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Abstract Supervised deep learning has achieved re-

markable success in various applications. Successful

machine learning application however depends on the

availability of sufficiently large amount of data. In the

absence of data from the target domain, representative

data collection from multiple sources is often needed.

However, a model trained on existing multi-source data

might generalize poorly on the unseen target domain.

This problem is referred to as domain shift. In this pa-

per, we explore the suitability of multi-source training

data selection to tackle the domain shift challenge in

the context of domain generalization. We also propose a

microservice-oriented methodology for supporting this

solution. We perform our experimental study on the use

case of building energy consumption prediction. Exper-

imental results suggest that minimal building descrip-
tion is capable of improving cross-building generaliza-

tion performances when used to select energy consump-

tion data.
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knowledge transfer · data-driven-modeling · energy
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1 Introduction

Predictive modeling in buildings plays an integral part

in the efficient planning and operation of power sys-

tems. Adequate operational data are usually a pre-

requisite, especially when deep learning is adopted

[38, 36, 22]. Powerful machine learning models should

rely on insightful utilization of relevant operational data

in a sufficient amount.

Nevertheless, building historical data are not always

available, such as in newly built and renovated build-

ings [12]. Renovation or replacement of existing build-

ings consider improving their energy efficiency based

on energy saving measures (e.g. enhanced thermal in-

sulation, highly energy-efficient electrical systems). It

plays an important role in reducing the total energy
consumption and lowering the greenhouse gas emissions

of the existing building stock. Modeling of these build-

ings thus poses a challenge since that we do not have

a priori knowledge about their improved energy con-

sumption performance.

Already existing energy consumption data about

other buildings can howbeit be obtained. The main

idea of our work thus consists on leveraging represen-

tative data from multiple different (but related) source

buildings. However, with possible domain shifts among

multi-source and target data, it is improper to apply

a single model via combining all multi-source data.

Domain shift [40] is a key challenge where distribu-

tions mismatch across different data domains. There-

fore, models trained on one or many source domains

generalize poorly when applied to a different target do-

main. Namely, in our context, energy consumption pro-

file in buildings depends considerably on several contex-

tual factors, such as the building type (e.g. residential,

commercial, office), size, age, location, etc. Combining
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energy data from disparate source buildings to model

a target building from which no operational data are

available, is consequently counterproductive and will

adversely hurt the target performance.

Proposed approaches addressing the domain shift

challenge are mainly classified into domain adaptation

and domain generalization. Domain adaptation [5, 34]

utilizes labeled source data and unlabeled or sparsely

labeled target data to obtain a well-performing model

on the target domain. However, in several cases, the

target data are not available. Domain Generalization

(DG) [3, 29] addresses such cases by utilizing multiple

source domains. This paper considers the domain gen-

eralization area of research. We aim to train accurate

predictive models that perform well on unseen target

buildings which has no operational data, by leveraging

knowledge from different but related source buildings.

We also suppose to have a contextual description of the

target building that can be utilized for source data se-

lection. Data selection therefore enables to utilize most

relevant source buildings based on their contextual sim-

ilarity to the target building to be modeled.

For this purpose, we investigate the suitability of a

data selection [21] approach for cross-building domain

generalization. To the best of our knowledge, our work

is a first attempt to model a target building with min-

imal contextual information about it, and thus tack-

ling the data unavailability problem by transferring

knowledge from auxiliary buildings. Prior studies in this

framework [1, 7] require labeled data of the building in

question, such as historical consumption data, physical

parameters of the building design, meteorological condi-

tions, and/or information about the occupancy profiles,

in order to train a reliable building energy consump-

tion model. Our approach goes beyond state-of-the-

art methods and proposes to transfer knowledge across

multiple sources buildings while using minimal contex-

tual information about the target building. This allows

us to model buildings when we do not dispose of energy

consumption data, such as in the case of renovated or

newly-built buildings. To summarize, our main goal is

to build a model that accurately predicts the future

energy consumption of a previously unseen building,

given training data from one or many selected build-

ings. For supporting our implementation, we propose

a microservice-oriented system workflow that promotes

scalability and elasticity when deployed in the cloud.

The remainder of this paper is structured as follows.

Section 2 presents a classification of domain generaliza-

tion techniques. Section 3 provides an overview on the

microservices architecture of our proposed system and

a definition of the predictive model we utilize. Section 4

depicts the experimental setup and summarizes results.

Section 5 discusses experimental findings, and finally in

Section 6, we draw conclusions and present an outlook

and suggestions for future research.

2 Approaches to Domain Generalization

Domain generalization is a form of transfer learning,

which applies expertise acquired in source domains to

improve learning of different but related target domains

[31]. Domain generalization focuses on the generaliza-

tion ability of previously unseen target domains, in

which no data are available during training. Proposed

domain generalization approaches typically rely on the

assumption that source domains and unseen target do-

mains share common features that can be extracted.

Hence, they seek to learn a domain agnostic represen-

tation or model. Domain generalization approaches pro-

posed in literature may be roughly classified into three

categories; (1) Data representation based techniques

[29, 13, 17, 23, 25] that seek to learn domain agnostic

representation that captures similarities across domains

and where the domain discrepancy is minimized. (2)

Ensembling techniques [46, 5, 8, 27] that aim to build

ensembles of per-domain models that will be then fused

at test time. (3) Meta-learning based techniques [24, 2]

that rely on a model agnostic training procedure that

trains any given model so that it mitigates domain shift

between domains.

Muandet et al. [29] propose to learn new domain in-

variant feature representations by minimizing the dis-

similarity across domains via domain-invariant com-

ponent analysis and a kernel-based optimization algo-

rithm. Ghifary et al. [13] propose a Multi-Task Auto-

Encoder (MTAE) that extends auto-encoders into a

model that jointly learns to perform self-domain data

reconstruction and between-domain data reconstruc-

tion. Xu et al. [46] use learned low-rank exemplar-

SVMs, which can be defined as a linear Support Vector

Machine (SVM) classifier trained on a single positive

training instance and all negative training instances,

for both domain adaptation and domain generalization.

For domain generalization, the authors propose to ei-

ther equally fuse all exemplar classifiers, or use the ex-

emplar classifiers in the latent domain which the tar-

get data more likely belongs to. Given multiple source

datasets/domains, Khosla et al.[17] propose an SVM

based approach, in which the learned weight vectors

are common to all datasets. Li et al. [23] proposed a

low-rank parameterized convolutional neural network

model for end-to-end DG learning. Li et al. [24] pro-

pose a Meta-Learning Domain Generalization (MLDG)

approach. It consists in a model agnostic training proce-

dure that can improve the domain generality of a base
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learner. This procedure is based on synthesizing vir-

tual training and virtual testing domains within each

mini-batch. The meta-optimization objective consists

in minimizing the loss in the training domains, while si-

multaneously improving the loss in the testing domain.

Our work is more related to the model selection

techniques. We borrow the per-domain model build-

ing idea described in [46]. However, we select domains

rather than models and combine their respective data

to form a representative training set. We assume in our

case that we dispose of a minimal description of the tar-

get domain that will allow us to define our data selec-

tion criteria. Some examples of contextual descriptive

features are building typology, area, year of construc-

tion, and number of occupants.

Source domain selection has been proposed in the

context of multi-source domain adaptation [10, 6]. This

allows to select good source that are most relevant to

the target domain and avoid negative transfer [33]. In

[10], authors proposed data-dependent regularizer for

domain selection. Other works [6, 9] employed all source

domains for adaptation but assigned different weights

to different source domains. Weights are generally com-

puted on the basis of some similarity measures be-

tween target and source domains. Several domain sim-

ilarity metrics have been proposed for selection such

as Kullback-Leibler divergence [41], Jensen-Shannon di-

vergence, maximum mean discrepancy [4], the Wasser-

stein metric [39, 45] or the Kolmogorov-Smirnoff statis-

tic [21, 15]. Even within one domain, adaptation per-

formance varies significantly depending on the choice of

data samples [35]. Other related work in the direction

of data selection include using reinforcement learning

to select data during neural network training [11].

Both domain adaptation and domain generalization

aim to learn an accurate model for the target domain by

leveraging labeled data from the source domains. The

difference between them is that for domain adaptation,

unlabeled data and even a few labeled data from the

target domain are utilized for adaptation. Whereas, for

domain generalization, target data are not available.

Our work falls within the latter case. We solely dis-

pose of a minimal contextual description (metadata) to

capture properties of the target domain for knowledge

transfer. Some works have proposed to exploit avail-

able metadata about domains/tasks in addition to do-

main data to guide multi-domain learning and multi-

task learning [47, 48]. Metadata in this work consisted

of semantic descriptors of domain or task, and are com-

bined with feature vectors during training. Rather than

combining domain metadata and data, we are utilizing

target domain metadata for source data selection. This

way, we can address the domain generalization setting

in which no target domain’s data are available during

training. We therefore propose in our context to se-

lect similar source buildings’ data based on the target

building’s metadata and build a predictive model for

the target building. The following section gives an in-

depth description of our proposed methodology.

3 The Proposed System

Our system main objective is to train an energy predic-

tive model for an unseen target building based solely on

its contextual description. In our special case, contex-

tual descriptions concern high-level information about

the target building we seek to model, e.g. typology, year

of construction, location, etc. The training data of the

target building’s predictive model is obtained through

an energy consumption data selection workflow. Data

selection is performed based on the contextual similar-

ity between the target building and the source build-

ings. The steps performed by our proposed system at

each request are shown in Figure 1.

Our approach consists in training a predictive model

for an unseen target building via source data selec-

tion. Data selection is based on the similarity be-

tween the available source buildings and the unseen tar-

get building contextual descriptions. We assume that

source buildings energy data and contextual descrip-

tions are pre-collected and stored, whereas the tar-

get building contextual description is provided by sys-

tem users. Once similar source buildings are identified,

their corresponding energy data are retrieved. Energy

data from buildings generally consist of historical en-

ergy consumption data along with critical exogenous

variables such as weather conditions, holidays, etc. Re-

trieved source data from multiple sources are then com-

bined to form a training dataset, and provided to the

train a predictive model for the target building. A more

detailed overview of our proposed workflow is provided

in Figure 3 of the following section.

Our system users are mainly building energy profes-

sionals and third-party building management systems

which seek to accurately model a building on which

operational energy data are not available. An accu-

rate prediction of energy demands at the customer and

building level will provide useful information to make

decisions on energy generation and purchase. In this

study, we attempt to explore the suitability of similar

training data selection in the context of building energy

consumption modeling.
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Fig. 1 Flow chart describing the main steps performed by
our system that provide cross-building knowledge transfer via
source buildings selection. Rectangles show tasks. Parallelo-
gram is used to show input data from the query.

3.1 System Architecture and Data Specification

We propose to establish a microservices-based archi-

tecture (MSA) for cross-building knowledge transfer.

Each individual microservice is fully-independent, self-

contained, and specific to a single task. Unlike mono-

lithic applications, the MSA breaks down the applica-

tion into a suite of flexible, independently deployable

and loosely coupled modules that are accessible via

a lightweight language-agnostic application program-

ming interface (API). APIs are mainly based on asyn-

chronous messaging protocols.

MSA offers several benefits, such as an increase in

agility in development and delivery, resilience to failure,

reliability in operation, maintainability, separation of

concerns, and ease of deployment. Compared to service-

oriented architecture (SOA), the core intent of the MSA

pattern is to limit a service to a single purpose, enabling

it to be fully decoupled and thus much more easily

scaled and swapped out. Contrary to MSA, component

sharing is one of the core tenets of SOA. SOA therefore

relies on multiple services to fulfill a business request.

Whereas MSA minimizes the need to share components

through bounded context, which allows the coupling of

a component and its data as a single unit with minimal

dependencies.

Figure 2 shows the various microservices and their

coupling in our proposed system. Our system is capable

of continuously ingesting and integrating data from ex-

ternal providers such as weather data and open energy

data. Time series data about building energy consump-

tion and weather data are respectively stored in the

time series store and the weather data store. These two

stores are linked together through the contextual infor-

mation. In addition, contextual information provides a

high-level description about the building environment,

such as the year of construction, the building type, the

size and the number of occupants.

Fig. 2 Our microservice architecture. Dotted rectangles rep-
resent individual microservices. Grey rectangles represent ex-
ternal third-party services.

The entry point of our system workflow is the data

selection step. Via our system’s API, users define the

required use case by providing a key-value description

of the unseen target building to model. No prior knowl-

edge on the target building’s energy consumption is

needed. The most relevant time series data correspond-

ing to most similar buildings, is then identified and se-

lected. Similar buildings are identified based on the con-

textual information on the target building and the con-

textual information on other source buildings available

within the system. The training data selection service

loads contextual information from the contextual store

via message queues.



A microservice-based framework for exploring data selection in cross-building knowledge transfer 5

Once similar source buildings identifiers are avail-

able, predictive model learning service will load cor-

responding data from the time series store and/or

weather data store via message queues. Training

dataset will be then prepared using data transformation

techniques, e.g. missing data imputation, outlier re-

moval, etc. Finally, predictive learning model is trained

in order to predict future energy consumption for a pre-

defined forecasting horizon. In current work, we rely on

a recurrent neural network for predictive modeling. The

overall microservices workflow and data flow in our sys-

tem is sketched in Figure 3.

Our training data selection workflow starts at each

user request. It parses the contextual information about

the target building contained in the request, and stud-

ies its similarity with pre-stored contextual information

about available source buildings. Data in our system are

shared between microservices following an event-based

communication. Microservices therefore communicates

via event messages. This enables loose coupling be-

tween collaborating microservices and privileges asyn-

chronous behavior. Once similar source buildings are

successfully identified, their identifiers are shared with

the predictive model learning service. Building data and

weather data handling microservices plays the role of

data providers when selecting training data and train-

ing predictive models. Building data handler provides

contextual information and energy consumption time

series data about available source buildings to respec-

tively the training data selection microservice and the

predictive model learning microservice. Weather data

handler provides exogenous weather data, such as air

temperature, atmospheric pressure and wind speed, to

the predictive model learning microservice.

To deal with potentially large-scale data, we rely

on a multi-modal data store in the backend. Time se-

ries data are stored in a traditional relational data base

management system (RDBMS). Our system is trans-

parent to the specific database technology used. Con-

textual data about buildings and their associated time

series is stored in a graph database. An overview on

data management behind our API is shown in Figure 4.

3.2 Suitability of Training Data Selection

In this study, we investigate the suitability of train-

ing data selection for cross-building knowledge transfer.

The main logic behind our suitability study consists in

training a predictive model using time series data of

each building available in the dataset. Then, we test

the cross-building generalization performance of each

resulting predictive model, i.e. test it on other unseen

buildings of the dataset. This will allow us to study

the correlation between good generalization results be-

tween two buildings and similarity between their con-

textual information. We can therefore study the possi-

bility to select representative building time series data

based solely on available target building contextual in-

formation.

Considering for example the task of energy con-

sumption prediction for a residential building occupied

by two people, built in 1990, renovated in 2014 and lo-

cated in Lyon. Having no operational data about the

target task, it is required to utilize other operational

data on different source buildings to build a predic-

tive model. However, different data collected from dis-

tant source buildings would necessarily induce negative

transfer. We thus study a method that will enable us

to select only similar buildings that will yield efficient

cross-building prediction results. For example, we se-

lect residential buildings that are constructed around

the same year, located in a region with similar climate,

or subject to similar occupancy profile as the target

building.

In our experimental study, we propose to compute

similarities between target building and source build-

ings contextual information using a pairwise distance.

Computational complexity of data selection is there-

fore O(n), where n is the total number of available

source buildings. Predictive models then learn to pre-

dict future building-level aggregate energy consumption

based on energy consumption history and both past

and future climate data. In this work, we focus on the

meteorological data factor by feeding our model with

past and future climate data along with the aggregate

past energy consumption. The motivation behind uti-

lizing both future and past climate data are to attempt

to capture the correlation between day-to-day weather

conditions changes and the building’s energy load pro-

file.

3.3 Predictive Model Learning

Recently, deep learning is widely adopted for build-

ing energy consumption prediction tasks. Various deep

learning model have been used, e.g. recurrent neural

networks (RNN) [19, 43, 20], sequence to sequence

(Seq2Seq) models [28], combinations of convolutional

neural network and recurrent neural network (CNN-

RNN) [42, 18]. In this work, we propose an unidirec-

tional Long-Short Term Memory Recurrent Neural Net-

work (LSTM-RNN) for the predictive modeling task.

We present the architecture in Fig. 5. RNNs [26] are

a powerful class of supervised machine learning models

that are capable of modeling sequential data. They are

artificial neural networks where connections between



6 Mouna Labiadh* et al.

Fig. 3 Overall representation of the microservices workflow and data flow.

Fig. 4 Contextual information and time series data management component diagram of our proposed system.

units can form cycles, which allows propagation of hid-

den state information from early parts of the sequence

back to later point. LSTM [14] is a RNN architecture

that helps to prevent the effect of vanishing and ex-

ploding gradients [32] often encountered in conventional

recurrent networks. LSTM offers the ability to pass in-

formation selectively across sequence steps while pro-

cessing sequential data one element at a time.

Our model is trained to predict daily energy con-

sumption of subsequent week. As input, we provide

daily energy consumption of the previous week and cli-

mate time series of the subsequent week.

Our training set X = {(x(1), y(1)), (x(2), x(2)), ...} is

structured into time-based sequences of fixed length. In-

put sequences are denoted by (x(1), x(2), ..., x(T )) where

Fig. 5 Architecture of the LSTM-RNN model.

T denotes the sequence length, and each value x(t) ∈
R7 fort ∈ 1..T . Feature vectors are composed of current

week’s aggregate energy consumption, air temperature,

average horizontal solar irradiance, wind speed, and

these same features for subsequent week. Similarly, tar-
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get sequences are denoted by (y(1), y(2), ..., y(T )), where

y(t) ∈ R is a vector denoting the energy consumption

at future time steps. The goal of the model is to predict

future energy consumption y(t) from the input feature

vector x(t).

The architecture of the network is composed of sev-

eral hidden layers. It consists of one or more LSTM

layers followed by one or more fully-connected layers.

The output layer is a fully-connected layer with a lin-

ear activation function. The model is trained using the

Root Mean Squared Error (RMSE). We also use the

batch normalization mechanism [16] to address the in-

ternal covariate shift problem usually encountered in

deep neural networks training. Training phase were con-

ducted using Backpropagation Through Time (BPTT)

[44] optimization algorithm in the context of LSTM

networks. BPTT is commonly used to train recurrent

networks. It “unfolds” the neural network in time by

creating several copies of the recurrent units which can

then be treated like a feed-forward network with tied

weights. BPTT algorithm is known to be computation-

ally efficient [37, 14], having a computational complex-

ity per time step of O(W), where W is the number of

weights.

During our experimental study, we explore vari-

ants of this architecture to fine-tune its hyperparam-

eters, e.g. number of fully-connected layers, number of

LSTM layers, etc. We retain the architecture variant

that yields the best cross-domain and in-domain gener-

alization results.

4 Experimental Setup

We perform our experimental studies on the use case

of building energy consumption prediction. Our system

transfers knowledge from several buildings, to one tar-

get building on which we assume we are facing a data

unavailability problem.

4.1 Dataset

The proposed solution is experimentally evaluated us-

ing the REFIT Electrical Load Measurements dataset

[30]. The dataset contains cleaned electrical consump-

tion measurements for 20 UK households at aggregate

and appliance level. For each household, the whole

house aggregate loads and nine individual appliance

measurements at 8-second intervals were collected con-

tinuously over a period of approximately two years.

During monitoring, the occupants were conducting

their usual routines. In this paper, only the aggregate

electrical consumption values for the whole house is

used. We work with one-day resolution data which were

obtained by summing the original data.

In addition, climate data was also collected from a

nearby weather station. Fig. 6 highlights the differences

of energy load profiles across a subset of four buildings

in the REFIT dataset. Descriptions about each building

comprises information related to occupancy (number,

age, gender, etc.), size, construction year, typology, and

total number of owned appliances.

Fig. 6 Monthly energy load profiles across buildings.

In Fig. 7, we illustrate the REFIT dataset descrip-

tion with a heatmap. We consider five descriptive fea-

tures for each building; the number of occupants, the

construction year, the number of appliances, the build-

ing type, and the size. The number of occupants in the

REFIT dataset varies from one and four occupants. The

construction years of buildings are grouped into eight

classes based on year intervals spanning from 1850 to

post 2002. Three house types are present in the RE-

FIT dataset; detached, semi-detached, and mid-terrace.

Building sizes are computed based on number of bed-

rooms.

Fig. 7 Heatmap of the REFIT dataset description after pre-
processing; Missing data in one column were replaced with the
most frequent value in that column, categorical values were
label encoded, resulted values were scaled between 0 and 1.



8 Mouna Labiadh* et al.

To depict similarities between buildings, we start by

hierarchically clustering them based on the provided de-

scription vectors. Categorical data was one-hot encoded

as a further pre-processing step. We use the Euclidean

distance to compute pair-wise similarities. Clustering

results are illustrated in Fig. 8 by a dendrogram. The

figure identifies a cluster of fourteen similar buildings,

which is composed of the subset of the following build-

ings {1, 3, 4, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20}. Build-

ings 17 and 8 are identified as the most similar build-

ings in the dataset. Looking at their descriptions, they

share the same number of occupants, building type, and

construction year class. Building 17 also has only one

more bedroom compared to building 8. Building pairs

{9, 11}, and {16, 20} are also respectively identified as

mutually similar.

4.2 Model Training

For each building, we use data between April 2014 and

May 2015 for training. For cross-building evaluations,

we use data between April 22nd, 2014 and June 1st,

2014. The whole dataset was scaled so all values will

be between 0 and 1, using min-max normalization algo-

rithm. The input and the output sequences are of length

7. The input corresponds to a 7-dimensional feature

vector. Our network is composed of two hidden layers;

one LSTM layer of size 256, and one fully-connected

layer of size 128. The Rectified Linear Unit (ReLU) is

used as the non-linear activation function for hidden

layers. The output layer consists of a fully-connected

layer with linear activation function. The fine-tuning

of weights is done using Gradient Descent algorithm

with an exponentially decaying learning rate ranging

between 10−3 and 10−5. Weights initialization follows

a normal distribution with zero mean and standard de-

viation σ = 1, whereas biases are initialized to zero.

The gradients are back-propagated through timestep

batches of length 80. For the training epochs, we have

fixed 1000 as the maximum number. To avoid over-

fitting, we have implemented an early stopping mecha-

nism which breaks the training loop when training cost

does not improve on the training set after 20 epochs.

4.3 Experimental Results

Our goal is to achieve a good generalization perfor-

mance by accurately predicting short-term energy con-

sumption of unseen buildings. Therefore, we assess our

proposed model using the Root Mean Squared Error

(RMSE). RMSE is defined as the square root of the av-

erage squared distance between prediction and ground

truth, using the formula:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 ,

where yi and ŷi respectively denote the true value and

the predicted value of the i-th data sample, and N de-

notes the size of the dataset.

We trained 19 models for each building following the

same process. One building (number 12) was not consid-

ered due to insufficient training data. Each model was

tested on the remaining unseen buildings in order to

study its cross-building transfer-ability. Fig. 9 depicts

the predictions errors of cross-building model transfers

as a heatmap. We can visually identify two clusters

within each of them generalization performances are

high. These clusters are respectively composed of the

following subsets of buildings {2, 3, 18, 19} and {5, 6,

7}. We also notice that buildings 13 and 14 are mu-

tually similar and that models trained on buildings 10

and 17 generalize well when applied to them during in-

ference mode. Furthermore, we can visually conclude

that all trained models perform poorly when applied

to building 15. Model trained on building 15 also has

poor generalization performances when applied to the

remaining unseen buildings.

We then seek to examine similar buildings based

on these results; our assumption is that similar build-

ings models are transferable among each other. Hence,

a model that is trained on a building i will generalize

well when applied to a building j if buildings i and j are

similar. We start by processing the experimental results

matrix (Fig. 9) to transform it to a distance matrix. For

this purpose, we simply compute pairwise averages be-

tween each element at row i and column j and its corre-

sponding element at row j and column i. Drawn clusters

from this distance matrix are illustrated in Fig. 10 using

a dendrogram. We use the Euclidean distance to com-

pute pair-wise similarities. Fig. 10 identifies two main

clusters, which are respectively composed of the follow-

ing subsets of buildings {5, 6, 7, 8, 10, 13, 14, 16, 17,

20, 16} and {1, 2, 3, 4, 9, 11, 15, 18, 19}.

5 Discussion

From Fig. 8 and Fig. 10, we can notice that buildings

8 and 17 which were the most similar based on their

descriptions are clustered under the same cluster based

on their cross-domain generalization errors. This means

that models trained on building 8 will generalize well

when applied to building 17 during inference mode, and

vice versa. Similarly, the two sets of buildings {9, 11},
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Fig. 8 Dendrogram of the hierarchical clustering of REFIT households based on their descriptions. Clusters within which
distance is below 70% of the maximal cluster-wise distance Categorical are colored in green. features in the buildings’ feature
vectors were one-hot encoded. The distance used was the Euclidean distance.

Fig. 9 Heatmap of the experimental test errors; we trained
19 models, each of them on one single building. Each model
was tested on each building. The y-axis represents buildings
on which each model was trained, the x-axis represents the
buildings on which each model was tested. The evaluation
metric was RMSE. Final results were scaled between 0 and
1. House number 12 was not considered due to insufficient
training data.

and {16, 20} are identified as similar in both cluster-

ing schemes; based on descriptions and cross-domain

generalization errors. Furthermore, poor cross-domain

generalization performances of building 15 (Fig. 9) is

explainable by its dissimilarity with the rest of build-

ings (Fig. 8).

We may therefore suggest that buildings, that are

judged similar based solely on their descriptions, do

yield to good prediction results when performing cross-

building knowledge transfer.

In the context of this study, we have leveraged a

very restricted set of building descriptions, i.e. number

of occupants, typology, size, etc. Therefore, we believe

that more heterogeneous and broader building descrip-

tions (e.g. different types and locations) would help to

select similar data more accurately and more reliably,

and would make results more consistent. Furthermore,

and due to the large variety of building typologies and

design, and uncertainties surrounding its environment

and occupancy patterns, we consider that data selection

approaches based on similarity metrics are essential in

order to perform large-scale and accurate cross-domain

domain generalization.

6 Conclusion and Perspectives

This paper discusses the suitability of the data selection

approach for cross-building knowledge transfer. Evalu-

ation work was conducted on the case study of build-

ing energy consumption modeling. For this purpose,

we have trained per-building models and studied their

transferability across other unseen buildings. Experi-

mental results show that minimal building descriptions

are capable of guiding domain generalization applica-

tions in the context of energy modeling, by identifying

similar buildings. Overall, we believe our results con-

firm the suitability of data selection mechanisms that

are based on similarities of building minimal descrip-

tions.
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Fig. 10 Dendrogram of the hierarchical clustering of REFIT households based on experimental cross-building prediction
results. Clusters within which distance is below 70% of the maximal cluster-wise distance Categorical are colored in green and
red. The distance used was the Euclidean distance.

We also propose a microservice-oriented architec-

ture that offers increased evolvability and scalability of

the system as well as accelerated development velocity.

Future work involves exploring and reporting the

behavior of our approach with more larger scale and

higher heterogeneity data sets. We also intend to ex-

tend our system by automating the data selection algo-

rithm based on user queries. User queries will contain

the description of the target building to which we want

to transfer knowledge.
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