
HAL Id: hal-03073789
https://hal.science/hal-03073789v1

Submitted on 27 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Empowering big data analytics with polystore and
strongly typed functional queries

Annabelle Gillet, Eric Leclercq, Marinette Savonnet, Nadine Cullot

To cite this version:
Annabelle Gillet, Eric Leclercq, Marinette Savonnet, Nadine Cullot. Empowering big data an-
alytics with polystore and strongly typed functional queries. IDEAS 2020: 24th International
Database Engineering & Applications Symposium, Aug 2020, Seoul (on line), South Korea. pp.1-
10, �10.1145/3410566.3410591�. �hal-03073789�

https://hal.science/hal-03073789v1
https://hal.archives-ouvertes.fr

Empowering Big Data Analytics with Polystore and strongly
typed functional queries

Annabelle Gillet
LIB Univ. Bourgogne Franche Comté

Dijon, France
annabelle.gillet@depinfo.u-bourgogne.fr

Éric Leclercq
LIB Univ. Bourgogne Franche Comté

Dijon, France
eric.leclercq@u-bourgogne.fr

Marinette Savonnet
LIB Univ. Bourgogne Franche Comté

Dijon, France
marinette.savonnet@u-bourgogne.fr

Nadine Cullot
LIB Univ. Bourgogne Franche Comté

Dijon, France
nadine.cullot@u-bourgogne.fr

ABSTRACT
Polystores are of primary importance to tackle the diversity and
the volume of Big Data, as they propose to store data according to
specific use cases. Nevertheless, analytics frameworks often lack
a uniform interface allowing to fully access and take advantage
of the various models offered by the polystore.It also should be
ensured that the typing of the algebraic expressions built with data
manipulation operators can be checked and that schema can be
inferred before starting to execute the operators (type-safe).

Tensors are good candidates for supporting a pivot data model.
They are powerful abstract mathematical objects which can embed
complex relationships between entities and that are used in major
analytics frameworks. However, they are far away from datamodels,
and lack high level operators to manipulate their content, resulting
in bad coding habits and less maintainability, and sometimes poor
performances.

With TDM (Tensor Data Model), we propose to join the best of
both worlds, to take advantage of modeling capabilities of tensors
by adding schema and data manipulation operators to them. We
developed an implementation in Scala using Spark, providing users
with a type-safe and schema inference mechanism that guarantees
the technical and functional correctness of composed expressions
on tensors at compile time. We show that this extension does not
induce overhead and allows to outperform Spark query optimizer
using bind join.

CCS CONCEPTS
• Information systems→ Query languages; Data structures.

KEYWORDS
High performance data analytics, Polystore, Query language, Ten-
sor

ACM Reference Format:
Annabelle Gillet, Éric Leclercq, Marinette Savonnet, and Nadine Cullot.
2020. Empowering Big Data Analytics with Polystore and strongly typed
functional queries. In 24th International Database Engineering & Applications
Symposium (IDEAS 2020), August 12–14, 2020, Seoul, Republic of Korea. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3410566.3410591

IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea
2020. ACM ISBN 978-1-4503-7503-0/20/06.
https://doi.org/10.1145/3410566.3410591

1 INTRODUCTION AND MOTIVATIONS
The variety and the volume of Big Data have changed the storage
needs. Rather than having one storage system to keep everything,
a multitude of new specialized storage engines have emerged (e.g.
NewSQL, NoSQL, Column Stores, Distributed File Systems, Graph
databases), each one corresponding to a use case more or less spe-
cific. The well-known article of M. Stonebraker [37], "one size does
not fit all", explains that the full potential of data will be better ex-
ploited with a polystore architecture. A polystore refers to a system
that integrates heterogeneous database engines, storage systems
and multiple data manipulation or programming languages using
different paradigms [14]. The use of polystore brings several advan-
tages: it allows to organize data according to particular use cases
(e.g. graph DBMS well support linked data and graph traversal or
path queries); it enables parallel processing among several data
store according to the specificities of each kind of system in the
polystore [4, 22].

Researches on polystores try to overcome the limitation of tradi-
tional tools. Extract Transform Load (ETL) processes and warehous-
ing technologies as well as in-database analysis operators are not
sufficient to support complex analytics pipelines. ETL processes are
expensive and time consuming tasks, and transforming multiple
datasets into a single data model in a data warehouse can impact
negatively performances and reduce the expressivity of the original
data model. In-database analysis cannot take easily into account
new algorithms, as they require a specific development for each
database model in order to fit the data structure required by the al-
gorithm [26, 27]. So researches on polystores are directed towards
ETL streaming systems [13, 41], multi-database query language
[14], unification models [15], and parallel query processing as well
as the integration of polystore with analysis frameworks [22]. This
article focus on the last three points.

Analytics tasks require multiple kinds of algorithms based on
different theoretical foundations, such as linear algebra, statistics,
graph theory. Algorithms are implemented using different comput-
ing paradigms such as GPU, map-reduce, concurrent, parallel, or
functional programming, and they are used as operators over data in
data analytics pipelines. With the adoption of different data models
combined with data analysis frameworks and new techniques such
as machine learning, we are able to extract more information from
data and to have a deeper understanding of the studied phenomena.

https://doi.org/10.1145/3410566.3410591
https://doi.org/10.1145/3410566.3410591

IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea Annabelle Gillet, Éric Leclercq, Marinette Savonnet, and Nadine Cullot

Nevertheless, data processing pipelines are becoming complex and
heterogeneity is no longer observed only at the data level but also
at the analysis level [2]. Developing a pivot data model which can
generalized polystore underlying data models and which can facili-
tate data transformations to feed quickly algorithms implemented
with frameworks is a major challenge [17, 19, 26].

Multiple data analysis frameworks built on different comput-
ing paradigms are available, such as Spark [42] (with SparkSQL,
GraphX, MLlib), Tensorflow [1], PyTorch [33], Theano [3], Ten-
sorLy [23], NumPy [40]. However, frameworks often focus exclu-
sively on applying algorithms, and not on manipulating or trans-
forming data, even if it is a time-consuming and error-prone task.
Each of these tools lacks one or several important properties, such
as type-safe functions (operators) which guarantee at compile time
that a composition of operations is valid (a property that is auto-
matically lost when using dynamic typing, leading to errors during
execution), or schema inference when manipulating data. With the
absence of these properties, two categories of errors can arise: 1)
type errors, when operators are not applied on the right attribute
type and 2) functional errors, when operators are applied on the
right attribute type but not on the attribute representing the desired
information. The second category of errors is the hardest to detect,
but also the most dangerous, because the error will be unnoticed,
the computations will occur but will give an incorrect result. For ex-
ample, an inversion between two columns of a dataset1 has already
led to a major mistake, that has been discovered only years later,
and that has resulted in the retraction of five articles and impacted
the work of other researchers that were using the erroneous result
in their work. This ascertainment highlights the need of checking
the correctness of analysis workflows, as shown by the evolution of
the data structure in Spark: from RDDs with unstructured data, to
DataFrames with a columnar format, and finally to Datasets with a
type-safe layer over DataFrames. Thus, if composition of operators
in programs could have a mean to prevent this type of mistakes,
without needing user intervention and without adding complexity
to the use, data scientists could focus more on the core of the anal-
ysis rather than on controlling the result at different steps of the
workflow.

In recent analytics frameworks, tensors play an important role.
They are abstract and powerful mathematical objects used in multi-
ple data analytics tools [38], including deep learning to deal with
multi-dimensional data or data mining to analyze latent relation-
ships using tensor decompositions [21, 32]. However, their pure
mathematical definition is relatively abstract, far away from user
needs. Their implementation in tools does not really suit coding
standards and brings several bad habits, usually banned from good
practices of software development, that reduce evolution, reuse,
collaborative work, etc. In frameworks such as Tensorflow, Theano
or NumPy, tensors are usually defined as multidimensional arrays;
users assign an implicit meaning to dimensions’ integer indexes
and at best put comments in their code to remember the meaning
of constructions [35]. It also may concern dimension names or di-
mension order before or after tensor transformations are applied.
This can lead to errors which cannot be easily understood because
the computation is technically correct but functionally incorrect.

1https://people.ligo-wa.caltech.edu/~michael.landry/calibration/S5/getsignright.pdf

Moreover, tensors are disconnected from data models, data schemas
and data sources, failing to take advantage of the expressiveness of
data models and semantically well-defined data manipulation oper-
ators. It is necessary to use intermediate data structures to perform
complex data manipulations before applying tensorial operators
such as decompositions. This is even more true when handling
multiple data sources, and strengthens the need of a pivot data
model.

In [24] we have formally defined a semantically rich pivot data
model, the Tensor Data Model (TDM), by adding schema to the
tensor mathematical object. It provides users with operators that
can be combined to express complex data transformations. We
have showed that tensors make it possible to generalize common
data models, and that virtual or materialized views can be defined
among multiple data sources (polystore) using operators on tensors.
In this article our contribution are the following: we propose a set of
mechanisms to ensure type-safe property and schema inference. As
we stated, strong static typing is of primary importance in Big Data
analytics because it allows to determine errors before the execution
and thus to avoid expensive buggy calculation phases which will
end with errors or inconsistencies. We describe our implementation
of the operators on the top of Spark that fulfill the type-safe and
schema inference properties and includes a mechanism to connect
to a polystore.

The article is organized as follow: section 2 is a related work on
analytics frameworks and their use of tensors, including the role
of pivot data model and query processing in polystores; section 3
gives an overview of the key features of TDM; section 4 describes
the mechanism for type-safety and schema inference in functional
queries; section 5 describes experiments on the top of Spark and
shows how to perform optimisations on tensor construct queries.

2 RELATEDWORK
This section describes three kinds of inter-related researches: i) sup-
port of tensor in analytics frameworks and linear algebra in pro-
gramming languages ; ii) multidimensional arrays data models in
databases, query languages and dataframes ; iii) polystores and
their integration in analytics frameworks.

NamedTensor [35] is a first step to make tensors safer and usable
in complex workflows. Built on Torch tensor [33], it proposes to use
String names for dimensions instead of Integer indexes. However,
Python dynamic typing system does not guarantee safety, and
naming dimensions with String does not put away the risk of a
typo or the referencing to an old dimension that was removed in a
code update. In [10], Chen with the Nexus2 prototype pushes the
tensor safety further than NamedTensor, by providing a statically
typed tensor abstraction using Scala. Classical tensor operators
are defined, but from a mathematical point of view and not from
a data model point of view. So the abstraction level is low. Data
transformations are performed using ad-hoc program constructions
and not by using well-defined data manipulation operators or a
query language.

The works of Muranushi et al. [29] and Griffioen [16] propose
a typed linear algebra system, that leads to a more functional and
index-free matrix and allows to infer the type of any linear algebra
2https://github.com/ctongfei/nexus

https://people.ligo-wa.caltech.edu/~michael.landry/calibration/S5/getsignright.pdf
https://github.com/ctongfei/nexus

Empowering Big Data Analytics with Polystore and strongly typed functional queries IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea

expression. Their implementation in Haskell can detect typing error
at compile time. In [29] they apply it for encoding units of measure
in astrophysics data.

In the field of data models and query languages, Bauman [7],
Libkin et al. [25] have proposed a query language for multidimen-
sional arrays. More recently Brijder et al. [8] study the expressive
power of a language for matrix manipulation including linear alge-
bra and graph operations. Barceló et al. [6] study the expressiveness
of Lara, a language and a data model built on associative array. The
model generalizes standard data models and can also represent ten-
sor but as the building block is an associative array, it forces users
to decompose complex relationships into binary ones. Typed arrays
are also part of the SQL standard as multi-dimensional arrays [28],
but they are mainly designed to be used with an in-database analy-
sis approach or with homogeneous systems, and not with machine
learning frameworks and map-reduce paradigm. So, it is much an
extension of SQL with new data type rather than a model which is
intrinsically based on multi-dimensional structures and can benefit
of theoretical results. Spark [42] is a major actor in this field. Its
most advanced data structure, the Dataset, provides type-safe guar-
antee at compile time. Unfortunately, schema transformations such
as joining two Datasets do not carry on automatically the type-safe
property nor automatic schema inference3.

To integrate different systems in a polystore and to connect it
with analytical tools, two approaches can be distinguished: the
model approach and the language approach. The goal of the model
approach [6, 15] is to build a pivot model that can support all
data models of the polystore. However, this approach has often
a low level of abstraction, and thus reduces the expressiveness.
The language approach [4, 22] defines a multidatabase language
to manipulate data. It can be mixed with native queries to directly
access a specific storage system. However, operators that need to
be applied on a set of results from different data sources have to use
the common language, that is often close to the SQL standard. Some
works have tried to propose an evaluation framework to measure
the ability of a query processing technique over heterogeneous data
models [39], that use multiple criteria: the heterogeneity (dealing
with several databases without losing expressivity), the autonomy
(each store can be managed independently of the polystore system),
the transparency (having an easy access to data), the flexibility
(building multiple kind of workflows) and optimality (benefiting of
the optimization of the stores composing the polystore).

To sum up, tensors are a powerful tool for complex analytics
pipelines and for generalizing data models in a polystore architec-
ture. Existing implementations of tensors in analytics frameworks
stick to their mathematical nature and lack of operators for manipu-
lating data, though at the center of analysis. Furthermore, the need
of a type-safe property for analytics tools is essential, as shown
by different works on tensors or on specific data structures. How-
ever, type-safety cannot be achieved easily in a dynamically typed
language such as Python, and complex data manipulation opera-
tors that lead to schema transformation can induce a loss of the
type-safe property.

3See for example https://medium.com/@pahomov.egor/spark-datasets-are-not-as-
type-safe-as-you-think-56a8a9ea0fc

3 AN OVERVIEW OF TDM DATA MODEL
Our aim is to define a pivot model for polystores (figure 1) to benefit
from all the different underlying data models, without loosing in
expressivity. High level of expressivity is achieved by using tensors,
as they have facilities to map to various models, and by allowing
native queries for accessing the stores. Moreover, native queries can
take advantage of the capabilities of each database individually. The
execution of analytics algorithms is then facilitated, as their input
data structures are obtained and transformed from TDM and not
from each data model underneath. Moreover, the tensorial nature
of TDM allows also naturally the use of rich tensorial operators,
such as decompositions [34].

3.1 TDM: Algebraic Structure and Operators
Tensors are abstract mathematical objects which can be considered
according to various points of view such as family of elements, or
multi-linear applications. To be closer to usual definition of data
model using set theory we will retain the definition of a tensor as
an element of the set of the functions from the product of 𝑁 sets
𝐼 𝑗 , 𝑗 = 1, . . . , 𝑁 to R : 𝒳 ∈ R𝐼1×𝐼2×···×𝐼𝑁 , where 𝑁 is the number of
dimensions of the tensor or its order.

For adding the useful notion of schema to tensors we have for-
mally defined the notion of typed associative array and typed ten-
sor [24]. A named and typed associative array is a triple (𝑁𝑎𝑚𝑒,A,𝑇)
where 𝑁𝑎𝑚𝑒 is a unique string that represents the name of a dimen-
sion, A is the associative array (i.e. a map 𝐾 → N where 𝐾 is a set
of keys), and 𝑇 is the type of the associative array. The schema of
a named typed associative array is 𝑁𝑎𝑚𝑒 : 𝐾 . 𝐷𝑜𝑚𝑁𝑎𝑚𝑒 is the do-
main of values taken by the keys ofA, i.e., a subset of𝐾 . A typed ten-
sor𝒳 is a tuple (𝑁𝑎𝑚𝑒, 𝐷,𝑉 ,𝑇) where𝑁𝑎𝑚𝑒 is the name of the ten-
sor, 𝐷 is a list of named typed associative arrays, i.e., one per dimen-
sion,𝑉 is the values of the tensor and𝑇 is the type of the tensor, i.e.,
the type of its values. The schema of a typed tensor is 𝑁𝑎𝑚𝑒 (𝑆) : 𝑇
where 𝑆 is the list of schemas of its dimensions, i. e., associative
arrays of 𝐷 . More strictly and by analogy with the relational model,
the formal schema of a tensor is the list of names of dimensions to
which the name of the tensor is added. For example, the typed ten-
sor 𝒰ℋ𝒯 (𝑈𝑠𝑒𝑟 : 𝑆𝑡𝑟𝑖𝑛𝑔, 𝐻𝑎𝑠ℎ𝑡𝑎𝑔 : 𝑆𝑡𝑟𝑖𝑛𝑔,𝑇𝑖𝑚𝑒 : 𝐿𝑜𝑛𝑔) : 𝐿𝑜𝑛𝑔
with the dimensions 𝑈𝑠𝑒𝑟 , 𝐻𝑎𝑠ℎ𝑡𝑎𝑔 and 𝑇𝑖𝑚𝑒 is used to store the
number of times a hashtag is used in tweets produced by a user per
time slice.

With its straightforward mapping to diverse data models, TDM
is a useful pivot model for polystore architectures. These mappings
are presented in detail in [24]. To summarize the main ideas, we
focus on the mapping from the most popular data models to TDM:

• Relational and column: The mapping from a relation 𝑅
to typed tensors produces a set of tensors 𝒳𝑖 where the
dimensions 𝐷 are the 𝑛 attributes that form together the key
of 𝑅 and for the 𝑘 −𝑛 remaining attributes we create a tensor
for each. The keys of each 𝐷 are formed of different values
of each attribute domains.

• Key-value: most of key-value stores save data as (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)
pairs in a distributed hash table. As typed tensors are de-
scribed by associative arrays, set of (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pairs in
NoSQL stores are mapped to a 1-order tensor, with the di-
mension storing the keys.

https://medium.com/@pahomov.egor/spark-datasets-are-not-as-type-safe-as-you-think-56a8a9ea0fc
https://medium.com/@pahomov.egor/spark-datasets-are-not-as-type-safe-as-you-think-56a8a9ea0fc

IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea Annabelle Gillet, Éric Leclercq, Marinette Savonnet, and Nadine Cullot

Po
ly

st
or

e
TD

M

Native queries
Spark DataFrame

dimension 1 values

dimension 2 values

dimension 3 values

values

Type-safe and schema inference API
Analytics algorithms and operators composition for TDM

Figure 1: Role of TDM in a polystore system

• Graph: a graph can be represented by an adjacency ma-
trix, i.e. a 2-order tensor representing one of the matrix (e.g.
adjacency, Laplacian) which describes the graph.

The definition of typed tensor and tensor schema are the starting
point to formally define data manipulation operators on tensors.
We have specified projection, selection on the values of tensor,
restriction on values of dimension, union, intersection, nesting and
natural join. These operators respect the closure property thus
allow to define compositions of operators as queries over multiple
data sources (i.e. a polystore). By adding difference and Cartesian
Product the set of operators is relationally complete [12]. We invite
the reader to look at [24] for a formal definition of the operators,
that is based on the formalism of [18] used to define the relational
model. Our definitions are constructed with two levels:

• a description of the operator’s behavior on the schema, i.e.,
restrictions on operand schemas and specification of the
result schema;

• a specification of the operator’s semantics on values.
Due to a lack of space we give an outlook of some operators

(figure 2 and table 1) in order to illustrate the two levels on which
the operators are working on (i.e., the schema level with constraints
on the associative arrays values and the value level). The selection,
restriction, union and intersection work only at the value level,
while the projection, nesting and natural join work at both the
value and the schema level.

3.2 Theoretical Complexity
The storage of tensors depends on the nature of data, nevertheless
representing and analyzing Big Data with tensor models produces
sparsity. For example, in the graph theory, a graph 𝐺 = (𝑉 , 𝐸) is

1 0 0
5 0 18
8 1 9t3

t2
t1

u1

u2

u3

ht1 ht2 ht3
(a) Tensor 𝒰ℋ𝒯

ht1ht2ht3

t3

t2

t1 1 0 0

5 0 18

8 1 9

(b) 𝜋 [𝑈 ,’u1’] 𝒰ℋ𝒯

0 0 0
0 0 18
0 0 0t3

t2
t1

u1

u2

u3

ht1 ht2 ht3
(c) 𝜎 [>10]𝒰ℋ𝒯

ht1 ht2 ht3

u1

t2
t1

1 0 0

5 0 18

(d) 𝜌 [𝑈 =’u1’∧𝑇 ≥t1∧𝑇 ≤t2]𝒰ℋ𝒯

Figure 2: Projection, selection and restriction operators ap-
plied to the tensor 𝒰ℋ𝒯 for the values of u1 (other values
are not shown in the example)

considered to be sparse if |𝐸 | = 𝑂 (|𝑉 |) resulting in sparse adja-
cency matrix representation. Compressed Sparse Column (CSC) or
Compressed Sparse Row (CSR) are common data structures used
to represent sparse matrices [11]. They can be applied directly to
tensors, if we consider tensors as set of matrices [9] obtained by
unfolding operations. These representations have been extended

Empowering Big Data Analytics with Polystore and strongly typed functional queries IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea

Operator Signification Equivalent Relation Algebra Expression Complexity
𝜋 [𝑒𝑥𝑝𝑟]𝒳 projection on some specific value of

a dimension, reduce the order by re-
moving the dimension on which the
projection is applied

𝜋 ({𝑑1, ..., 𝑑𝑁 } − 𝑑,𝒳)𝜎 (𝑑 = 𝑐)𝑇𝒳 𝑂 (1 + 𝜇𝑑,𝑐)

𝜎 [𝑒𝑥𝑝𝑟]𝒳 selection of values, can reduce the set
of values in dimensions

𝜎 (𝑒𝑥𝑝𝑟)𝑇𝒳 𝑂 (1 + 𝑛𝑧𝒳)

𝜌 [𝑒𝑥𝑝𝑟]𝒳 reduce a dimension to only values
that match the expression, can also
reduce the values in other dimensions

𝜎 (𝑒𝑥𝑝𝑟)𝑇𝒳 𝑂 (1 + 𝑛𝑧𝒳)

𝒳1 ∪𝜃 𝒳2 union of two tensors having the same
schema and perform the 𝜃 operation
on values having the same keys

(𝑇𝒳1 ∪𝑇𝒳2 − 𝜋 (𝑑
𝒳1
𝑖
,𝒳3)𝑇𝒳3) ∪ 𝜋 (𝑑

𝒳1
𝑖
,𝒳1𝜃𝒳2)𝑇𝒳3

with 𝑇𝒳3 := 𝜎 (𝑑
𝒳1
𝑖

= 𝑑
𝒳2
𝑖

) (𝑇𝒳1 ×𝑇𝒳2)
𝑂 (2 + 𝑛𝑧𝒳1 + 𝑛𝑧𝒳2)

𝒳1 ∩𝜃 𝒳2 intersection of two tensors having the
same schema and perform the 𝜃 oper-
ation on values having the same keys

𝜋 (𝑑𝒳1
𝑖
,𝒳1𝜃𝒳2)𝑇𝒳3 𝑂 (2 + 𝑛𝑧𝒳1 + 𝑛𝑧𝒳2)

𝒳1 Z 𝒳2 join of two tensors having at least one
dimension in common and keep the
values of the first tensor

𝜋 (⋃
𝑗=1,2

𝑖=1,...𝑁𝒳𝑗

𝑑
𝒳𝑗

𝑖
,𝒳1)𝑇𝒳3 𝑂 (∑

𝑑∈𝐷𝒳2
|𝐷𝑜𝑚𝒳2

𝑑
| + 𝑛𝑧𝒳1)

Table 1: TDMoperatorswith theirmeaning, expression in relational algebra and their complexity using a sparse representation
with hashtables for values of dimensions

to sparse tensors with Compressed Sparse Fiber (CSF) format [36].
CSR, CSC and CSF are effective only for some operators such as
multiplication and thus are not suitable for supporting the variety
of TDM operators.

We will consider two different hypotheses, the first one is the
storage of tensors as tuples or elements of a dataframe, the second
one, more suitable for in memory storage, is the extension of Knuth
structure for sparse matrices [20] (p.302-306) to tensors using hash
tables to have direct access to elements sharing the same value
on a dimension. The table 1 gives, at the third column, for each
operator its cost of execution as a relational algebra expression for
the first hypothesis and at the last column its theoretical complexity
for the second hypothesis. Notations are the followings: 𝑛𝑧𝒳 is
the number of existing values in tensor 𝒳 , 𝑑 ∈ 𝐷𝒳 is one of the
dimension of a tensor,𝐷𝑜𝑚𝒳

𝑑
is the domain, i.e. the set of values for

dimension 𝑑 of a tensor 𝒳 , 𝜇𝒳
𝑑,𝑐

= 𝑛𝑧𝒳 /|𝐷𝑜𝑚𝒳
𝑑
| is an estimation

of the number of elements in a sub-tensor when a dimension 𝑑 is
set to a specific value, 𝑇𝒳 is a set of tuples in a representation of
tensor using relational table or dataframe.

4 STRONGLY TYPED COMPOSITION OF
OPERATORS AS A FUNCTIONAL QUERY
LANGUAGE

This section presents the mechanisms that allow to leverage the
type-safe and schema inference properties. As we put in evidence
in sections 1 and 2, these properties are of primary importance for
the manipulation and the transformation of data. Once established,
they make it possible to build a functional query language based
on the composition of TDM operators, possibly including other
analysis operators. TDM is developed in Scala, as this language has

facilities to establish the mechanisms needed, partially thanks to
its strong statically typing system.

4.1 Type-safe and schema inference
In order to have type-safe and schema inference properties in TDM,
several mechanisms are needed. In this subsection, we outline phan-
tom types, the shapeless library and implicits, that are the three
components of our seeked properties.

Phantom types are types that can never be instantiated. They
are used to apply constraints over type, without the need of creating
a new object. Their use helps to propagate the type-safe function-
ality, by allowing the compiler to use these types to check more
precise constraints directly over types.

In the TDM library, tensor’s dimensions are defined as phantom
types, that extends TensorDimension[T] with a given type T :

object User extends TensorDimension[String]

object Hashtag extends TensorDimension[String]

object Time extends TensorDimension[Long]

By doing so, several properties are given to dimensions: 1) each di-
mension can have a meaningful name, while being of a simple type
(such as String or Long); 2) each dimension is easily identifiable,
because it is referenced with a type rather that just a name (e.g. a
String or an object instance); 3) tensor’s dimensions can be con-
trolled more finely, by accepting only once each phantom type but
multiple time the same simple type (e.g. for a tensor representing
coordinates, two phantom types are used: Longitude and Latitude,
each extending TensorDimension[Double]); 4) multiple tensors can
share a same phantom type, and use it as a constraint to apply
operators, thus enforcing the type-safe capability at the schema
granularity, with the help of implicits (see below).

IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea Annabelle Gillet, Éric Leclercq, Marinette Savonnet, and Nadine Cullot

L
A :: T :: C :: HNil

T

L =
tail of L

Remove T in
head of L

L =
tail of L

Remove T in
head of L

Remove T in
head of L

Out1
HNil

Out2
A :: HNil

Out1
T :: HNil

Out2
A :: HNil Out1

T :: HNil
Out2

A :: C :: HNil

L empty, final output

Figure 3: Example: removing all elements of type T in a HList L with the help of implicits and path dependent type

With the shapeless library4, some structures to manipulate
objects at type level are available. It is the case for the HList (Hetero-
geneous List), that allows to build a list with different types, while
keeping the detail of each type and not using a common supertype
to work with the list.

In the TDM implementation, a HList of phantom types (e.g.
User::Hashtag::Time::HNil) is used to represent the schema of a
tensor, and the type of the tensor is made of a parameterized type.
This sort of implementation provides us with tools and methods
to interact with the schema of a tensor, that can be triggered with
implicits.

L contains T

Does not compile

no

yesL has elements

Compile

yes

no

Head of L is of same
type as T

L = tail of L

Figure 4: Steps to check if a type T is in a HList L with the
help of implicits

In Scala, implicits [30, 31] are a mean to delegate some code
logic to the compiler. When a function defines a parameter as
implicit, if the user does not provide explicitly the parameter, the
compiler will check in the current scope if it is possible to find a
value with the corresponding type to use it for the function call.

This functionality can be pushed to be used to check advanced
constraints, or to infer a result type depending on input parameters.
If we want to verify that a type T is in aHList L, we can use implicits
in a recursive way (figure 4). We first check if the head of L is of
the same type as T, if it is the case, the implicit compiles because it
found a correspondence in its scope. If the head of the list is not of
the same type as T, the implicit must resolve itself the same implicit,
this time called on T and on the tail of L. If no correspondence is
found when reaching the end of L, the whole chain of implicits does
not compile, thus invalidating the function that used the implicit at

4https://github.com/milessabin/shapeless

the root of the call. By composing these types of constraints, we
can build more complex ones, and use them to enforce validity
of operators depending on the schema.

Implicits can also be used to infer automatically the schema
of the resulting tensor when applying an operator that alters the
schema of the current tensor (e.g. projection, join). For this, implicits
are combined with path dependent types [5], that allow to compute
a type given one or multiple types in input. The implicit application
is the same that for the constraint, but we add the expected output
type in the implicit call, and when resolving the implicit, the output
type is built. An example of this use is to remove all elements of a
given type in a HList (figure 3). For an input HList L, and a type T,
we can build two output types: one (Out1) as the HList containing
all the elements of type T that were a part of L, and one (Out2) as
the HList containing all the elements of L except those of type T.
This removal can be used to apply a projection operator on a tensor,
as it removes the dimension on which we want to focus on. The
schema of the tensor resulting of the execution of this operator will
depend of the schema of the input tensor and of the dimension on
which we want to do the projection.

4.2 Towards a functional query language
Scala is a language of choice to develop TDM, because it is statically
typed and allows to strongly check type constraints at compile-time
(see section 4.1). Our implementation of TDM (available at https:
//github.com/AnnabelleGillet/TDM) is based on Spark and uses
the shapeless library that enables the development of dependent
type based generic programs. Above Spark’s DataFrame we add
schema, data manipulation operators and tensor decompositions
to implement TDM in a type-safe way. TDM implementation is
user-friendly: it hides all the shapeless details from the user and
detects errors at compile-time.

A TDM tensor is built in three steps: 1) dimensions are defined;
2) these dimensions are added to the tensor (and can be reused in
other tensors) and 3) values are obtained by querying a data source
or manually added. For example, to build the tensor 𝒰ℋ𝒯 , its
three dimensions are created as:

object User extends TensorDimension[String]

object Hashtag extends TensorDimension[String]

object Time extends TensorDimension[Long]

Notice that dimensions defined in this way, on top of providing
properties defined in section 4.1, are also used to help users to
produce values for a dimension and to express conditions for data

https://github.com/milessabin/shapeless
https://github.com/AnnabelleGillet/TDM
https://github.com/AnnabelleGillet/TDM

Empowering Big Data Analytics with Polystore and strongly typed functional queries IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea

manipulation operators. Dimensions are then used with an object
TensorBuilder, from which a tensor of type Long is instantiated:

val tensorUHT = TensorBuilder[Long]

.addDimension(User)

.addDimension(Hashtag)

.addDimension(Time)

.build()

tensorUHT.addValue(User.value("u1"), Hashtag.value("ht1"),

Time.value(1))(1)

Alternatively, a tensor can also be created by retrieving directly
its values from a data source. In this case, users must supply:

(1) a Properties object embedding information of connection to
the TensorBuilder ;

(2) the mappings between dimensions and the name of each
attribute returned by the query and;

(3) the query to execute and the name of the attribute which
contains the tensor’s values.

val props = new Properties()

...

val query = """SELECT user_screen_name AS user, hashtag,

published_hour AS time, COUNT(*) AS value

FROM tweet t INNER JOIN hashtag ht ON t.id = ht.tweet_id

GROUP BY user_screen_name, hashtag, published_hour HAVING

COUNT(*) > 5 """

val tensorUHT = TensorBuilder[Long](props)

.addDimension(User, "user")

.addDimension(Hashtag, "hashtag")

.addDimension(Time, "time")

.build(query, "value")

This mechanism allows all storage systems for which a JDBC
driver is available to be used as a data source. By using the Spark’s
data access layer, data sources without a JDBC driver can also be
added easily.

TDM operators add data manipulation capabilities to tensors and
infer automatically the schema of the resulting tensor, even when
the operator induces a schema transformation, e.g. for the natural
join. For example, using a projection on the previously defined
tensor 𝒰ℋ𝒯 for the dimension User and the value 𝑢1 will yield a
new tensorℋ𝒯 populated with the values corresponding to the
dimension and the value specified:

val tensorHT = tensorUHT.projection(User)("u1")

With the naming possibilities of Scala, we can also call the pro-
jection operator as:

val tensorHT = 𝜋(tensorUHT)(User)("u1")

Result of this operator can be shown using access to tensor values
with the following expressions:

tensorHT(Hashtag.value("ht1"), Time.value(1)) // Some(1.0)

tensorHT(Hashtag.value("ht2"), Time.value(2)) // None

Other operators can associate two tensors in various ways. For
example, the union produces a new tensor with all values from both
tensors, and intersection produces a new tensor with only common

values between the two tensors. Both operators take a function in
parameter that determines the function to apply when keys are in
common between tensors.

val t1 = tensor1.union(tensor2)((v1,v2) => max(v1,v2))

val t2 = tensor1.intersection(tensor2)((v1,v2) => v1 + v2)

The natural join allows to merge schema of two tensors when
they have at least one dimension in common. The values kept are
those of the first tensor for which the keys combination exists in
the second tensor.

val t3 = tensor1.naturalJoin(tensor3)

TDM operators are implemented with strong type constraints,
which can be grouped in three categories: 1) for operators that work
at the tensor value level such as selection, the parameter of the
condition used must match the tensor value type, 2) for operators
working on dimensions that need a dimension parameter, such as
the projection or the restriction. The dimension parameter used has
to be a part of the schema of the tensor and 3) for binary operators
such as union, intersection, natural join or difference. The schema
of both tensors must match according to the operators, e.g., for the
union and the intersection, the schema of tensors have to be the
same and for the natural join the tensors must have at least one
dimension in common.

For the internals, TDM uses Spark’s DataFrame, that correspond
to our first hypothesis in section 3.2, and the benefit is multiple: 1)
working with a well defined and scalable structure, and 2) keeping
the optimization capabilities of Spark. The DataFrame is used with
n-1 columns for the dimensions’ values, and the last column for the
value of the tensor associated to these dimensions’ values.

The type-safe guarantee is obtained at compile-time by combin-
ing shapeless and Scala’s implicits, as explained in section 4.1. A
compilation-error warns the user if an inconsistency is detected.
The use of implicits gives also the capability to define custom
compilation-error messages that fit the tensor context, in order
to avoid unclear default messages. The following example shows
inconsistencies detected at compile time5:

tensorHT.addValue(Hashtag.value(1), Time.value(2))(2.0) //

Wrong type of dimension's value

tensorHT.addValue(Hashtag.value("ht2"))(2.0) // Wrong number

of dimensions

tensorHT.projection(User)("u2") // Dimension not in tensor

tensorHT.union(tensorUHT) // Different schemas of tensors

By using the different mechanisms (phantom types and implicits),
we showed how the implementation of TDM supports type-safe
and schema inference properties. The method used to build tensors
by using native queries takes advantage of each database of the
polystore, and thus allows to perform fine grained optimizations
during the construction with specific techniques such as the bind
join.

5See also https://github.com/AnnabelleGillet/TDM/tree/master/src/test/scala/tdm/core
for examples of detected inconsistencies

https://github.com/AnnabelleGillet/TDM/tree/master/src/test/scala/tdm/core

IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea Annabelle Gillet, Éric Leclercq, Marinette Savonnet, and Nadine Cullot

Figure 5: Execution time for a join, a bind join and a parallel bind join, with slices of 10 000 and 25 000 values

Figure 6: Execution time with TDM and Spark

5 BIND JOIN OPTIMIZATION AND TDM
OVERHEAD STUDY: EXPERIMENTS AND
RESULTS

In this section, we present two kind of experiments: 1) to show,
through a bind join, the benefit of exploiting a polystore and know-
ing the characteristics of data, and 2) to execute the same combi-
nation of operators with TDM and with Spark, in order to see if
TDM produces some overhead compared to Spark. The experiments
were performed on a Dell PowerEdge R740 server (Intel(R) Xeon(R)
Silver 4210 CPU @ 2.20GHz, 20 cores, 256Go RAM).

For the first experiment, we compare a naive join against a bind
join that takes advantage of some knowledge about the data. A bind
join is an optimisation technique to join a smaller and a bigger sets,
where the values of the smaller set are collected and directly sent to
the bigger set, in order to minimize data transfers and to limit the
bigger set only to values that can actually match with the smaller
set. For a set of users 𝒰 , we want to get 𝒯 containing the tweets
that a subset of the users have published. These data are stored

in a PostgreSQL database, in a table user that have 1M elements,
and in a table tweet that have 50M elements. To see the evolution
of the execution time, the subsets of user start from 0 to 500 000
elements, with steps of 50 000, and the average execution time of
five repetitions is kept.

First, we perform a naive Spark join between 𝒯 and each subset
of 𝒰 (the blue line on figure 5). Then, as we know that 𝒰 is smaller
than 𝒯 , we perform a bind join: we only retrieve the values of 𝒯
that match those of the subset of 𝒰 , rather than trying to join all
the values. This time, we obtain the orange line in figure 5. The
execution time is significantly better than the naive join when
the subset of 𝒰 is smaller than 350 000 values. Second, we can
push further the exploitation of the knowledge of the data: we
know that only one user can have published a tweet, so for two
distinct subsets of 𝒰 , two distinct subsets of 𝒯 will be matched.
We can split the subset of 𝒰 in several slice, run each small bind
join against 𝒯 in parallel, and then perform an union on all the
results and still get the expected result. The green and red lines of
figure 5 represent this parallel bind join, with slices of 10 000 and

Empowering Big Data Analytics with Polystore and strongly typed functional queries IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea

25 000 values respectively. As we can see, the execution time of
our optimization technique is significantly better than the naive
and the bind join. At the end of the curve, the bind join with slices
of 10 000 values takes a little more time than the one with 25 000
values: it can be explained by the multiplication of the unions that
have to be made between each slice, and by the number of queries
that have to be sent to the database, when the processor does not
have enough cores to handle all the queries at the same time.

With this experiment, we show that a good knowledge of the
data and of the behaviour of the database can significantly improve
performances compared to a uniform and naive approach.

For the second experiment, we compare an execution with Spark
and with TDM. Spark is a well-known and powerful analytics en-
gine, so, an important objective of developing TDM as a layer over
Spark is to keep performance equivalent to Spark while taking
advantage of the capabilities of TDM. To estimate the eventual
overhead induced by TDM, we run an experiment in Spark and
compare the result with the same experiment using TDM. The dif-
ferent phases are: 1) building a tensor 𝒰 with the users and the
number of tweets published by each user as tensor’s values, 2)
building a tensor 𝒰ℋ𝒯 with the number of hashtags published by
users for 1h time slices, 3) performing a selection on tensor 𝒰 to
keep only users who have published at least 100 tweets, 4) joining
𝒰 and 𝒰ℋ𝒯 to keep the values of 𝒰ℋ𝒯 only for active users.
We vary the size of tensor 𝒰 from 0 to 1M elements by steps of
100 000.

This experiment is carried out in two cases: first by forcing the
computation at each operation, and second by forcing the execution
only at the last operation, in order to witness the optimization of
Spark. The executions are repeated five times, and the average time
is measured. A real anonymized data set is available on the github of
the experiment 6. As we can see in figure 6 the execution with TDM
does not induce overhead compared to Spark, and the optimization
capabilities of Spark are preserved (bottom of fig. 6).

6 CONCLUSION
TDM is a tensor based pivot data model that bridges the gap among
data sources and analytics frameworks with a unification of the
different theoretical foundations of data models (graph, matrix, re-
lation). The type-safe property and the closure of the operators set
are major prerequisites for Big Data analytics. Our library demon-
strates that tensors can be manipulated in a safer way, and are
well-suited for a data centric use with well-defined data manipula-
tion operators.

The type-safe and schema inference properties of TDM library
are implemented by constraints carried out by parameterized types
and Scala’s implicits. They allow to detect schema inconsistencies
and incompatibilities of parameters in operator expressions at com-
pile time. TDM operators allow to build complex expressions over
tensors, which can be used as a traditional query language. TDM
goes beyond Spark DataFrame by providing a layer that keeps the
performance of Spark and does not induce overhead, as shown by
the comparative experiment between Spark and TDM.

6https://github.com/AnnabelleGillet/TDM-experiments/tree/master/SparkCompari
son

We now focus on developing advanced tensorial operators and al-
gorithms such as hierarchical tensor decomposition, as well as inte-
grating data manipulation operators available for SparkDataFrames
that we can use on tensors. We are also studying the capabilities of
TDM to take advantage of each database of a polystore depending
on the operation optimizations allowed by its model. We plan to
develop a mechanism that could optimize the functional queries,
by using a context provided by an expert user in order to guide
the evaluation depending on the database, as we showed in the
particular case of the bind join.

ACKNOWLEDGMENT. This work is supported by ISITE-BFC
(ANR-15-IDEX-0003) coordinated by G. Brachotte, CIMEOS Labo-
ratory (EA 4177), University of Burgundy.

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems Design and Implementation,
pages 265–283, 2016.

[2] A. Agrawal, R. Chatterjee, C. Curino, A. Floratou, N. Gowdal, M. Interlandi,
A. Jindal, K. Karanasos, S. Krishnan, B. Kroth, et al. Cloudy with high chance of
DBMS: A 10-year prediction for Enterprise-GradeML. In Conference on Innovative
Data Systems Research (CIDR), 2020.

[3] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas,
F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, et al. Theano: A Python framework
for fast computation of mathematical expressions. arXiv:1605.02688, 2016.

[4] R. Alotaibi, D. Bursztyn, A. Deutsch, I. Manolescu, and S. Zampetakis. Towards
Scalable Hybrid Stores: Constraint-Based Rewriting to the Rescue. In Proceedings
of the 2019 International Conference on Management of Data, pages 1660–1677,
2019.

[5] N. Amin, T. Rompf, and M. Odersky. Foundations of path-dependent types. ACM
SIGPLAN Notices, 49(10):233–249, 2014.

[6] P. Barceló, N. Higuera, J. Pérez, and B. Subercaseaux. On the Expressiveness of
LARA: A Unified Language for Linear and Relational Algebra. arXiv preprint
arXiv:1909.11693, 2019.

[7] P. Baumann. Management of multidimensional discrete data. The VLDB Journal,
3(4):401–444, 1994.

[8] R. Brijder, F. Geerts, J. Van den Bussche, and T. Weerwag. MATLANG: Matrix
operations and their expressive power. ACM SIGMOD Record, 48(1):60–67, 2019.

[9] A. Buluc and J. R. Gilbert. On the representation andmultiplication of hypersparse
matrices. In IEEE International Symposium on Parallel and Distributed Processing,
pages 1–11, 2008.

[10] T. Chen. Typesafe abstractions for tensor operations. In Proceedings of the 8th
ACM SIGPLAN International Symposium on Scala, pages 45–50. ACM, 2017.

[11] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari. Nonnegative matrix and tensor
factorizations: applications to exploratory multi-way data analysis and blind source
separation. John Wiley & Sons, 2009.

[12] E. Codd. Relational completeness of data base sublanguages. Computer, 1972.
[13] R. C. Fernandez, P. R. Pietzuch, J. Kreps, N. Narkhede, J. Rao, J. Koshy, D. Lin,

C. Riccomini, and G. Wang. Liquid: Unifying Nearline and Offline Big Data
Integration. In Conference on Innovative Data System Research (CIDR), 2015.

[14] V. Gadepally, P. Chen, J. Duggan, A. Elmore, B. Haynes, J. Kepner, S. Madden,
T. Mattson, and M. Stonebraker. The BigDAWG Polystore System and Archi-
tecture. In 2016 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–6. IEEE, 2016.

[15] V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, L. Edwards,
M. Hubbell, P. Michaleas, J. Mullen, et al. D4M: Bringing associative arrays to
database engines. In 2015 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–6. IEEE, 2015.

[16] P. Griffioen. Type inference for array programming with dimensioned vector
spaces. In Proceedings of the 27th Symposium on the Implementation and Applica-
tion of Functional Programming Languages, page 4. ACM, 2015.

[17] H. Jananthan, Z. Zhou, V. Gadepally, D. Hutchison, S. Kim, and J. Kepner. Polystore
mathematics of relational algebra. In 2017 IEEE International Conference on Big
Data (Big Data), pages 3180–3189. IEEE, 2017.

[18] P. C. Kanellakis. Elements of relational database theory. In Formal models and
semantics, pages 1073–1156. Elsevier, 1990.

[19] J. Kepner, V. Gadepally, H. Jananthan, L. Milechin, and S. Samsi. AI Data Wran-
gling with Associative Arrays. arXiv preprint arXiv:2001.06731, 2020.

[20] D. Knuth. The art of computer programming. Vol. 1: Fundamental algorithms.
Addison-Wesley, 1978.

https://github.com/AnnabelleGillet/TDM-experiments/tree/master/SparkComparison
https://github.com/AnnabelleGillet/TDM-experiments/tree/master/SparkComparison

IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea Annabelle Gillet, Éric Leclercq, Marinette Savonnet, and Nadine Cullot

[21] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[22] B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Vilaça, R. Gonçalves, R. Jiménez-
Peris, and P. Kranas. Parallel polyglot query processing on heterogeneous cloud
data stores with LeanXcale. In 2018 IEEE International Conference on Big Data
(Big Data), pages 1757–1766. IEEE, 2018.

[23] J. Kossaifi, Y. Panagakis, A. Anandkumar, andM. Pantic. Tensorly: Tensor learning
in python. The Journal of Machine Learning Research, 20(1):925–930, 2019.

[24] É. Leclercq, A. Gillet, T. Grison, and M. Savonnet. Polystore and Tensor Data
Model for Logical Data Independence and Impedance Mismatch in Big Data
Analytics. In Transactions on Large-Scale Data-and Knowledge-Centered Systems
XLII, pages 51–90. Springer, 2019.

[25] L. Libkin, R. Machlin, and L. Wong. A query language for multidimensional
arrays: design, implementation, and optimization techniques. In ACM SIGMOD
Record, volume 25, pages 228–239. ACM, 1996.

[26] Z. H. Liu, J. Lu, D. Gawlick, H. Helskyaho, G. Pogossiants, and Z. Wu. Multi-
model database management systems-a look forward. In Heterogeneous Data
Management, Polystores, and Analytics for Healthcare, pages 16–29. Springer, 2018.

[27] J. Lu and I. Holubová. Multi-model databases: a new journey to handle the variety
of data. ACM Computing Surveys (CSUR), 52(3):1–38, 2019.

[28] D. Mišev and P. Baumann. SQL Support for Multidimensional Arrays. IRC-Library,
Information Resource Center der Jacobs University Bremen, 2017.

[29] T.Muranushi and R. A. Eisenberg. Experience report: Type-checking polymorphic
units for astrophysics research in Haskell. In ACM SIGPLAN Notices, volume 49,
pages 31–38. ACM, 2014.

[30] M. Odersky, L. Spoon, and B. Venners. Programming in scala. Artima Inc, 2008.
[31] B. C. Oliveira, A. Moors, and M. Odersky. Type classes as objects and implicits.

ACM SIGPLAN Notices, 45(10):341–360, 2010.

[32] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos. Tensors for data mining
and data fusion: Models, applications, and scalable algorithms. ACM Transactions
on Intelligent Systems and Technology (TIST), 8(2):16, 2017.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems,
pages 8024–8035, 2019.

[34] S. Rabanser, O. Shchur, and S. Günnemann. Introduction to tensor decompositions
and their applications in machine learning. arXiv preprint arXiv:1711.10781, 2017.

[35] A. Rush. Tensor Considered Harmful. Technical report, Harvard NLP, 2010.
[36] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis. Splatt: Efficient and

parallel sparse tensor-matrix multiplication. In IEEE International Parallel and
Distributed Processing Symposium, pages 61–70, 2015.

[37] M. Stonebraker and U. Cetintemel. " one size fits all": an idea whose time has
come and gone. In 21st International Conference on Data Engineering (ICDE’05),
pages 2–11. IEEE, 2005.

[38] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: dynamic tensor
analysis. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 374–383. ACM, 2006.

[39] R. Tan, R. Chirkova, V. Gadepally, and T. G. Mattson. Enabling query processing
across heterogeneous datamodels: A survey. In 2017 IEEE International Conference
on Big Data (Big Data), pages 3211–3220. IEEE, 2017.

[40] S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: a structure
for efficient numerical computation. Computing in Science & Engineering, 13(2):22,
2011.

[41] P. Vassiliadis and A. Simitsis. Near real time ETL. In New trends in data ware-
housing and data analysis, pages 1–31. Springer, 2009.

[42] M. Zaharia and B. Chambers. Spark: The Definitive Guide. O’Reilly Media, 2018.

	Abstract
	1 Introduction and motivations
	2 Related work
	3 An overview of TDM data model
	3.1 TDM: Algebraic Structure and Operators
	3.2 Theoretical Complexity

	4 Strongly typed composition of operators as a functional query language
	4.1 Type-safe and schema inference
	4.2 Towards a functional query language

	5 Bind join optimization and TDM overhead study: Experiments and results
	6 Conclusion
	References

