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Evolutionary dynamics of complex traits in sexual populations
in a heterogeneous environment: how normal?

Léonard Dekens∗†‡

October 15, 2021

Abstract

When studying the dynamics of trait distribution of populations in a heterogeneous
environment, classical models from quantitative genetics choose to look at its system of
moments, specifically the first two ones. Additionally, in order to close the resulting system
of equations, they often assume that the trait distribution is Gaussian (see for instance
Ronce and Kirkpatrick 2001). The aim of this paper is to introduce a mathematical
framework that follows the whole trait distribution (without prior assumption) to study
evolutionary dynamics of sexually reproducing populations. Specifically, it focuses on
complex traits, whose inheritance can be encoded by the infinitesimal model of segregation
(Fisher 1919). We show that it allows us to derive a regime in which our model gives
the same dynamics as when assuming a Gaussian trait distribution. To support that, we
compare the stationary problems of the system of moments derived from our model with
the one given in Ronce and Kirkpatrick 2001 and show that they are equivalent under
this regime and do not need to be otherwise. Moreover, under this regime of equivalence,
we show that a separation bewteen ecological and evolutionary time scales arises. A fast
relaxation toward monomorphism allows us to reduce the complexity of the system of
moments, using a slow-fast analysis. This reduction leads us to complete, still in this
regime, the analytical description of the bistable asymmetrical equilibria numerically found
in Ronce and Kirkpatrick 2001. More globally, we provide explicit modelling hypotheses
that allow for such local adaptation patterns to occur.

Introduction
Most species occupy heterogeneous environments, in which the spatial structure is expected to
play a significant role in the evolution of the diversity of a species. As a result of the balance
between the mixing effect of migration connecting the different habitats of a species and the
selective pressure reducing diversity within each habitat, several equilibrium states encoding
the local adaptation of a species can be reached. Will the species succeed to persist in a wide
range of habitat available and thus thrive as a generalist species? Will it become adapted to
specific sets of conditions as what we call a specialist species? Evolutionary biology fields have
taken a sustained interest in these questions, in population genetics (Lythgoe 1997; Nagylaki
and Lou 2001; Bürger and Akerman 2011; Akerman and Bürger 2014), adaptive dynamics
(Meszéna, Czibula, and Geritz 1997; Day 2000) or quantitative genetics (Tufto 2000; Ronce
and Kirkpatrick 2001; Hendry, Day, and Taylor 2001; Yeaman and Guillaume 2009; Débarre,
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Ronce, and Gandon 2013; Débarre, Yeaman, and Guillaume 2015; Mirrahimi 2017; Lavigne et
al. 2019; Mirrahimi and Gandon 2020). Here we adopt the framework of quantitative genetics,
which models the adaptation of a continuous trait without giving explicitly its underlying
genetic architecture. Additionally, we specifically choose to analyse the influence of sexual
reproduction as mating system.

Model. We build our model within a biological framework shared with classical studies
(Ronce and Kirkpatrick 2001; Hendry, Day, and Taylor 2001; Débarre, Ronce, and Gandon
2013). We consider a sexual population whose individuals are characterized by a quantitative
phenotypic trait z ∈ R and evolving in a heterogeneous environment constituted by two
habitats that we will assume to be symmetric (i.e, sharing the same ecological parameters
except for their optimal traits), as illustrated in Fig. 1.

The density of population at a given time t with respect to a phenotype z in habitat
i ∈ {1, 2} is denoted ni(t, z) ∈ L1 (R+ × R), for which we further assume that zk ni(t, z) ∈
L1 (R+ × R) for k < 4.

Local maladaptation is the source of mortality in our model: stabilizing selection acts
quadratically in each patch toward an optimal phenotype θi ∈ R with an intensity g > 0.
Define θ as half the distance between the two local optima: θ := |θ2−θ1|

2 . Up to a translation
in the phenotypic space, we can consider without loss of generality that 0 < θ2 = −θ1 = θ.
Additionally, competition for resources regulates the total size of the subpopulation Ni(t) =∫
R
ni(t, z′) dz′ in each patch with an intensity κ > 0. The mortality rate of an individual

with phenotypic trait z ∈ R is thus given by:

M [ni(t, z)] = −g(z − θi)2 − κNi.

Migration between the two patches occurs symmetrically at a rate m > 0. The exchange of
individuals from patch i to patch j of a given phenotype z ∈ R at time t ≥ 0 is thereby:

m (nj(t, z)− ni(t, z)) .

Finally, we denote by Bσ(ni)(t, z) the number of new individuals that are born at time
t ≥ 0 in patch i with a phenotype z ∈ R due to sexual reproduction. That phenomenon is
occurring at a rate r > 0, and the parameter σ is a measure of the segregational variance
linked to the trait inheritance process. The sexual reproduction operator is at this point still
unspecified and will be defined below. However, we will consider that it respects the following
conservative properties :

∀t ∈ R+,

∫
R
Bσ(ni)(t, z) dz =

∫
R
ni(t, z) dz,

∫
R
zBσ(ni)(t, z) dz =

∫
R
z ni(t, z) dz.

The dynamics of the local trait distributions are therefore given by:


∂n1
∂t

(t, z) = rBσ(n1)(t, z)− g(z − θ1)2n1(t, z)− κN1(t)n1(t, z) +m (n2(t, z)− n1(t, z)) ,

∂n2
∂t

(t, z) = rBσ(n2)(t, z)− g(z − θ2)2n2(t, z)− κN2(t)n2(t, z) +m (n1(t, z)− n2(t, z)) .
(1)

System of moments and gaussian assumption. Quantitative genetics studies often
model the dynamics of the sizes of the subpopulations N1 > 0 and N2 > 0 and their mean
traits z1 and z2 (where Ni :=

∫
Rni(t, z) dz and zi := 1

Ni

∫
R z ni(t, z) dz). Although we

intend to follow the dynamics of the whole trait distributions, for the sake of comparison,
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Figure 1: Heterogeneous symmetrical environment framework for a quantitative
trait z. The upper part of the figure illustrates the different biological forces acting in each
habitat (reproduction, competition for resources, selection) and between them (migration).
The lower part of the figure draws the local quadratic selection functions considered, where
θ1 and θ2 are the local optimal traits. The parameters are the same in both habitats, except
for the local optimal traits.
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we derive ordinary differential equations for the first moments of the trait distributions by
integrating (1) with regard to z:

dNi
dt =

[
r − κNi(t)− g(zi(t)− θi)2 − gσi2

]
Ni(t) +m

(
Nj(t)−Ni(t)

)
,

dzi
dt = 2σi2g(θi − zi(t))− gψ3

i +mNj(t)
Ni(t (zj(t)− zi(t)).

(2)

where σi2 := 1
Ni

∫
R(z−zi)2ni(t, z) dz and ψi3 :=

∫
R

1
Ni

∫
(z−zi)3ni(t, z) dz are respectively

the variance and the third central moment of the trait distribution of each subpopulation (see
Appendix A for details about the derivation). At this point, a common key assumption used
to close the system that arises in quantitative genetics models is the normality of such a trait
distribution, with a constant variance (Hendry, Day, and Taylor 2001; Ronce and Kirkpatrick
2001). In Ronce and Kirkpatrick 2001, such an assumption results in the following system
(with their original notations for the parameters):

dNi
dt =

[
r0(1− Ni

K )− γ
2σp

2 − γ
2 (zi − θi)2

]
Ni +m(Nj −Ni),

dzi
dt = σg

2γ(θi − zi) +mNj
Ni

(zj − zi).

where σp2 and σg2 are respectively the constant phenotypic and genotypic variance, differing
additively by a constant variance due to environmental effects σe2 (σp2 = σg

2 + σe2). With
this method, the authors of Ronce and Kirkpatrick 2001 analyse the equilibria of the system
above, by distinguishing two types of equilibrium:

• symmetrical equilibrium, where both local populations have equal size and are equally
maladapted to their local habitat. The species survives in both habitats, and is therefore
characterized as a generalist species. The authors derived this equilibrium analytically.

• asymmetrical equilibria, where the species mainly inhabits one habitat to which it is
adapted. It acts as a source for the other habitat that is almost deserted, if it were not
for a few unsuccessful migrants, sent from the first habitat, and therefore poorly adapted
to the second one (the sink). This type of equilibrium characterizes a specialist species,
that can only live in a restricted set of environments . The authors numerically explored
this type of equilibrium and derived approximations for low migration rates.

However, this approach disregards the effect of higher moments of the trait distribution
(like the skewness), that may become significant due to the presence of gene flow, as pointed
out in Yeaman and Guillaume 2009 and Débarre, Yeaman, and Guillaume 2015.

The infinitesimal model of sexual reproduction. To account for the influence of higher
moments calls for models bypassing any prior assumption on the trait distribution, both to
assess the validity of the Gaussian approximation or examine the departure from it. Therefore,
it is necessary to make explicit the interplay between sexual reproduction and phenotypic
inheritance. The infinitesimal model of sexual reproduction, first introduced by R.Fisher in
1919 (Fisher 1919) offers a simple way to tackle this issue for complex traits. Consequently,
it has been used both in several biological studies (under truncation selection in Turelli and
Barton 1994, or in a continent-island model in Tufto 2000) and mathematical ones (Mirrahimi
and Raoul 2013; Bourgeron et al. 2017; Raoul 2017). Aligning with these, we choose it in
our study to model trait inheritance due to sexual reproduction. The classical version of this
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model translates the stochasticity of the segregation process by the fact that the offspring trait
variable Z (conditioned to the parental traits Z1 = z1 and Z2 = z2) follows a Gaussian law
centered in the mean parental trait and with a segregational variance of σ2

2 :

Z|{Z1 = z1,Z2 = z2} ∼
z1 + z2

2 +N
(

0, σ
2

2

)
. (3)

Consequently, this model makes a normal assumption, not on the distribution of trait in the
population, but on the distribution of offspring within each family, with a fixed and constant
segregational variance (Turelli 2017). A common Mendelian interpretation of this mixing
model is that the trait results from the expression of a large number of alleles with small
additive effects (Fisher 1919; Bulmer 1971; Lange 1978). Recently, a rigorous framework of
the use of that model in various biological contexts has been derived in Barton, Etheridge,
and Véber 2017.

The regime of small variance: σ2 � θ2. There also has been increasing mathematical
interest in developing integro-differential equations for the whole trait distribution to study
qualitatively quantitative genetics models (Magal and F. Webb 2000; Diekmann et al. 2005;
Desvillettes et al. 2008). A framework introduced by Diekmann et al. 2005 to study asexual
models in the regime of small mutations led to first rigorous results in Perthame and Barles
2008 in the context of homogeneous environment. Next, it has been extended to study spa-
tially heterogeneous environment where asexual species evolve, like in Mirrahimi 2017 that
successfully characterizes the equilibrium states by using a Hamilton-Jacobi approach in the
limit of small mutations. For sexually reproducing populations, using the infinitesimal model
in an asymptotic regime allowed Mirrahimi and Raoul 2013 to study invasions by phenotypi-
cally structured populations. More recently, using the infinitesimal model in a small variance
regime led “Equilibria of quantitative genetics models beyond the Gaussian approximation
I: Maladaptation to a changing environment” to formally derive features of the underlying
trait distribution of a population under a changing environment. Their formal derivations
have next been justified in a homogeneous space framework in Calvez, Garnier, and Patout
2019. Our work aligns with these studies: our main analysis lies in the small variance regime:
σ2 � θ2, namely when the diversity introduced by sexual reproduction is small compared to
the heterogeneity of the environment (recall that θ = |θ2−θ1|

2 ).

Contributions. We use the infinitesimal model operator and the formalism of small segre-
gational variance to study evolutionary dynamics of a sexually reproducing population under
stabilizing selection in a heterogeneous and symmetrical environment in an integrated model
(Section 1). From the PDE system on the local trait distributions, we derive a system of ODE
on their moments. In the particular asymptotic regime considered: σ2 � θ2, our ODE system
approximates the one of Ronce and Kirkpatrick 2001 (Section 1):

dNi
dt =

[
r − κNi(t)− g(zi(t)− θi)2 − gσ2]Ni(t) +m

(
Nj(t)−Ni(t)

)
+O

(
σ4

θ4

)
,

dzi
dt = 2σ2g(θi − zi(t)) +mNj(t)

Ni(t) (zj(t)− zi(t)) +O
(
σ4

θ4

)
.

(4)

To support that, we provide a numerical comparison between the two models, showing their
equivalence in the small variance regime, and their discrepancy when this variance becomes
large (Section 2). By doing so, we are justifying the validity of the Gaussian assumption on lo-
cal trait distributions in this small variance regime. Next, we show that, in the regime of small
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variance, our system of moments can be reformulated as a slow-fast system (Section 3), which
highlights the blending force of our sexual reproduction operator that strains monomorphism
to quickly emerge at the metapopulation level. The study of the corresponding unperturbed
problem, with a reduced complexity, leads to the complete analytical description of the equi-
libria in the asymptotic regime of small variance. In particular, it gives the conditions of
existence of bistable asymmetrical equilibria numerically observed by Ronce and Kirkpatrick
2001 (Section 4).

To replace this study in a broader context, let us first recall some findings of Ronce and
Kirkpatrick 2001, our reference moment-based model in the quantitative genetics field. It
makes a Gaussian assumption on the local trait distributions, without specifying any particu-
lar mode of reproduction. The authors numerically found that bistable mirrored asymmetrical
equilibria can exist, allowing source-sink dynamics to completely reverse after a demograph-
ical loss event. Based on their study, however, it remains unclear which hypotheses on the
inheritance process allow for such dynamics to arise. More recently, two studies interested
in the equilibria states of asexual populations highlight the need for precise hypotheses with
regard to such conclusions. If the authors of Débarre, Ronce, and Gandon 2013 indicate that
asymmetrical equilibria can be locally stable in a restrained range of mutational parameters,
Mirrahimi 2017 and Mirrahimi and Gandon 2020 show through using a continuum-of-alleles
model that, under broader mutational parameters, only a single stable symmetrical equilibrium
can arise in a symmetrical setting. Here, we claim that we can explain the dynamics of the
analysis done in Ronce and Kirkpatrick 2001 via a model on phenotypic densities dynamics,
analogous to Mirrahimi 2017 and Mirrahimi and Gandon 2020 but with a sexual reproduction
operator derived from the infinitesimal model and in a small segregational variance regime.
We thereby make explicit the details of another mechanism that can provide with those locally
bistable asymmetrical equilibria, which relies on the blending effect of the infinitesimal model
in a regime of small segregational variance.
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1 The infinitesimal model and the regime of small variance
In this section, we present the specific framework in which we choose to perform our analysis.
We first present some properties of the infinitesimal model operator in general, then its rela-
tionship with the specific regime of small variance. Then, we will show that the asymptotic
approximation allows us to formally derive a closed system for the dynamics of the moments.

Let us define the following rescaled variables and parameters to get a dimensionless system:

z := z

θ
, g := gθ2

r
, m := m

r
, ε := σ

θ
, t := ε2rt,

nε,i(t, z) := κ

r
ni(t, z), Nε,i(t) = κ

r
Ni(t),

and the reproduction operator Bε(nε,i)(t, z) = Bσ(ni)(t, z). Then, (1) gives the rescaled
system:


ε2 ∂nε,1

∂t (t, z) = Bε(nε,1)(t, z)− g(z + 1)2nε,1(t, z)−Nε,1(t)nε,1(t, z) +m (nε,2(t, z)− nε1(t, z)) ,

ε2 ∂nε,2
∂t (t, z) = Bε(nε,2)(t, z)− g(z − 1)2nε,2(t, z)−Nε,2(t)nε,2(t, z) +m (nε,1(t, z)− nε,2(t, z)) .

(5)
From the remaining of this section and unless specified otherwise, we will refer to that system
for all analysis purposes.

1.1 The sexual reproduction operator

Presentation. For modelling the segregation process resulting from sexual reproduction, we
use the infinitesimal model, first introduced in Fisher 1919. It is inspired originally from the
observation that the phenotypic variance among families does not seem to depend on their
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breeding values (Galton 1877). Although this can be formulated solely from a phenotypic
perspective, Fisher 1919 gives a Mendelian interpretation by proposing to consider that the
quantitative trait z results from the infinitesimally small additive effects of a large number
of alleles. That interpretation, in the spirit of a central limit theorem, has been followed on
(Bulmer 1971; Lange 1978; Bulmer 1980; Barton, Etheridge, and Véber 2017). It leads to (3).
With our notations, we can express the number of individuals born at time t with trait z in
habitat i by:

Bε(nε)(t, z) = 1√
πε

∫
R2

exp
[
−(z − z1+z2

2 )2

ε2

]
nε(t, z1)nε(t, z2)

Nε(t)
dz1dz2. (6)

The scaled segregational variance ε2

2 is assumed to be constant with regard to time and
independent of the parental traits. These are strong biological assumptions. Their relevance
in the context of a spatially structured population will be the subject of a forthcoming work.

Equilibria under random mating only. To study the behaviour of the reproduction
operator (6), it is informative to consider the conservative case where a sexually reproducing
population only experiences random mating, without any structure due to space or mating
preferences:

ε2∂nε
∂t

(t, z) = 1√
πε

∫
R2

exp
[
−(z − z1+z2

2 )2

ε2

]
nε(t, z1)nε(t, z2)

Nε(t)
dz1dz2 − nε(t, z), (7)

(the term −nε(t, z) is meant to keep the size of the population constant by balancing birth
and death). Then, every Gaussian distribution of variance ε2 (arbitrarily centered) is a stable
distribution under (7) (see Appendix B). Furthermore, it is shown in Raoul 2017 that there
are no other equilibrium and that the convergence toward such a Gaussian distribution is
exponential in quadratic Wasserstein distance. Therefore, with this operator of sexual repro-
duction, a fixed and finite variance in trait at equilibrium arises under random mating only
and without selection.

1.2 The regime of small variance: ε2 � 1.
The framework presented in this section is inspired by a methodology developed in Diekmann
et al. 2005 and Perthame and Barles 2008 that uses asymptotic regime in partial differential
equations in order to derive analytical features of quantitative genetics models. In a regime
where few diversity is introduced by reproduction at each generation, the continuous trait dis-
tributions are expected to converge toward Dirac masses concentrated on some specific traits.
Performing a suitable transformation on the trait distribution allows to unfold the singular-
ities of these Dirac masses and define more regular objects to study and calculate, in order
to follow trait densities. That methodology has already been successfully applied for asexual
populations, in homogeneous (Perthame and Barles 2008) and heterogeneous space (Mirrahimi
2017), then in other frameworks such as the study of adaptation to a changing environment
(“Equilibria of quantitative genetics models beyond the Gaussian approximation I: Maladap-
tation to a changing environment”), and lately for sexual populations in homogeneous space
(Calvez, Garnier, and Patout 2019). Applying a similar approach as described above, we will
show that, within a regime of small variance yet to be defined, we can reduce the complexity
of the system while rigorously justify that reduction.

In our context, a relative measure of diversity introduced by reproduction comes from
comparing the variance of the segregation process to a measure of habitats’ difference (recall

8



that θ = |θ2−θ1|
2 ):

σ2

θ2 = ε2.

One can thus define the small variance regime by σ2 � θ2, or equivalently ε2 � 1. Moreover,
we perform the unfolding of singularities by shaping the traits distributions according to:

nε,i = 1√
2πε

e−
Uε,i

ε2 . (8)

The exponential form, known as the Hopf-Cole transform in scalar conservation laws,
presumes that Uε,i will be a more regular object to analyze when ε2 � 1 than nε,i, which
we expect to converge toward a sum of Dirac distributions centered at the minima of Uε,i.
In fact, “Equilibria of quantitative genetics models beyond the Gaussian approximation I:
Maladaptation to a changing environment” performed a formal analysis on the behaviour of
the reproduction term in the regime of small variance under such a formalism. They found
that, for the various contributions to be well-balanced in the equation (reproduction and
mortality) when ε2 � 1, Uε,i is formally constrained to have the following expansion with
regard to successive powers of ε2 (see Appendix C):

Uε,i(z) = (z − z∗i )2

2 + ε2uε,i, (9)

where z∗i is a byproduct of the formal analysis and uε,i is the following order term in the
expansion. It leads to:

nε,i = 1√
2πε

e−
(z−z∗

i
)2

2ε2 e−uε,i(z). (10)

Let us interpret this formalism. For ε2 � 1, the leading term in the expansion (10) is precisely
the Gaussian distribution of (yet unknown) mean z∗i and variance ε2, namely a distribution
we know to be at equilibrium under random mating only. Only considering this term would
be to assume that the trait distribution is Gaussian. As we want to capture the departure
from normality, we introduce the term uε,i, which we can see as the next order term in the
expansion of log(nε,i) with regard to successive powers of ε. It embodies the correction to the
Gaussian distribution due to the effect of selection, competition and migration. The study
of its analytical properties is beyond the scope of this paper and will be the project of a
forthcoming paper. For now, we will assume that such a limit exist and we will use it in our
analysis without rigorously justifying it.

1.3 Derivation of the dynamics of the moments in the regime of small vari-
ance

Although our method describes directly the trait distribution, we propose to formally derive
the equations describing the dynamics of the first three moments of the trait distribution from
its dynamics under the small variance of segregation (ε2 � 1) to compare our framework to
other quantitative genetic studies. Toward that purpose, we define (assuming persistence of
each subpopulation):

Nε,i(t) =
∫
R
nε,i(t, z) dz, zε,i(t) = 1

Nε,i

∫
R
z nε,i(t, z) dz,

σ2
ε,i(t) = 1

Nε,i

∫
R

(zε,i − z)2 nε,i(t, z) dz, ψ3
ε = 1

Nε

∫
R

(z − zε,i)3nε(z)dz.
(11)
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Let us omit for a moment the time dependency. Using the expression (10) and under the
formal assumption that u := lim

ε→0
uε is sufficiently regular, we get the following expansions

(where vi,ε is the expansion term of order ε4 of Uε,i - see Appendix D):

Nε,i = e−ui(z
∗
i )
[
1 + ε2

(
(∂zui(z∗i ))2

2 − ∂zzui(z∗i )
2 − vi,ε(z∗i )

)]
+O(ε4),

zε,i = z∗i − ε2∂zui(z∗i ) +O(ε4),
σ2
ε,i = ε2 +O(ε4),
ψ3
ε,i = O(ε4).

(12)

These expansions are informative, particularly the one describing the rescaled variance of
the trait distribution. We can observe that it is equivalent to twice the rescaled segregational
variance (which is given as a parameter of the model) when the latter is small. The local
rescaled variance in trait are thereby asymptotically constant and independent of the local
environment.

Now, from scaling (2), we obtain:
ε2 dNε,i

dt =
[
1−Nε,i(t)− g(zε,i(t)− (−1)i)2 − g σi(t)2]Nε,i(t) +m

(
Nε,j(t)−Nε,i(t)

)
,

ε2 dzε,i
dt = 2g σi(t)2((−1)i − zε,i(t))− g ψ3

i (t) +m
Nε,j(t)
Nε,i(t) (zε,j(t)− zε,i(t)).

Next, using the formal expansions of the variances and skews given by (12) when ε2 � 1
yields:


ε2 dNε,i

dt =
[
1−Nε,i(t)− g(zε,i(t)− (−1)i)2 − gε2]Nε,i(t) +m

(
Nε,j(t)−Nε,i(t)

)
+O(ε4),

ε2 dzε,i
dt = 2ε2g((−1)i − zε,i(t)) +m

Nε,j(t)
Nε,i(t) (zε,j(t)− zε,i(t)) +O(ε4),

(13)
which is equivalent to (4).

Remark 1.1 (Relationship between the rescaling of time and small variance regime ε2 � 1.).
The small variance regime σ2 � θ2 (or equivalently ε2 � 1) considers the case where the
variance introduced by reproduction is very small compared to the phenotypic gap between the
two habitats (recall that θ = |θ2−θ2|

2 ). Therefore, it takes a very long ecological time to bridge
the gap. An interpretation of that intuition can be seen in the rescaled system (13). The
effects of the ecology (migration, population growth, death by competition and selection) are of
order 1. The evolutionary effects (how selection shifts the mean traits of both subpopulations
toward the local optima) are represented by the terms 2ε2g((−1)i − zε,i(t)), and are therefore
comparatively very small (of order ε2). This discrepancy is the motivation of the change in
time scales t = ε2T to capture the slow dynamics of the local mean traits. It is also behind the
motivation for the slow-fast analysis (see Section 3).

Remark 1.2 (Relationship between the small variance regime and the weak selection approx-
imation.). A widespread regime studied in quantitative genetics models using the Gaussian
assumption of trait distributions is the weak selection approximation. As we showed formally
that the local trait distributions are well approximated by Gaussian distributions in the small
variance regime (see (10)), it is natural to examine if the regime of small variance σ2 � θ2

and the weak selection approximation are equivalent.
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However, the small variance regime σ2 � θ2 presents an alternative that seems to differ
from the weak selection approximation:

1. Either the segregational variance σ2 is of order 1, and therefore θ2 must be large, ie.
the local optimal traits are far apart. However, this has an indirect consequence on the
strength of selection g, which must be small, since g = gθ2

r must be of order 1 to be
relevant in the rescaled system (13). Nevertheless, this framework is distinct from the
weak selection approximation, in the sense that the effective selection felt by an individual
adapted to one patch and migrating to the other is of order gθ2, hence of order 1.

2. Either the segregational variance σ2 is small compared to θ2, the latter being of order 1,
as well as the other parameters of the system. Therefore, in that case, the selection does
not need to be weak. A way to get such a small segregational variance can be illustrated
by the following with haploid individuals: suppose that we consider L loci that contribute
to the focal quantitative trait additively, and that, at each locus, two alleles segregate,
having opposite effects of ± a

2
√
L
, where a is a parameter that scales the magnitude of

the effect. An estimation of the variance in the offsprings of two mates is σ̂2 = a2D
L ,

where D < L is the number of differences between their respective genetic backgrounds.
So σ̂2 = O(a2) can be uniformly small provided that the allelic effect size parameter a
is small.

2 Equivalence with a moment based model

2.1 Presentation of the moment based model

In Ronce and Kirkpatrick 2001, the authors present a quantitative genetic model to tackle the
same problem: the evolutionary dynamics of a species under the effects of stabilizing selection
and migration between two symmetric patches. Let us first recall the model and indicate
the parameters. Stabilizing selection toward a local phenotypic optima θi ∈ R is added to
competition for resources within each patch to build the fitness of an individual of phenotype
z in patch i:

ri(z) = r0

(
1− Ni

K

)
− γ2 (z − θi)2,

where r0 > 0 is the maximal fitness at low density, K > 0 the carrying capacity of each
environment (assumed to be the same in both of them), and γ > 0 the intensity of the
selection. Migration occurs symmetrically between the two patches at a rate m > 0. The
mode of reproduction is left unspecified, but phenotypes and breeding values are assumed
to follow a Gaussian distribution within each population, of constant genetic (σg2 > 0) and
phenotypic (σp2 > 0) variances, independent of the patch with:

σp
2 = σg

2 + σe2,

where σe2 > 0 is the environmental variance. The analysis is focused on the ordinary dif-
ferential equation system of the first two moments of the local trait distributions (assuming
persistence of each subpopulation). Namely, the sizes of the subpopulations (N1,N2) and the
mean phenotypic traits (z1, z2):

dNi
dt =

[
r0(1− Ni

K )− γ
2σp

2 − γ
2 (zi − θi)2

]
Ni +m(Nj −Ni),

dzi
dt = σg

2γ(θi − zi) +mNj
Ni

(zj − zi).
(14)
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2.2 Formal comparison

Let us consider (14) in the case where we neglect the additional variance due to the envi-
ronment, so that all the variation in trait results from the genetic variance. We will denote
this variance by ς2, so that: σp2 = σg

2 := ς2. Then, let us also consider the equations of
the trait distribution moments derived from our model (4), when disregarding the errors of
O
(
σ4

θ4

)
. Then, the dynamics of the moments and their stationary states are equivalent under

the change of parameters:

r = r0, g = γ

2 , κ = r0
K
, σ2 = ς2, σe = 0. (15)

This change of parameters is only possible because, in both models, the variance in trait in
the subpopulations is derived from a single parameter encoding the genetic stochasticity (σg2

in Ronce and Kirkpatrick 2001 and σ2 in our model). Particularly, the variance is independent
from the other biological parameters, which is a structural difference with asexual models (see
Mirrahimi 2017).

2.3 Numerical comparison

In this subsection, we provide results from numerical simulations performed to confirm this
formal equivalence between the stationary states of the two models under the regime of small
variance in which we expect this link to hold. In these simulations, we follow two systems:

• the first one is a discretization of (1), where we follow the evolution of the local trait
distributions ni(t, ·). We then compute at each time the sizes, mean traits and variances
in trait of the subpopulations N i(t), zi(t) and σi. We emphasize the fact that we do
not deduce N i(t) and zi(t) from the system of moments (4).

• the second one is the system of moments (14) provided in the article Ronce and Kirk-
patrick 2001, initialized by integration of ni(0, ·). We denote the respective quantitites
N i,RK(t) and zi,RK(t).

We then compare the evolution of the sizes and the mean traits of the subpopulations given
by both systems. We also provide the evolution of the variance and the skewness in trait in
both subpopulations compared to the value of the fixed and constant variance σg and the skew
null of the Gaussian approximation, for it can shed some lights on the divergence of the two
systems. The results are displayed in Fig. 2. Details about numerical domains and schemes
can be consulted in Appendix H.

Parameters of the simulations. The value of the parameters were taken from Ronce and
Kirkpatrick 2001 (the optimal phenotypes are translated without loss of generality to reduce
the numbers of parameters):

m = 0.1, γ = 0.1, r0 = 1 + γ

2σp
2, K = 2.5 r0, θ = |θ2 − θ1

2 | = 3.5,

where the value of σg2 = σp
2 = σ2 determines completely the parameters. Two values are

chosen for σ2 = σg
2 = σp

2: the first, σ2 = 0.0025, is set to assess the regime of small variance
(σ2 � θ2) in which our formal link of equivalence should hold. The second, σ2 = 1, comes
from the value set in Ronce and Kirkpatrick 2001 and illustrates the discrepancy between the
two models when not in the small variance regime.
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(a) Small variance σ2 = 0.0025 (b) σ2 = 1

(c) Small variance σ2 = 0.0025 (d) σ2 = 1

(e) Small variance σ2 = 0.0025 (f) σ2 = 1

(g) Small variance σ2 = 0.0025 (h) σ2 = 1

Figure 2: Numerial comparison of our model (yellow lines) with Ronce and Kirk-
patrick 2001’s model (blue line) in small (left panel) and large (right panel) vari-
ance regime. All parameters are the same or given by (15) and initial conditions are the same for
both models. The left panel shows the results in the small variance regime (σ2 = 2.5 × 10−3). Both
models converge quickly to an asymmetrical equilibrium where both subpopulations are adapted to the
second habitat (z1 = z2 ≈ θ2). The right panel shows the results when not in the small variance regime
(σ2 = 1): the same link of equivalence does not hold. The discrepancy can be explained by looking
at the local variances and skews in trait. They are asymptotically supporting a Gaussian assumption
with fixed variance on the trait distributions in the small variance regime (note the logarithmic scale
for the y-axis of Fig. 2e), but not when the segregational variance is larger. Note the logarithmic time
scale for the sake of clarity.
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Initial conditions. In both simulations, the initial conditions are the same, conditioned to
the value of σ, for we want to be close to the equilibrium when under random mating only and
selection only, as if the two habitats were disconnected at first. We consider two populations
locally adapted to their habitats, but one is a little smaller in size than the other. To do so,
we set: 

n1(0, z) = 9
10κ

e
− (z+θ)2

2σ2
√

2πσ

n2(0, z) = 1
κ
e
− (z−θ)2

2σ2
√

2πσ

Results of the numerical comparison. As Fig. 2a and Fig. 2c display the dynamics of
the mean traits and population size in both subpopulations in the regime of small variance
(σ2 = 0.0025), it confirms numerically that both the model used in Ronce and Kirkpatrick
2001 and ours share similar dynamics (except maybe at initial times when the migratory fluxes
are transiently high). When not in this regime (σ2 = 1), Fig. 2b and Fig. 2d show that it does
not need to be the case : the model used in Ronce and Kirkpatrick 2001 converges toward a
monomorphic asymmetrical equilibrium whereas ours converges toward a dimorphic symmet-
rical equilibrium. The four bottom plots give an intuition of the source of this discrepancy. In
the regime of small variance, we can see with Fig. 2e the variances in trait of the subpopula-
tions in our model match the fixed genetical variance assumed by the gaussian approximation
made in Ronce and Kirkpatrick 2001 (note the logarithmic scale for the y-axis on this figure).
Moreover, Fig. 2g shows that the skew in both distributions are very small, as expected by
our formal expansions, which makes the Gaussian approximation consistent. On the contrary,
when not in the regime of small variance, Fig. 2f shows that the stationary variances in trait in
both subpopulations derived from our model are significantly greater than the prescribed fixed
variance σg2 of Ronce and Kirkpatrick 2001. It is also important to note that with our model,
even if the variance of segregation within families is held constant, the local variances in trait
(byproducts of our numerical analysis) vary over time. The presence of respectively negative
and positive skews (Fig. 2h) for the subpopulations confirms that the gaussian approximation
breaks down in this regime in our model, hence the discrepancy in the outcomes with Ronce
and Kirkpatrick 2001.

The two models have their own limit. Ronce and Kirkpatrick 2001 assumes that the
variance in traits is the same in both subpopulations and constant through time and disregards
any skewness in the local trait distributions. Our model assumption acts on the segregation :
variance in each family is constant and independent of parental traits or habitat. As a result
of that discrepancy between the models, their results differ on some ranges of parameters, as
the previous figures show (Fig. 2b,Fig. 2d), while they match on others (Fig. 2a,Fig. 2c). To
determine the range of parameters on which each model is closer to an explicit genetic model
that includes drift, individual-based simulations are to be carried. That is the prospect of
future work.

For now, since we have shown that our model was equivalent to Ronce and Kirkpatrick
2001’s one in the regime of small variance, we will next develop a slow-fast analysis that will
reduce the complexity of the system (Section 3) in the limit of vanishing variance in order to
complete the equilbrium analysis done in Ronce and Kirkpatrick 2001 (Section 4).
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3 Slow-fast system in small variance regime
In this section, we will see that the small variance regime allows for a separation of time
scales to arise, as (13) can be seen as a slow-fast system when ε2 � 1. Using a singular
perturbation approach similar to the one described in Levin and Levinson 1954, we will show
that it converges in the limit of small variance to the following system, constrained in having
N∗1 > 0, N∗2 > 0: 

[
1−N∗1 − g(z∗ + 1)2 −m

]
N∗1 +mN∗2 = 0,[

1−N∗2 − g(z∗ − 1)2 −m
]
N∗2 +mN∗1 = 0,

dz∗

dt = 2g

 N∗2
N∗1
−
N∗1
N∗2

N∗2
N∗1

+
N∗1
N∗2

− z∗
 . (16)

Until further notice, let us consider ourselves in the regime of small variance: ε2 � 1.

Monomorphism in the regime of small variance. The slow-fast system reduces the
complexity of the system (13) from four equations to three (see (16)), as the local mean traits
z̄ε,1 and z̄ε,2 both relax rapidly toward the same value z∗(t). Since asymptotically, the mean
traits in both subpopulations are the same and the local variances in trait are infinitesimally
small, the metapopulation can be considered as monomorphic in z∗(t), which we call the
dominant trait.

Biological interpretation of the slow-fast analysis in terms of separation between
ecological and evolutionary time scales. The limit system (16) highlights the separa-
tion of ecological and evolutionary time scales in the limit of small variance, seen from the
evolutionary perspective. Indeed, the two first equations of (16) are algebraic and therefore
describe an instantaneous equilibrium reached by the local population sizes N∗1 and N∗2 . This
equilibrium can be seen as an ecological one, as it results from the balanced actions of birth,
death and migration. It depends on the value of the trait z∗, which changes according to the
last differential equation. As explained in the previous paragraph, this differential equation
results from the changes in local mean traits driven by local selection (attested here by the
prefactor g), weighted by the discrepancy between local population sizes. Consequently, the
dynamics of z∗ can be seen as evolutionary dynamics, constrained to occur on the manifold of
ecological equilibrium defined by the first two equations (considered as instantaneously reached
on the evolutionary time scale considered).

3.1 Slow-fast system formulation.

As we expect monomorphism to occur rapidly in the regime of small variance, let us operate
the following change in variables:

δε = z̄ε,2 − z̄ε,1
2ε2 , z∗ε = z̄ε,2 + z̄ε,1

2 .
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Then (13) is equivalent to:

ε2 dNε,1
dt =

[
1−Nε,1(t)− g(z∗ε (t) + 1− ε2δε(t))2 − gε2]Nε,1(t) +m

(
Nε,2(t)−Nε,1(t)

)
+O(ε4),

ε2 dNε,2
dt =

[
1−Nε,2(t)− g(z∗ε (t)− 1 + ε2δε(t))2 − gε2]Nε,2(t) +m

(
Nε,1(t)−Nε,2(t)

)
+O(ε4),

ε2 d δε(t)
dt = 2g −m

(
Nε,2(t)
Nε,1(t) + Nε,1(t)

Nε,2(t)

)
δε(t) +O(ε2),

dz∗ε
dt = −2gz∗ε (t) +m

(
Nε,2(t)
Nε,1(t) −

Nε,1(t)
Nε,2(t)

)
δε(t) +O(ε2).

(17)
Let us denote Ω = (R∗+)2×R and Ȳ = (N1, N2, δ) the elements of Ω. Let us define F : Ω→ R
and G : R× Ω→ R3 by :

∀(z, (N1, N2, δ)) ∈ R× Ω,

F (N1, N2, δ) = m

(
N2
N1
− N1
N2

)
δ,

G(z,N1, N2, δ) =


[
1−N1 − g(z + 1)2 −m

]
N1 +mN2[

1−N2 − g(z − 1)2 −m
]
N2 +mN1

2g −m
(
N2
N1

+ N1
N2

)
δ

 , (18)

where F and G are respectively in C∞(Ω,R) and C∞(R× Ω,R3).
Let the following be called the perturbed system (Pε), where ε > 0 is a vanishing parameter

and νN,ε and νz,ε are uniformly bounded as ε→ 0:

(Pε)


ε2 dȲε

dt = G(zε, Ȳε) + ε2νN,ε(t),
dzε
dt = −2gzε + F (Ȳε) + ε2νz,ε(t),

(zε(0), Ȳε(0)) = (zε0, Ȳ ε
0 ).

(19)

One can verify that any solution of (17) also solves (Pε). The framework is concordant with
fast/slow system studies, like in Levin and Levinson 1954. We seek to establish the convergence
over a finite time interval of the solutions of (Pε) towards the solution of the unperturbed
system (P0), when (zε0, Ȳ ε

0 ) is close enough to (z∗0 , Ȳ ∗0 ) which verifies G(z∗0 , Ȳ ∗0 ) = 0:

(P0)


G(z∗(t), Ȳ ∗(t)) = 0,
dz∗

dt = −2gz∗ + F (Ȳ ∗)
(z∗(0), Ȳ ∗(0)) = (z∗0 , Ȳ ∗0 ),

(20)

The first line G(z∗(t), Ȳ ∗(t)) = 0 in (20) defines the slow manifold, parametrized by the
slow variable z∗(t), whereas the equation dz∗

dt = −2gz∗+F (Ȳ ∗) (second line) encodes the slow
dynamic on that manifold. The slow manifold can be interpreted as the set of fast equilibria
Ȳ ∗(t) corresponding to the levels given by slow variables z∗(t). We will first assess the number
of coexisting fast equilibria for any given parameter set (g,m) ∈ R∗+2 and value of the slow
variable z∗. We will show that there exists either one or none of those, which constrains
our proof of convergence to apply when (zε0, Ȳ ε

0 ) is close enough to (z∗0 , Ȳ ∗0 ) (the latter being
on the slow manifold). Then, we will show that those fast equilibria are locally stable in
Lemma 6. This lemma represents the essential condition for the convergence to apply on the
finite time interval [0, t∗], where t∗ will be subsequently defined (see Levin and Levinson 1954
and Appendix E for the detailed proof). We state the following theorem:
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Theorem 3.1. Let (Ȳ ∗, z∗) be solution of (20) on [0, t∗] with initial conditions (z∗0 , Ȳ ∗0 ), located
on the slow manifold (ie. such that G

(
z∗(t), Ȳ ∗(t)

)
= 0 for t ∈ [0, t∗]). For 0 < ε < 1, let

(Ȳε, zε) be solution of (19) on [0, t∗] with initial conditions (zε0, Ȳ ε
0 ). Then, as max(ε, |zε0 −

z∗0 |, |Ȳ ε
0 − Ȳ ∗0 |)→ 0, (Ȳε, zε) converges toward (Ȳ ∗, z∗) uniformly on [0, t∗].

3.2 Number of coexisting fast equilibria.

Let us explicit that fast equilibria corresponding to z∗ ∈ R are Ȳ ∗ = (N∗1 , N∗2 , δ∗) ∈ Ω =
(R∗+)2 × R verifying: G(z∗, Ȳ ∗) = 0, ie. the system:

[
1−N∗1 − g(z∗ + 1)2 −m

]
N∗1 +mN∗2 = 0,[

1−N∗2 − g(z∗ − 1)2 −m
]
N∗2 +mN∗1 = 0,

2g −m
(
N∗2
N∗1

+ N∗1
N∗2

)
δ∗ = 0.

(21)

We stress that this definition of fast equilibria requires both sizes of the subpopulations to be
positive (we can notice that the two first equations of (21) do not allow for one population to
go extinct while the other one persists). The objective is to identify how many coexisting fast
equilibria there are for each set of parameter (g,m, z∗) ∈ (R∗+)2 × R. To that purpose, let us
first notice that the fast equilibria can be defined only using their demographic ratio N∗2

N∗1
.

Lemma 1. For z∗ ∈ R, let us define:

Pz∗(X) = X3 − f1(z∗)X2 + f2(z∗)X − 1,

where
f1(z∗) = 1 + g

m
(z∗ + 1)2 − 1

m
, f2(z∗) = 1 + g

m
(z∗ − 1)2 − 1

m
.

If (N∗1 , N∗2 , δ∗) is a fast equilibrium, then: ρ∗ = N∗2
N∗1

is a positive root of Pz∗ greater than
f1(z∗). Conversely, if ρ∗ is a positive root of Pz∗ greater than f1(z∗), then:

(N∗1 , N∗2 , δ∗) =

m[ρ∗ − f1(z∗)], m ρ∗ [ρ∗ − f1(z∗)], 2g
m
(
ρ∗ + 1

ρ∗

)
 ∈ Ω,

is a fast equilibrium corresponding to z∗ and ρ∗ = N∗2
N∗1

.
Consequently, the number of fast equilibria corresponding to z∗ is the number of positive

roots of Pz∗(X) greater than f1(z∗).

Proof of Lemma 1. For z∗ ∈ R, since Ȳ ∗ ∈ Ω = R∗+ × R∗+ × R, one can notice that (21) is
equivalent to: 

N∗2
N∗1

=
g(z∗−1)2+m−1−m

N∗1
N∗2

g(z∗+1)2+m−1−m
N∗2
N∗1

,

N∗1 = m
N∗2
N∗1

+ 1− g(z∗ + 1)2 −m,
δ∗ = 2g

m

(
N∗2
N∗1

+
N∗1
N∗2

) .
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⇐⇒



[
N∗2
N∗1

]3
−
[
N∗2
N∗1

]2 [
1 + g

m(z∗ + 1)2 − 1
m

]
+
[
N∗2
N∗1

] [
1 + g

m(z∗ − 1)2 − 1
m

]
− 1 = 0,

N∗1 = m
[
N∗2
N∗1
−
(
1 + g

m(z∗ + 1)2 − 1
m

)]
,

δ∗ = 2g
m

(
N∗2
N∗1

+
N∗1
N∗2

) .
Hence the result.

Remark 3.1. Thanks to the symmetrical setting of the habitats, one can notice that, for all
z∗ ∈ R, P−z∗(X) = X3Pz∗(1/X) and f1(−z∗) = f2(z∗). Hence, the number of positive roots
of Pz∗ that are greater than f1(z∗) is the number of positive roots of P−z∗ that are greater than
f2(z∗). Therefore, from now on, we will consider that z∗ ≥ 0 without loss of generality.

The Lemma 2 shows that multiple fast equilibria cannot coexist and fast equilibria do not
need to exist for any given set of parameters (g,m, z∗) ∈ R∗+2 × R+.

Lemma 2. Let z∗ ≥ 0. Then:

(i) If Pz∗ has more than a single positive root, then they are all lower than f1(z∗). Hence,
no fast equilibrium can exist in this configuration.

(ii) If Pz∗ has a single positive root ρ∗, then:

[ρ∗ > f1(z∗)] ⇐⇒ [f1(z∗) ≤ 0] ∨ [Pz∗(f1(z∗)) < 0] .

Proof of Lemma 2. Let z∗ ≥ 0. As Pz∗(0) = −1, and the leading coefficient is 1, Pz∗ has at
least one positive root and has either 1 or 3 positive roots.

(i) Let us assume that Pz∗ has three positive roots x1, x2, x3. Then f1(z∗) = x1 +x2 +x3 >
max{x1, x2, x3}, since the three roots are positive.

(ii) Let us assume now that Pz∗ has a single positive root ρ∗. As Pz∗(0) = −1 < 0 and the
leading coefficient of Pz∗ is 1, we deduce that, for y > 0: y < ρ∗ ⇐⇒ Pz∗(y) < 0. Hence the
result.

The second point of the Lemma 2 allows us to precise in the next proposition the conditions
on z∗ such that a fast equilibrium exists, depending on (g,m) ∈ R∗+2 (see also Fig. 3):

Proposition 3.1. For (g,m, z∗) ∈ R∗+ ×R∗+ ×R+ such that Pz∗ has a single positive root, let
us define:

∆ = 4
g2

[
m2 − 4g (m− 1)

]
, z1 = 1

2

[2 (g + 1−m)
g

−
√

∆
]
, z2 = 1

2

[2 (g + 1−m)
g

+
√

∆
]
.

The following holds:

∗ If g ≥ 1 and:

� m < 2g
(
1−

√
1− 1

g

)
, then for all z∗ ∈]√z1,

√
z2[, there exists a single fast equilib-

rium, and none otherwise.

� m ≥ 2g
(
1−

√
1− 1

g

)
(ie. ∆ ≤ 0), then for all z∗ ≥ 0, there exists no fast equilibria.

∗ If g < 1, then :

18



Figure 3: Description of the conditions imposed on z∗ ≥ 0 to get a fast equilibrium
depending on the pair (g,m) under the preliminary assumption that Pz∗ has a
single positive root, according to the results of Proposition 3.1. When selection is
smaller than 1, symmetrical fast equilibria exist (z∗ = 0), and do not when selection is larger than 1.
When both migration and selection are both too strong, no fast equilibrium can exist.

� If m ≤ 1−g
2 , then, for z∗ ∈ [0,

√
1−m
g − 1[∪]√z1,

√
z2[, there exists a single fast

equilibrium associated to z∗, and none otherwise.
� If 1−g

2 < m < 1− g, then, for z∗ ∈ [0,max
(√

1−m
g − 1,√z2

)
[, there exists a single

fast equilibrium associated to z∗, and none otherwise.
� If 1−g ≤ m, then, for 0 ≤ z∗ < √z2, there exists a single fast equilibrium associated
to z∗, and none otherwise.

The proof of Proposition 3.1 is located in Appendix F.
Finally, we examine the conditions upon which Pz∗ has three positive roots. Due to the

high degrees of the polynomials involved, an analytical condition on (g,m) ∈ R∗+2 has only
been found when z∗ ∈ [−1, 1]:

Proposition 3.2. If 1 + 2m ≥ g, for all z∗ ∈ [−1, 1], Pz∗ has a single positive root.
If 1 + 2m < g, there exists an interval I 6= ∅ centered in 0 such that for all z∗ ∈ I, Pz∗ has

three distinct positive roots.
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Proof. The proof will require three lemma. The first one states conditions upon which Pz∗ has
three distinct positive roots for z∗ ∈ R. The second one gives an explicit condition determining
if P0 = Pz∗=0 has one (1 + 2m ≥ g) or three distinct positive roots (1 + 2m < g). The third
one shows that if there exists a z∗ ∈ [−1, 1]\{0} such that Pz∗ has three distinct positive roots,
then P0 also has three distinct positive roots.

Lemma 3. Let z∗ ∈ R. Pz∗(X) = X3 − f1(z∗)X2 + f2(z∗)X − 1 has three distinct positive
roots if and only if the three following conditions hold simultaneously:

(i) f1(z∗) > 0,

(ii) f2(z∗) > 0,

(iii) ∆(z∗) := f1(z∗)2f2(z∗)2 − 4(f1(z∗)3 + f2(z∗)3) + 18f1(z∗)f2(z∗)− 27> 0.

Proof of Lemma 3. Let (x1, x2, x3) ∈ C∗3 be the roots of Pz∗ . Since x1x2x3 = 1, we have:

f1(z∗) = x1 + x2 + x3, f2(z∗) = x1x2 + x2x3 + x3x1
x1x2x3

= 1
x1

+ 1
x2

+ 1
x3
.

Let us assume first that x1, x2, x3 are positive and distinct. Then they are real and from the
latter, f1(z∗) > 0 and f2(z∗) > 0. Moreover, they are real and distinct if and only if the
discriminant of Pz∗ is positive, hence condition (iii).

Conversely, let us assume (i), (ii) and (iii). Then x1, x2, x3 are real and distinct. Since
Pz∗(0) < 0, two of them (for example x2 and x3) share the same sign. Suppose that they are
negative (they cannot be 0 since Pz∗(0) = −1) . Then (i) yields:

x1 > |x2|+ |x3|.

Hence :

f2(z∗) = 1
x1

+ 1
x2

+ 1
x3

= 1
x1
− 1
|x2|
− 1
|x3|

<
1

|x2|+ |x3|
− 1
|x2|
− 1
|x3|

< 0,

which contradicts (ii). Hence x1, x2, x3 are positive and distinct.

Lemma 4. P0 = Pz∗=0 has three distinct positive roots if and only if g > 1 + 2m and one
positive root otherwise.

Proof of Lemma 4. One can notice that f1(0) = f2(0) = 1 + g
m −

1
m and:

∆(0) = f1(0)4 − 8f1(0)3 + 18f1(0)2 − 27 = (f1(0) + 1)(f1(0)− 3)3.

Hence, the precedent lemma ensures that P0 has three distinct positives roots only in the region
where f1(0) = f2(0) = 1 + g

m −
1
m > 0 and ∆(0)> 0. That occurs if and only if f1(0)> 3,

which yields g > 1 + 2m.

Lemma 5. If there exists z∗ ∈ [−1, 1] such that Pz∗ has three distinct positive roots, then P0
has three distinct positive roots.
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Proof of Lemma 5. We recall that we study the case z∗ > 0 without loss of generality. Let us
consider z∗ ∈]0, 1] such that Pz∗ has three distinct positive roots. From Remark 3.1, P−z∗ has
also three distinct positive roots. Thereby, Lemma 3 implies that fi(±z∗)> 0, i = 1, 2 and
δ(±z∗) > 0.

It is clear that f1 is strictly increasing on ]− 1, 1[ and f2 is strictly decreasing on ]− 1, 1[.
As fi(±z∗)> 0, i = 1, 2, we get that f1 > 0 and f2 > 0 on [−z∗, z∗], in particular f1(0) > 0
and f2(0) > 0.

Moreover, let us introduce the function g : z 7→ f1(z)2 − 3f2(z). For z ∈] − 1, 1[, g′(z) =
2f ′1(z)f1(z)− 3f ′2(z)> 0, because f1(z) > 0, f ′1(z)> 0 and f ′2(z)< 0. Therefore, g is increasing
on ]− 1, 1[. One can also notice that g(z) is the quarter of the discriminant of P ′z(X). As Pz∗
and P−z∗ have three distinct positive roots, by Rolle’s theorem, P ′z∗ and P ′−z∗ have two distinct
positive roots. Therefore, g(−z∗) and g(z∗) are positive. As g is increasing on [−z∗, z∗], we
get: 0<g(0) = f1(0)(f1(0)−3). Since f1(0) > 0 and g(0) > 0, we have 3<f1(0) = 1 + g

m −
1
m .

By the Lemma 4, P0 has then three distinct positive roots.

The successive applications of Lemma 4 and Lemma 5 are sufficient to conclude.

3.3 Fast relaxation towards the slow manifold.

We hereby prove the following lemma on the stability of the slow manifold:

Lemma 6. For (z, Ȳ ) ∈ R×Ω such that G(z, Ȳ , 0) = 0, JG(z, Ȳ ) := ∂ȲG(z, Ȳ , 0) is invertible.
Furthermore, its eigenvalues are real and negative.

Proof. For (z, Ȳ ) ∈ R× Ω such that G(z, Ȳ , 0) = 0, we have:

JG(z, Ȳ ) =

−2N1 + [1− g(z + 1)2 −m] m 0
m −2N2 + [1− g(z − 1)2 −m] 0

mδ
N1

(
N2
N1
− N1

N2

)
−mδ
N2

(
N2
N1
− N1

N2

)
−m

(
N2
N1

+ N1
N2

)
 .

Since G(z, Ȳ , 0) = 0, (18) leads to:

JG(z, Ȳ ) =


−mN2

N1
−N1 m 0

m −mN1
N2
−N2 0

mδ
N1

(
N2
N1
− N1

N2

)
−mδ
N2

(
N2
N1
− N1

N2

)
−m

(
N2
N1

+ N1
N2

)


=

 J
0
0

mδ
N1

(
N2
N1
− N1

N2

)
−mδ
N2

(
N2
N1
− N1

N2

)
−m

(
N2
N1

+ N1
N2

)


so that we can compute :

det JG(z, Ȳ ) = −m
(
N2
N1

+ N1
N2

)[
m
N2

2
N1

+m
N2

1
N2

+N1N2

]
< 0.

Hence JG(z, Ȳ ) is invertible. A first eigenvalue is −m
(
N2
N1

+ N2
N1

)
< −2m. The last two

eigenvalues are those of the upper left block J . We have:

tr(J) < −2m < 0, det(J) = m
N2

1
N2

+m
N2

1
N2

+N1N2 > 0,
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and:
tr(J)2 − 4 det(J) = 4m2 +

(
m
N2
N1
−mN1

N2
+N1 −N2

)2
> 4m2 > 0.

Hence J has two real negative eigenvalues and consequently, JG(z, Ȳ ) has three real negative
eigenvalues.

4 Analytical description of the equilibria in the limit of van-
ishing variance

In this section, we will perform an equilibrium analysis for the stationary problem in the limit
of vanishing variance. As numerically illustrated in Section 2, under this regime, our model (1)
leads to the same dynamics of the moments as in Ronce and Kirkpatrick 2001. Consequently,
this equilibrium analysis corresponds to the one made in Ronce and Kirkpatrick 2001 (in the
limit of vanishing variance where their system of four equations converges to the system (16)).
Recall from the introduction that the study done in Ronce and Kirkpatrick 2001 reveals two
types of equilibrium:

• symmetrical equilibrium, where both populations are of the same size and equally mal-
adapted to their local habitat (corresponding to a generalist species). Such an equi-
librium is derived analytically by the authors. It is worthy to note that in the small
variance regime, this equilibrium becomes monomorphic.

• asymmetrical equilibria, where one larger population of locally adapted individuals acts
as a source for the other more poorly adapted smaller population (corresponding to a
specialist species). The authors numerically explored this type of equilibrium and derived
approximations for low migration rates. One aim of this section is to characterize such
equilibria analytically.

The fast/slow analysis done in Section 3 gives us the opportunity to go further in the
equilibrium analysis in the small variance regime, as the asymptotic system (16) presents
a reduced complexity (three equations instead of four). Moreover, adopting the notation
ρ∗ = N∗2

N∗1
> 0 and using the polynomial previously defined:

Pz∗(X) = X3 −X2
[
1 + g

m
(z∗ + 1)2 − 1

m

]
+X

[
1 + g

m
(z∗ − 1)2 − 1

m

]
− 1,

the Lemma 1 implies that (16) is equivalent to:Pz∗(ρ
∗) = 0,

dz∗

dt = 2g
(
ρ∗2−1
ρ∗2+1 − z

∗
)
,

(22)

with the constraint ρ∗ > max
(
1 + g

m(z∗ + 1)2 − 1
m , 0

)
(ie. N∗1 > 0). This reduction in the

regime of small variance allows us in a second time to derive analytical expressions of every
possible equilibrium (z∗, N∗1 , N∗2 ) ∈ R× R∗+2 from solving:[

P ρ∗2−1
ρ∗2+1

(ρ∗) = 0
]
∧
[
ρ∗ > max

(
1 + g

m

4ρ∗4

(ρ∗ + 1)2 −
1
m
, 0
)]

, (23)
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and next setting: 
z∗ = ρ∗2−1

ρ∗2+1 ,

N∗1 = m
[
ρ∗ −

[
1 + g

m(z∗ + 1)2 − 1
m

]]
,

N∗2 = m
[

1
ρ∗ −

[
1 + g

m(z∗ − 1)2 − 1
m

]]
.

(24)

We will show that there exists a unique symmetrical equilibrium, which correspond to the
monomorphic one analytically found by Ronce and Kirkpatrick 2001 (in the regime of small
variance). We will then show that there can additionally exist a mirrored pair of asymmet-
rical equilibria uniquely defined, corresponding to the ones found numerically by Ronce and
Kirkpatrick 2001.

4.1 Equilibrium analysis

The objective of this section is to find the steady states (z∗, N∗1 , N∗2 ) of the system (16) that lie
in R×R∗+2 (or equivalently, solve (23) and set (24)). Henceforth, we will call these (z∗, N∗1 , N∗2 )
equilibria. The systems (23) and (24) imply that (z∗, N∗1 , N∗2 ) ∈ R×R∗+2 is an equilibrium if
and only if Ȳ ∗ =

(
N∗1 , N

∗
2 ,

2g
m
[
ρ∗+ 1

ρ∗
]) is a fast equilibrium corresponding to z∗ = ρ∗2−1

ρ∗2+1 . As a
corollary of the Proposition 3.1, we get that the following region of parameters does not allow
for any equilibria to exist:

Corollary 1. If
[

[g ≥ 1]∧
[
m ≥ 2g

(
1−

√
1− 1

g

)] ]
, then there can exist no equilibria as de-

fined by (23) and (24), i.e. that leads to N∗1 > 0 and N∗2 > 0.

Remark 4.1. Although our analysis is not meant to describe extinction, we observe numer-
ically that the system goes to extinction in the region defined in the previous corollary (see
Fig. 6).

From now on and until further notice, we will thus consider (m, g) ∈ R∗+2 such that:

[g < 1] ∨
[
m < 2g

(
1−

√
1− 1

g

)]
.

4.1.1 Symmetric equilibrium: fixation of a generalist species

Definition 1. We call symmetric equilibrium the (z∗, N∗1 , N∗2 ) ∈ R × R∗+2 solutions of (23)
and (24) where both subpopulations have the same size: N∗1 = N∗2 = N∗ > 0.

We first state that there can only exist one viable symmetrical equilibrium:

Proposition 4.1. There exists a single symmetric equilibrium when g < 1, given by
(0, 1− g, 1− g) and none when g ≥ 1.

Proof. Regarding (23): we have ρ∗ = 1 is a positive root of:

Pz∗=0(X) = X3 − (1 + g − 1
m

)X2 + (1 + g − 1
m

)X − 1,

that additionally satisfies:
ρ∗ > 1 + g − 1

m
⇐⇒ 1 > g.

Hence the symmetrical equilibrium is uniquely defined by (0, 1− g, 1− g) (from considering
(24)).
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In this case, as 0 is the middle point between the local optimal phenotypes −1 in habitat
1 and 1 in habitat 2, each subpopulation is equally maladapted.

Remark 4.2. The existence of this equilibrium (or the associated extinction when it is not
viable) was expected, for we consider symmetrical habitats and thus symmetrical dynamics.
Therefore, under symmetrical initial conditions, the outcome is necessarily symmetrical.

4.1.2 Asymmetric equilibrium: specialist species

We define as asymmetric equilibrium any solution of (24) in R×R∗+2 that is not a symmetric
equilibrium.

Remark 4.3. One can notice that the system (23) is invariant under the transformation
ρ∗ 7→ 1

ρ∗ or equivalently (24) under (z∗, N∗1 , N∗2 ) 7→ (−z∗, N∗2 , N∗1 ). Thus, we do not lose in
generality if we look for equilibria with N∗1 < N∗2 instead of N∗1 6= N∗2 : to each asymmetrical
equilibrium with N∗1 < N∗2 , we can associate its mirrored version.

This section is dedicated to confirm the numerical intuition of Ronce and Kirkpatrick
2001 and show that there exists a range of parameters such that a unique mirrored couple of
asymmetrical equilibria exists.

Proposition 4.2. Let (m, g) ∈ R∗+2 be such that:

[1 + 2m < 5g] ∧
[
m2 > 4g (m− 1)

]
. (25)

Then there exists a single asymmetrical equilibrium (z∗, N∗1 , N∗2 ) with N∗1 < N∗2 , given by:

N∗1 = (1−m) +mρ− 4g ρ∗4

(ρ∗2+1)2 ,

N∗2 = (1−m) + m
ρ∗ − 4g 1

(ρ∗2+1)2 ,

z∗ = ρ∗2−1
ρ∗2+1 6= 0,

(26)

where ρ∗ = y∗+
√
y∗2−4

2 and y∗
(
= ρ∗ + 1

ρ∗

)
is the only root greater than 2 of the polynomial:

S(Y ) = Y 3 + (1− 4g)
m

Y 2 − 4g
m
Y + 4g

m
.

Conversely, if the condition (25) is not verified, there can be no asymmetrical equilibria.

Remark 4.4. For g > 1,m > 0, we have the equivalence:

[1 + 2m < 5g] ∧
[
m2 > 4g (m− 1)

]
⇐⇒

[
m < 2g

(
1−

√
1− 1

g

)]
.

Fig. 4 summarizes the conditions obtained with Proposition 4.1 and Proposition 4.2. It
illustrates the analytical range of parameters where the different types of equilibrium exist
when the strength of selection g and the migration rate m vary. In the region where none
of the conditions are met, we observe numerically that the system leads to extinction (upper
right region). In the intermediate green triangle, the two asymmetrical equilibria coexist with
the symmetrical equilibrium.
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Figure 4: Regions of existence of the equilibria, according to Proposition 4.1 and
Proposition 4.2. The symmetrical equilibrium is only determined by the intensity of se-
lection, regardless of the migration rate. The asymmetrical equilibria cannot exist for large
migration rate (m > 2) or small intensity of selection. The limit of the blue region is given
by m = 1 when g goes to ∞. Interestingly enough, at intermediate migration: m ∈ [1, 2],
asymmetrical equilibria only exist for a bounded range of positive g: selection cannot be too
strong nor too weak. Moreover, see Section 4.2 for stability results about these equilibria to
determine which equilibria prevail when both symmetrical and asymmetrical coexist (turquoise
triangular region).
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Proof of Proposition 4.2. The first part of the proof is directed to solve the equation given in
(23) and consists in two lemmas. The second part of the proof examines the conditions under
which such solutions verify the inequality constraint given by (23). It consists in a lemma
that involves tedious computations. Consequently, the second part of the proof is left to be
consulted in Appendix G.

First part of the proof. (23) provides us with a close equation: P ρ∗2−1
ρ∗2+1

(ρ∗) = 0. Solving

it seems necessary, however, the direct search for solutions of this equation leads to consider
a seventh degree polynomial. The first part of the proof consists in two lemmas. We first
rely on the symmetry of the system noticed by Remark 4.3 ((z∗, ρ∗) is solution if and only if(
−z∗, 1

ρ∗

)
is too) to reduce the complexity from a seventh degree polynomial to a third degree

polynomial S:

Lemma 7. Let us define:

S(Y ) = Y 3 + (1− 4g)
m

Y 2 − 4g
m
Y + 4g

m
.

Then, we have the following relation for ρ∗ ∈ R∗+\{1}:

S

(
ρ∗ + 1

ρ∗

)
= (1 + ρ∗2)2

(ρ∗ − 1)ρ∗3P ρ∗2−1
ρ∗2+1

(ρ∗).

As for ρ∗ ∈ R∗+\{1}, ρ∗+ 1
ρ∗ > 2, we next look for the number of roots of S greater than 2:

Lemma 8. Let a > 0, b ∈ R. Let us define b(a) := 5a
4 − 2. Then: if b ≥ b(a), S(Y ) =

Y 3 + (b− a)Y 2 − aY + a, has no root greater than 2. If b < b(a), S has a single root greater
than 2.

The successive application of the Lemma 7 and Lemma 8 with:{
b = 1

m ,

a = 4g
m > 0,

yields that there exists a unique solution to (23) if and only if 1 + 2m < 5g, and therefore to
(24) in R×R∗+2 which is exactly (26). Proving the two lemmas concludes the first part of the
proof.

Proof of Lemma 7. Let us consider ρ∗ ∈ R∗\{1}. Then we have:

(1 + ρ∗2)2

(ρ∗ − 1)ρ∗3P ρ∗2−1
ρ∗2+1

(ρ∗) = 2− 4g
m

+ (3m− 4g)
m

(
ρ∗ + 1

ρ∗

)
+ (1− 4g)

m

(
ρ∗2 + 1

ρ∗2

)
+ ρ∗3 + 1

ρ∗3

= 2− 4g
m

+ (3m− 4g)
m

(
ρ∗ + 1

ρ∗

)
+ (1− 4g)

m

(
ρ∗2 + 1

ρ∗2

)
+ ρ∗3 + 1

ρ∗3
.

Since:

ρ∗2 + 1
ρ∗2

=
(
ρ∗ + 1

ρ∗

)2
− 2,

ρ∗3 + 1
ρ∗3

=
(
ρ∗ + 1

ρ∗

)3
− 3

(
ρ∗ + 1

ρ∗

)
,
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we have:

(1 + ρ∗2)2

(ρ∗ − 1)ρ∗3P ρ∗2−1
ρ∗2+1

(ρ∗) =
(
ρ∗ + 1

ρ∗

)3
+ 1− 4g

m

(
ρ∗ + 1

ρ∗

)2
− 4g
m

(
ρ∗ + 1

ρ∗

)
+ 4g
m

= S

(
ρ∗ + 1

ρ∗

)
.

Proof of Lemma 8. As S(0) = a > 0 and since S goes to −∞ in −∞, S has always a negative
root.

Thereby, the case that we take interest in is included within the case where all three roots
Z1, Z2, Z3 of S are real. Furthermore, we have the following relations:{

Z1Z2Z3 = −a < 0,
Z1Z2 + Z2Z3 + Z3Z1 = −a < 0.

From the first relation, we deduce that S has an even number of positive roots, so either 0 or
2. The second relation leads to a contradiction if all roots are negative. Thus S has necessarily
two positive roots and one negative.

Moreover, we have:

1
Z1

+ 1
Z2

+ 1
Z3

= Z1Z2 + Z2Z3 + Z3Z1
Z1Z2Z3

= 1.

Without loss of generality, let us assume that Z3 < 0. If the remaining two positive roots were
greater than 2, then we would get:

1 < 1
Z1

+ 1
Z2
≤ 1

2 + 1
2 = 1

which is a contradiction. Hence at most one is greater than or equal to 2.
The only fact that is left to prove is that such a root exists. Let Sa(X) = X3 + (b(a) −

a)X2 − aX + a. Under the choice of b(a), we can verify that Sa(2) = 0. Consequently, the
following holds:

b < b(a) ⇐⇒ S(2) < Sa(2) = 0.

Therefore, because S goes to +∞ in +∞, if b > b(a), S has an even number of roots greater
than 2. Thereby, from the previous part of the proof, in that case, S do not have any roots
greater than 2. If b = b(a), 2 is the only root of S greater than or equal to 2. If b < b(a), S has
at least one root strictly greater than 2. This root is unique by the argument above (which
was independent of b).

Second part of the proof. The second part of the proof is dedicated to show that for all
(m, g) ∈ R∗+2 verifying (25), the solution ρ∗ > 0 that we found in the first part of the proof
verifies the constraint given in (23). It consists in the following lemma, that is obtained after
tedious calculations done in part with the help of the software Mathematica, so the proof is
left to be consulted in Appendix G.
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Lemma 9. Let (m, g) ∈ R∗+2 verifying (25), and ρ∗ > 0 be the unique solution of the equation[
P ρ∗2−1
ρ∗2+1

(ρ∗) = 0
]
. Then:

ρ∗ > 1 + g

m

4ρ∗4

(ρ∗ + 1)2 −
1
m
.

Consequently: for (g,m) ∈ R∗+2 such that 1 + 2m < 5g and m2 > 4g (m− 1), ρ∗ defined in
Proposition 4.2 defines an equilibrium with positive subpopulation sizes.

Conversely: if (25) is not met, either 1 + 2m > 5g, in which case no asymmetrical equilib-
rium can exist from Lemma 7 and Lemma 8, or m2 < 4g (m− 1) (which implies that g > 1),
in which case Remark 4.4 and Corollary 1 implies that no equilibrium can exist.

4.2 Stability analysis

In this subsection, we examine the stability of the equilibria of the system (22) that we de-
scribed previously.

Proposition 4.3. Let (z∗, N∗1 , N∗2 ) ∈ R × R∗+2 be an equilibrium and ρ∗ = N∗2
N∗1

. Then the
equilibrium is locally stable (respectively unstable) if:

4ρ∗
(ρ∗2 + 1)2 ×

1
P ′z∗(ρ∗)

× 2g
m

[
z∗
(
ρ∗ − ρ∗2

)
−
(
ρ∗ + ρ∗2

)]
+ 1 > 0 (resp. < 0).

Proof. If (z∗, N∗1 , N∗2 ) ∈ R × R∗+2 is an equilibrium and ρ∗ = N∗2
N∗1

, then (N∗1 , N∗2 ) is a fast
equilibrium associated to z∗ (Lemma 1), which implies that Pz∗ has a single positive root
(without multiplicity) that is ρ∗ (Lemma 2). Hence ρ∗ cannot be a double root of Pz∗ , which
yields: P ′z∗(ρ∗) 6= 0.

(22) implies that the local stability of the equilibria can be examined by the following
system: 

G(z∗, ρ∗) := Pz∗(ρ∗) = 0,
ρ∗ >

[
1 + g

m(z∗ + 1)2 − 1
m

]
,

dz∗

dt = F(z∗, ρ∗) := 2g
(
ρ∗2−1
ρ∗2+1 − z

∗
)
.

As ∂ρG(z∗, ρ∗) = P ′z∗(ρ∗) 6= 0, we apply the implicit function theorem to get U a open
neighbourhood of z∗ and a smooth function ρ : U → R∗+ such that:

∀z ∈ U,G(z, ρ(z)) = 0.

For z ∈ U , we define f : U → R, z 7→ F (z, ρ(z)). Hence, (z∗, N∗1 , N∗2 ) is locally stable (resp.
unstable) if :

f ′(z∗) = ∇F(z∗, ρ∗) ·
(

1
dρ
dz (z∗)

)
= ∂ρF(z∗, ρ∗)

[
− (∂ρG(z∗, ρ∗))−1

∂zG(z∗, ρ∗)
]
− 2g < 0 (resp. > 0).

Since we have:

∂ρF(z∗, ρ∗) = 2g 4ρ∗2

(ρ∗ + 1)2 , (∂ρG(z∗, ρ∗))−1 = 1
P ′z∗(ρ∗)

,

and
∂zG(z∗, ρ∗) = −2 g

m
(z∗ + 1)ρ∗2 + 2 g

m
(z∗ − 1)ρ∗,
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the considered equilibrium is locally stable (reps. unstable) if:

4ρ∗
(ρ∗2 + 1)2 ×

1
P ′z∗(ρ∗)

× 2g
m

[
z∗
(
ρ∗ − ρ∗2

)
−
(
ρ∗ + ρ∗2

)]
+ 1 > 0 (resp. < 0).

Corollary 2. The symmetrical equilibrium z∗ = 0, ρ∗ = 1 is locally stable (resp. unstable) if
5g < 1 + 2m (resp. 5g > 1 + 2m) (ie, when it is alone).

Proof. If z∗ = 0 and ρ∗ = 1, we have:

4ρ∗
(ρ∗2 + 1)2 ×

1
P ′z∗(ρ∗)

× 2g
m

[
z∗
(
ρ∗ − ρ∗2

)
−
(
ρ∗ + ρ∗2

)]
+ 1

= 1
3− 2

(
1 + g

m −
1
m

)
+
(
1 + g

m −
1
m

) × −4g
m

+ 1 = 1 + 2m− 5g
1 + 2m− g .

We recall that for the symmetrical equilibrium to exist, we need: g < 1, which imply: g <
1 + 2m. Hence the result.

Analytical derivations are more tedious for asymmetrical equilibria. However, when 1 +
2m > g, we showed that Pz∗ has a single (without multiplicity) positive root ρ(z∗) for all
z∗ ∈ [−1, 1] (Proposition 3.2). The function ρ : [−1, 1] → R∗+, z 7→ ρ(z) is therefore smooth
(where ρ(z) designates the single positive root of Pz). Thus, we can globally define the smooth
function f similarly as in Proposition 4.3 on ]− 1, 1[:

f :

]− 1, 1[→ R
z 7→ 2g

(
ρ(z)2−1
ρ(z)2+1 − z

)
,

.

That leads to the following result:

Corollary 3. Let 5g > 1 + 2m > g. Then the asymmetrical equilibria are locally stable.

Proof. Let (z∗, N∗1 , N∗2 ) be an asymmetrical equilibrium. We recall that z∗ = ρ∗2−1
ρ∗2+1 ∈]− 1, 1[.

From the previous corollary, the symmetric equilibrium is locally unstable, i.e.:

f ′(0) > 0.

Moreover, from Proposition 3.2, Pz∗=1 has a single positive root, and we can extend f in 1 by
continuity and calculate :

f(1) = 2g
(
ρ2(1)− 1
ρ2(1) + 1 − 1

)
= − 4g

ρ2(1) + 1 < 0.

Since 0 and z∗ are the only zeros of f on [0, 1] (from the uniqueness of the mirrored couple
of asymmetric equilibria) and f ′(0) > 0, f is positive on ]0, z∗[ ane negative on ]z∗, 1]. Hence,
the asymmetrical equilibria are locally stable.

To illustrate the diversity of cases in both the number of equilibria and their stability, we
display in Fig. 5 the graph of the function f defined above as a function of the dominant trait
z when g = 1.5 and m takes the following values :
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Figure 5: Graph of the function f for g = 1.5 and m ∈ {0.02, 0.25, 1, 3.25, 5}.
The dominant traits z∗ of the different equilibria are located where the curve crosses the
horizontal line (f(z∗) = 0). An equilibrium is locally stable if the slope of f at the point of
equilibrium is negative. For decreasing values of m (dark to light colors), at first, only the
symmetric equilibrium exists and is stable (see also Corollary 2). Then, the asymmetrical
equilibria emerge (in the parameter region indicated in Proposition 4.2) and are bistable (see
also Corollary 3), while the symmetric equilibrium becomes unstable. For small values of
m, the curve folds near the origin, as for z∗ near 0, Pz∗ has three distinct positive roots
(Proposition 3.2). For those z∗, the fast equilibria are all non viable (Lemma 2): numerically,
the system goes to extinction if the initial dominant trait is near 0.
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1. m = 0.02. There are multiple branches near the origin (yellow curve), as the function
f is multi-valued. Indeed, we are in the case where: 1 + 2m < g. Therefore, for z∗
near 0, there is three distinct positive roots for Pz∗ (from Proposition 3.2), which leads
to non-viable fast equilibria (from Lemma 2). Therefore, if the initial dominant trait is
near 0, the system will go to extinction.

2. m = 0.25, so that the equality 1 + 2m = g holds, which is the limit case of the folding
near the origin.

3. m = 1. For each value of the dominant trait z∗, there is only one root to Pz∗ . There are
three equilibria, an unstable symmetric and two stable asymmetric equilibria (1 + 2m <
5g).

4. m = 3.25, so that the equality 1 + 2m = 5g holds. This displays the limit of existence of
the asymmetrical equilibria (see Proposition 4.2). The three equilibria are merging and
exchanging stability.

5. m = 5. As m grows further, the asymmetric equilibria do not exist anymore. Therefore,
only the symmetric one is left and is stable.

5 Discussion
Contributions In this paper, we have studied the evolutionary dynamics of a complex trait
under stabilizing selection in a heterogeneous environment in a sexually reproducing pop-
ulation. To model the process of inheritance of this trait, we have used a mixing sexual
reproduction operator according to the infinitesimal model (Fisher 1919; Bulmer 1971; Bar-
ton, Etheridge, and Véber 2017), assuming that the segregational variance is constant and
independent of the families. We have set our analysis in a regime of small variance of segrega-
tion, aligning with a framework developed by Diekmann et al. 2005; Perthame and Barles 2008
and recurrently used with the infinitesimal model “Equilibria of quantitative genetics models
beyond the Gaussian approximation I: Maladaptation to a changing environment”; Calvez,
Garnier, and Patout 2019. By doing so, we showed two types of result. First, we compared
the system of moments derived from our model in the limit of small variance with a seminal
work in quantitative genetics (Ronce and Kirkpatrick 2001), showing their equivalence in that
limit, while bypassing any prior normality assumption on the trait distributions. Next, we
showed that this small variance regime discriminates two time scales, allowing to perform a
slow-fast analysis, which reduces the complexity of our system in the asymptotic limit. Thus,
we were able to fully derive analytically its equilibria thanks to algebraic arguments of sym-
metry reflecting the symmetrical habitats. The theoretical outcomes of our model are shown
in the upper panel of Fig. 6. They are to be compared to numerical outcomes shown in the
lower panel, where the same colours indicate the same types of equilibria. For the numerical
analysis, for each couple of parameters (m, g), the initial state is the same: both local distri-
butions are normal of same mean (0.2) and same variance ε2 = 2.5× 10−3. The initial state is
taken as monomorphic so that it falls within the scope of the slow-fast analysis. Moreover, the
color yellow is attributed to simulations whose final state does not meet the small segregational
variance regime analysis prediction, which in particular states that the distribution of trait
in the metapopulation has a variance of order ε2 (see (12) and recall that the population is
monomorphic (Section 3)). In the two simulations that present the color yellow, the variance
in trait in the metapopulation is of approximately 3 ε2, which exceeds the chosen threshold
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(2 ε2). The detailed setting and scoring of the simulations involved in the lower panel of Fig. 6
are available in Appendix I.

One can notice that the justification of the validity of the Gaussian approximation of local
trait distributions in the regime of small variance (see Section 1 and “Equilibria of quantitative
genetics models beyond the Gaussian approximation I: Maladaptation to a changing environ-
ment”) and most of the slow-fast analysis (Section 3) are robust when introducing asymmetries
in our model, or changing the selection functions. However, we stress that our analytical deriva-
tion of the equilibria in the asymptotic limit uses specific arguments that rely crucially on the
symmetries between habitats in our model (see Remark 4.3 and Proposition 4.2).

Robustness with regard to dimorphic initial state. The theoretical outcomes given in
Fig. 6 are in particular a consequence of the reduction of system due to the slow-fast theorem,
which applies provided that the initial state is close enough from a fast equilibrium from the
slow manifold (see Theorem 3.1). Those fast equilibria are monomorphic. A natural question
would be to ask to what extent those results apply for an initial state that is dimorphic.
This would model for example two initially isolated subpopulations, locally adapted, that are
suddenly being connected. Here we give a numerical taste of what a more complete answer
could look like. We display Fig. 7 using the same methodology and scoring than for the lower
panel of Fig. 6, the only difference being the initial state, now constituted by two locally
adapted subpopulations, slightly asymmetrical in size (see Appendix I for details). To get a
sense of what could occur in the regime of vanishing variance, we choose to display the results
for two values of ε2: ε2 = 2.5× 10−3 (upper panel) and ε2 = 6.25× 10−4 (lower panel). Both
panels of Fig. 7 and the lower panel of Fig. 6 are globally quite similar, except for the yellow
region that is much wider in both panels of Fig. 7. Particularly, there is a net trend for strong
selection and small migration. That is expected, because the initial state of the simulations
involved in both panels of Fig. 7 is presumably far from the conditions asked by Theorem 3.1.
These simulations suggest that, in this particular range of parameters, the fast relaxation
to a monomorphic state, that is central in Theorem 3.1, breaks down and dimorphism is
maintained. However, we can note that this yellow region decreases for decreasing values of ε2

(difference between upper and lower panel of Fig. 7). That suggests that our analysis remains
quite robust to dimorphic initial states in the limit of vanishing variance.

Comparison with asexual studies. In Section 4, we found that bistable asymmetrical
equilibria can exist in our system (Proposition 4.2, Corollary 3). That is a strong difference
with the findings of Mirrahimi 2017 and Mirrahimi and Gandon 2020: with a similar mesoscopic
model but using an asexual reproduction operator with frequent mutations of small effects,
they find that symmetrical habitats lead to a single stable symmetrical equilibrium, either
monomorphic or dimorphic. In particular, if migration is small enough compared to selection,
each subpopulation adapts to their habitats and dimorphism occurs at the metapopulation
scale. In our case, the mixing effect of the infinitesimal operator of sexual reproduction does
not allow for such a local adaptation to occur in the limit of small variance. In Section 3, we
showed that it forces monomorphism quickly and the only option to adapt to strong forces of
selection is an asymmetrical equilibrium (Proposition 4.2, Fig. 6) that describes a source sink
scenario. One population is adapted to its habitat, and the other is essentially composed by
poorly adapted migrants ; the choice of which depends on the initial conditions.

Our findings share notable similarities with some in Débarre, Ronce, and Gandon 2013,
which conducts a hybrid analysis on asexual populations with tools of adaptive dynamics
applied to quantitative genetics equations. Particularly, under gradual evolution (when mu-

32



Figure 6: Summary of the different theoretical (upper panel, in the limit of vanish-
ing segregational variance) and numerical (lower panel, ε2 = 2.5×10−3) outcomes
of our model when selection (g) and migration (m) are varying. The same colors
represents the same outcomes in both figures. Fig. 4 complemented by the stability analysis (see Sec-
tion 4.2) gives the upper figure. In the dashed region, the system goes to one of the asymmetrical
equilibrium, except if the initial conditions are too symmetrical (the system goes then numerically to
extinction, typically due to the folding near z∗ = 0 of the yellow curve in Fig. 5). For the lower figure,
all simulations share the same initial state: the metapopulation is monomorphic and asymmetrical as
local distributions are both normal with same mean (0.2) and same variance (2ε2). Hence, the poten-
tial extinction in the dashed region does not occur and the numerical analyis falls within the scope of
the slow-fast analysis (Section 3). The color yellow is attributed to simulations whose final state does
not meet the small segregational variance regime analysis prediction, which, in particular, states that
the distribution of trait in the metapopulation has a variance of order ε2 (see (12) and recall that the
population is monomorphic (Section 3)). For more details on the simulations and their scoring resulting
in the lower panel figure, see Appendix I.
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Figure 7: Numerical outcomes with initial dimorphic state (locally adapted sub-
populations), for ε2 = 2.5 × 10−3 (upper panel) and ε2 = 6.25 × 10−4 (lower
panel). The colors for both figures results from the same scoring scheme as for Fig. 6 (see Appendix I
for details). The results are quite similar as Fig. 6, except for the yellow region. In the upper panel
(ε2 = 2.5 × 10−3), the yellow region is wider than when the initial state is monomorphic (Fig. 6), in-
creasingly so for stronger selection. That highlights the numerical cases where the population ends up
dimorphic as the species adapts locally to each deme’s optimum, for strong selection and small migra-
tion. This is expected as the fast convergence toward a monomorphism state induced by Theorem 3.1
in the limit of vanishing variance of segregation is likeky to break down, as the initial state is far from
the slow manifold and the segregational variance is small but not zero. However, this yellow region
decreases as the value of ε2 decreases, as indicated by the lower panel (ε2 = 6.25×10−4). That suggests
that our analysis remains quite robust to dimorphic initial states in the limit of vanishing variance.
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tations are rare and of small effects), they state that asymmetrical equilibria can be reached
if the population is initially monomorphic, under a similar range of migration and selection
parameters as indicated by our analysis. To solve for them, they assume that the distributions
of traits around each peak found using adaptive dynamics is Gaussian, of constant variance
related to the mutational variance (which is small by hypotheses). That is similar to the frame-
work that naturally arise from the hypotheses of our model, should the mutational variance
be replaced by the segregational variance. Consequently, we suggest that the asymmetrical
equilibria found in Débarre, Ronce, and Gandon 2013 should have the same coordinates as
the ones found in our analysis. However, there is a substantial difference in the dynamics
leading to those equilibria. Even with an initially dimorphic metapopulation, our hypotheses
on sexual reproduction typically strains toward monomorphism. With the same initial state,
Débarre, Ronce, and Gandon 2013 indicate that dimorphism is typically maintained in the
range of parameters where asymmetrical equilibria exist.

Gaussian assumption. In our study, we consider a regime where the segregational variance
is small compared to how far apart the local optimal traits are. While this small variance regime
is more general than the standard weak selection approximation widely used in quantitative
genetics model using the Gaussian assumption (see Remark 1.2), we formally show that the
local trait distributions can still be well approximated by normal distributions within this
regime (Section 1). Hence, asymptotically, in the regime of small variance, the findings of our
model are equivalent to Ronce and Kirkpatrick 2001, which relies on a Gaussian assumption
of local trait distributions. This link of equivalence relies on the hypothesis that the genetic
(and phenotypic) variance is constant, which we interpreted in our model to be twice the
segregational variance in the limit of vanishing variance. Furthermore, together with the last
paragraph, our study gives some elements of explanation to why the findings of Ronce and
Kirkpatrick 2001 are structurally different from Mirrahimi 2017 and Mirrahimi and Gandon
2020, and closer to Débarre, Ronce, and Gandon 2013.

Constant segregational variance in a heterogeneous environment Our model relies
on using the infinitesimal model with a constant segregational variance, independent of the
mates deme. That is a strong assumption. However, in the perspective of linking the present
study to population genetics approaches, one can question the limits of such a modelling
assumption with regard to a Mendelian interpretation of this model. A future work is planned
to examine it through conducting individual based simulations.
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Appendices

A System of moments derived from our model
Here, we derive the system of moments (2) from (1). In the preliminary computations, we will
omit the time and deme dependency for the sake of clarity. We will then denote n the trait
distribution density, N the size of the population, z the mean trait, σ2 the mean variance,
ψ3 the third central moment and θ the optimal phenotype.

Preliminary integration of the selection term. We have:

∫
R

(z − θ)2n(z)dz =
∫
R

[
(z − z)2 + (z − θ)2 + 2(z − z)(z − θ)

]
n(z) dz

= σ2N + (z − θ)2N ,

and:

∫
R

(z − z)(z − θ)2ndz =
∫
R

[
(z − z)3 + (z − z)(z − θ)2 + 2(z − z)2(z − θ)

]
n(z) dz

= 2σ2(z − θ)N +ψN .

Size of the subpopulations. Recalling that Ni(t) =
∫
R
ni(t, z) dz, we get from the pre-

liminary computations by integrating (1):

dNi

dt
=
∫
R

∂ni
∂t

(t, z)dz

=
∫
R
rBσ(ni)(t, z)− g(z − θi)2ni(t, z)− κNi(t)ni(t, z) +m (n(t, z)− n(t, z)) dz

=
[
r − κNi(t)− g(zi(t)− θi)2 − gσi2

]
Ni(t) +m

(
Nj(t)−Ni(t)

)
.

Local mean trait. Recalling that zi(t) = 1
Ni(t)

∫
R
z ni(t, z) dz, we have, thanks to the

preliminary computations:
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dzi
dt

= 1
Ni

∫
R
z
∂ni
∂t

(t, z)dz − 1
Ni

2
dNi

dt

∫
R
zni(t, z)dz

= 1
Ni

∫
R

(z − zi)
∂ni
∂t

(t, z)dz

= 1
Ni

∫
R

(z − zi)
[
−g(z − θi)2ni(t, z) +m (nj(t, z)− ni(t, z))

]
dz

= 2gσi2(θi − zi)− gψi3 +mNj

Ni
(zj − zi).

B Equilibria of a dynamical system under the infinitesimal
model of reproduction with random mating only

In this subsection, we show that (7) admits any Gaussian of variance ε2 as equilibrium. That
is equivalent to state that:

Proposition B.1. For µ ∈ R, the Gaussian distribution Gµ,ε2 of mean µ and variance ε2 is
a fixed point of the operator Bε, namely:

Bε(Gµ,ε2) = Gµ,ε2 .

Proof. We can first notice that Bε can be written using a double convolution product:

Lemma 10. For f ∈ L1(R),
∫
R
f 6= 0, we have:

Bε(f) = 4∫
R
f(z′) dz′

G0, ε22
∗ F ∗ F,

where F : z 7→ f(2z).

Proof of Lemma 10. For f ∈ L1(R),
∫
R
f 6= 0, a straight-forward computation yields:

Bε(f)(z) = 1√
πε

∫∫
R2

exp
[
−(z − z1+z2

2 )2

ε2

]
f(z1)f(z2)∫
R
f(z′) dz′

dz1dz2

= 1∫
R
f(z′) dz′

∫
R

∫
R
G0, ε22

(
(z − z1

2 )− z2
2
)
F (z2

2 ) dz2 F (z1
2 ) dz1

= 2∫
R
f(z′) dz′

∫
R
G0, ε22

∗ F (z − z1
2 )F (z1

2 ) dz1

= 4∫
R
f(z′) dz′

G0, ε22
∗ F ∗ F (z).

If f = Gµ,ε2 , then we find F = 1
2 × Gµ

2 ,
ε2
4
. Besides, as the convolution product of two

Gaussian kernels Gµ1,σ2
1
and Gµ2,σ2

2
is the Gaussian kernel Gµ1+µ2,σ2

1+σ2
2
, Proposition B.1 is a

corollary of the previous lemma.
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C Formal expansion within the exponential formalism for nε

In this subsection, we will remove the deme dependency for the sake of clarity. To formally
derive (9), let us consider the following formal expansion of Uε with regard to successive orders
of ε2:

Uε = u0 + ε2uε.

The aim is to characterize u0 thanks to the behaviour of the reproduction term when ε� 1,
which we expect neither to diverge nor to vanish:

Bε(nε)
nε

(z) =

1√
πε

∫∫
R2

exp
[

1
ε2

[
−
[
z − z1+z2

2

]2 + u0(z)− u0(z1)− u0(z2)
]]

exp [uε(z)− uε(z1)− uε(z2)] dz1dz2∫
R exp

[
−u0(z′)

ε2 − u(z′)
]
dz′

Then, we have several considerations to make. First, if we assume that u0 reaches its mini-
mum at a non degenerate point z∗, then the following modified expression of the denominator:

1√
πε

∫
R

exp
[
− 1
ε2

[
u0(z′)−minu0

]
− u(z′)

]
dz′,

will have its integrand concentrate around the minimum of u0 and will converge as ε � 1.
Therefore it is relevant to introduce this minimum both at the numerator and the denominator.

Then, since we expect the numerator not to diverge nor to vanish uniformly as ε� 1, we
need that:

∀z ∈ R, max
(z1,z2)

[
−
(
z − z1 + z2

2

)2
+ u0(z)− u0(z1)− u0(z2) + minu0

]
= 0. (27)

As shown in “Equilibria of quantitative genetics models beyond the Gaussian approxima-
tion I: Maladaptation to a changing environment”, thanks to some convexity arguments, this
leads necessarily to choose u0 as a quadratic function in z, hence its decomposition:

u0(z) = u(z∗) + (z − z∗)2

2 , (28)

where z∗ is realizing the minimum of u0. Note that u(z∗) = 0, due to the Laplace method of
integration, since:

Nε = 1√
2πε

∫
R

exp
[
−Uε(z)

ε2

]
dz ≈

ε→0

exp
[
−u(z∗)

ε2

]
√
U ′′ε (z∗)

.

So either u(z∗) = 0, either there is extinction or explosion of the population size. That yields
(9).

Convexity arguments from “Equilibria of quantitative genetics models beyond
the Gaussian approximation I: Maladaptation to a changing environment”. Let
us recall the arguments of convexity involved in “Equilibria of quantitative genetics models
beyond the Gaussian approximation I: Maladaptation to a changing environment” to show
that functional constraint (27) leads in our case to u0 being quadratic:

1. first, they show that u0 has some regularities (continuous and has left and right derivative
everywhere), for (27) implies that z 7→ u0(z) − z2 is concave as minimum of affine
functions:

∀z ∈ R, u0(z)− z2 = min
(z1,z2)

[
−z(z1 + z2) + (z1 + z2)2

4 + u0(z1) + u0(z2)
]
.
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2. next, they introduce the Legendre convex conjugate

û0 : p 7→ sup
z∈R

[(z − z∗)p− u(z)] ,

and show that it satisfies the following functional equality, by commuting the different
sup operators while computing û0(p) using (27):

∀p ∈ R, û0(p) = p2

4 + 2 û0

(
p

2

)
. (29)

3. As û0 is convex by definition, it is continuous and admits left and right derivative ev-
erywhere. Moreover, û0 has a minimum in 0 and û0(0) = −u(z∗) = 0. Therefore (29)
implies by recursion:

∀p > 0 (resp. < 0), û0(p) = p2

2 + û0
′(0+) p (resp. û0

′(0−) p). (30)

Note that 0 being a minimum of û0 implies that: û0
′(0−) ≤ 0 ≤ û0

′(0+).

4. The next step aims at showing that u0 is equal to its convex bi-conjugate
ˆ̂u0 : z 7→ sup

p∈R
[p (z − z∗)− û0(p)] ,

which is computable from (30):

ˆ̂u0 : z 7→


(z−z∗−û0(0−))2

2 if z < z∗ + û0(0−)
0 if z∗ + û0(0−) ≤ z ≤ z∗ + û0(0+)
(z−z∗−û0(0+))2

2 if z > z∗ + û0(0+).
(31)

Standard convexity analysis shows also that ˆ̂u0 is the lower convex envelope of u0.
The first implication is that u0 and ˆ̂u0 coincide on R\[z∗+ û0(0−), z∗+ û0(0+)], because
ˆ̂u0 is strictly convex there.
The second implication is that u0

(
z∗ + û0(0+)

)
= ˆ̂u0

(
z∗ + û0(0+)

)
= 0 (resp. z∗ +

û0(0−)), since z∗ + û0(0+) (resp. z∗ + û0(0−)) is an extremal point of the graph of
ˆ̂u0. One can show using (27) that the midpoint between any zeros of u0 is still a zero
of u0 (recall that u0 ≥ 0). Hence, by density and continuity of u0, u0 vanishes on
[z∗ + û0(0−), z∗ + û0(0+)].

5. Finally, since u0 satisfies (31) and we need Nε not to explode when ε vanishes, we
necessarily obtain that û0(0−) = û0(0+). Hence u0 quadratic.

D Formal approximations of the trait distributions moments
in the regime of small variance ε2 � 1

This appendix is dedicated to formally explain (12). We remove the time and the deme
dependency for the sake of clarity. We denote nε the trait distribution density, Nε the size of
the population, zε the mean trait, σ2

ε the variance and ψε the third central moment. Let us
also recall that the computations are performed using the exponential formalism introduced
in (10) while considering the following formal expansion of uε in the regime of small variance:

uε = u+ ε2 v +O(ε4).
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Size of population. We have:

Nε =
∫
R
nε(z) dz

=
∫
R

1√
2πε

e−
(z−z∗)2

2ε2 e−u(z)−ε2 v(z)+O(ε4)dz

=
∫
R

e−
y2
2

√
2π
e−u(z∗+εy)−ε2v(z∗+εy)+O(ε4)dy

(
y := z − z∗

ε

)

=
∫
R

e−
y2
2

√
2π
e−[u(z∗)+εyu′(z∗)+ ε2y2

2 u′′(z∗)+ ε3y3
6 u′′′(z∗)+O(ε4)]−ε2v(z∗)−ε3yv′(z∗)+O(ε4)dy

=
∫
R

e−
y2
2

√
2π
e−u(z∗)e

−
[
εyu′(z∗)+ε2

[
y2u′′(z∗)

2 +v(z∗)
]

+ε3
[
y3
6 u
′′′(z∗)+yv′

]
+O(ε4)

]
dy

=
∫
R

e−
y2
2

√
2π
e−u(z∗)

[
1− εyu′(z∗)− ε2

[
y2u′′(z∗)

2 + v(z∗)
]
− ε3

[
y3

6 u
′′′(z∗)− yv′(z∗)

]

+1
2
[
ε2y2u′(z∗)2 + ε3

[
y3u′(z∗)u′′(z∗) + 2yu′(z∗)v(z∗)

]]
− ε3y3u′(z∗)3

6 +O(ε4)
]

= e−u(z∗)
[
1 + ε2

[
u′2(z∗)

2 − u′′(z∗)
2 − v(z∗)

]]
+O(ε4),

from the computations of the moments of a Gaussian.

Mean trait. Similarly as above, we have:

zε =
∫
R
z
nε
Nε

dz

= 1
Nε

∫
R
z

1√
2πε

e−
(z−z∗)2

2ε2 e−u(z)−ε2 v(z)+O(ε4)dz

= 1
Nε

∫
R

(z∗ + εy)e
− y

2
2

√
2π
e−u(z∗+εy)−ε2v(z∗+εy)+O(ε4)dy,

(
y := z − z∗

ε

)

= 1
Nε

∫
R

(z∗ + εy)e
− y

2
2

√
2π
e−u(z∗)

[
1− εyu′(z∗) + ε2

[
y2u′(z∗)2

2 − y2u′′(z∗)
2 − v(z∗)

]

+ε3
[
−y

3

6 u
′′′(z∗)− yv′(z∗) + y3u′(z∗)u′′(z∗)

2 + yu′(z∗)v(z∗)− 3y3u′(z∗)3

6

]
+O(ε4)

]

=
e−u(z∗)

[
z∗
(
1 + ε2

[
u′2(z∗)

2 − u′′(z∗)
2 − v(z∗)

])
− ε2u′(z∗)

]
+O(ε4)

e−u(z∗)
(
1 + ε2

[
u′2(z∗)

2 − u′′(z∗)
2 − v(z∗)

])
+O(ε4)

= z∗ − ε2u′(z∗) +O(ε4).
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Variance. Using the previous formal computations and methodology, we get:

σ2
ε = 1

Nε

∫
R

(z − zε)2nε(z)dz

= 1
Nε

∫
R

[
(z − z∗)2 + (z∗ − zε)2 + 2(z − z∗)(z∗ − zε)

]
nε(z)dz

= 1
Nε

∫
R

[
ε2y2 + 2ε3yu′(z∗) +O(ε4)

] [
1− εyu′ +O(ε2)

]
e−u(z∗) e

− y
2
2

√
2π
dy

= ε2e−u(z∗)

e−u(z∗) [1 +O(ε2)]
= ε2 +O(ε4).

Third central moment. We compute, using the same change in variable y := z−z∗
ε :

ψ3
ε = 1

Nε

∫
R

(z − zε)3nε(z)dz

= 1
Nε

∫
R

[
(z − z∗)3 + (z∗ − zε)3 + 3(z − z∗)2(z∗ − zε) + 3(z − z∗)(z∗ − zε)2

]
nε(z)dz

= 1
Nε

∫
R

[
ε3y3 +O(ε4)

] [
e−u(z∗) +O(ε)

]
dz

= O(ε4).

E Fast/slow system: proof of Theorem 3.1
This appendix is dedicated to prove Theorem 3.1.

Let (z∗0 , Ȳ ∗0 ) ∈ R × Ω (we recall that Ω = (R∗+)2 × R) be on the slow manifold, ie. such
that G(z∗0 , Ȳ ∗0 ) = 0. From Lemma 6 of fast relaxation towards the slow manifold, the jacobian
matrix JG(z∗0 , Ȳ ∗0 ) is invertible. Consequently, the implicit function theorem gives us U open
neighbourhood of z∗0 in R, V open neighbourhood of (z∗0 , Ȳ ∗0 ) in R×Ω and φ ∈ C∞(U, V ) such
that :

∀(z∗, Ȳ ∗) ∈ V, G(z∗, Ȳ ∗, 0) = 0 =⇒ Ȳ ∗ = φ(z∗).

Hence, we can define a notation that we shall use henceforth:

∀z ∈ U, Jz := JG(z, φ(z)).

If K is a compact subset of U such that z∗0 ∈ K̊, we can define the Cauchy problem (E0) by
the following :

(E0)
{
dz∗

dt = −2gz∗(t) + F (φ(z∗(t))) ,
z∗(0) = z∗0 ,

(32)

for t ≤ t∗, that we define as the following:

t∗ := inf{t > 0, z∗(t) /∈ K}.

It is similar to (20) with the initial conditions (z∗(0), Ȳ ∗0 ) = (z∗0 , φ(z∗0)). A essential part of
the proof relies in the fact that we can define the following uniform positive constant, thanks
to Lemma 6 of fast relaxation:
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λK = −1
2max
z∈K
{λ ∈ Sp(Jz)} > 0.

As the first step, we state the following lemma whose proof will be provided at the end of
this appendix. It defines a uniform control constant γ > 0:

Lemma 11. There exists γ > 0 such that:

max
z∈K, s≥0

∣∣∣∣∣∣∣∣∣eλKseJzs∣∣∣∣∣∣∣∣∣ ≤ γ.
(|||·|||M3(R) is noted |||·|||)

The next step is to show the convergence of solutions of (Pε) (19) towards those of (P0)
(20) on a time interval, yet to be defined, that will be shown to be uniform with regard to
ε and the initial conditions, provided that they are small enough. For that purpose, it is
more convenient to consider the system (Rε) verified by the residuals rεz(t) = zε(t)− z∗(t) and
rεY (t) = Ȳε(t)− Ȳ ∗(t):

(Rε)



ε2 drεY
dt = G(z∗(t) + rεz(t), Ȳ ∗(t) + rεY (t))−G(z∗(t), Ȳ ∗(t))− ε2 dȲ ∗

dt + ε2νN,ε(t),

drεz
dt = −2grεz(t) + F (Ȳ ∗(t) + rεY )− F (Ȳ ∗(t)) + ε2νz,ε(t),

(rεz(0), rεY (0)) = (zε0 − z∗0 , Ȳ ε
0 − Ȳ ∗0 ),

(33)
and introduce some further definitions.

Because K is a compact set, there exists δK > 0 such that the following set is a compact
subset of V :

K̄δK = {(z, Ȳ ) ∈ R× Ω|∃z∗ ∈ K, |(z, Ȳ )− (z∗, φ(z∗))| ≤ δK} ⊂ V.

Let us consider from now (zε0, N ε
0 ) ∈ K̄δK . Then we define ∆ = min

(
λK
4Cγ , δK

)
and T =

min(t∗, λK
4C′γ ), where:

C = max
(
‖∂2

Ȳ
G‖∞,K̄δK , ‖∂zG‖∞,K̄δK , ‖∂Ȳ F‖∞,ΠΩ(K̄δK )

)
)

and :
C ′ = max

t≤t∗

∣∣∣∣∣∣∣∣∣∂tJz∗(t)∣∣∣∣∣∣∣∣∣,
where ΠΩ is the projection from R×Ω on Ω. One can notice from these definitions and from
Lemma 11, that γ,∆, T, λK , C, C ′ do not depend on ε and are uniform on [0, t∗]. Specifically
taking ∆ ≤ λK

4Cγ and T ≤ λK
4C′γ will turn out to be important in the proof.

On the time region [0, T ], we will show that we can control explicitly the various perturbed
terms that arise. We can now state the following proposition, whose proof constitutes the core
of the resolution of the problem:

Proposition E.1. As max(ε, |rεz(0)|, |rεY (0)|) → 0, (Ȳε, zε) converges toward (Ȳ ∗, z∗) uni-
formly on [0, T ].
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For the final step, we will show that we can reiterate the process on each interval of time
[jT,min{(j + 1)T, t∗}] with ∀j ≤ b t∗T c, jT ≤ t∗ε. Thus, for sufficiently small ε and initial
conditions, the control remains valid until t∗, hence Theorem 1.

For convenience, we will denote by f ∗ g (t) the convolution product of f and g at time
t > 0 :

f ∗ g (t) =
∫ t

0
f(τ)g(t− τ)dτ.

Proof of Proposition E.1. Let ε ∈]0, 1]. Let us define an auxiliary time t∗ε:

t∗ε = min (t∗, inf{t > 0, |rεz|+ |rεY | > ∆}) .

It ensures that the perturbed trajectory stays inside of K̄δK when t ≤ t∗ε.
Let us highlight the main steps of the proof:

1. preliminary controls on rεY by |rεY (0)| and 1
ε2 |r

ε
z| ∗ e

−λK
2ε2
· thanks to the regularity of G,

the fast relaxation properties (Lemma 6 and Lemma 11) and Gronwall’s lemma.

2. control |rεz| by |rεz(0)| and |rεY |.

3. finish the control on rεY by using the latter and Gronwall’s lemma.

1. For t ≤ min(T, t∗ε), we can introduce new terms in the equation from (33) on rεY :

drεY
dt

=
Jz∗(0)
ε2 rεY + 1

ε2

[
G(z∗(t), Ȳ ∗(t) + rεY (t))−G(z∗(t), Ȳ ∗(t))− Jz∗(0)r

ε
Y

]
+ 1
ε2

[
G(z∗(t) + rεz(t), Ȳ ∗(t) + rεY (t))−G(z∗(t), Ȳ ∗(t) + rεY (t))

]
− φ′(z∗(t))(−2gz∗(t) + F (φ(z∗(t)))) + νN,ε(t)

=
Jz∗(0)
ε2 rεY +A1(t) +A2(t) +A3(t).

Since t ≤ min(T, t∗ε) and G is C∞ on K̄δK × [0, 1], we can control A1:

|A1(t)| ≤ 1
ε2

[
|G(z∗(t), Ȳ ∗(t) + rεY (t))−G(z∗(t), Ȳ ∗(t)− Jz∗(t)rεY |

]
+ 1
ε2

[∣∣∣∣∣∣∣∣∣Jz∗(t) − Jz∗(0)

∣∣∣∣∣∣∣∣∣ |rεY (t)|
]

≤ 1
ε2

[
‖∂2

Ȳ
G‖∞,K̄δK |r

ε
Y (t)|2 + T max

t≤t∗

∣∣∣∣∣∣∣∣∣∂tJz∗(t)∣∣∣∣∣∣∣∣∣ |rεY (t)|
]

≤ 1
ε2 (C∆ + C ′T )|rεY (t)|,

and A2:

|A2(t)| = 1
ε2 |G(z∗(t) + rεz(t), Ȳ ∗(t) + rεY (t))−G(z∗(t), Ȳ ∗(t) + rεY (t))|

≤ 1
ε2 ‖∂zG‖∞,K̄δK |r

ε
z(t)| ≤

C

ε2 |r
ε
z(t)|,
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and A3:
|A3(t)| = | − φ′(z∗(t))(−2gz∗(t) + F (φ(z∗(t)))) + νN,ε(t)| ≤ C ′′,

for some constant C ′′ independent of ε and z∗(0) ∈ K. Using Duhamel formulas, we get, for
t ≤ min(T, t∗ε):

rεY (t) = e
Jz∗(0)t

ε2 rεY (0) +
[
e
Jz∗(0)·

ε2 ∗ (A1 +A2 +A3)
]

(t). (34)

Hence, applying Lemma 11 yields:

|rεY (t)| ≤ γ|rεY (0)|e−
λKt

ε2 + γ

ε2

[(
C|rεz|+ (C∆ + C ′T )|rεY |

)
∗ e−

λK
ε2
·
]

(t) + ε2γ
C ′′

λK

≤ Arεz(t) + γ(C∆ + C ′T )
ε2

∫ t

0
|rεY (τ)| e

λK
ε2

(τ−t)dτ,

where Arεz(t) := γ|rεY (0)|e−
λKt

ε2 + γC
ε2

(
|rεz| ∗ e

−λK
ε2
·
)

(t) + ε2γ C
′′

λK
.

Applying Gronwall inequality to rεY (t)e
λKt

ε2 yields:

|rεY (t)| ≤ Arεz(t) + γ(C∆ + C ′T )
ε2

[
Ar

ε
z ∗ e

(
−λK
ε2

+ γ(C∆+C′T )
ε2

)
·
]

(t). (35)

Having fixed ∆ ≤ λK
4Cγ and T ≤ λK

4C′γ in the preliminaries ensures that e
(
−λK
ε2

+ γ(C∆+C′T )
ε2

)
·

defines a negative exponential term, that we can dominate by e−
λK
2ε2
·. Hence:

|rεY (t)| ≤ Arεz(t) +
[
Ar

ε
z ∗ λK2ε2 e

−λK
2ε2
·
]

(t). (36)

Making Arεz explicit gives:

|rεY (t)| ≤ γ|rεY (0)|e−
λKt

ε2 + γC

ε2 |r
ε
z| ∗ e

−λK
ε2
·(t) + ε2γ

C ′′

λK

+
[(
γ|rεY (0)|e−

λK
ε2
· + γC

ε2

[
|rεz| ∗ e

−λK
ε2
·
]

+ ε2γ
C ′′

λK

)
∗
(
λK
2ε2 e

−λK
2ε2
·
)]

(t)

≤ γ|rεY (0)|
[
e−

λKt

ε2 + e−
λK
ε2
· ∗
(
λK
2ε2 e

−λK
2ε2
·
)

(t)
]

+ ε2γ
C ′′

λK
(
(

1 +
∫ t

0

λK
2ε2 e

−λK
2ε2

(τ−t)dt

)
+ γC

ε2 |r
ε
z| ∗

(
e−

λK
ε2
· + e−

λK
ε2· ∗ λK2ε2 e

−λK
2ε2
·
)

(t), (37)

thanks to the associativity of the convolution product. One can compute that, for t ≥ 0:

e−
λKt

ε2 + e−
λK
ε2
· ∗
(
λK
2ε2 e

−λK
2ε2
·
)

(t) = e−
λKt

ε2 + λK
2ε2

∫ t

0
e−

λK
ε2
τe−

λK
2ε2

(t−τ)dτ

= e−
λKt

ε2 + λK
2ε2

∫ t

0
e−

λK
2ε2

(t+τ)dτ = e−
λK
2ε2

t.

Hence, replacing those terms in (37) yields:

|rεY (t)| ≤ γ|rεY (0)|e−
λK
2ε2

t + 2ε2γ
C ′′

λK
+ Cγ

ε2 |r
ε
z| ∗ e

−λK
2ε2
·(t). (38)
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2. The next step is to gain similarly some control on |rεz|. Using Duhamel formula on the
equation from (33) on rεz gives, for t ≤ min(T, t∗ε):

rεz(t) = rεz(0)e−2gt +
([
F (N∗ + rεY )− F (N∗) + ε2νz,ε

]
∗ e−2g·

)
(t),

which yields:

|rεz(t)| ≤ |rεz(0)|e−2gt + ε2 ‖νz,ε‖∞
2g + ‖∂Ȳ F‖∞,ΠΩ(K̄δK )

(
|rεY | ∗ e−2g·

)
(t).

Hence:
|rεz(t)| ≤ |rεz(0)|e−2gt + ε2 ‖νz,ε‖∞

2g + C
(
|rεY | ∗ e−2g·

)
(t). (39)

At that point, it is clear that it is sufficient to control |rεY | and |rεz(0)| in order to control
|rεz(t)| for sufficiently small ε.

3. Plugging the latter in (38) gives:

|rεY (t)| ≤ γ|rεY (0)|e−
λK
2ε2

t + Cγ

ε2 |r
ε
z(0)|

(
e−2g· ∗ e−

λK
2ε2
·
)

(t) + ε2Cγ‖νz,ε‖∞
λKg

+ 2ε2γ
C ′′

λK
+ γC2

ε2

[
|rεY | ∗

(
e−2g· ∗ e−

λK
2ε2
·
)]

(t). (40)

Similarly as the computation above, we have, for ε2 < min(λK8g , 1) and t ≥ 0:

e−2g· ∗ e−
λK
2ε2
·(t) = 1

λK
2ε2 − 2g

(
e−2gt − e−

λK
2ε2

t
)
≤ 4ε2

λK
e−2gt.

Hence, for ε2 < min(λK8g , 1), we get from (40):

|rεY (t)| ≤ γ|rεY (0)|e−
λK
2ε2

t + 2γC
λK
|rεz(0)|e−2gt + ε2Cγ‖νz,ε‖∞

λKg
+ 2ε2γ

C ′′

λK

+ 2γC2

λK

(
|rεY | ∗ e−2g·

)
(t)

≤ Cε0(t) + 2γC2

λK

(
|rεY | ∗ e−2g·

)
(t),

where we define: Cε0(t) := γ|rεY (0)|e−
λK
2ε2

t + 2γC
λK
|rεz(0)|e−2gt + ε2Cγ‖νz,ε‖∞

λKg
+ 2ε2γ C

′′

λK
.

Using once again Gronwall inequality on |rεY |e2g· yields:

|rεY (t)| ≤ Cε0(t) + 2γC2

λK

(
Cε0 ∗ e

(
−2g+ 2γC2

λK

)
·
)

(t). (41)

Recalling that:

Cε0(t) = γ|rεY (0)|e−
λK
2ε2

t + 2γC
λK
|rεz(0)|e−2gt + ε2Cγ‖νz,ε‖∞

λKg
+ 2ε2γ

C ′′

λK
,

we get that, thanks to (41) and (39), for a given 0 < δ < ∆, there exists ηδ > 0 depending
only on δ, g,m,K, t∗, F,G, ‖νz,ε‖∞ such that :

∀(ε, |rεY (0)|, |rεz(0)|) ∈ [0, ηδ]3, max
t≤min(T,t∗ε)

|rεY (t)|+ |rεz(t)| ≤ δ.

Recalling that t∗ε = min (t∗, inf{t > 0, |rεz|+ |rεY | > ∆}), we get that T ≤ t∗ε, for δ < ∆ and
(ε, |rεY (0)|, |rεz(0)|) ∈ [0, ηδ]3. Consequently, the convergence is uniform on [0, T ].
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Proof of Theorem 1. One can notice that the control obtained in the proof of Proposition 1 can
be applied on any time interval [a, a+T ] with a ∈ [0, t∗−T ], provided that (ε, |rεY (a)|, |rεz(a)|)
are small enough. Therefore, we can reiterate the control a finite number of times on the
intervals [jT,min{(j+ 1)T, t∗}] with ∀j ≤ b t∗T c. Hence, the uniform convergence on [0, t∗].

Proof of Lemma 11. Recall that for all z ∈ K, Jz has real negative eigenvalues, uniformly
bounded over K by −2λK < −λK . Let us define, for z ∈ K:

fλK ,z : R+ → R+, s 7→
∣∣∣∣∣∣∣∣∣eJzseλKs∣∣∣∣∣∣∣∣∣.

For all z ∈ K, fλK ,z is continuous. Moreover, Theorem 2.34 of Chicone 1999 ensures that
fl,z is bounded for all l < 2λK .

We can thus define :
ΓλK : K → R∗+, z 7→ max

s≥0
fλK ,z(s).

Let us show that ΓλK is a continuous function. Let z0 ∈ K and ε > 0.
One can first notice that, for s ≥ 0:

fλK ,z(s) = f 3λK
2 ,z

(s)e−
λK
2 s < Γ 3λK

2 ,z
e−

λK
2 s.

Thus, fλK ,z vanishes when s goes to infinity. As a consequence, there exists s0 ≥ 0 such that:

ΓλK (z0) =
∣∣∣∣∣∣∣∣∣eJz0s0eλKs0∣∣∣∣∣∣∣∣∣.

Furthermore, for l ∈]λK , 2λK [, we have:

Γl(z0) =
∣∣∣∣∣∣∣∣∣eJz0s0els0 ∣∣∣∣∣∣∣∣∣ = ΓλK (z0)e(l−λK)s0 .

We can therefore choose l ∈]λK , 2λK [ such that ΓλK (z0) ≤ Γl(z0) ≤ ΓλK (z0) + ε.
As z 7→ Jz is a continuous function, there exists δ > 0 that ensures that for if z ∈ K and

|z − z0| ≤ δ, then:
|||Jz − Jz0 ||| <

l − λK
2Γl(z0) .

Let us consider such a z.
As eJzs is solution of the ODE : y′ = Jz0y + (Jz − Jz0)y, we obtain, for s ≥ 0:

eJzs = eJz0s + eJz0 · ∗ (Jz − Jz0)eJz ·(s).

Hence : ∣∣∣∣∣∣∣∣∣eJzt∣∣∣∣∣∣∣∣∣ ≤ Γl(z0)e−ls + l − λK
2

∣∣∣∣∣∣∣∣∣eJz ·∣∣∣∣∣∣∣∣∣ ∗ e−l·
From applying Gronwall’s inequality to t 7→

∣∣∣∣∣∣∣∣∣eJzs∣∣∣∣∣∣∣∣∣els, it comes that, for s ≥ 0:

∣∣∣∣∣∣∣∣∣eJzs∣∣∣∣∣∣∣∣∣ ≤ Γl(z0)e
−
(
l− l−λK2

)
t
≤ Γl(z0)e

−
(
l+λK

2

)
s

≤ [ΓλK (z0) + ε] e−λKs.

Hence:
ΓλK (z) ≤ ΓλK (z0) + ε.
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Moreover, recall that t0 was defined so that :

ΓλK (z0) =
∣∣∣∣∣∣∣∣∣eJz0s0eλKs0∣∣∣∣∣∣∣∣∣.

Then, by continuity of z 7→ eJzs0 , there exists δ′ > 0 that ensures that for |z − z0| ≤ δ′, we
have: ∣∣∣∣∣∣∣∣∣eJzs0eλKs0 ∣∣∣∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣∣eJz0s0eλKs0∣∣∣∣∣∣∣∣∣− ε.
Hence:

ΓλK (z) ≥ ΓλK (z0)− ε.

In conclusion, if |z−z0| ≤ min(δ, δ′), then |ΓλK (z)−ΓλK (z0)| ≤ ε. Hence ΓλK is continuous
over K. Furthermore, as K is a compact set, ΓλK is bounded, by γ.

F Proof of Proposition 3.1
This appendix is dedicated to the proof of Proposition 3.1.

Proof. Let (g,m, z∗) ∈ R∗+ × R∗+ × R+ be such that Pz∗ has a single positive root. From
Lemma 1, this root defines a fast equilibrium if it is greater than f1(z∗). From Lemma 2, that
is the case if and only if f1(z∗) is negative or Pz∗(f1(z∗)) is negative.

First, regarding the sign of f1(z∗), we have:

f1(z∗) < 0 ⇐⇒ (z∗ + 1)2 <
1−m
g

,

which requires that m < 1. If m < 1 then:

f1(z∗) < 0 ⇐⇒ 0 ≤ z∗ <
√

1−m
g
− 1,

which requires that m+ g < 1. Hence:

f1(z∗) < 0 ⇐⇒ [m+ g < 1] ∧ [z∗ <
√

1−m
g
− 1].

Next, regarding the sign of Pz∗(f1(z∗)), we compute:

Pz∗(f1(z∗)) = f1(z∗)f2(z∗)− 1

=
(

1 + g

m
(z∗ + 1)2 − 1

m

)(
1 + g

m
(z∗ − 1)2 − 1

m

)
− 1

= g2

m2

[
z∗4 + z∗2

2(m− g − 1)
g

+ (g − 1)(2m+ g − 1)
g2

]
Let us define:

Q(X) = X2 +X
2(m− g − 1)

g
+ (g − 1)(2m+ g − 1)

g2 ,

z1, z2 its two roots and ∆ = 4
g2
[
m2 − 4g (m− 1)

]
its discriminant. From the computation

above,
Pz∗(f1(z∗)) < 0 ⇐⇒ [ ∆ > 0 ] ∧

[
z∗2 ∈]z1, z2[

]
.

49



We have:

∆ > 0 = ⇐⇒ m2 − 4 gm+ 4 g > 0

⇐⇒ [g < 1] ∨
[
[g ≥ 1] ∧

[[
0 < m < 2g

(
1−

√
1− 1

g

)]
∨
[
m > 2g

(
1 +

√
1− 1

g

)]]]
and:

z1z2 = (g − 1)(2m+ g − 1)
g2 , z1 + z2 = 2(g + 1−m)

g
.

Consequently:

� if g ≥ 1, then 2m+ g − 1 > 0 and then z1z2 ≥ 0. If, additionally, m < 2g
(
1−

√
1− 1

g

)
,

then m < 2 ≤ g + 1 (g 7→ 2g − 2
√
g2 − g is decreasing on [1,+∞[). Therefore, we

get: z1 + z2 > 0 and thus, z2 > 0 and z1 ≥ 0. At last, if m > 2g
(
1 +

√
1− 1

g

)
, then

m > 2 g ≥ g + 1, which implies z1 + z2 < 0 and thus z1 < 0, z2 ≤ 0.

� if g < 1, then z1 + z2 ≥ 0 if and only if m ≤ g + 1 and z1z2 ≥ 0 if and only if m ≤ 1−g
2

(which is lower than g + 1).
Hence the result.

G Proof of Lemma 9
This section is dedicated to proving Lemma 9, which concludes the proof of Proposition 4.2.

Proof of Lemma 9. Let (m, g) ∈ R∗+2 verify (25). Then, from the first part of the proof of
Proposition 4.2, there exists a unique ρ∗ > 0 that is solution of the equation in (23). Let us
define N∗1 and N∗2 such as in (26). Then we have: 0 < ρ∗ = N∗2

N∗1
. Thus:

N∗1 > 0 ⇐⇒ N∗2 > 0 ⇐⇒ 1
m

(N∗1 +N∗2 ) > 0.

Borrowing once again the notations: a = 4g
m , b = 1

m and y∗ = ρ∗ + 1
ρ∗ (unique root of S larger

than 2), (26) leads to:

1
m

(N∗1 +N∗2 ) = 2
( 1
m
− 1

)
+ y∗ − 4g

m

y∗2 − 2
y∗2

= 1
y∗2

[
y∗3 +

[1− 2m
m

+ 1
m
− 4g
m

]
y∗2 + 2× 4g

m

]
= 1
y∗2

[
S(y∗) + (1− 2m

m
)y∗2 + 4g

m
y∗ + 4g

m

]
.

As S(y∗) = 0, we get:

N∗1 > 0 ⇐⇒ N∗2 > 0 ⇐⇒ (1− 2m)y∗2 + 4gy∗ + 4g > 0.

This is always true whenever m ≤ 1
2 . Otherwise, let us suppose henceforth that 2m > 1. The

condition above is equivalent to:

y∗ < c+
√
c2 + 2c, where: c = 2g

2m− 1 > 0.

Let us show that: c+
√
c2 + 2c ≥ 2. It is sufficient to show that: c ≥ 2

3 , which is equivalent to
having: 3g + 1 ≥ 2m. In this proof, we are considering (m, g) ∈ R∗+2 such that 1 + 2m < 5g
and 4g (m− 1) < m2. Let us show that such pairs verify 3g + 1 ≥ 2m:
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� if g ≤ 1, then m < 5g−1
2 ≤ 3g+1

2 .

� if g ≥ 1, then m < 2g−2
√
g2 − g which is a decreasing function on [1,+∞[, which takes

the value 2 when g = 1. Hence it is always dominated by g 7→ 3g+1
2 on this interval.

Hence c+
√
c2 + 2c ≥ 2

3 +
√

4
9 + 4

3 = 2. Therefore, as y∗ is the only root of S greater than 2,
we get the following equivalence:

y∗ < c+
√
c2 + c ⇐⇒ S

(
c+

√
c2 + 2c

)
> 0.

The rest of the proof is dedicated to examine the conditions on (m, g) under which:

S
(
c+

√
c2 + 2c

)
> 0.

Let us set Q :=
√
c2 + 2c =

√
4g g+2m−1

(2m−1)2 . Tedious computations done with the help of

Mathematica show that: S(c) = Q2
[
g(4−6m)+(2m−1)2

m (2m−1)

]
, and we next compute:

S(c+Q) = S(c) +Q2
[
3c+ 1− 4g

m

]
+Q

[
Q2 + 3c2 + 2c (1− 4g)

m
− 4g
m

]

= Q2
[
g(4− 6m) + (2m− 1)2

m (2m− 1) + 6g
2m− 1 + 1− 4g

m

]
+Q

[
4c2 + 2c (m+ 1− 4g)

m
− 4g
m

]

= Q

[
2Q
(
2m2 −m− 4g (m− 1)

)
m(2m− 1) − 4g

(
4g (m− 1) + 2m2 − 5m+ 2

)
m(2m− 1)2

]
.

Hence:

S(c+Q) > 0

⇐⇒ Q
(
2m2 −m− 4g (m− 1)

)
> 2g

(
4g (m− 1) + 2m2 − 5m+ 2

)
(2m− 1)

⇐⇒
√
g + 2m− 1

(
2m2 −m− 4g (m− 1)

)
> 2√g

(
4g (m− 1) + 2m2 − 5m+ 2

)
.

Let us study different cases corresponding to different ranges of value of m > 1
2 .

If m = 1, then the last line is equivalent to :√
1 + g > −2√g,

which is true for all g > 0.
If 1

2 < m < 1, then:

4g (m− 1) + 2m2 − 5m+ 2 = 4g (m− 1) + 2(m− 2)
(
m− 1

2

)
< 0,

and:
2m2 −m− 4g (m− 1) = 2m

(
m− 1

2

)
+ 4g(1−m) > 0.

Hence, for all g such that 1 + 2m < 5g and m2 > 4g (m− 1):√
g + 2m− 1

(
2m2 −m− 4g (m− 1)

)
> 2√g

(
4g (m− 1) + 2m2 − 5m+ 2

)
.
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If m > 1, then:
2m2 −m > m2 > 4g (m− 1).

Hence, if: 4g (m − 1) + 2m2 − 5m + 2 < 0, then, for all g such that 1 + 2m < 5g and
m2 > 4g (m− 1):√

g + 2m− 1
(
2m2 −m− 4g (m− 1)

)
> 2√g

(
4g (m− 1) + 2m2 − 5m+ 2

)
.

Otherwise, if 4g (m− 1) + 2m2 − 5m+ 2 ≥ 0, then:

S(c+Q) > 0

⇐⇒
√
g + 2m− 1

(
2m2 −m− 4g (m− 1)

)
> 2√g

(
4g (m− 1) + 2m2 − 5m+ 2

)
⇐⇒

(
1 + 2m− 1

g

)(
2m2 − 2− 4g (m− 1)

)2
> 4

(
4g (m− 1) + 2m2 − 5m+ 2

)2
.

Let us note x := 2m−1
g . Then, the latter is equivalent to:

(1 + x) [(m− 1)x+ (x− 4(m− 1))]2 − [(m− 1)x− (x− 4(m− 1))]2 > 0
⇐⇒ 4(m− 1)x(x− 4(m− 1)) + x (mx− 4(m− 1))2 > 0
⇐⇒ 4(m− 1)x− 16(m− 1)2 +m2x2 − 8mx(m− 1) + 16(m− 1)2 > 0
⇐⇒ m2x2 + 4x(m− 1)(1− 2m) > 0
⇐⇒ m2x2 − 4x2g (m− 1) > 0
⇐⇒ m2 > 4g (m− 1).

H Details of the numerical analysis carried out in Section 2.
Domains. We consider a bounded trait domain [−zmax, zmax], discretised in a mesh
(zk)0≤k<K (K odd) with regard to the step length δz > 0, and a time domain [0,Tmax],
discretised in a mesh

(
tl
)

0≤l<L
with regard to the step length δt > 0. In the the simulations

involved in Fig. 2, we use the following values for the parameters:

zmax = 7, Tmax = 1000, δz = 1.6× 10−2, δt = 5× 10−3.

Scheme. For i ∈ {1, 2}, 0 ≤ l < L, we approximate the trait distributions ni(tl, ·) by(
nli,k

)
0≤k<K

with the following semi-implicit scheme:

σ2

δt

(
nl+1
i,k − n

l
i,k

)
= rBl

i,k −
(
g (zk − θi)2 + κN l

i +m
)
nl+1
i,k +mnl+1

j,k ,

whereN l
i = ∑K−2

k=0 n
l
i,k δz andBl

i,k is a discretisation of the reproduction operatorBσ(ni(tl, zk).
In the next paragraph, we detail how we compute

(
Bl
i,k

)
0≤k<K

.
We approximate the system of moments of Ronce and Kirkpatrick 2001 following a similar

semi-implicit scheme.
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Discretization of the reproduction operator. The discretization of the reproduction
operator is in accordance with the double convolution form shown in Lemma 10, as it increases
greatly the computational speed in comparison to a double loop. However, the half-arguments
involved in Lemma 10 calls for a special attention to the meshes involved.

Let us define two auxiliary trait meshes

1. (z̃k′)0≤k′<2K−1 on [−zmax, zmax], with step length δz
2 ,

2. (ẑk′′)0≤k′′<4K−3 on [−2zmax, 2zmax], with step length δz
2 .

We define the vector (Gk′)0≤k′<2K−1 discretising the Gaussian kernel involved in our re-
production operator on the trait grid (z̃k′)0≤k′<2K−1:

Gk′ = 1√
πσ

exp
[
− z̃

2
k′

σ2

]
.

We next define the vector
(
B̂l
i,k′′

)
0≤k′′<4K−3

resulting from the following double discrete con-
volution (denoted ∗):

(
B̂l
i,k′′

)
0≤k′′<4K−3

= 1
N l

i

(
nli,k

)
0≤k<K

∗
(
nli,k

)
0≤k<K

∗ (Gk′)0≤k′<2K−1

We use a convolution algorithm with default settings: the size of the output is the sum of
entry vector sizes minus one, and out of bounds index entries are extrapolated as 0. A straight-
forward computation shows that

(
B̂l
i,k′′

)
0≤k′′<4K−3

is the approximation of the reproduction
operator on the mesh (ẑk′′)0≤k′′<4K−3:

B̂l
i,k′′ = δz2

N l
i

4K−4∑
k1=0

nli,k1

3K−2∑
k2=0

nli,k2 Gk′′−k1−k2

= δz2

N l
i

4K−4∑
k1=0

nli,k1

3K−2∑
k2=0

nli,k2

1√
πσ

exp
[
−
z̃2
k′′−k1−k2

σ2

]

= δz2

N l
i

4K−4∑
k1=0

nli,k1

3K−2∑
k2=0

nli,k2

1√
πσ

exp

−
(
−zmax + δz

2 (k′′ − k1 − k2)
)2

σ2


= δz2

N l
i

4K−4∑
k1=0

nli,k1

3K−2∑
k2=0

nli,k2

1√
πσ

exp

−
(
−2zmax + k′′δz

2 − (−zmax+k1δz)+(−zmax+k2δz)
2

)2

σ2


= δz2

N l
i

4K−4∑
k1=0

nli,k1

3K−2∑
k2=0

nli,k2

1√
πσ

exp

−
(
ẑk′′ −

zk1+zk2
2

)2

σ2

 .
Thus, we interpolate

(
B̂l
i,k′′

)
0≤k′′<4K−3

at the entries corresponding to (zk)0≤k<K to obtain(
Bl
i,k

)
0≤k<K

.
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I Numerical outcomes details: Fig. 6 and Fig. 7.
Numerical setting. The lower panel of Fig. 6 has been produced by running 3600 simula-
tions, one for each couple of migration ratem ∈ [0.01, 3] and intensity of selection g ∈ [0.01, 3],
for t ≤ Tmax ∈

[
300
ε2 ,

600
ε2

]
, with a criteria to cut the simulation short at a time greater than

300
ε2 if the difference between two consecutive steps is small enough. The value of the other
parameters are the same for each simulation: r = 1, θ = 1, κ = 1, ε = 0.05, as well as the initial
state: 

n0
1(z) = 0.99 × e

− (z−0.2)2

2ε2√
2πε ,

n0
2(z) = e

− (z−0.2)2

2ε2√
2πε .

The initial state is taken as monomorphic, as the aim of this figure is to be compared to the
theoretical outcomes that are predicted within the scope of the slow-fast analysis as stated in
Theorem 3.1 (so when the initial state is close enough from the slow manifold).

Scoring. Each simulation final state (nf1 , n
f
2) is attributed a score between 0 and 1 according

to the following scheme:

1. if max
(
Nf

1 , N
f
2

)
< 0.01, then the score is 0 (for extinction) and is corresponding to the

deep purple color. Else, the score is a positive number (lower than 1) according to what
follows.

2. if the variance in trait of the metapopulation is greater than 2 ε2, the score is 1 (corre-
sponding to the color yellow). This would be the case if the final state is dimorphic, but
more generally, this is to highlight the simulations whose final state does not fall in the
small segregational variance regime analysis prediction (which in particular predicts that
the distribution of trait in the metapopulation is monomorphic (see Section 3), with a
variance of order ε2 (see (12)).

3. if both conditions above are not met, then the score S is given according to the following
formula:

S = 5
6 −

1
3

∣∣∣Nf
2 −N

f
1

∣∣∣
Nf

1 +Nf
2
.

This formula discriminates between symmetrical equilibria (which are characterized by
equal population sizes, see Proposition 4.1), which typically have a score of 5

6 (correspond-
ing to the color light green), and asymmetrical equilibria, which have a discrepancy in
local population sizes and therefore have a typically much lower score (in the blue tones).

Adjustments for Fig. 7. The methodology is the same for the lower panel of Fig. 6 and
both panels of Fig. 7, at the exception of the initial state, set as:

n0
1(z) = 0.9 × e

− (z+1)2

2ε2√
2πε ,

n0
2(z) = e

− (z−1)2

2ε2√
2πε .

.

and of the time step for the lower panel of Fig. 7, which is refined to keep up with the smaller
value of ε2.
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