
Power domination in graphs

Paul Dorbec

Abstract In this chapter, we are interested in power domination in graphs. Power
domination is a variation of domination introduced to address a physical problem
of monitoring a network with phasor measurement units. The originality of this
variation is that some propagation happens, and the set of covered vertices results
from an iterative process. We present a survey of known results on this specific
parameter.

1 Introduction

Power domination is a variation of the domination problemmotivated by the physical
rules for monitoring electrical networks. It was first introduced as a graph parameter
by Haynes et al. in 2002 [20]. Before giving details on the initial motivation and
the physical background in Section 1.1, we give a general definition. One of the key
concept of power domination is that of monitoring vertices, as defined below.

Definition 1 (Power dominating set)
Given a graph G = (V, E) and a set S ⊆ V of vertices, we define the set of vertices

monitored by the set S as follows:
• Domination: All vertices in S and all neighbors of vertices in S are monitored,
• Propagation:Whenever a vertex v is monitored and all but one of its neighbors,

say w, are monitored, then vertex w is also monitored. In this case we say that
vertex v propagates to vertex w.

An initial set of vertices that eventually monitors the whole graph is called a power
dominating set. The power domination number is the minimum order of a power
dominating set, denoted γP(G).

Paul Dorbec
Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France, e-mail:
paul.dorbec@unicaen.fr

1



2 Paul Dorbec

The first step, the so called domination step, exactly matches the definition of
a dominating set. Thus a dominating set is also a power dominating set, and we
observe that

∀G, γP(G) ≤ γ(G) .
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Fig. 1 A graph with a power dominating set (in Cyan). The arrows show the propagation occurring,
and their labels gives the ordering of these propagation.

An example of a graph with a power dominating set is shown in Figure 1. The
difference between the usual domination and power domination is best illustrated by
the case of the path. Indeed, the power domination number of a path is equal to 1,
and any vertex is a minimum power dominating set of the path. This comes from the
fact that after the initial step of domination in the path, every monitored vertex has
at most one unmonitored neighbor, and thus can propagate. So the set of monitored
vertices increases until it covers the whole path.

Before continuing, we present a more formal definition that sometimes proves
convenient. We define the sets

(
Pi

)
i≥0 of monitored vertices at stage i, following the

definition introduced by Aazami in [1].

Definition 2 (Monitored vertices)
LetG be a graph, and S ⊆ V(G) a subset of vertices.We define the sets

(
Pi(S)

)
i≥0

of vertices monitored by S at step i by the following rules.

• Domination: P0(S) = N[S],
• Propagation: for i ≥ 0,

Pi+1(S) =
⋃ {

N[v] | v ∈ Pi(S),
��N[v] \ Pi(S)

�� ≤ 1
}
.

Observe that the sequence of sets (Pi)i≥0 is a non decreasing sequence. Moreover
if at some stage Pi(S) = Pi+1(S), then the sequence reaches a fixed point, which we
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denote P∞(S). Observe that the fixed point is necessarily reached for some i < n, so
for a graph on n vertices, P∞(S) = Pn(S). Matching the earlier definition, we can
now state that S is a power dominating set of a graph G if and only if P∞(S) = V(G).

With this notation, for a vertex u in a path, Pi({u}) = {v ∈ V | dist(u, v) ≤ i+1}.
In the example from Figure 1, the label i on an arc shows that a vertex is first added
to Pi(S).

1.1 Physical motivation

In this section, we recall the history of the introduction of the parameter, with the
successive definitions.

Power domination was first introduced by Baldwin et al. in [3], then described
as a graph theoretical problem by Haynes et al. in [20]. The problem is motivated
by the requirement for constant monitoring of power systems by placing a minimum
number of phasor measurement units (PMU) in the network. A PMU placed at a
bus measures the voltage of the bus plus the current phasors at that bus. Using Ohm
and Kirchhoff current laws, it is then possible to infer from initial knowledge of the
status of some part of the network the status of new branches or buses.

In Baldwin et al. [3], the following definitions are proposed:

A measurement-assigned subgraph, called for short a measurement subgraph, is a subgraph
which has a current measurement assigned to each of its branches. These are either actual
measurement or calculated pseudo-measurement deduced fromKirchhoff’s and Ohm’s laws.
[. . . ] The coverage of a placement set of PMU’s is the maximal spanning measurement
subgraph that can be formed by this set, that is, the maximal observable sub-network that
can be built from them.

They introduced the following formal definition of the spanning measurement
subgraph:

Definition 3 (Baldwin et al. [3])
A spanning measurement subgraph is constructed throughout the network on the

grounds of the following rules:

Rule 1: Assign a current phasor measurement to each branch incident to a bus
provided with a PMU;
Rule 2: Assign a pseudo-current measurement to each branch connecting two
buses with known voltage;
Rule 3: Assign a pseudo-current measurement to a branch whose current can be
inferred by using Kirchhoff’s current law.

In terms of graphs, where buses are vertices and connecting branches are edges,
we can describe the observability rules of a network with the following definition:

Definition 4 (Haynes et al. [20])



4 Paul Dorbec

Initially, set as monitored any vertex with a PMU and all edges incident to it.
Then, expand iteratively the set of monitored edges and vertices with the following
rules :

1. set as monitored any vertex incident to a monitored edge whose other end is
monitored;

2. set as monitored any edge joining two monitored vertices;
3. if a vertex has all its incident edges monitored except one, set this one edge as

monitored.

It was noticed byDorfling andHenning in [15] that the power domination problem
can be studied considering only vertices following the above definition. The coverage
of a placement set S of PMU is then simply the induced subgraph on the final set
of monitored vertices. From this observation, we reach the definition used here,
presented in Definition 1.

1.2 Relation with zero forcing sets

It should be noted that there is a close relationship between power domination in
graphs and zero forcing sets. Zero forcing sets were introduced in [2], together with
the corresponding parameter Z(G), which stands for the minimum size of a zero
forcing set. Using the earlier definition, we can define a zero forcing set as a set of
vertices S such that applying only the propagation rule, the whole graph eventually
gets monitored. In other words, it would follow Definition 2 where we define P0(S)
to be equal to S.

The motivation for the introduction of this parameter was that it is an upper bound
for another parameter, called maximum nullity of a graph. For a graph G of order
n, the maximum nullity of G corresponds to the maximum nullity (or corank) of a
matrix in the set of symmetric n × n matrices having nonzero coefficients precisely
where the adjacency matrix of the graph G has nonzero values.

From the above definition of zero forcing sets, we easily infer that Z(G) ≤
γP(G)∆(G). Indeed, taking the vertices of a power dominating set plus all but one
neighbor of each of them, one gets a zero forcing set of size at most γP(G)∆(G).
This was explicitly stated by Dean et al. in [9], where the first link between the two
parameters was probably made.

Various later studies considered or just mentioned the link between zero forcing
sets and power domination [7, 16, 5], or even between k-forcing sets and k-power
domination that we define in Section 5 [17]. However, there are not many results for
power domination that come from known results on zero forcing sets.
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1.3 Algorithmic aspects

We will not detail the algorithmic aspects here, since it is quite similar to the domi-
nation algorithms, and it is surveyed in the chapter dedicated to algorithms. It should
just be remarked that power domination is NP-complete, with many possible reduc-
tions from the dominating set problem. However, as for the domination problem,
there are polynomial algorithms for bounded treewidth graphs, using dynamic pro-
gramming. The algorithms are slightly more involved than for domination, but use
similar strategies.

2 Behaviour by small graph changes

As we explore in this section, one of the difficulties of power domination is that
the power domination number has no monotonicity for any of the classical graph
operations. For each of the usual unitary graph operations (vertex removal, edge
removal, edge contraction), we give some examples and arguments illustrating the
possible behavior of the power domination number. Detailed proofs of these results
were given by Dorbec, Varghese and Vijayakumar in [14].

2.1 Vertex removal

In a graph, the removal of a vertex can have a similar effect on the power domination
number than it can have on the domination number, that is that it can slightly reduce
the power domination number, or it can much increase it.

Theorem 1 ([14]) For the graph G−v obtained by removing a vertex v from a graph
G, there is no upper bound to γP(G − v) in terms of γP(G). On the other hand, we
have γP(G − v) ≥ γP(G) − 1.

As in domination, adding v to a power dominating set of G − v produces a power
dominating set of G. On the other hand, removing the central vertex of a star greatly
increases the power domination number. Less trivial examples are given in [14].

2.2 Edge removal

Interestingly, the situation for edge removal is not as similar to the situation for the
dominating sets. While removing an edge in a graph can only increase its domination
number, it may decrease its power domination number.

Theorem 2 ([14]) Removing an edge e from a graph G results in a graph G − e
whose power domination number is bounded by



6 Paul Dorbec

γP(G) − 1 ≤ γP(G − e) ≤ γP(G) + 1 .

That removing an edge may increase the power domination number is of no
surprise, as it is for domination. For a removed edge e = uv in a graph G with a
power dominating set S, if v is monitored no sooner than u in the graph G, then
S ∪ {v} is a power dominating set of G − e.

However, that removing an edge may also decrease the power domination number
is less expected. Actually, this phenomenon comes from the fact that the removal
may allow some propagation that was not possible before, as in the example of the
bipartite complete graph K3,3 (see Figure 2), but also for many other examples.

Fig. 2 The graph K3,3 has power domination number 2, removing any edge decrease this to 1.

2.3 Edge contraction

Contracting an edge in a graph may easily result into the reduction of the domination
number by one, the same is true for the power domination number. This happens
for example when a minimum (power) dominating set contains both ends of the
contracted edge, as in a double star. What happens in power domination but not in
domination is that it may also increase the power domination number.

Theorem 3 ([14]) Let G be a graph and e be an edge in G. Then

γP(G) − 1 ≤ γP(G/e) ≤ γP(G) + 1 .

An (original) example where the power domination number of a graph increases
when an edge is contracted is drawn in Figure 3. In this graph, the contraction of the
edge e merges two vertices with only one unmonitored neighbor, and thus prevents
propagation.

To show that the power domination number increases by no more than one, just
note that adding the newly formed vertex to a power dominating set of G necessarily
forms a power dominating set of G/e, preventing the previous phenomenon.
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e

Fig. 3 A graph where contracting the edge e makes the power domination number increase from
2 to 3.

3 Bounds on general families of graphs

In this section, we present bounds on the power domination number of a graph under
some general restrictions.

3.1 General graphs

Let us first recall the initial general bound due to Haynes et al. [20]. They noted that
the power domination number of a graph is always at least one, and that a dominating
set of a graph is always also power dominating. We thus get

1 ≤ γP(G) ≤ γ(G) .

Haynes et al. proved that there is no forbidden subgraph characterization of the
graphs reaching the upper bound. The proof is based on the following family of
graphs. For any graph G, take the graph family T(G) of the graphs obtained by
adding for each vertex v ∈ V(G) two new vertices, namely v0 and v1, with the edges
vv0 and vv1, and possibly or not the edge v0v1 (see Figure 4).

Fig. 4 A graph from the family T built on a six vertices initial graph (on black vertices).
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For all such graphs G′ ∈ T (G), γP(G′) = γ(G′) = |V(G)| = |V (G′) |
3 . Now,

observing that the initial graph G may be any graph proves the above statement.
Actually, Zhao, Kang and Chang proved in [32] that this construction plays a

special role, while proving the following general bound. We denote by T the union
of T(G) over all graphs G .

Theorem 4 (Zhao, Kang, Chang [32]) For any connected graph G of order n ≥ 3,
γP(G) ≤ n/3 with equality if and only if G ∈ T ∪ {K3,3}.

Note that this bound is an improvement of the same bound proved only for trees
by Haynes et al. in [20].

To prove this result, they first recall (from [20]) that in any connected graph with
maximum degree at least 3, there exists a minimum power dominating set containing
only vertices of degree at least 3. Then, they show that the set S can be chosen so
that every vertex in S has at least two private neighbors (by minimizing the number
of edges in G[S]). The result follows.

This result can be seen as a generalization of the n
2 bound for domination, and the

constructions look similar. Interestingly, the relationship between these two bounds
is evenmore enlightened for generalized power domination, as observed in Section 5.

In [3], Baldwin et al. conjectured an upper bound on the size of a power dominating
set. They considered the possibility of unknown power injections, which in graphs
could be seen as a single leaf attached to the corresponding vertex/bus. That explains
the unusual expression of the conjecture:

Conjecture 1 (Baldwin et al. [3])
Let G be a graph on n vertices of which k are of degree one. If no vertex of G is

adjacent to more than one leaf, then the power domination number of G satisfies

γP(G) ≤
⌈
2n − k

6

⌉
.

To illustrate the conjecture and prove that this bound is tight if correct, they
present the graph depicted in Figure 5. Note that though the above theorem proves
it for graphs with no degree 1 vertex, the conjecture does not seem to have been
considered on its own elsewhere.

3.2 Regular graphs

For regular graphs, it seems that better bounds can be proved. Zhao,Kang, Chang [32]
got the first results in that direction, using as an additional condition that the graph is
claw-free. A few years later, Dorbec et al. proved in [11] the same bound, dropping
the claw-free condition, but still excluding the only known counter-example, which
is K3,3.
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Fig. 5 A graph attaining the bound of Conjecture 1. Black vertices form a minimum power
dominating set.

Theorem 5 (Dorbec et al. [11])
Let G be a connected cubic graph on n vertices. If G is not the complete bipartite

graph K3,3, then γP(G) ≤ n
4 .

The bound is known to be tight thanks to the example of Zhao, Kang, Chang [32],
consisting in a set of K4 minus an edge, using the degree 2 vertices of K4 − e to join
them into a cycle (see Figure 6). A minimum power dominating set is obtained by
choosing one vertex of degree three from each of the six subgraphs K4 − e.

Fig. 6 An example of a cubic graph reaching the bound of Theorem 5.

The proof of this result is quite technical, but the idea behind the proof may be
re-used. The strategy was, for a given initial set of vertices, to study what may happen
at the boundary of the set of monitored vertices (the peripheral vertices). That the set
does not continue to propagate gives quite some information (in particular in a cubic
graph). Then one is likely to find a vertexwhose addition to the set of selected vertices
would greatly increase the number of monitored vertices, maintaining the expected
bound. Structures that would prevent this are very special, and are retrospectively
dealt with during the initial choice of the set S of vertices.
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Recently, Kang and Wormald [21] studied the power domination number on
random cubic graphs. They proved that the power domination number of a random
cubic graph of order n is asymptotically almost surely between 0.033n and 0.068n.

3.3 Maximal planar graphs

Among the general bounds on the power domination number of a graph, there is a
recent result on maximal planar graphs, by Dorbec, Gonzales and Pennarun [10].
Applying a technique similar to the one for cubic graphs, Dorbec, Gonzales and
Pennarun [10] proved that maximal planar graphs satisfy the following inequality:

Theorem 6 (Dorbec, Gonzales, Pennarun [10]) Every maximal planar graph G on
n vertices has a power domination number at most:

γP(G) ≤
n − 2

4
.

The known graphs for which this bound is tight have at most 10 vertices (see
Figure 7 for the largest known example). This leads one to think that a better bound
should exist. Until now, the maximal planar graphs having the largest known power
domination number are obtained from a disjoint set of octahedra between which
are added edges until reaching a maximal planar graph. A vertex specific to each
octahedron is required to dominate such a graph, and thus this graph has power
domination number n

6 .

Fig. 7 The triakis tetrahedron, a maximal planar graph on 10 vertices with power domination
number 2.

This is similar to the known bounds for the domination number of maximal planar
graphs, the worst known family being maximal planar graphs obtained by adding
edges between a set of disjoint K4, which implies a domination number n

4 , for an
upper bound on the domination number of maximal planar graphs being at most n

3 .
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3.4 Bounded diameter graphs

Several attempts have been made to bound the power domination number in terms
of the diameter of a graph. It was noted by Zhao and Kang that planar graphs with
diameter at most 2 have a power domination number at most 2. However, they left
as an open question whether the power domination number of a graph of diameter
at most 2 could be large.

Soh and Koh proposed in [26] families of graphs with diameter at most 2 and
unbounded power domination number. One family is simply the Cartesian product
Kn �Km of two complete graphs:

Theorem 7 (Soh and Koh [26]) For any m ≥ n ≥ 2, γP(Kn �Km) = n − 1.

The other is an infinite graph, called the Rado graph, whose vertices are labelled
with integers. In this graph, two vertices x < y are adjacent if and only if the xth

digit in the binary representation of y is 1. Any x and y have as a common neighbor
(2x+2y), which implies that the Rado graph has diameter 2. However, no propagation
is possible in that graph since every vertex has infinitely many neighbors. Thus, the
Rado graph has the same domination number and power domination number, and
no finite subset of this graph is a dominating set. Note that the argument does not
apply though to finite subgraphs of the Rado graph.

4 Recursively defined families

In this section, we consider the graph families for which explicit formulas are known.
Generally, when searching for a power dominating set of a graph, it is not too

difficult to figure out what seems to be a good selection of vertices. This usually gives
a pretty good upper bound to the power domination number of the graph. However,
finding lower bounds turns out to be quite hard in general. In the following, we thus
get into quite some details when original techniques are used to prove lower bounds.

To start with, a nice statement is that each vertex may be used for propagation
only once, when it has exactly one unmonitored neighbor. Let a peripheral vertex
be a monitored vertex with at least one unmonitored neighbor. What the earlier
remark enables one to infer is that during the process of propagation, the number
of peripheral vertices cannot increase. So we get as an invariant property that the
number of peripheral vertices in the graph is no more than the sum of the degrees
of the vertices in the initial set S. This was explicitly stated in [24], though it was
implicitly used before. Though this seems a good handle to provide lower bounds,
what makes this invariant not so easy to use is that at the end of the propagation
steps, there are no peripheral vertices left. However, some of the later proofs show
variants of this notion of peripheral vertices that are useful.
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4.1 Products and grids

In this section, we consider results on power domination in graph products, and in
particular on theCartesian product.We also consider other lattices, such as hexagonal
and triangular grids.

It should be noted that a recent survey of results on graph products is given by Soh
and Koh in [27], which is more detailed than what we present here, and should be
referred to for having an exhaustive list of theorems on the topic. The same authors
also surveyed earlier the results on the Cartesian product in [22].

4.1.1 Cartesian product

Power domination in products of paths were among the first topics to be studied on
power domination. Dorfling and Henning [15] studied the Cartesian product of two
paths, i.e. grid graphs.

Theorem 8 (Dorfling, Henning [15]) The power domination number of the n × m
grid Pn � Pm for m ≥ n ≥ 1 is

γP(Pn � Pm) =

{
d n+1

4 e if n ≡ 4 (mod 8),
d n4 e otherwise.

In their proof, they explicitly describe the shape of the set of monitored vertices
by any initial subset of vertices in the grid. In addition, their proof also relies on a
study of the cylinder, using the number of ‘columns’ as an invariant, though, the use
of an invariant is not explicit. The question on the cylinder (i.e. the product of a path
and a cycle) was also studied later by Barrera and Ferraro [4] as well as the torus
(product of two cycles).

The hypercube is also an interesting graph family for studying power domination.
Actually, in the graphG �K2, dominating one copy ofG is enough to power dominate
the whole graph G �K2. Therefore, we get that γP(G �K2) ≤ γ(G) for any graph G.
For the hypercube, this was observed by Dean et al. in [9]. They further conjectured
that the domination number of Qn was equal to the power domination number of
Qn+1. But later on, Pai and Chiu [25] showed that γ(Q5) = 7 while γP(Q6) = 6,
disproving their conjecture.

More results are proved by Varghese and Vijayakumar in [28] and by Soh and
Koh in [27], in particular towards a characterization of graph products having power
domination number equal to one. We refer the reader to the survey [27] for more
details.

4.1.2 Strong product

The study on the products of paths was continued by Dorbec, Mollard, Klavžar and
Špacapan in [13] with the three other classical products.
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For the strong product, they prove the following lower bound

Theorem 9 (Dorbec et al. [13]) Let m ≥ n ≥ 2. Then

γP(Pm � Pn) ≥ max
{⌈m

3

⌉
,
⌈m + n − 2

4

⌉}
Whenever 3n − m − 6 . 4 (mod 8), one can construct an initial set S which

achieves this lower bound. For the remaining case, Soh and Koh claimed in [27] to
have proved that the correct value is dm+n−2

4 e + 1 though their proof is missing some
details.

An interesting aspect of this lower bound is that it is proved by considering not
just the number of peripheral vertices, but the number of non-surrounded vertices,
that is of monitored vertices having at most seven monitored neighbors (recall that
the maximal number of neighbors in the strong product of two paths is eight). This
includes all peripheral vertices, but also the vertices from the border of the grid. The
first step of the proof is then that the same invariant property can be proved for non
surrounded vertices, under some conditions (by proving that any propagation that
would start on a vertex from the border could have been made from another vertex
too). This invariant enables one to prove this lower bound, based on the number of
vertices on the border of the grid.

Again, Soh and Koh in [27] claim the same results for the product of cycle, based
on the same proof, but they do not explain how they adapt the invariant.

4.1.3 Direct product

For the direct product of paths (which has two connected components), the first
bound obtained in [13] can be stated as follows:

Theorem 10 ([13]) The power domination number of the direct product Pn ×Pm for
m ≥ n ≥ 1 is

γP(Pn × Pm) =

{
2d n4 e if n is even,
2dm4 e if n is odd and m even,

If both m and n are odd,

γP(Pn × Pm) ≤ max
{⌈m

4

⌉
+

⌈
m − 2

4

⌉
,
⌈m + n

6

⌉
+

⌈
m + n − 2

6

⌉}
Actually, it is proved that one component has power domination number exactly

max
{⌈

m
4
⌉
,
⌈
m+n

6
⌉}

whereas for the other component, the only lower bound proved
is n

4 . The proof is very technical, using a connection with a percolation process on a
square grid as a reference.

The case of the product of two cycles was also considered in [27], who mentioned
some earlier communications in a workshop on the topic. They also use the notion
of peripheral vertices (there called boundary vertices), with a nice trick. Their idea
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is to take a minimum power dominating set S of the graph, remove one vertex v from
it, and then count the number of boundary vertices for P∞(S \ {v}).

4.1.4 Lexicographic product

The case of the lexicographic product is easier, since the role of the graph G is much
more important than the role of H in G ◦ H. Actually, unless the power domination
number of H is one, it is as good to totally dominate G ◦ H than to use propagation.

Theorem 11 ([13]) For any nontrivial graphs G and H, if G has no isolated vertices,
then

γP(G ◦ H) =
{
γ(G); γP(H) = 1 ,
γt (G); γP(H) > 1 .

4.1.5 Hexagonal grids and triangular grids

The first results on the hexagonal grid are given by Ferrero, Varghese1 and Vi-
jayakumar in [18]. They consider hexagonal grids with an hexagonal outer shape
and give the exact domination number of those grids. The method used is related to
the method of Dorfling and Henning in [15] for the square grid.

Theorem 12 (Ferrero, Varghese, Vijayakumar [18]) Let HM(n) be the hexagonal
grid with an hexagonal outer shape whose side is made of n hexagons. We have

γP(HM(n)) =
⌈
2n
3

⌉
.
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Fig. 8 The hexagonal grid HM(3).
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Fig. 9 The triangular grid T5.

1 Seema Varghese who is cited here, is actually the elder sister of Seethu Varghese who was cited
elsewhere. Both of them were PhD students of Vijayakumar.
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When studying the triangular grid with hexagonal outer shape, Bose, Pennarun
and Verdonschot [6] noticed a conection with that earlier result. They got a similar
bound:

Theorem 13 (Bose, Pennarun, Verdonschot [6]) For k ≥ 1, le Tk be the triangular
grid with hexagonal shape, whose side is made of k vertices. We have

γP(Tk) =

⌈
k
3

⌉
.

However, to show the lower bound, they used a very different technique than
Ferrero, Varghese and Vijayakumar. Their nice idea is to consider a projection of
the mogreyc-amacc:nitored set on one side, and then count the number of peripheral
vertices of that projection when about half the vertices are monitored. They prove
that this second number is a lower bound to the number of peripheral vertices before
the projection. This results in a very original way of using the peripheral vertices
invariant.

4.2 Other Recursively defined families

In this section, we survey the main recursively defined families for which the power
domination number has been computed.

4.2.1 Generalized Petersen graphs and permutation graphs.

The case of generalized Petersen graphs was considered by both Barrera and Ferrero
in [4] and by Xu and Kang in [31]. In [4], they suggest a more general study on
Cayley graphs as a continuation of this study.

Actually, the work was continued on permutation graphs which form a super-
family of generalized Petersen graphs. Those were considered by Wilson in [30]. In
his paper, Wilson mainly conjectured that in a permutation graph G on n vertices
(that is based on two cycles on n

2 vertices), γP(G) ≤
⌈
n
4
⌉
. He proved that the bound

in the conjecture is best possible. He also proposed a more detailed conjecture that
holds all the open cases in his main conjecture.

4.2.2 Sierpiński graphs

The case of the well known Sierpiński graphs (see Figure 10) is dealt with by
Dorbec and Klavžar in [12]. Exact values are given for all Sierpiński graphs, for
power domination or generalized power domination as described in Section 5.

Another related family called WK-pyramidal networks was studied by Varghese
and Vijayakumar in [28]. This family contains Sierpiński graphs as an induced sub-
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graph, with the addition of (pyramidal) extra vertices in each clique (see Figure 11).
Again, the generalized power domination number of almost all WK-pyramidal net-
works is explicitely given.

Fig. 10 The Sierpiński graph S4
3

Fig. 11 The WK-pyramidal network
WKP(5,2).

4.2.3 Other families

We here present the other families which were considered, without much details. For
De Bruijn graphs and Kautz graphs, upper bounds on the power domination number
were first given by Kuo and Wu in [23], then the exact values were characterized by
Grigorious, Kalinowski and Stephen in [19].

The case of Knödel (see Figure 12) and Hanoi graphs (see Figure 13)was consid-
ered by Varghese, Vijayakumar and Hinz in [29], who gave close formulas for the
power domination number of subfamilies of these graphs.

5 Generalized power domination

A common generalization of domination and power domination was introduced by
Chang et al. in [8], called k-power domination. In this section, we give its definition
and state some of the main results on k-power domination.
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Fig. 12 The Knödel graphW3,16 Fig. 13 The Hanoi graph HP2
4 .

5.1 Definition

The idea is to denote by k the number of non-monitored neighbors of a vertex that a
monitored vertex may propagate to. This gives the following definition:

Definition 5 (Chang et al. [8])
Let G be a graph, S ⊆ V(G) and k a non-negative integer. We define the sets(
Pi
k
(S)

)
i≥0 of vertices monitored by S at step i by the following rules.

• P0
k
(S) = N[S].

• Pi+1
k
(S) =

⋃
N[v], v ∈ Pi

k
(S) such that

��N[v] \ Pi
k
(S)

�� ≤ k.

Similarly as for power domination, a set S of vertices is a k-power dominating set
of a graph G if P∞

k
(S) = V(G).

Note that with this definition, γP,0(G) = γ(G) and γP,1(G) = γP(G), so we have a
common generalization of domination and power domination. This may sound a bit
artificial, though many results presented below tend to show that this makes sense.

5.2 First results

One first thing to observe about k-power domination is that in any graph, a k-power
dominating set is also by definition a (k+1)-power dominating set. We thus naturally
have

γ(G) ≥ γP(G) ≥ γP,2(G) ≥ γP,3(G) ≥ . . . (1)

It was noted in [8] that this inequality chain can not be improved in a general
setting:

Remark 1 (Chang et al. [8]) For any finite nonincreasing sequence of positive inte-
gers (xk)0≤k≤n, there exists a graph G such that γP,k(G) = xk for 0 ≤ k ≤ n.
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The construction to prove this statement is a generalization of the construction of
the family T that was used to show the n

3 bound for domination. Start initially with
the corona of a complete graph Kx0 . This enforces γ(G) = x0. Then to x1 vertices of
the complete graph, attach a second leaf, and possibly link it with the previous leaf.
To x2 of these vertices, attach a third leaf and add any number of links between the
three leaves. Continue in such a way until xk = 1 or the sequence is finished. See
Figure 14 for an example.

Fig. 14 An example of a graph G with γ(G) = 5, γP (G) = 3 = γP,2(G), and γP,3(G) = 1. A
minimum (1-)power dominating set is also drawn.

5.3 Bounds for generalized power domination

Using this generalized setting, many results proved on power domination can be
extended. We now summarize some of the main bounds found. Most of them were
mentioned earlier, for the power domination number.

The first result is the following:

Theorem 14 (Chang et al. [8]) For any connected graph G on n ≥ k + 1 vertices,
we have γP,k(G) ≤ n

k+2 , and this bound is best possible.

This result can be proved in the sameway as the n
3 bound for (1-)power domination,

and the examples reaching the bound are basically the same, obtained from any graph
G, to which each vertex is attached k + 1 leaves.

Interestingly enough, the (1-)power domination bound for regular graphs also
extends well to generalized power domination, and this is actually how the result is
proved in [11].

Theorem 15 (Dorbec et al. [11])
Let k ≥ 1 and let G be a connected (k + 2)-regular graph of order n. If G ,

Kk+2,k+2, then γP,k(G) ≤ n
k+3 , and this bound is tight.
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It should be noted that the Sierpiński graphs in [12] and the WK-pyramidal
networks in [28] are studied in the generalized setting.

6 Propagation radius

Another parameter closely related to power dominationwas introduced to indicate the
number of propagation steps required to monitor the whole graph from a minimum
power dominating set.

It was introduced independently first by Dorbec and Klavžar in [12], where they
called the parameter propagation radius (denoted radP,k(G) for k-power domination),
and later by Ferrero et al. [16], who called it power propagation time (denoted
ppt(G)). We here stick to the earlier name and notation, namely the propagation
radius.

Definition 6 (Propagation radius) The radius of a k-power dominating set S of a
graph G is defined by

radP,k(G, S) = 1 +min{i : Pi
k(S) = V(G)} .

The k-propagation radius of a graph G can be expressed as

radP,k(G) = min{radP,k(G, S), S is a k-PDS of G, |S | = γP,k(G)} .

Note that the power propagation time, denoted ppt(G), is defined so that it exactly
matches the propagation radius, and we have ppt(G) = radP,1(G). Note though that
things are made a little confusing due to a slight difference between the notations
of Aazami [1] and Chang et al. [8] for monitored sets at step i. In the first paper,
N[S] is the step 1 of monitoring (denoted N[S] = S[1] in [16]), while in the second,
N[S] = P0(S). Fortunately, the values coincide for the propagation radius.

The following early results are proved for the propagation radius:

Theorem 16 (Dorbec, Klavžar [12]) Let G be a graph and k a positive integer.

• We have γP(G) = γ(G) if and only if radP,1(G) = 1.
• If ∆(G) ≤ k + 1, then γP,k(G) = 1 and radP,k(G) = rad(G).

It should be noted that γP,k(G) = 1 implies radP,k(G) ≥ rad(G) but not the
equality, as is illustrated by the graph of Figure 15.

From the propagation radius, we can also infer a bound on the power domination
number with the number of peripheral vertices. Since the number of peripheral
vertices may not increase in 1-power domination, and these are the only vertices that
can propagate, the peripheral vertices invariant translates to the following result:

Theorem 17 (Liao [24]) For any graph G on n vertices with maximum degree ∆, we
have:

γP(G) ≥
n

1 + ∆ radP,1(G)
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1 2

2
3

Fig. 15 In the above graph with γP (G) = 1, rad(G) = 2 but radP,1(G) = 4

This is easily verified by the fact that the number of peripheral vertices at all time
is at most ∆ γP(G), so the total number of vertices monitored is at most

P∞(S) ≤ γP(G) + ∆ γP(G) radP,1(G) .

On its own, this result is difficult to use since there is no general relationship
between the diameter or the radius of a graph and its power domination radius,
as observed by Dorbec and Klavžar [12] and independently by Ferrero et al. [16].
Similar examples were given of graphs with small power domination number, small
diameter and very large propagation radius. One such example from [12] is depicted
in Figure 16. It illustrates the statement for 3-power domination.

x

v1

v2 v9

v10

w1

w2

w9

u1

u2 u3

u4

Fig. 16 The peacock graph, with 3-power domination number 1, radius 2, but 3-propagation radius
equal to 11.

The number of articles where the propagation radius has been studied is not yet
very large. In the initial paper [12], the propagation radius of Sierpiński graphs was
computed in the same time as their k-power domination number. In [14], in the same
time as the authors studied the changes on the generalized power domination number
by canonical graph changes, they considered the possible evolution of the propagation
radius (when the power domination number was modified). In [28], Varghese and
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Vijayakumar considered the propagation radius for WK-pyramidal networks, while
in [29], Varghese, Vijayakumar and Hinz studied the power domination number and
propagation radius in Knödel graphs and Hanoi graphs.

7 Open problems and perspectives

In this final section, we present some research directions and questions that arise
from the results surveyed here.

7.1 About the relationship between k and `-power domination

One first question is about the link between the k and `-power domination numbers
of a graph for k , `. It was stated in Section 5 that when k increases, the k-
power domination number can only decrease. We have shown how these domination
numbers can vary quite freely, but these examples use articulation points (i.e. vertices
whose removal disconnect the graph). The following questions come naturally, with
a special interest in 2-connected graphs to avoid all the cases using articulation
points.

•? Questions

• Can we find a characterization of the 2-connected graphs such that γP,k(G) =
γP,`(G) for some k < `? And in particular for ` = k + 1?

• Can we answer the same question in general?

7.2 About regular graphs

For regular graphs, a little is known already, and more could probably be proved.
Everything that is known for power domination extends nicely to generalized power
domination, and is summarized as follow. For a connected regular graph G of order
n and degree ∆, we have:

• If ∆ ≤ k + 1, γP,k(G) = 1.
• If ∆ = k + 2, γP,k(G) ≤ n

∆+1 , with the single exception of the bipartite complete
graph Kk+2,k+2.

A conjecture was made in [11] that the bound n
∆+1 could hold for larger ∆,

independently of k. Seemingly, some counterexamples were found to that conjecture
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at a workshop in Balatonalmádi in 2017, though there is no writen evidence. The
following question of an upper bound certainly is of interest, then.

•? Questions

• What is the best possible upper bound on the power domination number of a
connected regular graph with degree at least four?

• More generally, what is the best possible upper bound on the k-power domination
number of a connected regular graph with degree at least k + 3?

7.3 Hypercubes and products

Domination in graph products is a nice but difficult problem, as illustrated by Viz-
ing’s conjecture. However, power domination seems to behave quite differently on
products, as we have seen in Section 4.1.

First, the question of the hypercube is still open. The intuition that γP(Qi+1)
would be equal to γ(Qi) for all i was disproved, with the smallest counterexample
being the pair Q5-Q6. The question remains open for generalized power domination,
as mentioned below. We also present a general question for graph products.

•? Questions

• Can more counterexamples be found to disprove that γP,k+1(Qi+1) = γP,k(Qi) for
k ≥ 1? Can we predict the smallest counter-example for a given k?

• For some product ⊗, can we find some nontrivial way to relate γP,k(G), γP,`(H)
and some γP, f (k,`)(G ⊗ H)? Can such relations be completed with relations also
on the propagation radii?

7.4 Maximal planar graphs

For planar graphs, we surveyed the known results in Section 3.3. The problems sound
interesting and promising, but the initial problem remains open, with the following
questions.

•? Questions
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• Is there an infinite maximal planar graph family that requires more than n
6 vertices

to power dominate, as does the triakis-tetrahedron of Figure 7?
• More generally, what is the best α such that for all maximal planar graphs G,
γP(G) ≤ α |V | +O(1)?

• Finally, what is the best possible upper bound on the size of a minimum k-power
dominating set of a maximal planar graph?

Note that the second question is likely to be difficult, as the corresponding question
for domination remains open.

7.5 Propagation radius

To conclude, there are many other questions to explore concerning graph classes, in
particular, the introduction of the propagation radius opens up many new questions.

•? Question

• For the main results proposed up to now on power domination, what can be said
about the propagation radius?
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