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ON THE STAR FOREST POLYTOPE FOR TREES AND CYCLES

Meziane Aider1, Lamia Aoudia1, Mourad Bäıou2,
A. Ridha Mahjoub3 and Viet Hung Nguyen4,∗

Abstract. Let G = (V, E) be an undirected graph where the edges in E have non-negative weights.
A star in G is either a single node of G or a subgraph of G where all the edges share one common
end-node. A star forest is a collection of vertex-disjoint stars in G. The weight of a star forest is the
sum of the weights of its edges. This paper deals with the problem of finding a Maximum Weight
Spanning Star Forest (MWSFP) in G. This problem is NP -hard but can be solved in polynomial time
when G is a cactus [Nguyen, Discrete Math. Algorithms App. 7 (2015) 1550018]. In this paper, we
present a polyhedral investigation of the MWSFP. More precisely, we study the facial structure of the
star forest polytope, denoted by SFP (G), which is the convex hull of the incidence vectors of the star
forests of G. First, we prove several basic properties of SFP (G) and propose an integer programming
formulation for MWSFP. Then, we give a class of facet-defining inequalities, called M -tree inequalities,
for SFP (G). We show that for the case when G is a tree, the M -tree and the nonnegativity inequalities
give a complete characterization of SFP (G). Finally, based on the description of the dominating set
polytope on cycles given by Bouchakour et al. [Eur. J. Combin. 29 (2008) 652–661], we give a complete
linear description of SFP (G) when G is a cycle.
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1. Introduction

Given an undirected graph G = (V,E) where n = |V | and m = |E|, a star in G is either a single node of
G or a subgraph of G where every edge shares one common end-node. The latter is called the center of the
star when the star is not reduced to a single node. If the star is a single edge, then any of its end-nodes can be
designated as the center. A star forest is a collection of vertex-disjoint stars in G. An edge dominating set in G
is an edge subset F ⊆ E such that for any edge e in G either e ∈ F or e shares at least one common end-node
with some edge in F . A dominating set in G is a node subset S ⊆ V such that for any node u ∈ V either u ∈ S
or u is neighbor with some node in S. We suppose that the edges in G have non-negative weights (note that

Keywords. Combinatorial optimization, polyhedral combinatorics, star forest, facility location, dominating set.

1 Laromad, Faculty of Mathematics, University of Sciences and Technology, Houari Boumediéne, Algeirs, Algeria.
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Figure 1. A star forest of weight 4 with weights 1 on the edges.

the unweighted case can be seen as a special weighted case when weights are 0 or 1), then the weight of a star
forest or an edge dominating set is the sum of the weights of its edges. The Maximum Weight spanning Star
Forest Problem (MWSFP) is to find a star forest spanning the nodes of G of maximum weight. The Minimum
Weight Edge Dominating Problem (MWEDP) is to find an edge dominating set in G of minimum weight. If
the nodes are weighted, the weight of a dominating set is the sum of the weights of its nodes. The Minimum
Weight Dominating Set Problem (MWDSP) is to find a minimum weight dominating set in G. The two last
problems are well-known to be NP -hard. They have been the subject of many works in the literature [20],
[13]. The MWSFP, however, is a recent problem which has been introduced by Nguyen et al. in [17]. It has
applications in several areas, especially in computational biology [17] and automobile industry [1]. In [17], the
authors show the NP -hardness of MWSFP by observing that in a maximal star forest F (a maximal star forest
is a star forest to which no more edge can be added), the set of the centers of the stars in F is a dominating
set of G. Conversely, for any dominating set S we can build a maximal star forest with centers as the nodes
belonging to S. Thus, given a maximal star forest F , there exists a dominating set S such that |S| = |V | − |F |
and vice versa. Hence the case of 0/1 weights of the MWSFP is NP -hard by a reduction from the of 0/1
weights case of the MWDP. In [17], the authors also give a linear time algorithm to solve the MWSFP when G
is a tree and a 1

2 -approximation algorithm for the general case. Since then, the MWSFP has been intensively
investigated, in particular for the unweighted version. Nguyen et al. [17] prove that the problem is APX-hard
by presenting an explicit inapproximability bound of 259/260, and present a combinatorial 0.6-approximation
algorithm for the unweighted MWSFP. Polynomial-time algorithms are presented for special classes of graphs
such as planar graphs and trees in the same paper. Chen et al. [12] present a better approximation algorithm
with ratio 0.71 for unweighted MWSFP. Later, Athanassopoulos et al. [2] improve this approximation ratio to
0.803 by using the fact that the problem is a special case of the complementary set cover problem. Interesting
generalizations including node-weighted and edge-weighted versions of the MWSFP have also been considered.
In [12, 17] the authors present approximation algorithms and APX-hardness results for these problems as well.
Stronger inapproximability results for these problems recently appeared in [11, 14]. For the weighted version,
Nguyen [18] has given a linear time algorithm for solving the MWSFP when G is a cactus.

Let SFP (G) (respectively EDP (G)) be the convex hull of the incidence vectors of the star forests (respectively
the edge dominating sets) in G. Let Rn be the real space indexed by the nodes in V . Let D be any dominating
set in G, let χ(D) ∈ Rn be the incidence vector of D, defined as

χ(D)v =
{

1 if v is a nodes in V and v ∈ D
0 otherwise.

Let DP (G) be the convex hull of the incidence vectors of the dominating sets in G. To the best of
our knowledge, no polyhedral investigation has been done for SFP (G) and EDP (G) though some integer
formulations have been used in approximation algorithms for the MWSFP and the MWEDP. There are,
however, several works on DP (G), in particular, Saxena [19] has given a complete description for DP (G)
when G is a tree, and Bouchakhour et al. [8] have given a complete description for DP (G) when G is a cycle.
In [16], Mahjoub has given a complete description of DP (G) in threshold graphs. And in [9], Bouchakour
and Mahjoub have studied compositions for the polytope DP (G) in graphs that decompose by one-node cutsets.
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In this paper, we present a polyhedral investigation of the MWSFP for trees and cycles. More precisely,
we study the facial structure of the star forest polytope. In the first part of the paper, we give a complete
characterization of SFP (G) when G is a tree, which is obtained by projection of a simple extended formulation
issued from the work of Bäıou and Barahona [3] on the uncapacitated facility location polytope. Also, we show
that the facet-defining inequalities for SFP (G) when G is a tree can be generalized to valid inequalities for
SFP (G) when G is a arbitrary graph. These inequalities define facets for SFP (G) under certain conditions,
and can be separated in polynomial time.

In the second part of the paper, we give a complete description for SFP (G) when G is a simple cycle C.
More precisely, we establish the relation between spanning star forests and dominating sets when the graph
is a simple cycle C and give a complete linear description for SFP (C) based on the one for DP (C) given by
Bouchakhour et al. [8].

The paper is organized as follows. In the next section, we describe some properties of SFP (G) and give
an integer programming formulation for the MWSFP. In section 3, we introduce a class of valid inequalities,
called the M -tree inequalities, for SFP (G) and give a complete description for SFP (G) when G is a tree. In
Section 4, we present a complete description for SFP (G) when G is a cycle.

In the rest of this section, we give some notations that will be used in the paper. For x ∈ Rm, given any
F ⊆ E, we let x(F ) denote

∑
e∈F xe. For x ∈ Rn, given a set S ⊆ V , we let x(S) denote

∑
v∈S xv. Given a set

of vertices S, we denote by E(S) the set of edges with both ends belonging to S. Let v ∈ V , the neighborhood
of v, denoted by N(v), is the vertex set consisting of v and the nodes which are adjacent to v. Given any edge
subset F ⊆ E, let V (F ) denote the set of the end-nodes of the edges in F . We call a 3-path a simple path having
3 edges in G and a 3-cycle a triangle in G. Let P4 (respectively C3) denote the collection of the 3-paths (resp.
3-cycles) in G.

2. Basic properties of SFP (G) and integer programming formulation
for the MWSP

2.1. Basic properties of SFP (G).

The following remark is about zero vector 0 ∈ Rm which is the incidence vector associated with the single
node star forests.

Remark 2.1. The zero vector 0 ∈ Rm is an extreme point of SFP (G).

Proof. We can see that 0 is the incidence vector associated with the single node star forests and as for any
x ∈ SFP (G) and any e ∈ E, xe ≥ 0, 0 is an extreme point of SFP (G). �

Hence, SFP (G) is a polytope pointed at 0. Moreover, the following theorem shows that SFP (G) is full
dimensional.

Theorem 2.2. SFP (G) is a full dimensional polytope, i.e. dim(SFP (G)) = m.

Proof. Suppose that the incidence vectors of all the star forests in G satisfy some equality αtx = β. As αt0 = β,
β = 0. As any edge e ∈ E is a star forest in G, we have αe = β = 0 for all e ∈ E. �

Theorem 2.3. All the facet-defining inequalities of SFP (G), that are different from xe ≥ 0 for some e ∈ E,
are of the form atx ≤ b with a ∈ Rm+ and b ≥ 0 scalar.

Proof. Let atx ≤ b be any facet-defining inequality for SFP (G) which is not xe ≥ 0 for some e ∈ E. As at0 ≤ b,
we have b ≥ 0. Suppose that for some edge e, ae < 0. As atx ≤ b defines a facet different from xe ≥ 0, there
exists a star forests F in G containing e such that atχF = b. As F ′ = F \ {e} is also a star forest, we have
atχF

′
= atχF − ae = b− ae > b. This contradicts the fact that atx ≤ b is valid for SFP (G). �
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Given atx ≤ b any facet-defining inequality of SFP (G), the support graph of atx ≤ b is the subgraph
Ga = (Va, Ea) of G induced by the edges e ∈ E such that ae > 0. A tight star forest F with respect to atx ≤ b is
a star forest with which the associated incidence vector satisfies atx ≤ b at equality. A star forest F is maximal
with respect to an edge subset E′ ⊆ E if for any edge e ∈ E′ \ F , F ∪ {e} is not anymore a star forest.

Theorem 2.3 implies the following corollary.

Corollary 2.4. Given atx ≤ b any facet-defining inequality of SFP (G) with Ga = (Va, Ea) its support graph,
all the tight star forests with respect to atx ≤ b are maximal with respect to Ea.

Lemma 2.5. Let Ḡ = (V̄ , Ē) be any induced subgraph of G, then any facet-defining inequality for SFP (Ḡ) also
defines a facet for SFP (G).

Proof. First notice that the theorem trivially holds for the trivial inequalities x(e) ≤ 1 for all e ∈ Ē, since
these inequalities define facets for SFP (G) for any graph G. Let I be any facet-defining inequality for SFP (Ḡ),
different from x(e) ≤ 1 for all e ∈ E. Then I defines a facet for SFP (G) if we are able to show that for any
edge ij ∈ E \ Ē, there always exists a tight star forest F in Ḡ with respect to I such that F ∪ {ij} is also star
forest in G. Suppose that for some edge ij ∈ E \ Ē, no such F exists. This implies that for every tight star
forest F in Ḡ w.r.t I, F ∪{ij} is not a star forest in G. In this case, exactly one node i or j, say i, belongs to V̄ .
Moreover, as Ḡ is an induced subgraph of G, every tight forest F in Ḡ w.r.t I should contain an edge ik such
that i is of degree 1 in F and k is of degree at least 2 in F . Otherwise, F ∪ {ij} would be a star forest of G.
Then every tight star forest F in Ḡ w.r.t I also satisfies x(δḠ(i)) = 1. This, together with Theorem 2.2, implies
that I should be x(δḠ(i)) ≤ 1. Since I is different from x(e) ≤ 1 for all e ∈ E, i should be of degree at least 2
in Ḡ. But then x(δḠ(i)) ≤ 1 is not valid for SFP (Ḡ), a contradiction. �

2.2. Integer programming formulation for the MWSFP

In this subsection, we give an integer programming formulation for MWSFP. First we state the following
lemma.

Lemma 2.6. A graph is a star forest iff it does not contains 3-paths and 3-cycles.

Proof. It can be immediately verified from the definition of a star forest. �

Let us consider the following integer program.

max cTx

(IP ) s.t.
x(P ) ≤ 2 for all P ∈ P4 (2.1)
x(C) ≤ 2 for all P ∈ C3 (2.2)
0 ≤ xe ≤ 1 for all e ∈ E (2.3)
x integer

Inequalities (2.1), called the 3-path inequalities, state the fact that a star forest can only take at most 2 edges
in a 3-path. Similarly, inequalities (2.2), called the 3-cycle inequalities, state the fact that a star forest can only
take at most 2 edges in a 3-cycle. Inequalities (2.3) are the trivial inequalities.

Theorem 2.7. (IP ) is equivalent to the MWSFP.

Proof. It is clear that by inequalities (2.1) and (2.2) in a solution of (IP ) there is neither 3-paths and nor
3-cycles. By Lemma 2.6, this solution represents a star forest. �
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Figure 2. A M -tree inequalities associated with a M -matching M of cardinality 4.

3. M-tree inequalities and complete description of SFP(G) in trees

In this section, we shall give a complete description of SFP (G) in trees. For this, let us first describe a class
of inequalities which are valid for any graph, not only for trees.

3.1. M-tree inequalities

In this subsection, G is an arbitrary graph (not necessarily a tree).

Definition 3.1 (M -tree). A M -tree τ is a tree in which every non-pendant node is connected to exactly one
pendant node (leaf).

Given a M -tree τ , let us call M -matching of τ , the set of the edges incident to the leaves of τ .

Definition 3.2 (M -tree inequality). The M -tree inequality associated with a M -tree τ is the inequality x(τ) ≤
|M | where M is the M -matching of τ .

We can remark that the M -tree inequalities generalize inequalities xe ≤ 1 for e ∈ E and the 3-path
inequalities. These are M -tree inequalities with |M | = 1 and |M | = 2, respectively.

Theorem 3.3. The M -tree inequalities define facets for SFP (G).

Proof. Let τ be any M -tree and M the M -matching of τ , let us consider the corresponding M -tree inequality

x(τ) ≤ |M |. (3.1)

Let us first prove the validity. Let F be any star forest of G. We will prove the validity by showing that
|F ∩ τ | ≤ |M |. If F only contains the edges in M , then |F ∩ τ | ≤ |M |. If F only contains edges in τ \M
then |F ∩ τ | ≤ |τ \M | and, from the definition of a M -tree, |τ \M | = |M | − 1 < |M |. Now suppose that
F contains edges in both M and τ \M . If F ∩ τ is a matching then |F ∩ τ | ≤ |M | since M covers all the
nodes of τ . So suppose that F ∩ τ is not a matching. Thus, F ∩ τ should contain a (sub)star S with, say u2,
as center, which contains at least two edges in F : one edge, say u1u2, which belongs to M and one other, say
u2v2, which belongs to τ \M . As v2 should be also covered by M , there exists an edge v1v2 ∈M . As u1u2 and
u2v2 are in F , v1v2 /∈ F . Moreover, by definition of M -tree, v1 should be of degree 1 in τ . It follows that each
edge in F which belongs to τ \M (e.g. u2v2) correspond exactly to another edge (e.g. v1v2) in M \ F . Hence,
|F ∩ (τ \M)| ≤ |M \ F | which implies |(F ∩ (τ \M)) ∪ (F ∩M)| ≤ |(M \ F ) ∪ (F ∩M)| = |M |. As M ⊂ τ ,
|(F ∩ (τ \M)) ∪ (F ∩M)| = |F ∩ τ |. Thus, |F ∩ τ | ≤ |M |.

Let us prove now that (3.1) defines a facet for SFP (G). Suppose that there exists a facet-defining inequality
αtx ≤ β for SFP (T ) such that all the star forests satisfying (3.1) at equality, satisfy also αtx ≤ β at equality.
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Since by Theorem 2.2, SFP (T ) is full dimensional, it suffices to show that αtx ≤ β is a positive multiple of
(3.1).

Let us remark that M is a star forest satisfying (3.1) at equality and hence also statisfies αtx ≤ β at equality,
i.e. α(M) = β. For any edge e ∈ E \ τ , we can see that M ∪ {e} is also star forest satisfying (3.1) at equality.
Hence, α(M ∪ {e}) = β. This implies that αe = 0 for all e ∈ E \ τ .

Let u2v2 be any edge in τ \M and u1u2 and v1v2 be the edges in M incident to u2 and v2 respectively. We
can see that M , (M \{u1u2})∪{u2v2} and (M \{v1v2})∪{u2v2} are all star forests satisfying (3.1) at equality.
This implies that αu1u2 = αu2v2 = αv1v2 . If we extend this to all the edges in τ \M , we obtain that αe = αe′

for all e, e′ ∈ τ . Hence, αtx ≤ β is a positive multiple of (3.1), which ends the proof of the theorem. �

3.2. Complete description of SFP(G) in trees

From now on and throughout this section, G will be a tree denoted by T .

Proposition 3.4. All the maximal star forests with respect to a M -tree τ are of cardinality |M | where M is
the M -matching of τ .

Proof. Let S be any maximal star forest in τ . Let m = |M | then |V (τ)| = 2m and |τ | = 2m− 1. By the validity
of M -tree inequalities, we have |S| ≤ m. We will prove that |S| ≥ m by showing that each edge in M correspond
to an edge in S. Let v1 be any leaf in τ and let v2 be the non-pendant node such that the edge v1v2 ∈ M . We
distinguish two cases:

• v1 /∈ S. In this case, v2 should belong to V (S) since otherwise we can add v1v2 to S and S remains a star
forest. Moreover, v2 should be of degree 1 in S since otherwise we can also add v1v2 to S and S remains a
star forest. Thus, the edge v1v2 correspond to the edge incident to v2 in S.

• v1 ∈ S. Then the edge v1v2 should belong to S and hence it corresponds to itself.

Hence, |S| ≤ m and |S| ≥ m which implies that |S| = m. �

We will prove the following theorem.

Theorem 3.5. The M -tree and nonnegativity inequalities completely define SFP (T ).

Proof. Suppose that atx ≤ b is any facet-defining inequality for SFP (T ) which is not a M -tree inequality
neither the nonnegativity inequality. Let Ga be the support graph of atx ≤ b. We can suppose without loss of
generality that Ga is a tree. Let Ta denote this tree. Hence, Ta is a subtree of T . We have two possible cases.

• Ta is a M -tree. Let F be any tight star forest with respect to atx ≤ b. By Corollary 2.4, F is maximal
with respect to Ta. Consequently, by Proposition 3.4, F is tight with respect to the M -tree inequalities.
Contradiction to the fact that atx ≤ b is a facet defining inequality different from a M -tree inequality.

• Ta is not a M -tree. Hence, in Ta there must be one non-pendant node of one of the two following types:
Type 1. A non-pendant node not connected to a leaf of Ta.
Type 2. A non-pendant node connected to at least two leaves of Ta.

We distinguish two cases:

Case 1. Ta contains only non-pendant nodes of Type 2. In this case, one can obtain a M -tree τ from Ta by
keeping for each non-pendant node, only one leaf connecting to it. Let x(τ) ≤ |Mτ | be the M -tree inequality
associated with τ . The following remark can be easily proved.

Remark 3.6. Given a non-pendant node v of Type 2, any star forest F satisfying atx ≤ b at equality must be
maximal in τ and contains either all the leaves connected to v or no of them.
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Let F be any tight star forest with respect to atx ≤ b. We have F ∩ τ is a maximal star forest with respect to τ .
Since by Proposition 3.4, every maximal star forest in τ safisfies x(τ) ≤ |Mτ | at equality, it follows that every
star forest satisfying atx ≤ b at equality satisfies also the M -tree inequality associated with τ at equality. This
contradicts the fact that atx ≤ b is a facet-defining inequality.

Case 2. Ta contains at least one non-pendant node of Type 1. We will show the following lemma.

Lemma 3.7. There exists a non-pendant node s of Type 1 such that all the other non-pendant nodes of Type
1 belong to a same connected component obtained by the removal of s from Ta.

Proof. We give a constructive proof.
Initialization. Let us choose any non-pendant node s0 of Type 1 and let i = 0.
Iteration i. Suppose that T i1, . . . , T ipi

are the subtrees of Ta obtained if si is removed from Ta and suppose
without loss of generality that T i1 is always the tree which contains s0. We have two possible cases.

– If all the other non-pendant nodes of Type 1 belong to a same tree Tki (1 ≤ ki ≤ pi) then si is a non-pendant
node of type 1 satisfying the condition stated in the lemma. STOP.

– If the other non-pendant nodes of Type 1 belong to at least two trees. Suppose without loss of generality
that T ipi

is one of them. Let us choose si+1 to be any non-pendant node of Type 1 in T ipi
and set i← i+ 1.

Reiterate.

We have the following remark.

Remark 3.8. T i1 contains all the node previously chosen s0, . . . , si−1 which are all distincts. The set containing
these nodes is called the kernel.

Thus, the procedure should be ended by finding a non-pendant node of Type 1 satisfying the condition stated
in the lemma after at most |V (Ta)| iterations since the kernel grows after each iteration. �

Let s be a non-pendant node of Type 1 satisfying the condition stated in Lemma 3.7. Let T1 be the connected
component which contains the other non-pendant nodes of Type 1 obtained by removing s from Ta. We can
observe that s is connected to T1 by only one edge and the subgraph H of Ta induced by the edges in Ta \ T1

is a tree. Moreover, H is either a M -tree or a tree which contains some non-pendant nodes of Type 2 but no
one of Type 1. Hence, in all the cases as we have proved in Case 1, H contains a M -tree τ which contains all
the non-pendant nodes of H. Let u be the neighbour of s in T1, i.e. the edge su ∈ H. Observe that su is a
bridge in Ta that links H to T1. We can see that any maximal star forest in Ta, whatever it contains su or not,
contains a maximal star forest in H (if a maximal star forest in Ta does not contain su, it must contain some
edge sv where v is of degree at least 2 in the star forest). The latter, by Remark 3.6, contains a maximal star
forest in τ . By Corollary 2.4, any star forest F satisfying atx ≤ b at equality is maximal in Ta. Hence F ∩ τ is a
maximal star forest in τ . By Proposition 3.4, F ∩ τ satisfies the M -tree inequality associated with τ at equality.
This contradicts the fact that atx ≤ b is facet-defining. �

4. Polyhedral results on cycles

In this section, G will be a chordless cycle C = (V (C), E(C)) of n nodes with V (C) = {1, 2, . . . , n} numbered
clockwise, i.e. the n edges in E(C) will be ei = (i, i + 1) for i = 1, . . . , n − 1, and the edge en = (n, 1). We
will sometimes use |C| instead of n, |V (C)| or |E(C)| which are all equal. The edges in C are weighted by a
vector c ∈ Rn where ci is the weight associated with edge ei for i = 1, . . . , n. We also consider L(C) = (V L, EL)
the line graph of C where the nodes correspond to the edges of C, and two nodes of L(C) are adjacent if the
corresponding edges are adjacent in C. Note that L(C) is also a cycle node-weighted by vector c. For the sake
of convenience, given a node 1 ≤ i ≤ n and an integer t > 0, let i+ t designate the node i+ t if i+ t ≤ n and the
node (i+ t) mod n if (i+ t) > n. For two nodes u and v with v = u+ t for some integer t > 0 in C, let C(u, v)
denote the path (u + 1, . . . , u + t − 1) of C between u + 1 and u + t − 1 (note that the path does not contain
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Figure 3. A cycle C and its line graph L(C). The edge subset {e1, e2, e4, e5} is a star forest in
C and its complement {e3, e6} is an edge dominating set in C and a dominating set in L(C).

u and v). For two edges e and f in C with e = ei and f = ei+t for some integer t > 0, let C(e, f) denote the
path consisting of the edges ei+1, . . . , ei+t−1 (note that the path does not contain neither ei nor ei+t). In what
follows, we will establish the relations between star forests, dominating sets and edge dominating sets on cycles.
Then, using theses relations with the polyhedral results in [9] and [8], we will derive a complete description of
SFP (C). Note that in [18], a linear time algorithm for the MWSFP when G is a cactus have been presented,
hence the MWSFP can be solved in linear time in cycles.

4.1. Star forests, dominating sets and edge dominating sets on cycles

In the context of a cycle, Lemma 2.6 can be restated as follows.

Lemma 4.1. An edge subset F ⊂ C is a star forest if and only if F does not contain any 3-path.

The following lemma establishes the link between edge dominating sets and star forests in a cycle.

Lemma 4.2. The complement of a star forest F in C is an edge dominating set and vice versa.

Proof. (⇒) Let F ⊆ E(C) be a star forest in C and let F̄ = C \ F . Suppose that F̄ is not an edge dominating
set. Then there exists an edge ei ∈ F not adjacent to any edge in F̄ . As C is a cycle, the neighbors of ei,
ei−1 and ei+1 do not belong to F̄ . Hence, ei−1, ei, ei+1 form a path of length 3 in F , a contradiction with
Lemma 4.1.
(⇐) Let ED ⊆ C be a edge dominating set in C. Let F = C \ ED and suppose that F is not a star forest.
Then F contains a 3-path (v1, v2, v3, v4). We can see that the edge (v2, v3) is not dominated by ED implying
that ED is not an edge dominating set, a contradiction. �

By the one-to-one correspondence between the nodes of L(C) and the edges of C, we have the following result.

Lemma 4.3. Any edge dominating set in C is a dominating set in L(C) and vice versa.

The following lemma reformulates these relations in polyhedral terms for the polytopes SFP (C), EDP (C)
and DP (L(C)).

Lemma 4.4. The following statements are equivalent:

(i) αty ≥ β with y ∈ Rn defines a facet for DP (L(C)),
(ii) αtx ≥ β with x ∈ Rn defines a facet for EDP (C),
(iii) αtx ≤

∑
e∈E(C) α(e)− β with x ∈ Rn defines a facet for SFP (C).

Hence, the polytopes SFP (C), DP (L(C)) and EDP (C) are equivalent in the sense that there is a one-to-one
correspondence between their facets.

Proof. Note that these polytopes are all defined in Rn and are full dimensional. The lemma follows from the
relations described in Lemmas 4.2 and 4.3 as they are all preserved under affine transformations. �

As in [8], a complete linear description for DP (L(C)) is given, by Lemma 4.4, we can also derive complete
descriptions for SFP (C) and EDP (C). We will explicit these complete descriptions in the following section.
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4.2. Complete description of SFP (C)

Let us consider the graph L(C) and the polytope DP (L(C)) in Rn whose component indexed by the nodes
in V L. In [9] and [8], Bouchakour et al. give the following integer formulation for MWDSP,

min ctx

0 ≤ xv ≤ 1 for all v ∈ V L (4.1)

x(N(v)) ≥ 1 for all v ∈ V L (4.2)

xv integer for all v ∈ V L

They have also characterized two classes of facet-defining inequalities for DP (L(C)).

Theorem 4.5. [9] The inequality

x(V L) ≥
⌈
|C|
3

⌉
(4.3)

defines a facet for DP (L(C)) if and only if either |C| = 3 or |C| ≥ 4 and |C| is not a multiple of 3.

Theorem 4.6. [8] Let W = {v1, . . . , vp} be a subset of p ≥ 3 nodes in V L satisfying the following conditions:

C1: p is odd and v1 < v2 < . . . < vp,
C2: |C(vi, vi+1)| = 3ki, ki ≥ 1, for i = 1, . . . , p with vp+1 = v1.

Then the constraint

2
∑
v∈W

xv +
∑

v∈V L\W

xv ≥
p∑
i=1

ki +
⌈p

2

⌉
(4.4)

defines a facet for DP (L(C)).

Let us apply Lemma 4.4 to derive facet-definining inequalities for SFP (C). It is clear that applying
Lemma 4.4 to inequalities (4.1) yields the trivial inequalities

0 ≤ xe ≤ 1 for all e ∈ E(C),

for SFP (C).
By applying Lemma 4.4 to inequalities (4.2), we get the 3-path inequalities

x(P ) ≤ 2 for all path of length 3 in C,

for SFP (C) which have been described in Section 2. The following proposition can be obtained by applying
Lemma 4.4 to inequalities (4.3).

Proposition 4.7. The cycle inequality

x(E(C)) ≤
⌊

2|C|
3

⌋
(4.5)

defines a facet for SFP (C) when, either |C| = 3 or |C| ≥ 4 and |C| is not multiple of 3.

Let W = {v1, . . . , vp} ⊂ V L be a subset of nodes of V L as defined in Theorem 4.6, let fi denote the edge in
C corresponding to the node vi in L(C) and let M = {f1, . . . , fp}. For i = 1, . . . , p, we define C(fi, fi+1) with
fp+1 = f1 to be the path between fi and fi+1 in C which does not contain any edge in M . The conditions C1
and C2 on the set W can be transformed into conditions M1 and M2 on the set M as follows:

M1: M is a matching of odd cardinality,
M2: |C(fi, fi+1)| = 3ki, ki ≥ 1, for i = 1, . . . , p with fp+1 = f1.



1772 M. AIDER ET AL.

We then deduce the following result by applying Lemma 4.4 to inequalities (4.4).

Proposition 4.8. The matching-cycle inequalities

2x(M) + x(E(C) \M)+ ≤ 2
p∑
i=1

ki +
⌊

3p
2

⌋
for all M ⊂ E(C) satisfying conditions M1 and M2. (4.6)

define facets for SFP (C).

Proof. Given a matching M of C satisfying conditions M1 and M2, suppose that v1, . . . , vp are the nodes in
L(C) corresponding respectively to f1, . . . , fp. It is easy to see that v1, . . . , vp satisfy conditions C1 and C2 of
Theorem 4.6, and hence, we have that

2
∑
v∈W

xv +
∑

v∈V L\W

xv ≥
p∑
i=1

ki +
⌈p

2

⌉
defines a facet for DP (L(C)). The result thus follows from Lemma 4.4. �

In [8], Bouchakour et al. have shown the following theorem.

Theorem 4.9. [8] A complete linear description for DP (L(C)) is given by inequalities (4.1), (4.2), (4.3), (4.4).

As a direct consequence, we have the following result.

Corollary 4.10. When G is a cycle, SFP (G) is completely described by the trivial inequalities, the 3-path
inequalities, the cycle inequality (4.5) and the matching-cycle inequalities (4.6).

5. Conclusions

In this paper, we have presented an IP formulation for MWSFP. We have also given two complete linear
descriptions for SFP (G), the star forests polytope for the cases where G is a tree and G is a cycle. An
interesting direction for future works would be to exploit these results to derive a complete linear description
for SFP (G) when G is a cactus. Our complete description for SFP (G) when G is a tree could be helpful to
find an exact solution for the MWSFP in general graphs. A star forest is always a subgraph of a spanning tree
in G and a complete linear description of the spanning tree polytope is known.

Acknowledgements. We would like to thank one anonymous referee for her/his helpful comments which greatly improved
the presentation of the paper.
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