Higher roots of the Schrödinger equation

Pierre-François (Titou) LOOS

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France.

JTMS 2020: Journées "Théorie, Modélisation et Simulation"

PF Loos (CNRS@LCPQ)

Higher roots of the Schrödinger equation

JTMS 2020: Journées "Théorie, Modélisation et Simulation" 1/21

Section 1

Selected Configuration Interaction

ж

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Collaborators

Anthony Scemama

Mickäel Véril

Yann Garniron

Manu Giner

Yann Damour

Denis Jacquemin

Michel Caffarel

Julien Toulouse

Martial **Boggio-Pasqua**

Anouar Benali

イロト イポト イヨト イヨト JTMS 2020: Journées "Théorie, Modélisation et Simulation" 3/21

э

One selected CI (SCI) algorithm to rule them all

CIPSI = CI using a Perturbative Selection made Iteratively

- Developed in Toulouse many (many) years ago Huron, Malrieu & Rancurel, JCP 58 (1973) 5745
- Based on old idea by Bender and Davidson, and Whitten and Hackmeyer Bender & Davidson, Phys. Rev. 183 (1969) 23 Whitten & Hackmeyer, JCP 51 (1969) 5584
- CIPSI (and SCI methods in general) has been recently resurrected! Giner, Scemama & Caffarel, CJC 91 (2013) 879 Giner, Scemama & Caffarel, JCP 142 (2015) 044115
- CIPSI ≈ deterministic version of FCIQMC Caffarel et al., Recent Progress in Quantum Monte Carlo (2016) Chap. 2, 15-46.

Selected CI or how to create new methods with new acronyms

"SCI methods provide near full CI (FCI) quality energies with only a small fraction of the determinants of the FCI space"

- CIPSI (Malrieu, Evangelisti, Angeli, Spiegelman, Giner, Caffarel, Scemama, etc)
- Semistochastic Heat-bath CI (Sharma & Umrigar)
- Adaptive sampling CI (Evangelista & Tubman)
- Incremental CI (Zimmerman)
- Iterative CI (Liu & Hoffmann)
- FCIQMC (Alavi & Booth)

• ...

イロト (日) (日) (日) (日) (日) (日)

Quantum Package 2.0: https://github.com/QuantumPackage/qp2

"Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs", Garniron et al., JCTC 15 (2019) 3591

PF Loos (CNRS@LCPQ)

Higher roots of the Schrödinger equation

 Image: Image

The Benzene Blind Challenge: Frozen-core correlation energy (cc-pVDZ)

Eriksen et al. JPCL 11 (2020) 8922

э

イロト イポト イヨト イヨト

Performance of CIPSI for C_6H_6/cc -pVDZ (1)

Loos, Damour & Scemama JCP 153 (2020) 176101

3

イロト 人間 トイヨト イヨト

Performance of CIPSI for C_6H_6/cc -pVDZ (2)

TABLE I.	The frozen-core correlation energy ΔE (in mE _h) of benzen	e
in the cc-p	VDZ basis set using various methods.	

Method	ΔE	Ref.
ASCI	-860.0	17
iCI	-861.1	17
CCSDTQ	-862.4	17
DMRG	-862.8	17
FCCR	-863.0	17
MBE-FCI	-863.0	17
CAD-FCIQMC	-863.4	17
AS-FCIQMC	-863.7	17
SHCI	-864.2	17
ph-AFQMC	-864.3(4)	45
CIPSI	-863.4	This work

TABLE III. Extrapolation distances, ΔE_{dist} , defined as the difference between the final computed energy, ΔE_{final} , and the extrapolated energy, ΔE_{extrap} , associated with ASCI, iCI, SHCI, DMRG, and CIPSI for the best blind-test and post-blind-test estimates of the correlation energy of benzene in the cc-pVDZ basis. The final variational energies $\Delta E_{\text{var.}}$ are also reported. See Ref. 17 for more details. All correlation energies are given in m E_h .

Method	$\Delta E_{ m var.}$	$\Delta E_{ m final}$	$\Delta E_{\mathrm{extrap.}}$	$\Delta E_{ m dist}$	
Best blind-	test estimates				
ASCI	-737.1	-835.4	-860.0	-24.6	
iCI	-730.0	-833.7	-861.1	-27.4	
SHCI	-827.2	-852.8	-864.2	-11.4	
DMRG	-859.2	-859.2	-862.8	-3.6	
Best post-blind-test estimates					
ASCI	-772.4	-835.2	-861.3	-26.1	
iCI	-770.7	-842.8	-864.2	-21.3	
SHCI	-835.2	-854.9	-863.6	-8.7	
CIPSI	-814.8	-850.2	-863.4	-13.2	

Loos, Damour & Scemama JCP 153 (2020) 176101

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Highly-accurate excitation energies: The QUEST project (1)

PF Loos (CNRS@LCPQ)

Higher roots of the Schrödinger equation

JTMS 2020: Journées "Théorie, Modélisation et Simulation" 10 / 21

Highly-accurate excitation energies: The QUEST project (2)

Véril et al. WIREs Comput. Mol. Sci. (in preparation)

https://github.com/mveril/QUESTDB_website

Higher roots of the Schrödinger equation

CIPSI trial wave functions for periodic solids

Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids—A case study in diamond

Cite as: J. Chem. Phys. 153, 000000 (2020); doi: 10.1063/5.0021036 Submitted: 6 July 2020 • Accepted: 12 October 2020 • Published Online: XX XX XXXX

Anouar Benali,^{1,a)} ⁽¹⁾ Kevin Gasperich,² ⁽¹⁾ Kenneth D. Jordan,² ⁽¹⁾ Thomas Applencourt,³ Ye Luo,¹ ⁽¹⁾ M. Chandler Bennett,⁴ ⁽¹⁾ Jaron T. Krogel,⁴ ⁽¹⁾ Luke Shulenburger,⁵ ⁽¹⁾ Paul R. C. Kent,⁶⁷ ⁽¹⁾ Pierre-François Loos,⁸ ⁽²⁾ Anthony Scemama,⁸ ⁽¹⁾ and Michel Caffarel,⁸ ⁽¹⁾

See also Scemama et al. JCP (in press) arXiv:2008.10088 for a range-separated approach in molecules

PF Loos (CNRS@LCPQ)

Higher roots of the Schrödinger equation

rî,

Section 2

Many-Body Perturbation Theory: GW and Bethe-Salpeter equation

PF Loos (CNRS@LCPQ)

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Collaborators

Anthony Scemama

Arjan Berger

Pina Romaniello

Mickäel Véril

Denis Jacquemin

Xavier Blase

JTMS 2020: Journées "Théorie, Modélisation et Simulation" 14/21

э

・ロン ・雪 と ・ ヨ と

Fundamental gap vs Optical gap

© Bruno Senjean

Bredas, Mater. Horiz. 1 (2014) 17

Higher roots of the Schrödinger equation

э

The MBPT chain of actions

Blase et al. JPCL 11 (2020) 7371

イロト イポト イヨト イヨ

The *GW* approximation: Hedin's pentagon

Hedin, Phys. Rev. 139 (1965) A796

PF Loos (CNRS@LCPQ)

Higher roots of the Schrödinger equation

JTMS 2020: Journées "Théorie, Modélisation et Simulation" 17/21

э

The bridge between TD-DFT and BSE

TD-DFT	Connection	BSE
One-point density $ ho(1)$	$\rho(1) = -iG(11^+)$	Two-point Green's function <i>G</i> (12)
Two-point susceptibility $\chi(12) = \frac{\partial \rho(1)}{\partial U(2)}$	$\chi(12) = -iL(12; 1^+2^+)$	Four-point susceptibility $L(12; 34) = \frac{\partial G(13)}{\partial U(42)}$
Two-point kernel $K(12) = v(12) + \frac{\partial V^{xc}(1)}{\partial \rho(2)}$		Four-point kernel $i\Xi(1234) = v(13)\delta(12)\delta(34) - \frac{\partial \Sigma^{xc}(12)}{\partial G(34)}$

TD-DFT and BSE in practice: Casida-like equations

Linear response problem

$$\begin{pmatrix} R & C \\ -C^* & -R^* \end{pmatrix} \begin{pmatrix} X_m \\ Y_m \end{pmatrix} = \Omega_m \begin{pmatrix} X_m \\ Y_m \end{pmatrix}$$

Blue pill: TD-DFT within the adiabatic approximation

$$R_{ia,jb} = \left(\varepsilon_a^{KS} - \varepsilon_i^{KS}\right) \delta_{ij} \delta_{ab} + 2(ia|bj) + f_{ia,bj}^{xc} \qquad C_{ia,jb} = 2(ia|jb) + f_{ia,jb}^{xc}$$
$$f_{ia,bj}^{xc} = \iint \phi_i(\mathbf{r}) \phi_a(\mathbf{r}) \frac{\delta^2 E^{xc}}{\delta \rho(\mathbf{r}) \delta \rho(\mathbf{r}')} \phi_b(\mathbf{r}) \phi_j(\mathbf{r}) d\mathbf{r} d\mathbf{r}'$$

Red pill: BSE within the static approximation

$$\begin{aligned} \boldsymbol{R}_{ia,jb} &= \left(\varepsilon_a^{GW} - \varepsilon_i^{GW}\right) \delta_{ij} \delta_{ab} + 2(ia|bj) - \boldsymbol{W}_{ij,ba}^{\text{stat}} \qquad \boldsymbol{C}_{ia,jb} = 2(ia|jb) - \boldsymbol{W}_{ib,ja}^{\text{stat}} \\ \boldsymbol{W}_{ij,ab}^{\text{stat}} &\equiv \boldsymbol{W}_{ij,ab}(\omega = 0) = (ij|ab) - \boldsymbol{W}_{ij,ab}^{c}(\omega = 0) \end{aligned}$$

Dynamical correction to the BSE

Non-linear response problem

$$\begin{pmatrix} \mathbf{R}(\Omega_S) & \mathbf{C}(\Omega_S) \\ -\mathbf{C}^*(-\Omega_S) & -\mathbf{R}^*(-\Omega_S) \end{pmatrix} \begin{pmatrix} X_S \\ Y_S \end{pmatrix} = \Omega_S \begin{pmatrix} X_S \\ Y_S \end{pmatrix}$$

Dynamical BSE formalism [Strinati, Riv. Nuovo Cimento 11 (1988) 1]

$$\mathcal{R}_{ia,jb}(\omega) = \left(\varepsilon_a^{GW} - \varepsilon_i^{GW}\right) \delta_{ij} \delta_{ab} + 2(ia|bj) - \widetilde{W}_{ij,ba}(\omega) \qquad \widetilde{W}_{ij,ab}(\omega) = (ij|ab) - \widetilde{W}_{ij,ab}^c(\omega)$$

Loos & Blase, JCP 153 (2020) 114120; Authier & Loos, JCP (in press) arXiv:2008.13143

PF Loos (CNRS@LCPQ)

イロト イポト イヨト イヨト

Acknowledgements & Funding

- DFT for ensembles: Clotilde Marut, Bruno Senjean & Emmanuel Fromager
- Basis-set correction: Barthélémy Pradines Julien Toulouse & Emmanuel Giner
- MBPT: Julien Authier, Roberto Orlando, Stefano Di Sabatino, Pina Romaniello, Arjan Berger, Ivan Duchemin & Xavier Blase
- CIPSI: Mika Véril, Yann Garniron, Yann Damour, Martial Boggio-Pasqua, Denis Jacquemin, Emmanuel Giner, Anouar Benali, Michel Caffarel & Anthony Scemama
- PT-symmetry: Antoine Marie, Enzo Monino, Fabris Kossoski, Alex Thom & Hugh Burton

