



European Research Council Established by the European Commission Laboratoire de Chimie et Physique Quantiques

# What can't CIPSI do?

Emmanuel Giner, Pierre-François (Titou) Loos, Anthony Scemama

#### 14th December 2020

Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse https://lcpq.github.io/pterosor

PTEROSOR has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 863481).

- **Green:** reference/variational/internal wave function (zeroth-order or model space)
- **Red:** perturbers or external wave function (first-order or perturbative space)





1. Define a (zeroth-order) *reference* wave function:

$$|\Psi^{(0)}\rangle = \sum_{I \in \mathcal{D}} c_I |I\rangle \qquad \qquad E^{(0)} = \frac{\langle \Psi^{(0)} | H | \Psi^{(0)} \rangle}{\langle \Psi^{(0)} | \Psi^{(0)} \rangle}$$

(-) 0

2. Generate external determinants:

$$\mathcal{A} = \left\{ \left( \forall I \in \mathcal{D} \right) \left( \forall \hat{T} \in \mathcal{T}_1 \cup \mathcal{T}_2 \right) : \left| \alpha \right\rangle = \hat{T} \left| I \right\rangle \right\}$$

3. Second-order perturbative contribution of each  $|\alpha\rangle$ :

$$\delta E(\alpha) = \frac{|\langle \Psi^{(0)} | \hat{H} | \alpha \rangle|^2}{E^{(0)} - \langle \alpha | \hat{H} | \alpha \rangle}$$

- 4. Select  $|\alpha\rangle$  with largest  $\delta E(\alpha)$  and add them to  $\mathcal{D}$
- 5. Diagonalize  $\hat{H}$  in  $\mathcal{D} \Rightarrow$  update  $|\Psi^{(0)}\rangle$  and  $E^{(0)}$
- 6. Iterate



## Ground state of Cr<sub>2</sub> in cc-pVQZ: full-valence CAS(28e,198o)





Second-order Epstein-Nesbet correction:

$$E^{(2)} = \sum_{\alpha} \delta E(\alpha)$$

- ►  $|\alpha\rangle$ 's with largest  $\delta E(\alpha)$  have been added to  $\Psi^{(0)}$  previously  $\Rightarrow$  only small contributions remaining
- $\blacktriangleright$   $\mathcal{A}$  increases with  $\mathcal{D}$ 
  - $\Rightarrow$  a *very* large number of *very* small contributions
- In practice, we use a semi-stochastic algorithm to compute E<sup>(2)</sup> ⇒ much faster!! Garniron, Scemama, Loos & Caffarel, JCP 147 (2017) 034101
- We linearly extrapolate to  $E^{(2)} = 0$  to reach the FCI limit (exFCI)



## Ground state of Cr<sub>2</sub> in cc-pVQZ: full-valence CAS(28e,198o)



Garniron et al., JCTC 15 (2019) 3591

At a given CIPSI iteration, the SCI+PT2 energy is given by

 $E = E^{(0)} + E^{(2)}$ 

Let us introduce the following energy-dependent second-order self-energy

$$\boldsymbol{\Sigma}^{(2)}[E] = \sum_{\alpha} \frac{\langle \alpha | \hat{H} | \Psi^{(0)} \rangle^2}{E - \langle \alpha | \hat{H} | \alpha \rangle} \quad \text{with} \quad \boldsymbol{\Sigma}^{(2)}[E^{(0)}] = \boldsymbol{E}^{(2)}$$

Brillouin-Wigner perturbation theory tells us

$$E = E^{(0)} + \Sigma^{(2)}[E]$$

Assuming that  $\Sigma^{(2)}[E]$  behaves linearly for  $E \approx E^{(0)}$ 

$$\Sigma^{(2)}[E] \approx \Sigma^{(2)}[E^{(0)}] + (E - E^{(0)}) \left. \frac{\partial \Sigma^{(2)}[E]}{\partial E} \right|_{E=E^{(0)}}$$

This yields

$$E = E^{(0)} + \sum^{(2)} [E^{(0)}] + (E - E^{(0)}) \left. \frac{\partial \sum^{(2)} [E]}{\partial E} \right|_{E = E^{(0)}} = E^{(0)} + \mathbb{Z} E^{(2)} \text{ with } \mathbb{Z} = \left[ 1 - \left. \frac{\partial \sum^{(2)} [E]}{\partial E} \right|_{E = E^{(0)}} \right]^{-1}$$







$$\boldsymbol{H}\boldsymbol{c} - \boldsymbol{E}\boldsymbol{c} = \begin{pmatrix} \boldsymbol{H}^{(0)} & \boldsymbol{h}^{\dagger} \\ \boldsymbol{h} & \boldsymbol{H}^{(1)} \end{pmatrix} \begin{pmatrix} \boldsymbol{c}^{(0)} \\ \boldsymbol{c}^{(1)} \end{pmatrix} - \boldsymbol{E} \begin{pmatrix} \boldsymbol{c}^{(0)} \\ \boldsymbol{c}^{(1)} \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{pmatrix}$$

internal space 
$$|I\rangle$$
  $\left\{ \begin{array}{c|c} \mathbf{H}^{(0)} & \mathbf{h}^{\dagger} \\ \end{array} \right.$   
perturbers  $|\alpha\rangle$   $\left\{ \begin{array}{c|c} \mathbf{h} & \mathbf{H}^{(1)} \end{array} \right.$ 

$$\Rightarrow \boldsymbol{c}^{(1)} = -(\boldsymbol{H}^{(1)} - \boldsymbol{E}\boldsymbol{I})^{-1}\boldsymbol{h}\,\boldsymbol{c}^{(0)}$$

Effective Hamiltonian:  $H_{\text{eff}} = H^{(0)} + \Delta$  Dressing term:  $\Delta = h^{\dagger} c^{(1)}$ 

Approximation #1 (Bk method):  $\boldsymbol{\Delta} = \boldsymbol{h}^{\dagger} (\boldsymbol{E} \boldsymbol{I} - \boldsymbol{D}^{(1)})^{-1} \boldsymbol{h}$ 

Gershgorn & Shavitt, IJQC 2 (1968) 751



$$Hc - Ec = \begin{pmatrix} H^{(0)} & h^{\dagger} & 0 \\ h & H^{(1)} & g^{\dagger} \\ 0 & g & H^{(2)} \end{pmatrix} \begin{pmatrix} c^{(0)} \\ c^{(1)} \\ c^{(2)} \end{pmatrix} - E \begin{pmatrix} c^{(0)} \\ c^{(1)} \\ c^{(2)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$



$$\Rightarrow \boldsymbol{c}^{(1)} = -\left[(\boldsymbol{H}^{(1)} - \boldsymbol{E}\boldsymbol{I}) - \boldsymbol{g}^{\dagger}(\boldsymbol{H}^{(2)} - \boldsymbol{E}\boldsymbol{I})\boldsymbol{g}\right]^{-1}\boldsymbol{h}\,\boldsymbol{c}^{(0)}$$

Effective Hamiltonian:  $H_{eff} = H^{(0)} + \Delta$  Dressing term:  $\Delta = \frac{h^{\dagger}c^{(1)}}{h^{\dagger}c^{(1)}}$ 

Approximation #2 (shifted-Bk method):  $\boldsymbol{\Delta} = \boldsymbol{h}^{\dagger} (\boldsymbol{E}^{(0)} - \boldsymbol{D}^{(1)})^{-1} \boldsymbol{h}$ 

Davidson, McMurchie & Day, IJQC 74 (1981) 5491

# $^{2}\Pi_{g}$ ground state of the CuCl<sub>2</sub> (6-31G)



Scemama, Garniron, Giner, Caffarel & Loos, JCP 149 (2018) 064103

- Multi-state version also available
- Provides better trial wave functions for QMC



## The Benzene Blind Challenge: Frozen-core correlation energy (cc-pVDZ)



#### Eriksen et al. JPCL 11 (2020) 8922



### Performance of CIPSI for C<sub>6</sub>H<sub>6</sub>/cc-pVDZ (1)



Loos, Damour & Scemama JCP 153 (2020) 176101



| TABLE I.   | The frozen-core correlation energy $\Delta E$ (in m $E_h$ ) of benzene |
|------------|------------------------------------------------------------------------|
| n the cc-p | VDZ basis set using various methods.                                   |

| Method     | $\Delta E$ | Ref.      |
|------------|------------|-----------|
| ASCI       | -860.0     | 17        |
| iCI        | -861.1     | 17        |
| CCSDTQ     | -862.4     | 17        |
| DMRG       | -862.8     | 17        |
| FCCR       | -863.0     | 17        |
| MBE-FCI    | -863.0     | 17        |
| CAD-FCIQMC | -863.4     | 17        |
| AS-FCIQMC  | -863.7     | 17        |
| SHCI       | -864.2     | 17        |
| ph-AFQMC   | -864.3(4)  | 45        |
| CIPSI      | -863.4     | This work |

TABLE III. Extrapolation distances,  $\Delta E_{\rm dist}$ , defined as the difference between the final computed energy,  $\Delta E_{\rm final}$ , and the extrapolated energy,  $\Delta E_{\rm extrap}$ , associated with ASCL i.Cl, SHCI, DMRG, and CIPSI for the best blind-test and post-blind-test estimates of the correlation energy of benzene in the cc-pVDZ basis. The final variational energies  $\Delta E_{\rm var}$  are also reported. See Ref. 17 for more details. All correlation energy are given in m $E_{b}$ .

| Method                         | $\Delta E_{\rm var.}$ | $\Delta E_{\mathrm{final}}$ | $\Delta E_{\rm extrap.}$ | $\Delta E_{\rm dist}$ |  |  |
|--------------------------------|-----------------------|-----------------------------|--------------------------|-----------------------|--|--|
| Best blind-t                   | est estimates         |                             |                          |                       |  |  |
| ASCI                           | -737.1                | -835.4                      | -860.0                   | -24.6                 |  |  |
| iCI                            | -730.0                | -833.7                      | -861.1                   | -27.4                 |  |  |
| SHCI                           | -827.2                | -852.8                      | -864.2                   | -11.4                 |  |  |
| DMRG                           | -859.2                | -859.2                      | -862.8                   | -3.6                  |  |  |
| Best post-blind-test estimates |                       |                             |                          |                       |  |  |
| ASCI                           | -772.4                | -835.2                      | -861.3                   | -26.1                 |  |  |
| iCI                            | -770.7                | -842.8                      | -864.2                   | -21.3                 |  |  |
| SHCI                           | -835.2                | -854.9                      | -863.6                   | -8.7                  |  |  |
| CIPSI                          | -814.8                | -850.2                      | -863.4                   | -13.2                 |  |  |

#### Loos, Damour & Scemama JCP 153 (2020) 176101





Garniron et al., JCTC 15 (2019) 3591



| Table 1. Zeroth-Order Energy $E^{(0)}$ , Second-Order Perturbative Correction $E^{(2)}$ , and Its Renormalized Version Z $E^{(2)}$ (i | n |
|---------------------------------------------------------------------------------------------------------------------------------------|---|
| hartree) of CN3 for Increasingly Large Wave Functions <sup>a</sup>                                                                    |   |

|               | $E^{(0)}$   |             | $E^{(0)} = E^{(0)} + E^{(2)}$ |               |                | $E^{(0)}+ZE^{(2)}$ |                |                |
|---------------|-------------|-------------|-------------------------------|---------------|----------------|--------------------|----------------|----------------|
| $N_{\rm det}$ | GS (a.u.)   | ES (a.u.)   | GS (a.u.)                     | ES (a.u.)     | $\Delta E(eV)$ | GS (a.u.)          | ES (a.u.)      | $\Delta E(eV)$ |
| 28            | -149.499574 | -149.246268 | -150.155(1)                   | -149.863(1)   | 7.95(5)        | -150.020(1)        | -149.743(1)    | 7.54(5)        |
| 58            | -149.519908 | -149.261390 | -150.134(1)                   | -149.853(1)   | 7.67(5)        | -150.018(1)        | -149.744(1)    | 7.48(5)        |
| 131           | -149.537424 | -149.277496 | -150.118(1)                   | -149.8427(9)  | 7.52(4)        | -150.017(1)        | -149.7449(9)   | 7.39(4)        |
| 268           | -149.559465 | -149.298484 | -150.1035(9)                  | -149.8308(9)  | 7.42(4)        | -150.0158(9)       | -149.7457(9)   | 7.35(4)        |
| 541           | -149.593434 | -149.323302 | -150.0845(8)                  | -149.8186(8)  | 7.24(4)        | -150.0152(8)       | -149.7463(8)   | 7.32(4)        |
| 1101          | -149.627202 | -149.354807 | -150.0683(8)                  | -149.8045(8)  | 7.18(3)        | -150.0137(8)       | -149.7460(8)   | 7.28(3)        |
| 2207          | -149.663850 | -149.399522 | -150.0549(7)                  | -149.7879(7)  | 7.26(3)        | -150.0132(7)       | -149.7462(7)   | 7.27(3)        |
| 4417          | -149.714222 | -149.448133 | -150.0409(6)                  | -149.7762(6)  | 7.20(3)        | -150.0130(6)       | -149.7478(6)   | 7.22(3)        |
| 8838          | -149.765886 | -149.496401 | -150.0296(5)                  | -149.7655(5)  | 7.19(2)        | -150.0124(5)       | -149.7473(5)   | 7.21(2)        |
| 17 680        | -149.817301 | -149.545048 | -150.0239(4)                  | -149.7615(4)  | 7.14(2)        | -150.0141(4)       | -149.7505(4)   | 7.17(2)        |
| 35 380        | -149.859737 | -149.587668 | -150.0216(3)                  | -149.7582(3)  | 7.17(1)        | -150.0161(3)       | -149.7518(3)   | 7.19(1)        |
| 70 764        | -149.893273 | -149.623235 | -150.0207(2)                  | -149.7566(3)  | 7.18(1)        | -150.0174(2)       | -149.7530(3)   | 7.19(1)        |
| 141 545       | -149.919463 | -149.650109 | -150.0214(2)                  | -149.7572(2)  | 7.189(8)       | -150.0194(2)       | -149.7550(2)   | 7.196(8)       |
| 283 108       | -149.937839 | -149.669735 | -150.0224(2)                  | -149.7576(2)  | 7.206(7)       | -150.0211(2)       | -149.7562(2)   | 7.209(7)       |
| 566 226       | -149.950918 | -149.683278 | -150.0233(1)                  | -149.7580(1)  | 7.217(6)       | -150.0223(1)       | -149.7570(1)   | 7.219(6)       |
| 1 132 520     | -149.960276 | -149.693053 | -150.0238(1)                  | -149.7588(1)  | 7.212(5)       | -150.0231(1)       | -149.7580(1)   | 7.214(5)       |
| 2 264 948     | -149.968203 | -149.700907 | -150.0240(1)                  | -149.7590(1)  | 7.211(4)       | -150.0235(1)       | -149.7584(1)   | 7.212(4)       |
| 4 529 574     | -149.975230 | -149.708061 | -150.0245(1)                  | -149.7594(1)  | 7.215(4)       | -150.0241(1)       | -149.7589(1)   | 7.216(4)       |
| 9 057 914     | -149.981770 | -149.714526 | -150.02463(9)                 | -149.75981(8) | 7.206(3)       | -150.02434(9)      | -149.75948(8)  | 7.207(3)       |
| 18 110 742    | -149.987928 | -149.720648 | -150.02495(7)                 | -149.76025(8) | 7.203(3)       | -150.02474(7)      | -149.76000(8)  | 7.204(3)       |
| 36 146 730    | -149.993593 | -149.726253 | -150.02527(6)                 | -149.76065(7) | 7.198(3)       | -150.02502(6)      | -149.760 47(7) | 7.198(3)       |

<sup>a</sup>The excitation energy  $\Delta E$  (in eV) is the energy difference between the ground state (GS) and the excited state (ES). The statistical error, corresponding to one standard deviation, is reported in parentheses.

#### What you can/can't do with CIPSI



- Forget about large systems/basis sets: JCTC 16 (2020) 1711
  - ▶ 1-3 non-H atoms with triple- (30-44) or quadruple- $\zeta$  basis (55-80)
  - 4-6 non-H atoms with double- $\zeta$  basis (14-23)
- ✓ Open-shell systems are "easy" (no spin contamination and independent of starting orbitals) JCTC 16 (2020) 3720
- ✓ Double excitations are easily accessible (especially if they have the same symmetry as the ground state) JCTC 15 (2020) 1939
- ✓ You can post-process CIPSI wave functions!