are829
interested in the gradient of the cost functional with respect to the distributed control830
parameters for fε = 0. Figures 16, 17, and 18 compare the sensitivity maps for the added831
control parameter against a direct forcing (which corresponds to the adjoint variable on ε∗).832
Globally, sensitivity to the proposed parameter fε shows a strong response in a restricted833
flow area. In contrast with very diffused sensitivity maps for the direct forcing, the sensitivity834
maps of the additional forcing do highlight the regions of great relevance for the model835
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Figure 16: Adjoint turbulence dissipation and the constrained control at horizontal plan
with normalised height z

Hre f
= 0.19. Variables are normalised by their in-plan peak

values.

Figure 17: Adjoint turbulence dissipation and the constrained control at horizontal plan
with normalised height z

Hre f
= 1. Variables are normalised by their in-plan peak values.

improvement. They correspond to the same regions as those designated by the sensitivity836
maps of the global constants in the previous section. For instance, we note a tendency to837
bring significant dissipation rate adjustments starting from the leading edges and continuing838
into the lateral shear layers and more downstream at the wake region edges. Let us note that839
multiplication by the variable ε has damped sensitivties at regions nonrelevant for turbulence840
energy budget, such as the high peaks of sensitivity observed around the wake centerline841
for the direct forcing (see figure 16). As we span upward, as shown at height z/Hre f = 1842
in figure 17, the maps actually reveal a step function tendency as we go from separated843
flow regions, i.e., the lateral and top shear layers, toward the wake region. Furthermore,844
with regard to the sign, eventual contributions to the ε budget are interpreted as follows.845
A negative value of fε would tend to increase the dissipation rate, while a positive value846
would instead decrease it. Hence, on both lateral and top separated flows, the parameter847
suggests there an increase of the dissipation rate. The sensitivity analysis points here an848
over-production of turbulent kinetic energy, which is a known common default of the k − ε849
closure models in such flow configurations reported, for instance, in (Murakami 1990, 1997;850
Shirzadi et al. 2017). Moreover, along the outer edges of the lateral shears toward the wake851
edges, the sensitivity maps suggest reducing the dissipation rate. This tendency is consistent852
with a rather under-predicted turbulent mixing, resulting in the overly extended wake region853
behind the building (Shirzadi et al. 2017).854

5.3.2. Closure analysis through data-assimilation855

We consider now the solution of a data-model coupling using the modified closure equation856
(3.2). Regarding the assimilation procedure’s setting, the steepest descent algorithm is used857
with the Sobolev gradient computed in (3.6) as a descent direction. Regarding the filtering858
choice, two values lsob = 0.1D and 0.2D were tested. Let us note that with lsob = 0, i.e859
no smoothing of the L2 gradient, the procedure was notably unstable, showing the need for860



30

Figure 18: Adjoint turbulence dissipation and the constrained control at symmetry plan.
Variables are normalised by their in-plan peak values.

regularisation. As for a higher value of lsob = 0.2D = 6 m, this choice yielded to an over861
smoothing. As the sensitivity varies by length scales that are quite small in comparison to862
this length, this advocates a value of lsob ∼ lateral recirculation width. Therefore, a filtering863
length scale equivalent to 10% of the building’s width seems to give a good compromise to864
filter the small-scales, as suggested also in Tissot et al. (2020).865
To assess the performance of the proposed regularisation technique, we compare the

optimisation convergence using the Sobolev gradient with the cost penalisation approach.
With an additional regularisation term given by the gradient of fε , the cost function would
read

J̃ (P, fε ) = J(P) + γ〈∇ fε,∇ fε 〉Ω
in which γ = ζ ∗max(εε∗) is a free hyper-parameter controlling the amount of penalisation.
Computing the Gateaux derivative w.r.t. fε brings an additional volume term, such that the
L2 optimality condition (3.4), which rewrites as

∂L

∂ fε
= εε∗ − γ∇ · ∇( fε ).

The comparison of the results obtained with both approaches are shown in figure (19)866
for ζ = 0.5, 1, and 2.5. We can see that Sobolev gradient leads to the lowest discrepancy867

( J
J0
' 0.42) compared to the best gradient penalisation ( J

J0
' 0.56with ζ = 1). Regarding the868

convergence speed, minimisation with the Sobolev gradient reaches the minimum in less than869
200 iterations while convergence for the regularisation approach with ζ = 1 requires more870
than 400 iterations. The convergence process through the projection in H1(Ω) is therefore871
much faster. This might come because adding the gradient to the cost function changes the872
original descent direction prescribed by the discrepancy to data. Moreover, concerning the873
calibration, the cost functional reduction has doubled compared to the calibration results874

obtained using the best scenario B ( J
J0
' 0.85). Indeed, this difference is consistent because875

the additive parameter fε is less constrained by the parametric rigidity associated to the876
global coefficients. In what follows, we analyse the method’s performance in terms of the877
flow reconstruction. This will further illustrate the adjoint approach’s capability for data-878
coupling with local corrections of the turbulence closure.879
Wind load profiles The reconstructed pressure loads are compared with the experimental880

data (Sheng et al. 2018) and the non-assimilated model in figure 20. We can see that, in881
comparison with the coefficient calibration, the modified closure model produces far better882
results in most of the building’s wall regions. In terms of pressure discrepancy, the modified883
closure model manages to capture well suction at both top leading edge in the symmetry884
plan (point B in sub-figure(a)) and lateral leading edges (see figure 20(b), (c), and (d)).885
However, while a good agreement with the data is obtained along the lateral facades, minor886
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Figure 19: Cost function reduction. Comparison is made between an ε budget correction
and global calibration using scenario B.

Figure 20: Pressure coefficient profiles along building facades. Comparison is made
between an ε budget correction and global calibration using scenario B. Contours are
token at building symmetry plan, (a) and three horizontal plans at z/Hre f = 1 , (b),

z/Hre f = 0.27, (c) and z/Hre f = 0.19, (d), respectively.

to important deviations are apparent as we get closer to the trailing edges and especially887
when we approach the high-end. This gradually leads to poorer pressure interpolation as the888
discrepancy reaches a maximum value at the upper back facade around Hre f (sub-figure(a)889
and (b)). Yet, the modified closure model shows a slightly better prediction near the top-890
trailing edge than the calibrated default model. Therefore, at this level of comparison, such891
closure model does improve the data-model capability. The remaining regions where no892
improvement is seen might reflect the limited controllability of such turbulence model with893
wall pressure measurement.894
Flow topology Regarding the spanwise flow structure, figures 21 and 22 show sectional895

streamlines at both z/Hre f = 0.19 and z/Hre f = 1 height, respectively. Here it is noteworthy896
to mention that these sectional streamlines are computed for in-plane velocity components.897
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Figure 21: Flow topology (2D) on horizontal plan at normalised height z
Hre f

= 0.19 with
local constraint correction. Comparison is made between an ε budget correction and

global calibration using scenario B.

In each sub-figure, streamlines predicted with the non-assimilated model (sub-figure (a)) is898
compared with the calibrated model (scenario B) (b), with fε closure correction (c) and PIV899
experiments from Sheng et al. (2018) (d). At both levels, the model’s reconstructed flow ( fε )900
still preserves the symmetry of the two distinct pairs of averaged vortex structure. Moreover,901
an excellent agreement with experiments is obtained in the wake transverse extension and902
the vortices focal point positions in comparison with the calibrated model.903
Figure 23 shows time-averaged sectional streamlines at the y/D = 0 symmetry plane in904

the transverse-wise structure. As can be seen from figure 23, the two distinct types of average905
streamlines are also observed on both reconstructed flows ((b) and (c)). It is constituted by an906
upper recirculation starting at the roof-top and a lower recirculation region raised from the907
ground wall, separated by a saddle point. Thus, regarding the wake’s extension, the modified908
closure model leads to a drastic reduction of the recirculating flow compared to the calibrated909
mode, thus reaching a realistic size. This can be quantified by the position of the saddle point910
(x/D = 4,z/D = 2) in the RANS model which has been moved around (x/D = 2,z/D = 2).911
This striking result is mitigated by the fact that this saddle point has been pulled slightly too912
far upstream. It should be recalled that only pressure measurements in the facade have been913
available and that PIV measurements are used here only for validation. This good agreement914
with external data proves that we are neither in overfitting nor in an over-constrained situation.915
Indeed, the two-dimensional vortices at both elevations ( z

Hre f
= 0.19, 1) are a transverse916

projections of the three-dimensional rolls, one on each side of thewake symmetry plan, which917
connects near the free end. Such structure is consistent with somemodel descriptions brought918
on wakes of finite length square cylinders, with similar height/width ratio, that are subject to919
boundary layer flows of various thickness (Kawamura et al. 1984; Wang & Zhou 2009). A920
global three-dimensional picture gathering the two-dimensional previous plots is shown in921
figure 24). Examining the optimal forcing fields in figure 25, we retrieve the same tendencies922
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Figure 22: Flow topology (2D) on horizontal plan at normalised height z
Hre f

= 1 with
local constraint correction. Comparison is made between an ε budget correction and

global calibration using scenario B.

Figure 23: Flow topology (2D) on symmetry plan with local constraint correction.
Comparison is made between an ε budget correction and global calibration using scenario

B.
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Figure 24: Flow topology (3D) of the realizable k − ε model, global coefficient calibration
and ε budget correction against PIV plan at z/Hre f = 1.

observed in the sensitivity analysis before the reconstruction. After the optimisation, the923
parameter fε still keeps advocating less turbulence production into in the shear layers of the924
lateral separated flow (see 25(a) and (b)), while, conversely, more mixing at the edges of the925
wake downstream. Corrections are performed where strong turbulence inhomogeneity and926
anisotropy occur. It acts in a way to redistribute dissipation rate, by the means of sources927
and sinks, from the upstream region toward the downstream region. When considering only928
calibration of the global coefficients, the model structure prevents this redistribution. This929
suggests that some turbulence mechanisms related to anisotropy and inhomogeneity effects930
are not properly taken into account in the model closure and need to be included to represent931
accurately some key regions of the flow.932
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Figure 25: Converged parameter fε , with projection in H1 (lsob = 0.1D); (a), at
horizontal plan at z/Hre f = 0.19, (b) z/Hre f = 1 and, (c) at symmetry plan y/D = 0.

6. Conclusions933

The use of steadyRANSmodels under the eddy viscosity hypothesis is known to be inaccurate934
for practical applications such as micro-climate studies (at urban scale). For instance, in the935
prediction of wind-loads on a high-rise building, most of state-of-the-art k − ε turbulence936
models (including the realizable revision studied here) tend to give poor wake flow accuracy937
estimations, as well as an inaccurate wall-pressure value, when compared to wind tunnel938
experiments. One way to tackle this deficiency consists in adopting data-model coupling939
techniques such as the variational DA approach based on optimal control. To set up such a940
framework in our context we devised a consistent analytical derivation of one of the most941
common turbulence models (i.e. realizable revision of k − ε) coupled with near wall closure.942
This has resulted in the definition of a continuous adjoint model (together with its consistent943
boundary conditions) of the tangent linear operator of the RANS model. Given the dual944
description of the dynamics composed of the RANS direct model and the adjoint of its945
tangent linear representation, we have explored three methodological settings that provides946
an efficient sensitivity analysis and an in-depth diagnosis of the turbulence closure adopted947
on such flows.948
The first tool consisted in the inspection of the adjoint state variables in relation with their949

physical meaning. The second one was dedicated to providing a better understanding of the950
model output’s variabilities in terms of the model’s closure global constants. With the last951
one, we went one step further. We considered the adjunction of a distributed parameter which952
enables the reanalysis of the closure at a structural level (such as the choice of the transport953
equation for the energy dissipation rate on the k − ε model as considered here). To conduct954
an efficient structural inspection, a distributed parameter is sought in a Sobolev space and955
further estimated through a data-assimilation procedure. As a sensitivity field is generally956
not very regular for distributed parameters, a projection onto the Sobolev space H1(Ω) was957
proposed here for both a regularisation purpose and to define an improved descent direction958
for the minimising technique. These three settings have then been applied to a high-rise959
building case study.960
Sensitivity maps of the k − ε global coefficients had revealed high interest in optimising961

themmainly at the shear layers resulting from flow separations at the leading lateral edges and962
on top of the building. Moreover, little sensitivity in the bulk of the recirculation wake region963
was observed. Despite all the spatial variability of the sensitivity fields, it was shown that964
the optimality condition drastically reduces the high dimensional dependency of the model965
to each coefficient. Regarding the model hypotheses which guided the choice for closed966
default values, a better data coupling is obtained by enforcing the constraint that equates967
turbulence energy mixing to momentum mixing, even if it offers fewer degrees of freedom in968
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the optimisation. This suggests that it is a physically valid hypothesis that structures themodel969
and then helps for convergence. Conversely, by relaxing this constraint and establishing the970
relation (5.1), which dictates a strong bound limiting the production of energy dissipation971
rate to its redistribution (supposedly valid in the inertial layer near the wall), this leads to972
lower agreement with experiments. As both assumptions constitute a common practice for973
closure to most eddy viscosity models, it is expected that these results extend to several974
other models of similar forms. The limited performance of the DA procedure, achieved when975
controling global turbulence parameters, points out the rigidity of the considered turbulence976
model when used with realistic wall pressure measurements.977
Considering a distributed parameter to the ε budget, in order to complement the model in978

terms of local source/sink process, sensitivity maps highlight regions where global constants979
are not too sensitive (for instance, the wake region) and exhibit relatively less variability in980
term of sign changes. Maps had actually revealed binary tendencies, separating the lateral981
and top shear regions and the wake flow. Regarding the regularisation, a comparison of the982
cost reduction results with a conventional penalisation approach showed that projection in983
H1(Ω) yields a much faster convergence and lower discrepancy levels. Let us note that, along984
with the H1(Ω) projection, the robustness of the DA procedure was enabled as a first order985
numerical scheme to solve the dual dynamics. Regarding the reconstruction ability, compared986
with coefficient calibration, the modified closure model produced better results in most of the987
building’s wall regions in terms of wind load profiles, yet, results suggest some remaining988
restrictions as reconstructed profiles tend toward the original model in some regions. An989
excellent agreement with PIV experiments was obtained in wake transverse extension. It990
should be recalled that only pressure measurements in the facade have been assimilated.991
This good agreement with measurements of different nature and that have not been used in992
the assimilation proved that we are neither overfitting the data nor in an over-constrained993
situation.994
This work thus illustrates the capabilities of adjoint methods. Beyond providing a data-995

driven flow reconstruction, they enable an in-depth analysis of the turbulence closure. Indeed,996
by regarding adjoint fields as a physical forcing, rather than as a purely mathematical object,997
these data-driven reconstructed fields allows to highlight a misrepresentation of the turbulent998
flow by the RANS model, and hence, to address errors within a particular turbulence999
modelling form (e.g. energy production, backscatterring, redistribution or dissipation).1000
Although the results presented were for a particular turbulence model and on a specific1001
bluff-body-like case, over-estimation of the recirculation length in bluff bodies is a common1002
features in RANS models, and the proposed methodology could be employed without loss1003
of generality. Provided sparse wall pressure measurements, the technique can be directly1004
applied to any complex wake flow embedded in the atmospheric boundary layer.1005
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APPENDIX1013

Under differentiability condition, it can be shown (Le Dimet & Talagrand 1986; Gunzburger1014
2003) that the problem of determining the optimal set of flow state variables,1015

X = (Ux,Uy,Uz, P, k, ε, µt )1016

and the set of parameters α, of the cost function J(X, α) under the constraint1017

M(X, α) = 01018

is equivalent to the problem of determining the optimal set of theses variables in addition to1019
an adjoint state1020

X∗ = (U∗x,U∗y,U∗z, P∗, k∗, ε∗, µ∗t )1021

of the Lagrangian functional L(X,X∗, α). With the inner product defined as 〈ψ, φ〉Ω =∫
Ω
ψTφ dΩ where ψ and φ are any two regular vectorial functions defined on the domain Ω,

the Lagrangian, is

L(X,X∗, α) = J(P, α) +
∫
Ω

(X∗)TM(X, α) dΩ.

The first order variation δL resulting from perturbation (δX, δX∗, δα) of (X,X∗, α), in1022
compact form, is equal to1023

δL =
∂J

∂P
δP +

∂J

∂α
δα +

∫
Ω

(X∗)T
(
∂M
∂Ux

δUx

)
dΩ +

∫
Ω

(X∗)T
(
∂M
∂Uy

δUy

)
dΩ1024

+

∫
Ω

(X∗)T
(
∂M
∂Uz

δUz

)
dΩ +

∫
Ω

(X∗)T
(
∂M
∂P

δP
)

dΩ +
∫
Ω

(X∗)T
(
∂M
∂k

δk
)

dΩ1025

+

∫
Ω

(X∗)T
(
∂M
∂ε

δε

)
dΩ +

∫
Ω

(X∗)T
(
∂M
∂µt

δµt

)
dΩ +

∫
Ω

(δX∗)TM(X, α) dΩ. (6.1)1026
1027

Using the duality identity defined as1028 ∫
Ω

(Lφ)ψdΩ =
∫
∂Ω
(Bφ) (Cψ) d∂Ω −

∫
Ω

φ (L∗ψ) dΩ1029

where L is a linear differential operator and (B,C) are lower order differential operators,
resulting from the integration by part, that embed the natural boundary condition, δL
becomes

δL =
∂J

∂P
δP +

∂J

∂α
δα −

∫
Ω

(
∂M
∂Ux

∗

X∗
)T
δUx dΩ −

∫
Ω

(
∂M
∂Uy

∗

X∗
)T
δUy dΩ

−

∫
Ω

(
∂M
∂Uz

∗

X∗
)T
δUz dΩ −

∫
Ω

(
∂M
∂P

∗

X∗
)T
δP dΩ −

∫
Ω

(
∂M
∂k

∗

X∗
)T
δk dΩ

−

∫
Ω

(
∂M
∂ε

∗

X∗
)T
δε dΩ −

∫
Ω

(
∂M
∂µt

∗

X∗
)T
δµt dΩ +

∫
Ω

(δX∗)TM(X, α) dΩ

+

∫
∂Ω
(δX)T (CX∗) d∂Ω +

∫
∂Ω
(BδX)TX∗ d∂Ω.

Since the perturbations are arbitrary, setting the first variation of L with respect to the
Lagrangian arguments equal to zero leads to an optimality system. With respect to an
arbitrary variation of the adjoint state, we recover the constraint equations; while for an
arbitrary variation of the state X all the terms that include the product of adjoint state to the
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tangent linear of the constraint has to vanish. Further, with respect to the set of parameters,
vanishing the total variation leads to an optimality condition that enclose the optimality
system. Collecting these results yields to

state equations ⇒ M(X, α) = 0

adjoint equations ⇒

(
∂M
∂X

)∗
X∗ = 0

optimality condition ⇒
∂J

∂α
+

(
∂M
∂α

)∗
X∗ = 0,

where
(
∂M
∂α

)∗
is the adjoint of the model derivative with respect to the parameters. If it is1030

possible to solve this coupled optimality system through one-shot methods, then optimal1031
states and parameters can be obtained without an optimisation iteration. However, due to1032
non linearity and the very large size of this system (∼ 3 × size(X)) one still have to iterate1033
in order to solve the optionality system. Thus, having solved the state equations for X and1034
then X∗ solution of the adjoint system, model parameters can be iterated by a gradient based1035
optimisation algorithm until optimality condition is satisfied. In a steepest descent algorithm,1036
the parameter is updated at an iteration n according to:1037

αn+1 = αn − λn dn (6.2)10381039

where dn is the descent direction which is defined recursively by:1040

dn =
∂L

∂α
=

(
∂M
∂α

)∗
X∗ +

∂J

∂α
, (6.3)1041

Concerning adjoint based optimisation methods, we refer the reader to (Gunzburger 2003;1042
Gronskis et al. 2013).1043
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