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ABSTRACT 

Host-microbial co-metabolism products are being increasingly recognized to play important roles in 

physiological processes. However, studies undertaking a comprehensive approach to consider host-

microbial metabolic relationships remain scarce. Metabolomic analysis yielding detailed 

information regarding metabolites found in a given biological compartment holds promise for such 

an approach. This work aimed to explore the associations between host plasma metabolomic 

signatures and gut microbiota composition in healthy adults of the Milieu Intérieur study. For 846 

subjects, gut microbiota composition was profiled through sequencing of the 16S rRNA gene in 

stools. Metabolomic signatures were generated through proton nuclear magnetic resonance analysis 

of plasma. The associations between metabolomic variables and α- and β-diversity indexes and 

relative taxa abundances were tested using multi-adjusted partial Spearman correlations, 

PERMANOVAs, and MaAsLins, respectively. A Multiple testing correction was applied 

(Benjamini-Hochberg, 10%-FDR). Microbial richness was negatively associated with lipid-related 

signals and positively associated with amino acids, choline, creatinine, glucose, and citrate (-0.133 

≤ Spearman’s ρ ≤ 0.126). Specific associations between metabolomic signals and abundances of 

taxa were detected (25 at the genus level and 19 at the species level): notably, numerous 

associations were observed for creatinine (positively associated with 11 species, and negatively 

associated with Faecalibacterium prausnitzii). This large-scale population-based study highlights 

metabolites associated with gut microbial features and provides new insights into the understanding 

of complex host-gut microbiota metabolic relationships. In particular, our results support the 

implication of a “gut-kidney axis”. More studies providing a detailed exploration of these complex 

interactions, and their implications for host health are needed.  
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INTRODUCTION 

The gut metagenome has been estimated to be 150 to 400 times larger than the human genome 
(1,2)

, 

yielding a colossal metabolic potential 
(3)

. Products of the microbial metabolism comprise a vast 

range of molecules involved in a variety of biological functions 
(4,5)

 and integrated in proposed 

“host-microbial metabolic axes”. These molecules complement the host metabolism and 

subsequently influence the host health through potential beneficial or harmful effects 
(5–9)

. 

Consequently, the gut microbiota is now fully considered as an endocrine pseudo-organ within the 

mammalian holobiont superorganism 
(6,10)

.  

Specific studies investigating targeted molecules – such as short-chain fatty acids, bile acids, 

choline metabolites, etc. – have considerably increased the mechanistic knowledge of microbial-

human co-metabolism 
(4,11–13)

. However, studies addressing more comprehensively the highly 

complex microbial-host metabolic interactions remain scarce 
(9)

. Metabolomics – the systematic 

identification and quantification of the low-molecular weight metabolic products of a biological 

system at a specific point in time – enables the simultaneous detection and relative quantification of 

hundreds of molecules, and thus holds promise to elucidate microbial-host interactions 
(14)

. Studies 

integrating a metabolomic approach have started to expand. Notably, gut microbiota has been 

reported to associate with the serum metabolome. Pedersen et al. indeed showed that the serum 

metabolome of insulin-resistant individuals presents increased levels of branched-chain amino acids 

(BCAAs), which were further correlated with gut microbial genetic characteristics (namely the 

potential for biosynthesis of BCAAs and lack of genes encoding bacterial inward transporters 

BCAAs) 
(15)

. Additionally, comparisons of the host metabolomes (in plasma or urine) between 

diseased individuals 
(16–18)

 or subjects included in nutritional interventions 
(19–22)

 and controls have 

detected molecules stemming exclusively from microbial activity (e.g. hippurate or p-cresol) as 

discriminant metabolites. However, in these studies, neither the gut microbiota composition nor its 

activity were analyzed, and direct associations between the gut microbiota and the host metabolome 

were not investigated. In fact, research investigating such associations is scarce and often have been 
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conducted on limited sample sizes (N≤100) 
(9,23–27)

, or focused on subjects with specific 

characteristics or conditions like chronic heart failure 
(23)

, spleen-yang-deficiency syndrome 
(26)

, 

obesity 
(24,27)

, physiological and metabolic stress 
(25)

, etc. More recently, studies were performed on 

larger population-based samples, including several hundreds of participants and reporting 

associations between the composition and diversity of the gut microbiota and circulating 

metabolites, using metabolomics 
(28–32)

. Following these approaches, our objective was to 

investigate the associations between untargeted plasma metabolomic signatures and gut microbiota 

composition in a large sample of healthy French subjects. 

METHODS 

Study population 

This study was conducted in the framework of the Milieu Intérieur project, which enrolled 1,000 

healthy French adults with primary aim to assess the determinants of immunologic variance within 

the general healthy population. The objectives of the present study are secondary objectives to the 

Milieu Intérieur project, for which the rationale, design, and methods have been extensively 

described elsewhere 
(33)

. Briefly, 500 females and 500 males equally distributed across 5 classes of 

age (from 20 to 69 years old), and of mainland French descent for at least 3 generations, were 

recruited in the suburban area of Rennes (Ille-et-Vilaine, Bretagne, France), between September 

2012 and August 2013. Participants were considered “healthy” upon recruitment, as defined per 

stringent exclusion criteria comprising any chronic disease or condition involving the immune 

system, abnormal physical examination, or any abnormal clinical-biological analysis 
(33)

. 

Questionnaires and biological samples were administered and collected by trained medical 

investigators supported by a full clinical team. The study is sponsored by Institut Pasteur (Pasteur 

ID-RCB Number: 2012-A00238-35). It was conducted as a single center study and without any 

investigational product, and was approved by Comité de Protection des Personnes – Ouest 6 on 

06/13/2012 (CPP Ouest 6-728/MS2) and by Agence Nationale de Sécurité du Médicament on 

06/22/2012 (ID-RCB Number: 2012-A00238-35, ref. ANSM: B120239-70). The protocol, which is 
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registered under ClinicalTrials.gov (NCT01699893), was designed and conducted in accordance 

with the Declaration of Helsinki and good clinical practice as outlined in the International 

Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for 

Human Use Guidelines for Good Clinical Practice.  

Data collection 

Covariates 

During the medical visit, investigators measured body-mass index (BMI) using standardized 

methods, and collected information related to age, sex, smoking status, educational level, 

employment status, occupational category, income level, and physical activity. 

Gut microbiota profiling from stool samples 

Gut microbiota composition was determined through the sequencing of the 16S ribosomal RNA 

gene in stool samples produced at home maximum 24 hours before the scheduled medical visit, 

collected in a double-lined sealable bag maintaining strict anaerobic conditions, and aliquoted and 

stored at -80°C upon reception at the clinical site. Detailed information regarding DNA preparation, 

barcoding Polymerase Chain Reaction (PCR) protocol, sequencing, and computation of microbial 

diversity indexes are provided in Supplementary Material and Methods 1. 

Untargeted NMR metabolomics analysis in plasma samples 

Fasting whole blood was collected in heparin tubes and centrifuged (300g, 10min, room 

temperature) maximum 6h after blood draw, and supernatants were stored at -80°C maximum 

10min after centrifugation. Plasma samples underwent 2 freeze-thaw cycles before proton nuclear 

magnetic resonance (NMR) analysis, the additional freeze-thaw cycle being done for all samples in 

order to prepare internal quality control samples necessary for the study 
(34,35)

 and so that that all 

samples would go through the same process. The NMR analysis was performed blindly on samples 

(randomized for age and sex) according to a previously published protocol 
(36)

. Briefly, two 

complementary one-dimensional NMR sequences were acquired per plasma sample, on a 500MHz-

Bruker Avance III spectrometer (Bruker, Billerica, MA, USA) at 300K – namely the 
1
H 1D NMR 
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pulse sequence Nuclear Overhauser Effect Spectroscopy (NOESY1D) with z-gradient (Bruker pulse 

program noesygppr1d) and the Carr-Purcell-Meiboom-Gill (CPMG) sequences. Consequently, to 

acquisition, all spectra were pre-processed, calibrated, and ultimately “sliced” into “buckets” with 

pre-defined limits so as to maximize recovery of peak entities. The buckets were then scaled to the 

total summed integrals for each spectrum, and the integrals of peak entities were calculated to 

obtain continuous NMR variables that were used in further statistical analyses. Finally, NMR 

signals were assigned using ad hoc literature 
(37)

. CHENOMX software (CHENOMX, Edmonton, 

Alberta, Canada) and Human Metabolome Database 
(38)

 were used to confirm the assignments using 

the medium spectrum (Supplementary Figure 3) 
(37)

. After the statistical analyses, the assignments 

of the buckets that associated with the gut microbiota were newly carefully looked and confirmed to 

be unambiguously assigned by gathering information from S-TOCSY, additional two-dimension 

NMR experiments (recorded on random samples) such as 1H–1H Total Correlated Spectroscopy 

(TOCSY) and J-resolved experiments. The detailed NMR metabolomic analysis protocol (sample 

preparation, post-acquisition spectra pre-processing, and intelligent bucketing of spectra and 

obtaining of NMR variables) is provided in Supplementary Material and Methods 2. 

Statistical analyses 

Associations between each NMR variable and each α-diversity index were tested using non-

parametric partial Spearman correlations. Associations between each NMR variable and inter-

individual dissimilarities in gut microbiota composition (Bray-Curtis index of β-diversity) were 

tested using permutational analysis of variance (PERMANOVA) with 999 permutations. 

Associations between each NMR variable and the relative abundances of genera and species were 

tested using multivariate associations with linear models (MaAsLin). This statistical framework 

performs boosted, additive general linear models and is suited to test the associations between the 

relative abundance of microbial community members and metadata (here the NMR variables and 

covariates). Relative abundances are first transformed through a variance-stabilizing arcsin-square 
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root transformation. Genera and species were included only if their relative abundance and 

prevalence were higher than 0.01% and 1%, respectively.  

Partial Spearman correlations, PERMANOVAs and MaAsLins were all multi-adjusted for age (20 

to <30, 30 to <40, 40 to <50, 50 to <60, and 60 to <70 years old), sex, BMI (continuous variable, in 

kg.m
-2

), smoking status (non-smoker, ex-smoker, current smoker), and physical activity (continuous 

variable, in h.wk
-1

). These covariates were indeed reported in the literature to have a potential 

impact on gut microbiota composition or metabolomic signature, or significantly associated with 

microbial or metabolomic features in our analyses. These associations between covariates and gut 

microbial and metabolomic features were tested using PERMANOVAs and Principal Component 

Partial R-square (PC-PR2) analysis, respectively, enabling to measure the percentage of variation in 

microbial composition or metabolomic data explained by the factors tested. Additionally, α- and β-

diversity models (partial Spearman correlations and PERMANOVAs) were adjusted for sequencing 

depth. P-values were adjusted for multiple testing using a Benjamini-Hochberg correction with a 

10%-False Discovery Rate (FDR).  

To better visualize the interindividual variation in metabolomics signatures in our study sample, 

Principal Component Analysis (PCA) of the metabolomic datasets were plotted and color-coded 

based on age, sex, and BMI. 

Spearman correlations were performed using SAS 9.4; PERMANOVAs, MaAsLins, PC-PR2, and 

PCA representations of metabolomic datasets were performed using R 3.3.2 (packages vegan, 

Maaslin, FactoMineR, and FactoExtra).  

RESULTS 

Characteristics of the study sample 

Among 1,000 participants to the Milieu Intérieur study, 138 were excluded from the study sample 

because of missing gut microbiota composition data – due to failure during PCR, insufficient 

number of detected reads, or insufficient quantity of stool aliquot or DNA extracted. Among the 

862 participants with available gut microbiota data, 16 were further excluded because their 
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metabolomic signatures could not be determined – due to insufficient quantity of plasma aliquot, or 

failure during NMR spectra acquisition. Participant flow-chart is presented in Supplementary 

Figure 1. Characteristics of the 846 subjects are presented in Table 1. Mean ± standard deviation 

(SD) BMI was 24.3 ± 3.3 kg.m
-2

 and mean ± SD physical activity (including both professional and 

leisure physical activity) was 5.4 ± 6.3 h.wk
-1

. The proportion of smokers was 19.9%. 

Characteristics of the gut microbiota in the Milieu Intérieur study have been previously described 

(39,40)
. Microbiota analysis yielded sequencing depth ranging from 5,064 to 240,472 reads per 

sample (mean sequencing depth ± SD: 21,427 ± 19,180 reads). Detected reads clustered into 8,422 

OTUs classified into 11 phyla, 328 genera, and 698 species. Firmicutes (mean relative abundance ± 

SD: 0.68 ± 0.13), Bacteroidetes (0.29 ± 0.13), Proteobacteria (0.02 ± 0.03), Actinobacteria (0.007 ± 

0.01), and Verrucomicrobia (0.004 ± 0.008) were the 5 most abundant phyla. Supplementary 

Table 1 presents the 22 genera constituting the “core microbiota” – defined as the genera shared by 

at least 95% of samples 
(41)

 – in our study population. A complete description of genera and species 

composing the gut microbiota of our sample is available in Supplementary Table 2. Regarding α-

diversity indexes, Simpson’s index ranged from 0.41 to 0.98 (mean ± SD: 0.92 ± 0.05); observed 

richness from 56 to 346 (mean ± SD: 193.4 ± 55.1) and Chao1 richness estimate from 62 to 1039 

(mean ± SD: 298.3 ± 117.0). Univariate associations measuring the percentage of variation in inter-

individual dissimilarities in the gut microbial composition (Bray-Curtis index of β-diversity) that is 

explained by different covariates (age, sex, BMI, smoking status, physical activity, and sequencing 

depth) are shown in Supplementary Table 3.  

NMR analysis on plasma samples generated 260 CPMG and 269 NOESY1D variables. Spectral 

regions most likely corresponding to noise (i.e. CPMG regions 0-0.5ppm, 4.3-5.0ppm, and 8.55-

10.0ppm; and NOESY1D regions 4.3-5.0ppm, and 9.5-11.0ppm) were excluded from further 

analysis. A list of the resulting 424 NMR continuous variables used in our analyses (202 CPMG 

signals and 215 NOESY1D: spectral regions with their metabolite assignments, as well as mean and 

SD) is presented in Supplementary Tables 4 and 5. Results of the PCA performed on the CPMG 
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and NOESY1D metabolomic datasets are shown in Figure 1 and Supplementary Figure 2, 

respectively. Although no clear clustering appears, grouping patterns along gradient of sex, age, and 

BMI can be observed. Results of the PC-PR2 analysis measuring the percentage of variation in the 

metabolomic dataset that is explained by the covariates (age, sex, BMI, smoking status, and 

physical activity) are shown in Supplementary Table 6. 

Associations between plasma metabolomic signals and α- and β-diversity indexes 

The associations between metabolomic variables and α-diversity indexes are presented in Figure 2. 

Overall, and after correcting for multiple testing with a 10%-FDR, observed richness was associated 

with 24 CMPG and 8 NOESY1D signals. Negative associations were observed with lipid-related 

signals (namely lipoproteins or unsaturated lipids) as well as with ester- and ketone-related 

metabolites (partial Spearman’s ρ range: -0.133 to -0.097), while positive associations were 

detected with signals pertaining to amino acids (polar glutamine and histidine and aromatic 

tyrosine, as well as related metabolites) and proteins, creatinine, as well as with choline, and 

glycolysis-related metabolites (glucose and citrate) (partial Spearman’s ρ range: 0.087 to 0.126). 

Similar results were obtained with Chao1 richness estimate but no association was detected with 

Simpson’s α-diversity index. Likewise, no association was observed between NMR metabolomic 

variables and inter-individual dissimilarities in gut microbiota composition (Bray-Curtis β-diversity 

index). 

Associations between plasma metabolomic signals and bacterial taxa (relative abundances)  

The associations (significant at 10%-FDR) between NMR metabolomic variable and the relative 

abundance of gut microbiota genera and species are presented in Table 2. At the genus and species 

levels, 25 and 19 associations were detected, respectively. Associated taxa comprised genera and 

species with prevalence ranging from 20% to 100% of the study population. Creatinine was the 

metabolite associated with most taxa (16 genera and 11 species). Notably, consistent positive 

associations were found between the CPMG and the NOESY1D analyses for genera Catabacter, 
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Saccharofermentans, and Oscillibacter and a negative association was observed for 

Faecalibacterium prausnitzii. 

DISCUSSION 

In the present work, we investigated the associations between characteristics of the gut microbiota – 

namely α-diversity, inter-individual dissimilarities, and the relative abundances of genera and 

species – and plasma NMR metabolomic signatures of the host in a large population-based sample 

of 846 healthy French adults. Overall, our results suggest that gut bacterial features are associated 

with the systemic metabolism of the host. In particular, we found that bacterial richness was 

positively associated with signals pertaining to amino acids (glutamine, histidine, tyrosine), as well 

as with creatinine, choline and glycolysis-related metabolites, while negative associations were 

observed with lipid-, as well as ester-, and ketone-related signals. Finally, specific associations 

between metabolomic signals and bacterial members of the gut microbiota were detected. 

The metabolic relevance and importance of the gut microbiota for the host are now widely admitted, 

and research scrutinizing host-gut microbial metabolic relationships is an active area of 

investigation 
(42)

. However, studies investigating direct associations between gut microbiota 

composition and host blood metabolome in large population-based samples are scarce while more 

available studies have been conducted on a limited number of participants or focused on specific 

populations 
(15,23,26,27)

. In particular, a study by Org et al. assessed the relationships between gut 

microbiota composition and circulating metabolites in 531 healthy Finnish males from the 

METSIM cohort 
(28)

. Consistently with their study, we reported positive correlations between 

bacterial richness and glutamine, histidine, and creatinine – with similar Spearman correlation 

coefficients. Furthermore, a study on 399 subscribers to a US Scientific Wellness program was able 

to explain 45% of the gut microbiota alpha-diversity with 40 plasma metabolites, among which a 

high frequency of phenylalanine and tyrosine metabolites (including p-cresol sulfate, a potentially 

uremic toxin) and hippurate 
(32)

 while a study in 1529 females from the TwinsUK cohort found five 

metabolites that consistently correlated with gut microbiota alpha-diversity (Shannon index) 
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including hippurate, p-cresol sulfate, phenylacetylglutamine, 3-phenylpropionate, and 

hyodeoxycholate 
(31)

. 

In a study conducted on 893 participants from the Dutch LifeLines-DEEP cohort, Fu et al. 
(13)

 

measured specific lipid levels through targeted colorimetric methods, and found that triglycerides 

and high-density lipoproteins were respectively negatively and positively associated with both 

bacterial richness and diversity. Consistently, a more recent study using NMR metabolomics in 

2309 individuals from the Rotterdam Study and the LifeLines-DEEP cohort observed inverse 

associations between the diversity of the gut microbiota and serum levels of VLDL particles, 

triglycerides, total fatty acids, monounsaturated fatty acids and saturated fatty acids but also 

glycoprotein acetyl, alanine, isoleucine, and lactate and positive associations with HDL particles. In 

addition, Le Chatelier et al. associated a decreased gut microbial richness with metabolic 

impairments such as increased fat mass and body weight, inflammation of the adipose tissue and 

dyslipidemia 
(43)

. In the present work, we consistently found that lipid-related metabolomic signals 

were negatively associated with bacterial richness. However, we were unable to further characterize 

these lipid-related signals and discriminate between the different lipid classes potentially hampering 

the detection of specific associations previously reported 
(13,28)

. Indeed, long-chain metabolites such 

as fatty acids result in an overlap of signals of protons in NMR, limiting a more specific assignment 

(44)
. Still, it should be noted that, in our sample, NMR signals assigned to lipids demonstrated 

excellent correlation with blood triglycerides (Spearman’s ρ > 0.65, p-value < 0.0001 for spectral 

regions 1.207-1.311ppm, 2.151-2.166ppm, and 2.166-2.167ppm), adding support to the consistency 

of our results with those previous findings. Furthermore, high-fat Western diet has consistently been 

associated with gut microbiota impairments 
(45,46)

, and lipid-related signals in our study correlated 

positively with dietary intakes of processed meat (Spearman’s ρ=0.09, p-value=0.006 for spectral 

regions 2.166-2.167ppm and ρ=0.08, p-value=0.02 for 1.207-1.311ppm and 2.151-2.166ppm) and 

fried products (ρ=0.07, p-value=0.04 for 2.166-2.167ppm), and negatively correlated with fruit (ρ= 

-0.09, p-value=0.01 for 1.207-1.311ppm and 2.166-2.167ppm and ρ= -0.08, p-value=0.02 for 2.151-
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2.166ppm) and vegetables (ρ= -0.09, p-value=0.007 for 2.166-2.167ppm and ρ= -0.07, p-

value=0.04 for 2.151-2.166ppm). Nonetheless, these assumptions should be considered with caution 

as additional exploration and targeted identification of these lipid signals using mass spectrometry 

(MS) or lipidomics is necessary to get more detailed insights into the associations we observed. 

Our finding of a positive association between glutamine and gut bacterial richness echoes a result 

from De Souza et al. who suggested that glutamine might have an anti-inflammatory effect through 

a modulation of specific gut bacterial members following the observation that an oral 

supplementation with L-glutamine decreased the Firmicutes/Bacteroidetes ratio in obese and 

overweight adults 
(47)

.  

In our study, creatinine was the metabolomic signal most associated with the relative abundances of 

bacterial taxa. This by-product of muscle metabolism is exclusively excreted through the kidneys 

and a high creatinine level in blood is notably used as an indicator of kidney dysfunction 
(48)

. Our 

finding of positive associations between plasma creatinine and the relative abundance of various 

representatives of the Clostridiales order and the Ruminococcaceae family matches results from Org 

et al. 
(28)

. We also reported a negative association between creatinine and Faecalibacterium 

prausnitzii, a species drawing a particular attention from the research community as it has been 

shown to exert anti-inflammatory properties through its ability to produce anti-inflammatory 

metabolites (e.g. butyrate), or to inhibit of the production of pro-inflammatory cytokines 
(49)

. 

Various studies have reported that F. prausnitzii is reduced in conditions such as ulcerative colitis, 

inflammatory bowel disease, colorectal cancer, diabetes, psoriasis, etc. 
(49–51)

. Consequently, this 

species has been proposed as a potential biomarker of gut health 
(52)

 and is even considered as an 

interesting probiotic candidate 
(53)

. In particular, a decrease in F. praunitzii was previously reported 

in chronic kidney disease patients compared to healthy controls 
(54,55)

. This echoes our result of a 

negative association between F. praunitzii and creatinine obtained in a healthy sample without renal 

dysfunction. Overall, the numerous associations we detected between bacterial taxa and creatinine 

are in support of a gut-kidney conversation 
(56,57)

. In this previously described bi-directional organ 
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axis, gut contributes to inflammation and renal injury through microbiota dysbiosis and 

dysregulations in microbial metabolite production. Conversely, kidney perturbations lead to 

dysbiosis and disruptions in tight junction function therefore promoting inflammatory conditions in 

the gut. Notably, Jiang et al. reported that indicators of the renal function such as serum creatinine, 

estimated glomerular filtration rate, and cystatin C were the most important environmental 

parameters to influence the overall microbial communities in end-stage renal disease patients 
(55)

. In 

our study a link between the gut and the kidneys seemed to be already observed even in a healthy 

setting where individuals were free of kidney or gut impairments. However, further exploration of 

renal function indicators (e.g. estimated glomerular filtration rate, cystatin C, and urine creatinine) 

would be of utmost importance to confirm such a link. If we hypothesize a gut-kidney axis to 

interpret our results, alternate interpretations could also be proposed. Indeed, negative associations 

have also been reported between trymethylamine N-oxide (TMAO) and F. prausnitzii 
(28,58)

 and 

creatinine is a precursor for the gut bacterial synthesis of trimethylamine (TMA), which is further 

oxidized into TMAO in the liver 
(48)

. Therefore, we cannot rule out that the association we observed 

between creatinine and F. prausnitzii may actually reflect the overall TMAO metabolic pathway 

instead of being a true association. However, because TMAO could not be detected by NMR in our 

study, it was not possible to verify this assumption. 

An important strength of this work pertains to its design – namely the acquisition of both detailed 

metabolomics data and gut microbiome data in a large population-based sample of healthy adults. 

While individual or specific approaches consider biomolecules separately, metabolomics allows for 

the simultaneous detection and relative quantification of hundreds of molecules hence the 

monitoring of subtle system-wide metabolic interactions 
(59)

. In this study we used NMR-

metabolomics with standardized and optimized protocols yielding high-quality data 
(60)

. This robust 

and stable technology has demonstrated its suitability for long-term epidemiological studies 
(61)

, 

notably by allowing to analyze large samples quickly with a high reproducibility 
(62)

. From a 

statistical standpoint, the analyses implemented here allowed to explore detailed associations 
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between gut bacterial and metabolomic datasets, beyond the sole assessment of global connections 

obtained through multivariate correlation-based approaches (e.g. co-inertia or Procrustes analyses). 

In addition, we were able to take into account a range of factors reported to influence the gut 

microbiota composition or the systemic metabolism of the host in our models, thus mitigating 

potential confounding. Nonetheless, residual confounding cannot be ruled out. For instance, 

intestinal transit time was shown to be a major confounding factor of gut microbiota composition 

(63)
, and we were not able to collect this information. Another important strength and originality of 

this work is that it was based on a large sample from the general population including only healthy 

men and women selected using strict criteria. Hence, our results were not confounded by underlying 

disease and reflected normal range. Yet, this may also have induced less variations in plasma 

metabolites levels or in gut microbiota composition and therefore resulted in associations of smaller 

magnitude. Some limitations should also be acknowledged for this study. First, the cross-sectional 

design of our study, in which blood and stool samples were taken at the same time, prevents from 

drawing any conclusion regarding the sequential causality of events between host metabolism (e.g., 

creatinine levels) and gut microbiota composition (e.g., F. prausnitzii). Further, plasma 

metabolomic signatures only give a metabolic “snapshot” that results from both the endogenous and 

the gut microbial metabolisms, which makes it is not possible to discriminate signals from human 

or microbial origin. In future studies, subsequent time points with both metabolomic and microbiota 

data collected would be of utmost interest to investigate the stability over time and the chronology 

of the associations observed in the present cross-sectional work. In addition, the fact that most 

detected metabolites result from multiple metabolic pathways that may be related to gut microbiota 

or not may also explain the modest correlation coefficients observed between plasma metabolites 

and gut microbial richness. It should also be acknowledged that, although highly informative, the 

use of 16S rRNA gene sequencing and NMR metabolomics presents technical limitations. Shotgun 

metagenomics for instance would give a more precise characterization of microbiota features and 

also bring additional information regarding the functional metabolic capacity of the gut microbiota. 
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This would allow to go beyond the compositional approach, limited by the redundancy of gene pool 

and metabolic functionalities between distinct gut microbial members 
(64,65)

, but still relevant 

according to recent studies arguing that some metabolic pathways pertain to a handful of species 

(66)
. Likewise, while NMR detects only the most abundant metabolites (µM to mM range), mass 

spectrometry (MS) has lower detection limits and higher sensitivity for signal assignment, and 

would therefore allow the detection of metabolites undetectable with NMR 
(67)

. This technical 

limitation of NMR may explain why several low-concentration metabolites deriving specifically 

from gut microbiota were not detected in our study. As already mentioned, the precision of NMR 

bucket assignment was also limited for some metabolites, especially for lipids and proteins. For 

instance, the unsaturation corresponds to a chemical function in the aliphatic chain of various lipids, 

and it is impossible to differentiate among the different lipid types within the plasma sample. 

Hence, this limits the comparability of our results to prior studies. In addition, plasma samples 

underwent two freeze-thaw cycles prior to NMR analyses (necessary to prepare internal quality 

controls) so that the possibility of increased metabolites cleavage cannot be ruled out. Still, this 

would similarly affect all samples as they all went through the same process. 

Although the Milieu Intérieur population is somewhat representative of the French Ille-et-Vilaine 

region 
(33)

, our study sample is not representative of the whole French adult population – caution is 

therefore needed in the generalization of our results. However, it is important to acknowledge that 

from a gut microbiota composition standpoint, our study sample was consistent with other studies 

performed in Western settings 
(41,68)

, with the same 5 most abundant phyla and shared “core genera” 

(Supplementary Table 1). Finally, the results highlighted here were mostly exploratory as they 

were obtained from a single population. These results will need to be replicated and confirmed in 

the future, using independent samples and/or analytical techniques allowing a better refinement of 

the detected metabolites (e.g., MS, lipidomics). In addition, the hypotheses we proposed to interpret 

our results were based on existing literature and would need to be developed and confirmed in 

experimental settings in vitro and/or in vivo. In particular, detailed mechanistic studies 
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comprehensively elucidating the metabolic capability of gut microorganisms are needed to 

enlighten the associations we detected. 

Overall, the present study provides interesting insights regarding the associations between gut 

microbiota composition and plasma metabolic signatures of the host. Our results contribute to a 

better understanding of the host-gut microbiota relationships, and notably highlight a possible gut-

kidney axis in healthy subjects. Because the associations we found in healthy individuals were 

already reported in chronic kidney disease patients, this builds up to the concept that onset of 

chronic diseases is a lengthy process that could be detected at early stages. This appears all the more 

interesting that microbial-host co-metabolites were shown to be excellent prodromal markers of 

future divergence in metabolic and behavioral outcomes in mice 
(69)

. However, our results remain to 

be confirmed in independent populations, underlying mechanisms to be elucidated, and causal 

implications for the host health to be established. 
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Table 1. Characteristics of the study population, Milieu Intérieur study, France, 2012 (N=846). 

Sex   

          Male 433 (51.2) 

          Female 413 (48.8) 

Age   

          20 – 29 years old 159 (18.8) 

          30 – 39 years old 165 (19.5) 

          40 – 49 years old 174 (20.6) 

          50 – 59 years old 171 (20.2) 

          60 – 69 years old 177 (20.9) 

Smoking status   

          Non-smoker 442 (52.2) 

          Ex-smoker 236 (27.9) 

          Current smoker 168 (19.9) 

BMI, kg.m
-2

 24.3 ± 3.3  

Physical activity, h.wk
-1

 5.4 ± 6.3 

  

Simpson’s index 0.92 ± 0.05 

Observed richness 193.4 ± 55.1 

Chao1 richness estimate 298.3 ± 117.0 

Values are N (%) or mean ± SD  
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Table 2. Associations between NMR variables and relative abundances of taxa with a Q-value ≤ 0.1 after multiple-testing correction, using 

MaAsLins, Milieu Intérieur study, France, 2012 (N=846). 

 Shift (ppm) Signal assignation Phylum| Class| Order| Family| Genus Species 
MaAsLin 

coefficient 
Coverage1 

p-

value2 

Q-

value3 

C
P

M
G

 

1.021-1.051 Unassigned signal Firmicutes| Negativicutes| Selenomonadales| Veillonellaceae|  Sporomusa* 
 

-68.5 35.22 <0.0001 0.07 

1.527-1.631 CH2CH2COOC 
Firmicutes| Clostridia| Clostridiales| Lachnospiraceae| Clostridium 

XlVa|  
Clostridium C. bolteae 74.2 99.17 <0.0001 0.06 

2.831-2.848 Citrate/=CH-CH2-CH= Firmicutes| Bacilli| Bacillales| Bacillaceae 1|  Caldibacillus 
 

-198.2 35.34 <0.0001 0.07 

2.967-3.071 Creatine/albumin lysyl Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Hydrogenoanaerobacterium H. saccharovorans -31.8 90.07 <0.0001 0.07 

3.071-3.111 Creatinine 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Faecalibacterium 
 

-777.4 99.41 <0.0001 0.02 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Faecalibacterium F. prausnitzii -797.3 99.41 <0.0001 0.03 

Firmicutes| Negativicutes| Selenomonadales| Veillonellaceae|  Sporomusa* 
 

31.8 35.22 <0.0001 0.06 

Firmicutes| Negativicutes| Selenomonadales| Veillonellaceae|  Sporomusa S. termitida 31.5 34.75 <0.0001 0.06 

Tenericutes| Mollicutes| Acholeplasmatales| Acholeplasmataceae|  Acholeplasma 
 

42.0 32.98 0.0001 0.09 

Firmicutes| Clostridia| Clostridiales| Clostridiaceae 1|  Caloramator 
 

63.9 58.63 <0.0001 0.06 

Firmicutes| Clostridia| Clostridiales| Catabacteriaceae|  Catabacter§ 
 

67.0 68.56 <0.0001 0.001 

Firmicutes| Clostridia| Clostridiales| Catabacteriaceae|  Catabacter C. hongkongensis 64.0 68.56 <0.0001 0.002 

Firmicutes| Clostridia| Clostridiales| Defluviitaleaceae|  Defluviitalea 
 

70.2 81.32 <0.0001 0.07 

Firmicutes| Clostridia| Clostridiales| Defluviitaleaceae|  Defluviitalea D. saccharophila 71.1 81.32 <0.0001 0.07 

Firmicutes| Clostridia| Clostridiales| Peptococcaceae 2|  Pelotomaculum 
 

74.5 52.36 <0.0001 0.07 

Firmicutes| Clostridia| Clostridiales| Peptococcaceae 2|  Pelotomaculum P. propionicicum 82.6 51.30 <0.0001 0.01 

Firmicutes| Clostridia| Clostridiales| Christensenellaceae|  Christensenella 
 

138.5 93.14 <0.0001 0.06 

Firmicutes| Clostridia| Clostridiales| Christensenellaceae|  Christensenella C. minuta 170.2 93.14 <0.0001 0.01 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Saccharofermentans*§ 
 

187.6 65.13 <0.0001 0.005 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Saccharofermentans S. acetigenes§ 189.3 65.13 <0.0001 0.01 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Sporobacter 
 

305.1 93.50 <0.0001 0.02 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Sporobacter S. termitidis 273.1 93.50 <0.0001 0.07 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Intestinimonas 
 

320.8 98.70 <0.0001 0.003 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Intestinimonas I. butyriciproducens 352.4 98.70 <0.0001 0.002 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Oscillibacter§ 
 

396.2 99.76 <0.0001 0.03 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Oscillibacter O. valericigenes 460.2 95.98 <0.0001 0.03 

Firmicutes| Clostridia| Clostridiales| Eubacteriaceae|  Eubacterium 
 

447.6 99.88 <0.0001 0.06 

Firmicutes| Clostridia| Clostridiales| Eubacteriaceae|  Eubacterium E. coprostanoligenes 580.5 94.44 <0.0001 0.01 

3.111-3.129 

Unassigned signal 

Firmicutes| Clostridia| Clostridiales| Lachnospiraceae| Clostridium 

XlVa|  
Clostridium C. viride -133.2 90.31 <0.0001 0.03 

3.367-3.437 Firmicutes| Clostridia| Clostridiales| Eubacteriaceae|  Eubacterium E. rectale* 266.4 98.94 <0.0001 0.1 

3.437-3.496 Firmicutes| Clostridia| Clostridiales| Eubacteriaceae|  Eubacterium E. rectale* -470.9 98.94 <0.0001 0.03 

3.496-3.587 Glucose Firmicutes| Clostridia| Clostridiales| Eubacteriaceae|  Alkalibaculum 
 

-20.1 74.35 <0.0001 0.07 

5.687-5.727 Urea 
Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Saccharofermentans*§ 

 
-219.2 65.13 <0.0001 0.07 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Saccharofermentans S. acetigenes§ -207.7 65.13 <0.0001 0.09 
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3.071-3.111 Creatinine 

Firmicutes| Clostridia| Clostridiales| Catabacteriaceae|  Catabacter** 
 

79.7 68.56 <0.0001 0.01 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Saccharofermentans*§ 
 

265.0 65.13 <0.0001 0.03 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Oscillibacter§ 
 

567.1 99.76 <0.0001 0.09 

3.532-3.588 
Glucose 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Pseudobacteroides* 
 

28.9 19.62 <0.0001 <0.0001 

Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Pseudobacteroides P. cellulosolvens 31.9 19.62 <0.0001 <0.0001 

Firmicutes| Clostridia| Clostridiales| Clostridiaceae 4|  Salimesophilobacter 
 

41.9 24.82 <0.0001 0.03 

Firmicutes| Clostridia| Clostridiales| Clostridiaceae 4|  Salimesophilobacter S. vulgaris 44.5 24.82 <0.0001 0.03 

3.588-3.611 Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Pseudobacteroides* 
 

-21.0 19.62 <0.0001 0.0001 

9.471-9.511 Unassigned signal Firmicutes| Clostridia| Clostridiales| Ruminococcaceae|  Clostridium III 
 

1038.8 98.11 <0.0001 0.08 
1 Prevalence of bacterial taxa in the study sample. 
2 p-value for MaAsLin adjusted for age, sex, BMI, smoking status, and physical activity before Benjamini-Hochberg correction; computed using the Maaslin package on R. 
3 Corrected p-value (Benjamini-Hochberg method, 10%-FDR). Only associations with a Q-value ≤ 0.1 are presented. 

* Taxa found in association with at least 2 NMR signals; § taxa found with both CPMG and NOESY1D 
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Figure 1. Interindividual variation in metabolomic signatures represented by principal components 

analysis of the CPMG metabolomic dataset, Milieu Intérieur study, France, 2012 (N=846). Each 

point represents an individual from the study sample. PCA was obtained via the PCA function 

(package FactoMineR), and plotted and color-coded based on sex (A), age (B), and BMI (C) via the 

fviz_pca_ind function (package FactoExtra). Concentration ellipses (95%) are shown. Percentages 

on the axes represent the proportion of variation explained by the two first components of the PCA. 
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Figure 2. Associations between NMR variables and α-diversity indexes (observed richness and 

Chao1 estimate of richness) from Spearman partial correlations adjusted for age, sex, BMI, smoking 

status, physical activity, and sequencing depth, Milieu Intérieur study, France, 2012 (N=846). Q-

values were obtained applying a multiple-testing correction (Benjamini-Hochberg false discovery 

rate method). Only associations with Q-value ≤ 0.1 for observed richness, as well as subsequent 

associations with Chao1 richness are presented. ‘ ** ‘ P-value ≤ 0.003 and Q-value ≤ 0.05; ‘ * ’ P-

value ≤ 0.01 and Q-value ≤ 0.1; ‘ - ‘ P-value ≤ 0.05 and Q-value >0.1. Corresponding values are 

shown in Supplementary Table 7. 
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