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Abstract 20 

Chromatin modifications orchestrate the dynamic regulation of gene expression during 21 

development and in disease. Bulk approaches have characterized the wide repertoire of histone 22 

modifications across cell types, detailing their role in shaping cell identity. However, these 23 

population-based methods do not capture cell-to-cell heterogeneity of chromatin landscapes, 24 

limiting our appreciation of the role of chromatin in dynamic biological processes. Recent 25 

technological developments enable the mapping of histone marks at single-cell resolution, 26 

opening up perspectives to characterize the heterogeneity of chromatin marks in complex 27 

biological systems over time. Yet, existing tools used to analyze bulk histone modifications 28 

profiles are not fit for the low coverage and sparsity of single-cell epigenomic datasets. Here, 29 

we present ChromSCape, a user-friendly interactive Shiny/R application that processes single-30 

cell epigenomic data to assist the biological interpretation of chromatin landscapes within cell 31 

populations. ChromSCape analyses the distribution of repressive and active histone 32 

modifications as well as chromatin accessibility landscapes from single-cell datasets. Using 33 

ChromSCape, we deconvolve chromatin landscapes within the tumor micro-environment, 34 

identifying distinct H3K27me3 landscapes associated to cell identity and breast tumor subtype.  35 



Introduction 36 

Histone modifications are key regulators of gene expression, driving chromatin folding and 37 

genes accessibility to transcription machineries. The recent development of single-cell methods 38 

to study epigenomes now enables the appreciation of the heterogeneity of chromatin 39 

modifications within a population. These experimental methods assess the distribution of 40 

histone marks at single-cell resolution by coupling next generation sequencing to high-41 

throughput microfluidics DNA barcoding (scChIP-seq)1,2 or in situ reactions (scChIL-seq3, 42 

scChIC-seq4, scCUT&Tag5). In contrast to scATAC-seq approaches which identify open 43 

regions of the chromatin6–8, these methods can capture various chromatin states, enriched in 44 

repressive or active histone marks (H3K27me3 or H3K4me3 for example). Using these 45 

approaches, we can study the heterogeneity of epigenomes within complex biological samples, 46 

such as tumors1, and start appreciating the role of epigenomic diversity and the dynamics of 47 

chromatin in disease and development. 48 

Existing tools used to analyze bulk ChIP-seq experiments are not fit for the low coverage and 49 

sparsity of these single-cell histone modifications datasets, which is due to the inherent low 50 

number of copy of DNA molecules per cell - maximum two for a diploid genome. Several 51 

computational methods for the analysis of scATAC-seq have been developed to deal with the 52 

specificities of single-cell DNA-based datasets. They were recently benchmarked9, with 53 

SnapATAC10, CisTopic11 and Cusanovich201812 being the top-three performing methods. 54 

These tools, initially dedicated to scATAC-seq and without graphic interface, require some 55 

scripting skills. Biologists with limited computational training can manipulate and analyze 56 

scRNA-seq and scATAC-seq datasets using applications such as ‘scOrange’13 and ‘SCRAT’14 . 57 

With ChromSCape (Figure 1), we propose a user-friendly, step-by-step and customizable 58 

Shiny/R application to analyze all types of sparse single-cell epigenomic datasets. The user can 59 

interactively identify subpopulations with common epigenomes within heterogeneous samples, 60 



find differentially enriched regions between subpopulations and interpret epigenomes by 61 

linking regions to associated genes and pathways. The pipeline starts from aligned sequences 62 

or count tables, and is designed for high-throughput single-cell datasets with samples containing 63 

as low as 100 cells with a minimum of 1,000 reads per cell up to 25,000 cells on a standard 64 

laptop. ChromSCape accepts multiple samples to allow comparisons of cell populations 65 

between and within samples. ChromSCape can determine cell identities from single-cell histone 66 

modification profiles, whatever the technology, as well as scATAC-seq datasets. We showcase 67 

the use of ChromSCape by deconvolving chromatin landscapes within the tumor micro-68 

environment; we identify distinct H3K27me3 landscapes associated to cell identity and breast 69 

tumor subtype.  70 

 71 

Results 72 

ChromSCape identifies cell identities from scChIP-seq data 73 

To test the efficiency of ChromSCape (Figure 1) in identifying cell sub-populations based on 74 

their epigenome (H3K27me3), we generated an in-silico dataset with known ground truth, 75 

mixing 4 different human cell types: Jurkat B cells, Ramos T cells, MDA-MB-468 breast cancer 76 

cells and HBCx-22 tumor cells derived from a luminal breast tumor PDX model1. Interestingly, 77 

Jurkat and Ramos cells were processed within the same microfluidics experiment, preventing 78 

the existence of any batch effect between them (see Grosselin et al., 1). We compared 79 

ChromSCape to methods specifically designed for single-cell epigenomic datasets (scATAC-80 

seq) for their ability to identify cell identities. Based on a recent scATAC-seq benchmark9, we 81 

selected the top-performing methods, namely Cusanovich201812, SnapATAC10 and CisTopic11. 82 

We also benchmarked EpiScanpy32, a recent analysis pipeline for various single-cell 83 

epigenomic data (scATAC-seq, scDNA methylation, …) developed in Python. We applied 84 



hierarchical clustering on the reduced feature space obtained by each method and used an ARI 85 

metric to evaluate their ability to identify cell phenotypes. ChromSCape with default parameters 86 

manages to separate almost perfectly the 4 cell types, with an ARI of 0.998 (Figure 2a), as 87 

Cusanovich2018 and CisTopic (both an ARI of 0.996, Figure 2b), followed closely by 88 

EpiScanpy (ARI of 0.940, Figure 2b). ChromSCape, EpiScanpy and SnapATAC were all run 89 

on 50kbp bins, but SnapATAC had noisier clusters and a slightly poorer ARI (0.822).  90 

We also compared the agility of ChromSCape to manipulate and interpret scChIP-seq datasets 91 

to two applications with graphic interface, using the same reference dataset (Figure 2c), with 92 

either default settings or optimizing input and settings. scOrange is a stand-alone platform 93 

allowing researchers to create workflows to analyze single-cell datasets, offering a wide variety 94 

of analytical modules. While for scRNA-seq many workflows have been developed and are 95 

ready-to-use, in the case of epigenomic datasets, users need to have prior computational 96 

knowledge to organize a proper workflow. We managed to group cells according to sample of 97 

origin only with an optimized workflow (Figure 2c, default vs optimized). SCRAT is a Shiny/R 98 

package presented as a user interface to analyze single-cell epigenomic data. The default option 99 

for SCRAT is to count reads within ‘ENCODE Clusters’ corresponding to co-regulatory open 100 

chromatin regions obtained from DNAse-seq datasets, not adapted for the analysis of repressive 101 

histone marks like H3K27me3. In order to use SCRAT for our reference scChIP-seq datasets, 102 

we had to pre-compute counts on pre-defined peaks called on the ‘pseudo-bulk’ (see Methods 103 

and ‘Optimized’ panel), limiting the usability of SCRAT. In addition, in contrast to 104 

ChromSCape, both applications do not propose functionalities to associate genomic regions to 105 

gene annotation, limiting the biological interpretation of the results obtained with differential 106 

analysis.  107 

Like single-cell transcriptomics approaches, single-cell epigenomic technologies can be 108 

influenced by various batch effects, e.g. library preparation, batch of hydrogel beads or efficacy 109 



of immuno-precipitation or cleavage. To overcome this, we have implemented in ChromSCape 110 

a module for batch correction based on the fastMNN method18. To test this functionality, we 111 

used three datasets: two from our previous study (HBCx-95 and HBCx95-CapaR, collected 112 

with batch1 beads) and a new dataset, HBCx95 – batch 2, which is a biological replicate of 113 

HBCx-95, i.e a PDX tumor from the same PDX model but a different mouse, processed with a 114 

new batch of beads. Using ChromSCape, we analyzed together the three H3K27me3 tumor 115 

samples. As shown in Supplementary Figure 2, a strong batch effect separates the two biological 116 

replicates before batch correction (left panel). After applying batch correction (right panel), 117 

cells from the two biological replicates of untreated HBCx-95 tumors successfully mix, but not 118 

with cells from the resistant tumor, suggesting that the module corrects for batch effect without 119 

overcorrecting biological differences. 120 

We also evaluated the usability of ChromSCape for other types of single-cell histone 121 

modification data obtained by other technologies than scChIP-seq. We analyzed two public 122 

datasets of scCUT&Tag and scChIC-seq targeting H3K27me3 and H3K4me3 marks 123 

respectively. ChromSCape facilitates the analysis of such public dataset as the user can directly 124 

upload the GEO single-cell BED files into the application. We recommend here for H3K27me3 125 

mark – accumulating in broad peaks - to aggregate the signal into 50kbp bins, and for H3K4me3 126 

mark – accumulating in sharp peaks -  to count within 5kbp bins or around gene TSS (+/-127 

2500bp). As shown in Supplementary Figure 1a, for the scCUT&Tag dataset the two K562 128 

replicates showed no batch effect and were clustered together separately from H1 cells (ARI = 129 

0.976). For the scChIC-seq dataset (Supplementary Figure 1b), 7 clusters are clearly observable 130 

on the UMAP representation, as was found by the authors in their study4. 131 



 132 

ChromSCape classifies cells from scATAC-seq data 133 

In order to assess the capacity of ChromSCape to analyze all types of single-cell epigenomic 134 

data, we re-analysed a scATAC-seq dataset (GSE99172) containing 8 cell lines and 4 patient-135 

derived cells. This dataset was partly produced and analyzed in a study by chromVar, a 136 

dedicated scATAC-seq analytical tool31; we used the same color code as in this study. This 137 

dataset contains various biological samples as well as technical replicates for two cell lines, 138 

K562 & GM12878, for which there are 6 and 4 technical replicates respectively. Due to a 139 

relatively low number of cells per sample (n=96 per sample), we set the read count threshold to 140 

1,000 for cells to be included in the analysis. We measured the ability of ChromSCape to 141 

classify cells according to cell type of origin using assignment scores for each sample X and 142 

each cluster Y (number of cells from sample X assigned to cluster Y / total number of cells of 143 

sample X).  144 

In the unsupervised analysis, we identified the optimal number of clusters to be k = 5 according 145 

to the relative change in area under the CDF curve (Figure 3a and data not shown 146 

Supplementary Figure 3a). Cells from different technical replicates of K562 and GM12878 all 147 

grouped together in clusters 5 and 2 with assignment scores of 99.7% and 98.3% respectively 148 

(Figure 3b). Analyzing all samples together, ChromSCape could robustly identify - i.e as stable 149 

separated clusters by consensus clustering - TF1, K562 and GM12878 cells, affecting in 150 

average 99.4% of cells to correct cluster. Cluster C1 grouped together AML, Mono and LMPP 151 

samples with HL60 cell line, which is also originally derived from leukocytes of a patient with 152 

an AML cancer.  153 

In order to get more insight into cell identities within cluster C1, we re-analyzed cells from C1 154 

with ChromSCape. In contrast to the first round of analysis, ChromSCape was able to 155 

distinguish cell identities within samples, and detect individual clusters of cells, with high 156 



assignment scores for the two normal samples (LMPP & Monocytes) and HL-60 (average 157 

assignment score 98.3%, Figure 3c & d). Additionally, AML blasts from patient SU070 show 158 

a greater monocyte signature than patient SU353 (Figure 3d, p-value = 0.0025, Fisher’s exact 159 

test, respectively 85.0 % and 25.7 % of SU070 and SU353 blasts cells cluster with monocytes), 160 

as previously described for these cells in 29. ChromSCape identifies distinct populations within 161 

the normal immune cell environment based on their chromatin accessibility. Within AML 162 

patient samples, ChromSCape matches each cancer cell to the closest resembling healthy 163 

population. 164 

 165 

ChromSCape deconvolves epigenomes of the tumor micro-environment 166 

To further showcase the use of ChromSCape, we interrogated the heterogeneity of chromatin 167 

states within the tumor micro-environment of two breast tumor subtypes: luminal and triple-168 

negative (TNBC) breast tumors. Tumor micro-environment is a key player in tumor evolution 169 

processes, and can vary between tumor types and with response to cancer therapy. Here our 170 

goal was to compare H3K27me3 landscapes of cells from the tumor micro-environment of 171 

luminal and TNBC subtypes, resistant or not to cancer treatment. The HBCx-22 and HBCx-22-172 

TamR datasets correspond to mouse cells from a pair of luminal ER+ breast PDXs1: HBCx-22, 173 

responsive to Tamoxifen and HBCx-22-TamR, resistant to Tamoxifen. The HBCx-95 and 174 

HBCx-95-CapaR correspond to a triple-negative breast cancer (TNBC) tumor model of 175 

acquired resistance to chemotherapy1. We analyzed together these four H3K27me3 mouse 176 

scChIP-seq datasets, two of which had not been analyzed in our previous study1. Using 177 

ChromSCape, we propose a comprehensive view of cell populations based on their chromatin 178 

profiles, and show the identification of tumor-type and treatment-specific cell populations and 179 

respective chromatin features. All plots in Figure 4 were automatically generated by the 180 



application and are downloadable from the interface. In the quality filtering step, a threshold of 181 

2,000 reads per cell was set due to a relatively high initial number of cells (n = 5,516 cells).  182 

After the dimensionality reduction step (Figure 4a & b), we applied our consensus clustering 183 

approach on the filtered dataset with k = 2 to k = 10 clusters. We chose to partition the data into 184 

k = 4 clusters based on the knee method, as a plateau in the relative change in area under the 185 

CDF curve was observed between k = 4 and k = 5 clusters (Figure 4c-d & Supplementary Figure 186 

34a-b). Consensus score matrix in Figure 4d shows that most of the cells were stably assigned 187 

to four chromatin-based populations (mean consensus score for elected clusters of 0.91 is 188 

significantly higher than mean consensus score for other clusters, 0.17, p-value = 2.2e-16, two-189 

sided Student’s t-test). Assignment of cells to cluster C2 and C4 is significantly less stable than 190 

C1 and C3 (p-value < 2.2e-16, Student’s two-sided t-test, mean consensus scores are 191 

respectively 0.84 and 0.90 for C1-C3 and 0.70 and 0.71 for C2-C4, see Supplementary Figure 192 

3a), suggesting that cells from C2 and C4 might share H3K27me3 features, whereas cells from 193 

C1 and C3 have distinct H3K27me3 landscapes. Clusters C1, C2 and C4 contain cells from all 194 

four samples, with a significantly higher proportion of HBCx-22-TamR for C1 (p-value = 3e-195 

05, Pearson’s Chi-squared test) (Figure 4e). On the other hand, cluster C3 is almost exclusively 196 

composed of cells from model HBCx-95 (Figure 4c&e), revealing a stromal cell population 197 

specific to the triple negative breast cancer model (HBCx-95). 198 

To further identify the specific features of each chromatin-based population, we proceeded to 199 

peak calling, differential analysis and gene set enrichment analysis using default parameters 200 

(see Methods). As H3K27me3 is a repressive histone mark, we focused our analysis on loci 201 

depleted in H3K27me3, where transcription of genes can occur, in cells from each cluster versus 202 

all other cells. The differential analysis identified respectively 189, 210, 83 and 9 significantly 203 

depleted regions for clusters C1 to C4 (Figure 4g, logFC < 1, adjusted p-value < 0.01). We 204 

found loci devoid of H3K27me3 specific to cluster C2, enriched for genes involved in apical 205 



junction such as Bcar1 (Figure 4f) and Ptk2, which are characteristic of genes expressed in 206 

fibroblasts. We found a depletion of H3K27me3 specific to cluster C3 over the genes Nrros 207 

(Figure 4f) and Il10ra, two genes characteristic of immune expression programs. Depletion of 208 

H3K27me3 over the transcription start site of Rap1gap2, a gene expressed in endothelial cells, 209 

was a key feature of cluster C4 (Figure 4f). For cluster C1 and C2, we found a depletion of 210 

H3K27me3 over Eln, a gene expressed in fibroblasts. 211 

Gene set enrichment analysis for genes located in regions depleted of H3K27me3 enrichment 212 

only revealed very few enriched gene lists, mostly for cluster C2 (q-value < 0.1, Figure 4h, 213 

multiple gene sets related to stem and cancer cells) and one list for C1 214 

(“LPS_VS_CONTROL_MONOCYTE_UP”). Linking H3K27me3 enrichment to transcription 215 

is indeed indirect, we envisage such enrichment analysis more appropriate for H3K4me3 216 

scChIP-seq in which enriched regions are directly associated to gene transcription.  217 

Overall, these results are consistent with our previous analysis of HBCx-95 scRNA-seq datasets 218 

where subpopulations were differentially expressing markers of fibroblasts, endothelial and 219 

macrophage cells1. This new analysis comprising the HBCx-22 dataset allowed us to identify 220 

the H3K27me3 signature of potential endothelial cells (cluster C4). These cells are present in 221 

each model, but might not have been previously detected in the previous scChIP-seq analysis 222 

due to low cell representation. In addition, the H3K27me3 signature of potential immune cells 223 

is restricted to cells from the TNBC model (cluster C3), suggesting that these immune cells are 224 

absent from the luminal tumor.  225 

 226 

Discussion 227 

ChromSCape is a Shiny/R application designed for both biologists and bioinformaticians to 228 

analyze complex chromatin profiling datasets such as scChIP-seq datasets. The comprehensive 229 



application is quick to take over plus the direct visualization of cells clusters combined to 230 

configurable parameters and incremental saving of intermediary R objects eases bench-marking 231 

of parameters. We show that ChromSCape performs as well or better than state of the art single-232 

cell epigenomic analytic tools to identify cell identities from an in-silico mix of H3K27me3 233 

scChIP-seq datasets. It also manages to identify sub-populations within a complex scATAC-234 

seq benchmarking dataset, showing its wide range of application for epigenomic analysis. In 235 

addition, using ChromSCape to study the epigenome of mouse stromal cells in breast tumors, 236 

we can identify the various epigenomes within the tumor micro-environment. Overall, we see 237 

ChromSCape as a useful tool to probe heterogeneity and dynamics of chromatin profiles in 238 

various biological settings, not only in cancer development but also in cell development and 239 

cellular differentiation. 240 

  241 



Methods 242 

Implementation 243 

ChromSCape is an R package developed in Shiny/R. It uses various Shiny related packages 244 

(shinyjs, shinydashboard, shinyDirectoryInput) for the user interface. The application takes 245 

advantage of public R libraries for data vizualisation (RcolorBrewer, colorRamps, Rtsne, umap, 246 

colourpicker, kableExtra, knitr, viridis, ggplot2, gplots, png, grid, gridExtra, DT) as well as for 247 

data manipulation (Matrix, dplyr, tidyr, stringr, irlba, rlist, qualV, stringdistr). ChromSCape 248 

uses Bioconductor packages (i) for the manipulation of single-cell data with 249 

SingleCellExperiment, scater15, scran16, (ii) for the manipulation of genomic regions with 250 

IRanges and GenomicRanges17, (iii) for the manipulation of genomic files with  Rsamtools and 251 

BiocParallel, (iv) for the correction of batch effects with batchelor18 and (v) to determine the 252 

optimal number of clusters with ConsensusClusterPlus19. In addition, ChromSCape makes use 253 

of custom R functions which serve for both manipulation and visualization of datasets. Brief 254 

command lines enable users without any bioinformatics skills to install all R dependencies and 255 

run the application in a web browser. 256 

 257 

Demonstration application 258 

A demonstration of ChromSCape is freely available at 259 

https://vallotlab.shinyapps.io/ChromSCape/.  260 

 261 

Input datasets, quality control and pre-processing 262 

Input files for ChromSCape are either one or multiple count matrices with genomic regions in 263 

rows and cells in columns or single-cell BAM or BED files. In this case, a directory containing 264 



single-cell BAM or BED files must be specified and the count matrix created by aggregating 265 

the signal into successive genomic bins, peaks (BED file must be provided by user) or into 266 

regions around genes Transcription Start Sites (TSS). For H3K27me3 scChIP-seq datasets, with 267 

a distribution in broad peaks, we recommend using bins of 50kbp, while for H3K4me3 scChIP-268 

seq or scATAC-seq datasets we recommend using smaller bins (e.g 5kb), knowns peaks or 269 

regions around TSS. The ‘condition’ or ‘label’ of each cell is then heuristically determined 270 

using file names and the number of conditions specified by the user. Guidelines and link 271 

towards datasets are given in the user guide 272 

(https://vallotlab.github.io/ChromSCape/ChromSCape_guide.html).  273 

In order to efficiently remove outlier cells from the analysis, e.g. cells with excessively high or 274 

low coverage, the user sets a threshold on a minimum read count per cell and the upper 275 

percentile of cells to remove. The latter could correspond to doublets, e.g. two cells in one 276 

droplet, while lowly covered cells are not informative enough or may correspond to barcodes 277 

ligated to contaminant DNA or library artifacts. Regions not supported by a minimum user-278 

defined percentage of cells that have a coverage greater than 1,000 reads are filtered out. 279 

Defaults parameters were chosen based on the analysis of multiple scChIP-seq datasets from 280 

our previous study1: a minimum coverage of 1,600 unique reads per cell, filtering out the cells 281 

with the top 5% coverage and keeping regions detected in at least 1 % of cells. Post quality 282 

control filtering, the matrices are normalized by total read count and region size. At this step, 283 

the user can provide a list of genomic regions, in BED format, to exclude from the subsequent 284 

analysis, in cases of known copy number variation regions between cells for example. 285 

To reduce the dimensions of the normalized matrix for further analysis, principle component 286 

analysis (PCA) is applied to the matrix, with centering, and the 50 first PCs are kept for further 287 

analysis. The user can visualize scChIP-seq data after quality control in the PCs dimensional 288 

space. The t-distributed stochastic neighbor embedding (t-SNE) algorithm20 and UMAP 21 is 289 



applied on the PCA to visualize the data in two dimensions. The PCA and t-SNE plots are a 290 

convenient way to check if cells form clusters in a way that was expected before any clustering 291 

method is applied. For instance, the user should verify whether the QC filtering steps and 292 

normalization procedure were efficient by checking the distribution of cells in PC1 and PC2 293 

space. Cells should group independently of normalized coverage. In our hands, for our scChIP-294 

seq H3K27me3 datasets, minimum coverage of 1,600 unique reads per cell was required to 295 

separate cells independently of coverage post normalization1. A batch correction option using 296 

mutual nearest neighbors ‘FastMNN’ function from ‘batchelor’ package18 is implemented to 297 

remove any known batch effect in the reduced feature space. 298 

 299 

Hierarchical clustering, filtering and consensus clustering 300 

Using the first 50 first PCs of computed PCA as input, hierarchical clustering is performed, 301 

taking 1-Pearson’s correlation score as distance metric. To improve the stability of our 302 

clustering approaches and to remove from the analysis isolated cells that do not belong to any 303 

subgroup, cells displaying a Pearson’s pairwise correlation score below a threshold t with at 304 

least p % of cells are filtered out (p is set at 1 % by default). The correlation threshold t is 305 

calculated as a user-defined percentile of Pearson’s pairwise correlation scores for a randomized 306 

dataset (percentile is recommended to be set as the 99th percentile). Correlation heatmaps 307 

before and after correlation filtering and the number of remaining cells are displayed to inform 308 

users on the filtering process. 309 

ChromSCape uses Bioconductor ConsensusClusterPlus package19 to determine what is the 310 

appropriate k-partition of the filtered dataset into k clusters. To do so, it evaluates the stability 311 

of the clusters and computes item consensus score for each cell for each possible partition from 312 

k=2 to 10. For each k, consensus partitions of the dataset are done on the basis of 1,000 313 

resampling iterations (80% of cells sampled at each iteration) of hierarchical clustering, with 314 



Pearson's dissimilarity as the distance metric and Ward's method for linkage analysis. The 315 

optimal number of clusters is then chosen by the user; one option is to maximize intra-cluster 316 

correlation scores based on the graphics displayed on the ‘Consensus Clustering’ tab after 317 

processing. Clustering memberships can be visualized in two dimensions with the t-SNE or 318 

UMAP plot.  319 

 320 

Peak calling for genomic region annotation 321 

This step of the analysis is optional, but recommended in order to refine the peak annotation 322 

prior to enrichment analysis. To be able to run this module, some additional command line tools 323 

are required such as SAMtools22, BEDTools23 and MACS224. The user needs to input BAM 324 

files for the samples (one separate BAM file per sample), with each read being labeled with the 325 

barcode ID. ChromSCape merges all files and splits them again according to the previously 326 

determined clusters of cells (one separate BAM file per cluster). Customizable significance 327 

threshold for peak detection and merging distance for peaks (defaults to p-value=0.05 and peak 328 

merge distance to 5,000) allows to identify peaks in close proximity (<1,000bp) to a gene 329 

transcription start site (TSS); these genes will be later used as input for the enrichment analysis. 330 

For the annotation, ChromSCape uses the reference human transcriptome Gencode_hg38_v26, 331 

limited to protein coding, antisense and lncRNA genes. 332 

  333 

Differential Analysis and pathway enrichment analysis 334 

To identify differentially enriched regions across single-cells for a given cluster, ChromSCape 335 

can perform (i) a non-parametric two-sided Wilcoxon rank sum test comparing normalized 336 

counts from individual cells from one cluster versus all other cells, or cluster of choice, or (ii) 337 

a parametric test comparing raw counts from individual cells, using edgeR25, based on the 338 



assumption that the data follows a negative-binomial distribution. We test for the null 339 

hypothesis that the distribution of normalized counts from the two compared groups have the 340 

same median, with a confidence interval 0.95. The calculated p-values are then corrected by the 341 

Benjamini-Hocheberg procedure26. The user can set a log2 fold-change threshold and corrected 342 

p-value threshold for regions to be considered as significantly differentially enriched (default 343 

settings are a p-value and log2 fold-change thresholds respectively of 0.01 and 1). If users have 344 

specified batches, the differential analysis is done using the ‘pairwiseWilcox’ function from the 345 

scran package16, setting the batch of origin as a ‘blocking level’ for each cell. 346 

For the top 100 most significant differential regions, single-cell H3K27me3 enrichment levels 347 

can be visualized overlaying H3K27me3 counts for each cell at selected genes onto a t-SNE 348 

plot. Using the refined annotation of peaks done in previous step, the final step is to look for 349 

enriched gene sets of the MSigDB v5 database27  within differentially enriched regions (either 350 

enriched or depleted regions in the studied histone mark). We apply hypergeometric tests to 351 

identify gene sets from the MSigDB v5 database over-represented within differentially enriched 352 

regions, correcting for multiple testing with the Benjamini-Hochberg procedure. Users can then 353 

visualize most significantly enriched or depleted gene sets corresponding to the epigenetic 354 

signatures of each cluster and download gene sets enrichment tables.  355 

 356 

Datasets 357 

H3K27me3 scChIP-seq human in-silico mix of 4 cell types: The samples correspond to n=326 358 

human tumor cells from untreated PDX (HBCx-22), n=201 human T cells (Jurkat) and n=306 359 

B cells (Ramos) taken from 1 and n=454 cells from the MDA-MB-468 triple-negative breast 360 

cancer cell line (HBCx-22, Jurkat and Ramos data are from GSE117309 361 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117309]), MDA-MB-468 is 362 

available at GSE152502 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152502]). 363 



H3K4me3 scChIC-seq human white blood cells dataset4: n=285 white blood cells from a human 364 

male donor were downloaded as gzipped single-cell BED files from GSE105012 365 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105012], inputted directly into 366 

ChromSCape and aggregated into 50kbp bins (default). 367 

H3K27me3 scCUT&Tag human H1 and K562 cells5: A replicate of K562 cell line comprising 368 

of n=908 cells from GSE124680 369 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124680], another replicate of 370 

n=479 K562 cells and n=486 H1 cells from GSE124690 371 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124690] were downloaded as 372 

gzipped single-cell BED files, inputted directly into ChromSCape and aggregated around gene 373 

TSS (+/- 2500bp). 374 

H3K27me3 scChIP-seq human datasets: The samples correspond to human cells from patient-375 

derived xenograft (PDX) originating from two different human donors1. For this study, we 376 

added a new scChIP-seq dataset, corresponding to a biological replicate of HBCx-95 377 

(GSE152502 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152502]), processed 378 

with a novel batch of hydrogel beads. 379 

scATAC-seq datasets: The scATAC-seq dataset is composed of two cell types derived from 380 

two acute myeloid leukaemia (AML) (patients SU070 and SU353 blastocytes (blast) and 381 

leukemic stem cells (LSC) from 29)  as well as multiple cell lines : GM12878 (4 replicates), 382 

TF1, BJ, H1, HL60, K562 (3 replicates) from 30, K562 (3 replicates) from 31; monocytes (Mono) 383 

and lymphoid primed multipotent progenitor (LMPP) from 29. The count matrix of reads in 384 

peaks was downloaded from GEO accession number GSE99172 385 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99172], split into distinct matrices 386 

for each sample and formatted to be accepted as input by ChromSCape.  387 



H3K27me3 scChIP-seq mouse datasets: The samples correspond to mouse cells from patient-388 

derived xenograft (PDX) originating from two different human donors1. Raw FASTQ reads 389 

were processed using the latest version of our scChIP-seq data engineering pipeline (see above) 390 

to produce 50kbp binned count matrices given as input to ChromSCape (matrices available at 391 

https://figshare.com/projects/Single-Cell_ChIP-392 

seq_of_Mouse_Stromal_Cells_in_PDX_tumour_models_of_resistance/66419). 393 

 394 

Cell line 395 

MDA-MB-468 cells, bought at ATCC (HTB-132™), were cultured in DMEM 1640 (Gibco-396 

BRL) and supplemented with 10% heat-inactivated fetal calf serum. Cell numbers, as judged 397 

by Trypan Blue exclusion test, were determined by counting cells using a Countess automated 398 

cell counter (Invitrogen). Cells were cultured at 37 °C in a humidified 5% CO2 atmosphere. 399 

The cell line was mycoplasma negative. The MDA-MB-468 cells were trypsinized (Trypsin, 400 

Gibco-BRL). Prior to single-cell ChIP-seq, cells were then re-suspended in PBS/0.04% BSA 401 

(ThermoFisher Scientific, # AM2616). 402 

 403 

Patient-derived xenograft (PDX) 404 

Female Swiss nude mice were purchased from Charles River Laboratories and were maintained 405 

under specific pathogen-free conditions. Their care and housing were in accordance with 406 

institutional guidelines and the rules of the French Ethics Committee (project authorization no. 407 

02163.02). A PDX from a residual triple-negative breast cancer post neo-adjuvant 408 

chemotherapy (HBCx-95) was previously established at Institut Curie with informed consent 409 

from the patient1. Prior to single-cell ChIP-seq, PDX were digested at 37°C for 2h with a 410 

cocktail of Collagenase I (Roche, # 11088793001) and Hyaluronidase (Sigma, # H3506). Cells 411 

were then individualized at 37°C using a cocktail of 0.25% trypsin/Versen (ThermoFisher 412 



Scientific, #15040-033), Dispase II (Sigma, #D4693) and Dnase I (Roche, # 11284932001). 413 

Red Blood Cell lysis buffer (ThermoFisher Scientific, # 00-4333-57) was then added to degrade 414 

red blood cells. In order to increase the viability of the cell suspension, dead cells were removed 415 

using the Dead Cell Removal kit (Miltenyi Biotec). Cells were re-suspended in PBS/0.04% 416 

BSA (ThermoFisher Scientific, # AM2616).  417 

 418 

Single-cell ChIP-seq 419 

The protocol for scChIP-seq was rigorously the same as in Grosselin et al., 1 and can be resumed 420 

by the main following steps. Cells were first compartmentalized into droplets containing Mnase 421 

in a microfluidics chip, then fused with barcoded hydrogel beads. After fusion of cell-422 

containing droplets and bead-containing droplets, Fast-link DNA ligase [Lucigen, # LK0750H] 423 

was used to ligate segmented DNA to barcodes. Droplets were pooled and used for chromatin 424 

immuno-precipitation against anti-H3K27me3 antibody ([Cell Signaling Technology, # 9733]). 425 

After treatment with RNAse A (ThermoFisher Scientific, #EN0531) and Proteinase K 426 

(ThermoFisher Scientific, # EO0491), barcoded-nucleosomes were then amplified by in-vitro 427 

transcription using the T7 MegaScript kit (ThermoFisher Scientific, # AM1334) and reverse-428 

transcribed. After RNA digestion, DNA was amplified by PCR. The final product was size-429 

selected by gel electrophoresis. Single-cell ChIP-seq libraries were finally sequenced on an 430 

Illumina NextSeq 500 MidOutput 150 cycles. 431 

 432 

Demultiplexing and alignment of H3K27me3 scChIP-seq datasets  433 

Raw FASTQ reads were processed using the latest version of our scChIP-seq data engineering 434 

pipeline that allowed a more precise removal of PCR and RT duplicates (code available at 435 

https://github.com/vallotlab/scChIPseq_DataEngineering) to produce 50kbp binned count 436 

matrices given as input to ChromSCape (matrices available at 437 



https://figshare.com/projects/Single-Cell_ChIP-438 

seq_of_Mouse_Stromal_Cells_in_PDX_tumour_models_of_resistance/66419). Rapidly, the 439 

first 56bp of the Read2 were separated into three indexes and aligned using bowtie2 separately 440 

against reference of three pools of 96 16-bp long indexes. Reads containing all three 441 

recognizable indexes (a full cell-barcode) were kept, the genomic part of Read2 and Read1 were 442 

aligned in paired-end mode using STAR v2.7.0. For each barcode, aligned reads were 443 

deduplicated by removing successively: (i) PCR duplicates, identified if #Read1 + #Read 2 444 

mapped at the same position, (ii) RT duplicates, identified if #Read 1 mapped at the same 445 

postion and (iii) window duplicates: all the reads falling in the same 50 bp window were stacked 446 

into one as reads possibly originating from the same nucleosome. Reads were binned in non-447 

overlapping 50 kb bins spanning the genome to generate a n x m coverage matrix with n 448 

barcodes and m genomic bins used in downstream analysis.  449 

 450 

Benchmark of tools for scChIP-seq data analysis 451 

Three methods dedicated to the analysis of scATAC-seq with the best performance according 452 

to Chen et al., 2019 9, were tested on a mixture of H3K27me3 scChIP-seq datasets (see Datasets 453 

below), namely ‘SnapATAC’, ‘CisTopic’ and ‘Cusanovich2018’.  The scripts were taken from 454 

the GitHub repository of the benchmark paper (https://github.com/pinellolab/scATAC-455 

benchmarking). For ‘CisTopic’ and ‘Cusanovich2018’, peaks were called using MACS2 with 456 

options ‘--nomodel --extsize 300 --keep-dup all --broad’. Peaks closer to 5000bp were merged 457 

together using BEDTools. For ‘SnapATAC’, 50kbp bins were counted from BAM files using 458 

‘SnapTools’. In addition, we also tested a recent method for single-cell epigenomic analysis, 459 

‘EpiScanpy’, following the basic steps described in the tutorial for scATAC-seq 460 

(https://github.com/colomemaria/epiScanpy/blob/master/docs/tutorials/Tutorial_Hackathon_B461 

uenrostro_2.html) with the same 50kbp matrices used for ChromSCape. We extracted from 462 



each method the matrix of reduced feature space, and used hierarchical clustering with Pearson's 463 

dissimilarity as the distance metric and Ward's method for linkage. The adjusted Rand's 464 

index (ARI), a widely-used measure to quantify clustering accuracy, was calculated for each 465 

method using R package 'mclust'28, taking samples of origin as ‘true’ clusters. 466 

In addition, two softwares with graphic interface, dedicated to the analysis of single-cell data, 467 

‘scOrange’13 and ‘SCRAT’14, were also tested on the same set of cells both with ‘default’ 468 

parameters and manually ‘optimized’ parameters. ‘default’ for scOrange corresponds to using 469 

the template called ‘Loading data from 10X protocols’, a workflow meant for analyzing 470 

scRNA-seq of bone marrow cells, replacing the input by our matrices of selected cells in 50kbp 471 

bins. The ‘optimized’ workflow is available at 472 

www.github.com/vallotlab/ChromSCape_benchmarking and can be opened with the 473 

‘scOrange’ software. For ‘SCRAT’, we found that the ‘optimized’ counting method 474 

corresponded to counting signal within peaks called on the ‘pseudo-bulk’ (see above). 475 

In order to be able to compare the distinct methods, ChromSCape was first run on the raw count 476 

matrices and a set of 1287 cells passing the quality control thresholds were selected to be used 477 

as input for all methods. As the number of cells in each sample was unbalanced (e.g. the raw 478 

MDA-MB-468 containing n=3,382 cells while others have a maximum of n=456 cells), 500 479 

cells from MDA-MB-468 were randomly sub-sampled using ChromSCape ‘Perform 480 

Subsampling’ option. We removed from the analysis the segments corresponding to known 481 

amplifications and homozygous loss of DNA of the Triple Negative Breast Cancer cell line 482 

MDA-MB-468, corresponding to a total of 77Mbp, previously found by analyzing the input of 483 

bulk ChIP-seq of the same cells (see Supplementary Note 2). 484 



 485 

Code availability  486 

Source code, guidelines for installation and use of the application are provided at 487 

https://github.com/vallotlab/ChromSCape. A docker container containing the application and 488 

it’s dependecies is available on DockerHub (pacomito/chromscape:v0.0.9001), instructions on 489 

how to launch it are available on the github page. Codes for the benchmark of ‘SnapATAC’, 490 

‘CisTopic’, ‘Cusanovich2018’ and ‘EpiScanpy’ are available at 491 

https://github.com/vallotlab/ChromSCape_benchmarking.  492 

 493 

Data availability 494 

In this study, in addition of using publicly available single-cell datasets, we produced 495 

H3K27me3 scChIP-seq data for MDA-MB-468 sample and a new replicate of untreated HBCx-496 

95. The sequencing data that support the findings of this study have been deposited in the 497 

National Center for Biotechnology Information Gene Expression Omnibus (GEO) and are 498 

accessible through the GEO Series accession number GSE152502 499 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152502]. All other relevant data 500 

are available from the corresponding author on request. 501 

 502 
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Legends 596 

Figure 1. Representation of ChromSCape workflow 597 

Users upload single-cell epigenomic data formatted as count matrices, single-cell BAM or 598 

single-cell BED files to start the analysis. The application includes Quality Control (QC), 599 

Classification and Interpretation tools. The user can save plots and tables in png, pdf or csv 600 

formats, and R analysis objects in RData format.  601 

 602 

Figure 2. Benchmarking single-cell epigenomic tools with an in-silico mix of H3K27me3 603 

scChIP-seq. The mix is composed of human cells from an untreated PDX (HBCx-22), human 604 

T cells (Jurkat) and B cells (Ramos) taken from 1 and from a TNBC cell line (MDA-MB-468). 605 

(a) UMAP plots obtained with ChromSCape colored according to cluster and sample of origin. 606 

Adjusted Random Indexes (ARI) is indicated above the plot. (b) UMAP plots colored according 607 

to cluster and sample of origin with other single-cell epigenomic analysis methods: 608 

Cusanovich2018, SnapATAC, CisTopic and EpiScanpy. Adjusted Random Indexes (ARI) are 609 

indicated above the plots. (c) Snapshots from scOrange and SCRAT applications. PCA and t-610 

SNE representations from scOrange and SCRAT respectively, using default parameters or after 611 

manually optimizing parameters.  612 

 613 

Figure 3. ChromSCape identifies immune cell populations from scATAC-seq datasets. (a) 614 

t-SNE representations after correlation filtering (n=1309 cells), points are colored according to 615 

sample of origin (left) or ChromSCape-determined cluster (k=5) (right). The GM12878 and 616 

K562 samples contained respectively 4 and 6 replicates. (b) Assignment scores for each 617 

sample/cluster pair for the analysis with all samples. (c-d) As in (a) and (b) for the analysis with 618 

only AML, LSC, monocyte, LMPP & HL60 cells (n=347 cells). 619 

 620 



 621 

Figure 4. ChromSCape deconvolves epigenomic landscapes within the tumor micro-622 

environment. Cells belong to samples HBCx-22, HBCx-22-TamR, HBCx-95, HBCx-95-623 

CapaR PDX1. PCA and t-SNE plots are colored according to the amount of uniquely mapped 624 

reads per cell (a) and to sample of origin (b). (c) t-SNE representations after correlation filtering 625 

(n = 903 cells), colored by cluster or sample of origin. (d) Hierarchical clustering and 626 

corresponding heatmap of cell-to-cell consensus clustering scores cells portioning the dataset 627 

into k = 4 clusters. Consensus score ranges from 0 (white: never clustered together) to 1 (dark 628 

blue: always clustered together). Cluster membership is color-coded above the heatmap. (e) 629 

Table of cluster memberships. P-value column results from Pearson's Chi-squared goodness of 630 

fit test without correction, checking if the observed distribution of samples in each cluster 631 

differs from random distribution. Source data are provided as a Source Data file. (f) t-SNE 632 

representation of scChIP-seq datasets, points are colored according to H3K27me3 enrichment 633 

signals in each cell for genes located within depleted regions in C1 to C4, respectively Eln, 634 

Bcar1, Nrros and Rap1gap2. The adjusted p-values and log2FC of the associated regions are 635 

indicated above each plot. (g) Barplot of differentially enriched regions identified by Wilcoxon 636 

signed-rank test. Genomic regions were considered enriched (red) or depleted (green) in 637 

H3K27me3 if the adjusted p-values were lower than 0.01 and the absolute fold change greater 638 

than 1. (h) Barplot displaying the -log10 of adjusted p-values from pathway analysis for cells 639 

of cluster C2 compared to all other cells in depleted loci. Only the top 15 significant gene sets, 640 

ranked by adjusted p-values, are indicated. 641 
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