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Abstract 

Background: Diffusion MRI is the preferred non‑invasive in vivo modality for the study 
of brain white matter connections. Tractography datasets contain 3D streamlines that 
can be analyzed to study the main brain white matter tracts. Fiber clustering methods 
have been used to automatically group similar fibers into clusters. However, due to 
inter‑subject variability and artifacts, the resulting clusters are difficult to process for 
finding common connections across subjects, specially for superficial white matter.

Methods: We present an automatic method for labeling of short association bundles 
on a group of subjects. The method is based on an intra‑subject fiber clustering that 
generates compact fiber clusters. Posteriorly, the clusters are labeled based on the 
cortical connectivity of the fibers, taking as reference the Desikan–Killiany atlas, and 
named according to their relative position along one axis. Finally, two different strate‑
gies were applied and compared for the labeling of inter‑subject bundles: a matching 
with the Hungarian algorithm, and a well‑known fiber clustering algorithm, called 
QuickBundles.

Results: Individual labeling was executed over four subjects, with an execution time 
of 3.6 min. An inspection of individual labeling based on a distance measure showed 
good correspondence among the four tested subjects. Two inter‑subject labeling were 
successfully implemented and applied to 20 subjects and compared using a set of dis‑
tance thresholds, ranging from a conservative value of 10 mm to a moderate value of 
21 mm. Hungarian algorithm led to a high correspondence, but low reproducibility for 
all the thresholds, with 96 s of execution time. QuickBundles led to better correspond‑
ence, reproducibility and short execution time of 9 s. Hence, the whole processing for 
the inter‑subject labeling over 20 subjects takes 1.17 h.

Conclusion: We implemented a method for the automatic labeling of short bundles 
in individuals, based on an intra‑subject clustering and the connectivity of the clusters 
with the cortex. The labels provide useful information for the visualization and analysis 
of individual connections, which is very difficult without any additional information. 
Furthermore, we provide two fast inter‑subject bundle labeling methods. The obtained 
clusters could be used for performing manual or automatic connectivity analysis in 
individuals or across subjects.
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Background
The preferred technique to non-invasively study structural brain connections is diffu-
sion-weighted magnetic resonance imaging (dMRI), based on the measurement of water 
molecules movement [1, 2]. Diffusion tractography estimates the main white matter 
(WM) tracts, obtaining a set of 3D paths, called streamlines or fibers [3]. Tractography 
datasets contain a large number of streamlines, some of which represent the trajectory 
of known WM bundles, with anatomical meaning. Such bundles have been described in 
the literature by neuroanatomists [4], and have been validated with other techniques like 
post-mortem dissections [5]. However, these datasets also include artifacts or false posi-
tives, some of which can occur systematically across subjects [6]. Hence, tractography 
datasets can be analyzed to extract or segment known WM bundles, which requires the 
inclusion of anatomical information in the processing. One strategy can be the manual 
delineation of regions of interest (ROIs) in the cortex, and the extraction of fibers con-
necting a pair of cortical regions for a specific bundle. This analysis has been recently 
used to study short association bundles [7]. The bundle segmentation can be performed 
automatically by applying an atlas of gray matter and WM ROIs, and then using anatom-
ical descriptions of the bundles to segment fibers connecting or passing through specific 
ROIs [8].

Automatic methods based on ROIs allow an easy modification or addition of bundle 
extraction rules, but do not include an analysis based on the trajectories of the fibers 
as a whole. Another strategy is based on clustering to group fibers with similar shape 
and position, commonly based on a fiber pairwise distance measure that considers the 
Euclidean distances between the corresponding points (or closest points) of the two fib-
ers. To extract anatomical bundles, some methods use a clustering algorithm and an atlas 
embedding anatomical bundle information [9–11]. Also, other simpler algorithms have 
been implemented to extract bundles based on a multi-subject bundle atlas [12–14]. 
Several atlases have been created to represent main deep white matter (DWM) bundles, 
which have been well described by anatomists and are very stable across subjects [9, 12, 
15], i.e., present high similarity and can be found in all the subjects on medium- to high-
quality databases. However, there exist several WM fiber bundles still unknown or not 
sufficiently described, because of their higher inter-subject variability and fewer repro-
ducibility [16]. This is the case of short association bundles, where only a few works have 
been focused on their description for the whole-brain [17, 18]. Short association fibers 
are placed immediately underneath the gray matter of the cortex and connect adjacent 
or close gyri. They can present different sizes, where the shortest ones are the nearest to 
the cortex and present the typical U-shape, due to their closeness to the walls of the con-
volution depression [19]. Their description is still incomplete [16], however, post-mor-
tem dissections have been used to validate the largest and reproducible bundles [7, 20]. 
Superficial white matter (SWM) fibers can be studied using exploratory fiber clustering 
methods that aim to detect fiber tracts without having any reference to the start or end 
of WM fibers [21]. This type of algorithm, applied to a whole-brain tractography dataset, 
generates a set of fiber clusters representing the main WM connections in the analyzed 
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brain. In the case of the works in [17, 18], SWM bundle atlases were obtained using dif-
ferent methods based on fiber clustering and the addition of anatomical information. 
Also, a recent work found a great amount of SWM bundles [22], but those were not 
labeled, requiring a posterior analysis for their study. Hence, existing methods have been 
focused on finding reproducible bundles across subjects, but not on the development 
of an automatic labeling of individual or inter-subject SWM clusters. Whole-brain fiber 
clustering methods, applied to individuals or to a population of subjects, do not return 
directly the identification of the obtained clusters, e.g., information about the anatomical 
areas connected by the fibers and their relative position in the cortex. Such identifica-
tion or labeling could be very useful for the study of the human brain connectome in 
individuals and different populations. The labeled clusters could then be used to perform 
detailed analyses of known bundles, i.e., subdivisions of the main bundles, and also of 
unknown fascicles, such as short association bundles. Furthermore, multi-subject analy-
ses could be applied to create new bundle atlases.

Superficial white matter bundles are more variable across subjects and more suscep-
tible to noise than deep white matter bundles, due to their smaller size and location in 
the brain, which presents partial volume effect. Hence special attention must be given to 
the diffusion local model and tractography methods. Due to the improvement of imag-
ing quality, i.e., more signal-to-noise ratio, higher resolution, better distortion correc-
tion methods, between others, have allowed a better reconstruction of short association 
bundles. The most stable bundles can be reconstructed using deterministic tractogra-
phy, with adapted parameters, in particular, a larger number of streamlines and a low 
FA threshold or an adapted propagation mask, to prevent the removal of voxels in the 
superficial white matter [16].

We propose a method that automatically labels the clusters of a subject obtained from 
an intra-subject clustering, based on the regions connected by the clusters. This infor-
mation is based on a cortical surface mesh, labeled with the Desikan–Killiany atlas (35 
gyri per hemisphere). Direct correspondence between subjects is obtained for the con-
nected anatomical regions. Furthermore, within each region, the clusters on individuals 
are labeled following and ordering criterion. Moreover, we apply two strategies for inter-
subject cluster labeling. First, a matching method is implemented based on the Hungar-
ian algorithm to find correspondence between bundles across subjects and subsequently 
apply a labeling that gives the same names to bundles identified in several subjects. Also, 
a clustering algorithm is applied to group similar bundles on a set of subjects and per-
form the labeling across them. While the matching algorithm finds the best matching for 
single bundles, the clustering may group similar bundles on some subjects and identify 
similar bundles (or groups of bundles) across subjects. Both inter-subject implementa-
tions are fast, taking, respectively, about 96 and 9 s, respectively, over 20 subjects. The 
performance of both implementations was compared in terms of reproducibility and 
inter-subject bundle distance. The methods are publicly available from [23].

Results
The experiments were executed on a computer with 4-core Intel Core i5-8250U CPU 
running at 1.60 GHz, 6MB of cache and 8GB of RAM, using Ubuntu 18.04.2 LTS with 
kernel 4.15.0-64 (64 bits). The programming language used to develop almost all stages 
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is Python 3.6. For the analysis, the tractographies, cortical meshes, and labels accord-
ing to Desikan–Killiany atlas of 20 subjects were used. The intra-subject labeling was 
applied to all the subjects. First, the results for intra-subject labeling performed on four 
subjects are shown and analyzed. Next, the two inter-subject labeling methods, match-
ing and clustering, were applied to the 20 subjects, using a set of distance thresholds, 
ranging from a conservative value of 10 mm to a moderate value of 21 mm. We use the 
minimum average direct-flip (MDF) distance (Eq. 2). It is defined as the mean Euclid-
ean distance between corresponding points of two centroids. We use centroids resam-
pled with 21 equidistant points. Since centroids (or fibers) can be ordered in memory 
in opposite directions, the distance must be calculated with centroids in both directions 
(direct and flipped order), and then the minimum value must be selected, what will cor-
respond to the correct order. The distance threshold defines the degree of similarity con-
sidered between bundle centroids. The smaller, the more restrictive the analysis will be.

The reproducibility of the bundles was evaluated by counting the number of subjects 
that had each inter-subject bundle. The quality of the labeling was evaluated using a dis-
tance measure between bundles across subjects (MDF). Also, heatmaps are shown to 
have an insight on the reproducibility and variability in terms of the number of fibers 
of the most reproducible bundles, for a restrictive distance threshold of 12 mm. Finally, 
some examples of bundles are displayed for a visual inspection of the results. Hungarian 
algorithm led to a high correspondence, but low reproducibility for all the thresholds, 
with 96 s of execution time. QuickBundles led to better correspondence and reproduc-
ibility with short execution time, of only 9 s. Hence, the whole processing for the inter-
subject labeling over 20 subjects takes on average 1.17 h. In the following, we detail the 
results.

Intra‑subject labeling

The intra-subject labeling was applied to the 20 subjects. The input data are the tractog-
raphy datasets of each subject and a cortical mesh where each vertex is labeled with the 
corresponding gyri (according to Desikan–Killiany atlas). The method consists of four 
stages (see Fig. 13). First, a fiber clustering (stage 1), is applied to the whole-brain trac-
tography dataset, which returns a set of clusters of similar fibers. Secondly, a cluster fil-
tering (stage 2) is performed, where small and long fiber clusters are discarded, keeping 
only fibers on a reasonable range for short association fibers. Next, a fiber intersection 
(stage 3) is executed, to determine the intersection of the fibers with the cortical mesh. 
Finally, a cluster labeling (stage 4) is applied, that labels each cluster according to the two 
most connected cortical regions, and an index indicating its relative order in the region.

The fiber clustering (stage 1) led to about 43,000 clusters per subject. For fiber filter-
ing (stage 2), a filter with a minimum cluster size of minnf = 10 fibers is used to discard 
small clusters. Also, a minimum cluster length of minlen = 30mm and a maximum clus-
ter length of maxlen = 80mm were employed to discard clusters that are too short or too 
long, leading to an average of 1100 clusters per subject. The filtering values are similar 
to those previously used [17, 18]. After applying fiber intersection and cluster labeling 
stages (stage 3 and 4), the clusters of each subject were labeled according to the pair 
of anatomical regions connected by each bundle, and the position based on ascending 
order of y-axis on MNI space (default configuration), i.e., from the bottom up.



Page 5 of 24Vázquez et al. BioMed Eng OnLine           (2020) 19:42  

An example of the relative ordering for intra-subject bundle labeling is presented 
in Fig. 1. We can appreciate that bundles connecting postcentral (PoC) and precentral 
(PrC) regions are ordered according to y-axis in ascending order (from the bottom 
up). Bundles are ordered according to the PoC parcel since it is indexed before in the 
Desikan–Killiany atlas.

Even though the method performs only an intra-subject analysis, a degree of cor-
respondence between the four first subjects can be found, according to their relative 
position index. Because of inter-subject variability, the correspondence is not perfect, 
nor do they all have the same number of bundles. Figure 2 displays the first five bun-
dles of the four subjects, which connect the left PrC gyri with the supra-marginal 
(SM) gyri.

A quantitative evaluation of the bundle correspondence among subjects is displayed in 
Fig. 3, where the distance (MDF) between the bundle centroids of each pair of subjects 
for the five bundles connecting PrC and SM gyri (PrC_SM_0 to PrC_SM_4) is repre-
sented with a color scale in mm. Bundles show a relatively good correspondence among 
them, with distances between centroids ranging from 7 to 36 mm, with an average of 
about 20  mm. Note that distances of 20–30  mm have been previously used for inter-
subject analyses of superficial white matter [17, 18].

Finally, the average execution times for each stage of the intra-subject labeling are: 192 
s for stage 1, 10.23 s for stage 2, 11 s for stage 3 and 2.49 s for stage 4, taking on average a 
total time of 3.6 min.

Inter‑subject labeling

The inter-subject labeling was applied to 20 subjects from the ARCHI database 
[24]. A comparison has been made between the two implemented methods, match-
ing with the Hungarian algorithm [25] and clustering with QuickBundles (QB) algo-
rithm [26]. Both algorithms work with an input parameter, a distance threshold, using 
the minimum average direct-flip (MDF) distance [26] from one centroid to another. 
This distance threshold defines the minimum degree of similarity between bundles. 
In addition, tests have been carried out with four different distance thresholds. The 
first threshold of 10 mm is very conservative, being the default threshold of QB for 
intra-subject clustering. We also used a 12 mm threshold, which is still conservative 
and aims to find similar bundles across subjects. Two other moderate thresholds were 

Fig. 1 Bundles connecting right PoC and PrC regions. Example of bundle labeling according to the relative 
position of the bundles connecting PoC and PrC regions for Subject001
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Fig. 2 Correspondence of intra‑subject bundle labels across subjects. Comparison of the first five bundles 
from four subjects (001–004), connecting PrC and SM gyri

Fig. 3 Bundle centroid distances between pairs of subjects for intra‑subject labeling of four subjects. Each 
cell in the matrix contains five divisions. Each division represents a bundle connecting PrC and SM gyri (PrC_
SM_0 to PrC_SM_4). The color scale represents the distances (in mm) between bundle centroids for all the 
pairs of subjects. The black divisions represent the absence of bundles connecting the gyri
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used: 18 mm and 21 mm, which are adequate considering that distances of 20–30 mm 
have been previously used for SWM inter-subject analyses [17, 18].

The reproducibility of the methods was evaluated by counting the number of sub-
jects in which each bundle was found. Figure 4 shows the reproducibility of the bun-
dles for both methods and the four thresholds. Table  1 lists three reproducibility 
indices for the two inter-subject labeling methods, separated by hemisphere: the max-
imum number of subjects for the bundles within the 20 most reproducible bundles, 
and the number of bundles with reproducibility greater than or equal to 50% and 75%. 
As expected, for both algorithms, the higher the distance threshold, the greater the 
reproducibility. As can be seen, the method that shows the highest reproducibility 
is QB, presenting 94 bundles with more than 50% of reproducibility for a distance 

Fig. 4 Reproducibility of bundles with inter‑subject labeling for the two methods. The number of subjects is 
shown on the x‑axis while the y‑axis shows the number of clusters in each range

Table 1 Reproducibility values between for the two inter-subject labeling methods

The left column identifies the method (Hungarian or QB), hemisphere (left or right), and the thresholds (12 mm, 18 mm 
or 21 mm). The second column lists the maximum number of subjects for the bundles within the 20 most reproducible 
bundles. Columns three and four show the number of bundles with reproducibility greater than or equal to 50% and 75%, 
respectively

Method Max # Bundles ≥ 50% # 
Bundles 
≥ 75%

Hungarian12_left 7 0 0

Hungarian12_right 6 0 0

QB12_left 19 12 3

QB12_right 14 14 0

Hungarian18_left 13 3 0

Hungarian18_right 11 3 0

QB18_left 20 41 9

QB18_right 19 42 6

Hungarian21_left 13 22 0

Hungarian21_right 13 12 0

QB21_left 20 49 10

QB21_right 20 45 9
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threshold of 21 mm, which is a good number, based on previous studies [17, 18]. On 
the other hand, the Hungarian algorithm only found 34 bundles with more than 50% 
of reproducibility for the same threshold. Furthermore, the Hungarian algorithm 
found no bundles present in all subjects, while QB found 19 for 21 mm threshold. As 
the Hungarian algorithm tries to match 1–1 the bundles, leads to less reproducibility 
than QB. 

Figure 5 shows inter-subject labeling quality for both methods with the four tested 
distance thresholds. The quality is evaluated using the inter-cluster distance (MDF), 
calculated per each bundle as the average distance between all the pairs of bundle 
centroids from the subjects where the bundle was labeled. Thus, the clusters classi-
fied with the same label are measured together, the closer the clusters are in all the 
subjects, the better the quality of the method. As expected, for both algorithms, the 
lower the distance threshold, the higher the quality. It can be seen that the most accu-
rate algorithm is the Hungarian with a 10-mm threshold, at expenses of a low repro-
ducibility, as shown above. The QB algorithm has a lower quality than Hungarian 
because it groups clusters of the same subject and merges them, thus increasing the 
inter-cluster distance. However, the merging of close clusters leads to a final better 
reproducibility, while keeping a moderate intra-cluster distance across subjects, with 
values inferior to 30 mm, and an average of about 15 mm.

To have an insight of the reproducibility and variability of the most reproducible 
bundles in all subjects for the two labeling methods, we created heatmaps (Figs. 6, 7, 8 
and 9). The heatmaps were created separately for the 20 bundles of the left and right 
hemispheres with the highest reproducibility in the 20 subjects, for a 12 mm thresh-
old. Figures 6 and 7 display the heatmaps for the Hungarian algorithm, for left and 
right hemispheres, respectively, while Figs.  8 and  9 show the heatmaps for the QB 
clustering algorithm. The bundles appear in descending order along the y-axis, 
according to the reproducibility between subjects, which appear along the x-axis. 
Empty (white) boxes indicate that a bundle does not exist in a certain subject. The 
colors represent the normalized number of fibers of each bundle (0–1), the darker, 
more fibers.

Fig. 5 Inter‑cluster bundle distance for both inter‑subject labeling method. X‑axis represents the inter‑cluster 
distance measured in mm. Y‑axis shows the number of clusters in each range
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It can be seen that, as in Fig.  5, the method with the highest reproducibility is QB. 
The number of fibers seems to be more homogeneous for QB, with a tendency of a low 
normalized number of fibers. This does not mean that the bundles have few fibers, but 
that their number is of a given value for most of the subjects, with very high values for 
a few subjects. The bundle with the highest reproducibility is lh_PoC-SM_2 which was 
found in 19 subjects, followed by lh_IP-SP_0 and lh_Tr-RMF_0, both found in 18 sub-
jects. Reproducibility using matching is poorer, whose most reproducible bundle, lh_
IP-SP_69, appears in only seven subjects.

Finally, some examples of bundles with high, medium and low reproducibility are dis-
played for a visual inspection of the results. Figure 10 shows the bundle lh_PoC-SM_2, 
belonging to the left hemisphere and classified by the QB clustering method with a 
12 mm threshold. This is the bundle with the highest reproducibility with this restrictive 

Fig. 6 Reproducibility heatmap for Hungarian algorithm with threshold 12 mm, for the left hemisphere. On 
the x‑axis are the subjects, on the y‑axis are the 20 most reproducible bundles. The greater the number of 
fibers, the darker the color of the box on the heatmap that is normalized between 0 and 1

Fig. 7 Reproducibility heatmap for Hungarian algorithm with threshold 12 mm, for the right hemisphere. 
X‑axis displays the subjects used, the 20 most reproducible bundles are shown on the y‑axis. The darker boxes 
indicate a higher concentration of fibers in the bundle. These values are normalized between 0 and 1
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threshold, being present in 19 out of the 20 subjects, with the exception of Subject008, 
achieving a 95% of reproducibility. It can be seen how bundles connect approximately 
the same cortical regions in different subjects and have a similar main shape. Also, it 
can be seen that the number of fibers is very variable among subjects, which is usual in 
SWM bundles.

Figure 11 shows the bundle lh_PoC-PrC_0, of the left hemisphere and classified by the 
QB method with 12 mm of threshold. It appeared in 11 out of the 20 subjects, that is, a 
55% of reproducibility. This is a small bundle connecting the PoC and PrC gyri.

Lastly, Fig.  12 shows for the left hemisphere the cluster lh_RMF-SF_7, classified by 
the QB method using a threshold of 12 mm. This is the least reproducible cluster of the 

Fig. 8 Reproducibility heatmap for QB with threshold 12 mm, for the left hemisphere. X‑axis shows the 
subjects, while the y‑axis shows the 20 most reproducible bundles among subjects in the left hemisphere. 
Darker boxes show bundles with more fibers in them. White boxes show the absence of the bundle in the 
determined subject. The heat bar shows the values of normalized fibers between 0 and 1

Fig. 9 Reproducibility heatmap for QB with threshold 12 mm, for the right hemisphere. X‑axis displays the 
subjects, and on the y‑axis appears the 20 most reproducible bundles. The lighter the color of the box, the 
fewer fibers it contains. If the box is white, it indicates the absence of the bundle in the subject. The fiber 
values appear normalized between 0 and 1 in the heat bar
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heatmap of Fig. 8, appearing in 9 out of the 20 subjects, reaching only 45% of reproduc-
ibility. However, it can be seen that the bundles connect the same area in all subjects, 
slightly varying the position and the number of fibers.

Fig. 10 Bundle lh_PoC‑SM_2, with the highest reproducibility in all subjects. The results show good 
reproducibility among subjects, appearing in 19 of the 20 subjects for the QB method with 12 mm threshold

Fig. 11 Bundle PoC‑PrC_0, with medium reproducibility. The PoC-PrC_0 bundle appears in 11 out of 20 
subjects, achieving 55% of reproducibility, for QB algorithm with a 12 mm threshold
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Discussion
In the last two decades, a great number of methods have been proposed for the analy-
sis of tractography datasets. Most of the works have been focused on the study of deep 
white matter bundles, such as the arcuate fasciculus or the inferior fronto-occipital fas-
ciculus. These bundles are in general larger and more stable across subjects, and have 
been described by neuroanatomists several decades ago. The methods have been focused 
on the study of these bundles, the creation of WM bundle atlases and the segmenta-
tion of WM bundles. Most of the studies have been developed with a combination of 
ROI-based and clustering-based methods, and the important guidance of neuroanatomy 
experts. In general, the applications analyze the segmented bundles across subjects and 
different populations of patients.

The methods have evolved with the increasing quality of the data. Tractography data-
sets have increased their size and complexity due to a higher resolution and better image 
quality, being able to provide a better representation of fiber crossing and small bun-
dles. These advances are also associated with improved algorithms along all the process-
ing pipeline, including artifacts and distortion corrections, diffusion local modeling and 
fiber tracking. Furthermore, the use of more accurate tractography propagation masks 
(e.g., based on T1 images [27]) has helped to achieve a better reconstruction of small and 
superficial white matter fibers.

Hence, in the last decade, due to the better quality of dMRI images and processing 
algorithms, it has been possible to start studying the short association WM bundles. 
A first whole-brain study used an atlas of gray and white matter to extract short fib-
ers connecting adjacent gyri [28]. Other works combined a hierarchical fiber clustering 
and cortical parcellation information to extract reproducible short association bundles 
[17]. A recent study reported a great number of short association bundles, but without a 
labeling [22]. These works were mostly focused on the creation of SWM atlases. Hence, 
there is still a need for methods, open to the research community for the study of short 
association bundles in new databases.

The proposed methods provide an automatic labeling of SMW bundles. First, an effi-
cient individual labeling was implemented. It generates compact clusters and labels them 
according to a cortical parcellation based on mesh information, for a high-quality ROI-
based labeling. Furthermore, the bundles connecting each pair of anatomical regions 
(gyri) are ordered following an axis orientation. The resulting clusters could be used for 

Fig. 12 Bundle lh_RMF‑SF_7, with low reproducibility. The bundle appears in nine out of 20 subjects using 
the QB clustering algorithm with a 12 mm threshold
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fast and easy exploration of short association bundles in individual brains. Without a 
labeling, its exploration is very complex, since about one thousand clusters are produced 
for the whole brain.

Subsequently, an inter-subject method has been added, to obtain a correspondence 
between the clusters (or bundles) across subjects. We tested two methods, a matching, 
based on the Hungarian algorithm, and a clustering method, based on the QB algorithm. 
Even though we used available implementations of both methods, we have adapted them 
to the processing of labeled intra-subject clusters from different subjects to generate 
automatically labeled inter-subject clusters.

Since there is a high inter-subject variability in tractography datasets, especially for 
short association bundles, the applied processing extracts the main fiber connections 
by using first an intra-subject clustering. It has also the advantage to remove noisy fib-
ers, that are not grouped into the main clusters. Furthermore, the inter-subject analysis, 
along with a common labeling for clusters which are similar for most of the subjects, 
performs an identification of non-reproducible fibers at the group level.

The results show a better reproducibility across subjects for the QB clustering method 
versus the Hungarian algorithm. Hungarian algorithm finds a good correspondence 
between subjects, with low inter-cluster distance, but at expenses of inferior reproduc-
ibility. Due to inter-subject variability, and the absence of bundles in some subjects, the 
one-to-one matching strategy seems not to be directly applicable to this kind of problem. 
On the other side, the clustering groups similar bundles on subjects and do not impose 
the existence of clusters in all the subjects. Indeed previous inter-subject analyses based 
on clustering have included a reproducibility constraint, e.g., a minimum number of 
subjects present in the clusters. Hence, an advantage of the proposed labeling is that this 
reproducibility information is easily extracted from the inter-subject labels, which is not 
the case for classic algorithms. Furthermore, even though the main goal of this work is 
not a study of the reproducibility of SWM bundles, the results of our inter-subject clus-
tering strategy are competitive with state-of-the-art methods, with 94 reproducible bun-
dles for a moderate MDF distance of 21 mm, compared to about 100 hundred bundles 
obtained for atlases proposed in [17, 18], created with a maximum Euclidean distance of 
30 mm.

Note that several factors impact the results, including the quality of the tractography 
datasets, and the registration strategy. It has been shown that using non-linear registra-
tion increases the number of SWM identified [18]. In our experiments we used affine 
registration to Talairach space, however, other registration algorithms can be applied 
without problem. Furthermore, false positives are very likely to increase the variability 
across subjects and affect the results. Bundle variability may also be due to the inherent 
variability of the cortical folding patterns [29]. Since U-fibers are directly under the cor-
tical sulci, present a smaller size, and connect small regions of the cortex, they are more 
sensitive to differences in the cortex anatomy than deep white matter bundles.

Finally, we highlight some advantages of the proposed methods. First, it is efficient, 
taking about 3.6 min for an intra-subject analysis and about 9 s to perform the inter-
subject clustering. That is, for the whole inter-subject labeling processing, it takes about 
1.17 h on average. This time is reasonable for an inter-subject analysis. Furthermore, the 
algorithms are scalable and can be applied to larger tractography datasets and databases.
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Inter-subject labeling can be used to discover patterns of connections in different 
groups of healthy subjects and patients. The inter-subject clusters can be used to cre-
ate WM bundle atlases, which require the inspection of experts in anatomy. Note that 
the clusters from tractography can contain artifacts and false positives [6]. In fact, false-
positives can be highly reproducible, hence these will be also labeled by the proposed 
methods. The inter-subject labeling was not conceived to identify bundles with an ana-
tomical meaning or to discard false-positives. The objective is to identify and label all the 
reproducible bundles. These bundles can be used as input to other analyses that include 
anatomical knowledge, in order to validate the bundles. The proposed algorithm can also 
contribute to the analysis of tractography datasets for the improvement of tractography 
methods, through the incorporation of anatomical information and filtering. Finally, 
other applications include the study of brain connectomes and methods for diffusion-
based cortical parcellations.

Conclusions
We implemented a fast method for the automatic labeling of white matter fiber bundles, 
specifically for the SWM, based on an intra-subject clustering and the connectivity of the 
clusters with the cortical mesh, based on an anatomical ROI atlas. The algorithm also 
adds a label associated with the relative position of the bundles. Results for intra-subject 
labeling show a degree of correspondence between subjects, which is further improved 
with inter-subject labeling. A complete intra-subject labeling is executed on an average 
time of 3 min and 35 s for a tractography dataset of about one million fibers. This ena-
bles a fast and easy exploration, visualization and analysis of labeled short association 
bundles in individuals, which is very difficult without any additional information.

Besides, we developed an inter-subject labeling by using two methods. One approach 
is matching, in particular, the Hungarian algorithm, and the other is clustering, employ-
ing QuickBundles algorithm. The results show a better reproducibility across subjects for 
the clustering method versus the matching algorithm while keeping a moderate inter-
cluster distance, indicating a good quality of the clusters. Furthermore, the algorithm is 
scalable and the whole processing for the inter-subject labeling executes at a reasonable 
time, of about 1.17 h for 20 subjects. The obtained clusters could be used to perform 
group-wise connectivity studies, such as the creation of WM bundle atlases, and the 
development of new methods for the analysis of brain connectome.

Future work will be focused on the application of the method in high-quality data-
bases, such as the Human Connectome Project (HCP) database, for the creation of a 
SWM atlas and diffusion-based cortical parcellations.

Methods
Database and tractography datasets

We used 20 subjects of the ARCHI database [24], which was acquired with a 3T 
MRI scanner (Siemens, Erlangen). The MRI protocol included the acquisition of a 
T1-weighted dataset using an MPRAGE sequence (160 slices; matrix = 256 × 240; voxel 
size = 1 × 1 × 1.1 mm) and a SS-EPI single-shell HARDI dataset along 60 optimized 
DW directions, b = 1500 s/mm2 (70 slices, TH = 1.7 mm, TE = 93 ms, TR = 14, 000 
ms, FA = 90 , matrix = 128 × 128, RBW = 1502 Hz/pixel). BrainVISA/Connectomist 
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2.0 [30] was used for pre-processing the images. The HARDI dataset was corrected for 
artifacts, geometrical distortions induced by susceptibility effects, eddy currents, and 
motion. The diffusion-weighted (DW) processing pipeline includes the calculation of the 
analytic q-ball diffusion model [31]. Whole-brain streamline deterministic tractography 
[32] was calculated with one seed per voxel, from all the voxels of the T1-based propa-
gation mask [27], in forward and backward directions, with a tracking step of 0.2 mm 
and a maximum curvature angle of 30◦ . Resulting tractography datasets contain about 
one million fibers per subject. These calculations were performed using Brainvisa/Con-
nectomist software,1 however other software can be used, such as DSI Studio.2 Special 
attention must be given to the propagation mask, by the use of a low FA threshold and a 
visual inspection of the mask, to prevent the remotion of superficial white matter voxels. 
More details about tractography parameters for the reconstruction of superficial white 
matter bundles and their reproducibility can be found in [16].

Affine transformations between subjects’ T1 and DW images were also calculated, as 
well as affine transformations from T1 to Talairach space. The cortical meshes and an 
automatic labeling of the anatomical regions according to the Desikan–Killiany atlas 
were obtained using FreeSurfer [33].

Automatic labeling of SWM bundles

To perform the automatic labeling of bundles of superficial white matter, a method con-
sisting of four stages (see Fig. 13) was developed, these are: (1) fiber clustering, (2) cluster 
filtering, (3) fiber intersection and (4) cluster labeling.

Stage 1: fiber clustering
This first stage performs an automatic clustering of a whole-brain tractography dataset, 

which returns a set of clusters of similar fibers (see Fig. 13-(1)). The clustering method 
[34] is an improved version of an algorithm proposed in [35]. To apply the clustering, 
fibers must be first resampled with 21 equidistant points, as in [12, 36]. The method con-
sists of 4 steps: (1) building clusters on a subset of fiber points, where mini batch K-means 
is applied in parallel on a subset of fiber points, obtaining groups of points; (2) generat-
ing preliminary clusters, which groups fibers sharing the point cluster labels from the 
previous step; (3) Defining candidate clusters by reassigning small preliminary clus-
ters: reassigns small clusters to larger clusters based on a maximum distance threshold 
between clusters; (4) computing final clusters by merging close candidate clusters: merges 
close clusters that share the central label obtained from step 1, according to a criterion 
of maximum Euclidean distance between clusters. Finally, a representative fiber of each 
cluster is selected, as its centroid, and resampled with 21 equidistant points.

Stage 2: cluster filtering
The second stage automatically filters out the small and long fiber clusters (see Fig. 13-

(2)). Clusters are denoted as Ci , with i = 1, ..., n the index of the cluster. The filter receives 
a minimum size of the cluster minnf (Ci) (number of fibers), to remove small fibers, and 
a minimum minlen(Ci) and maximum cluster length maxlen(Ci) to only keep short fibers 

1 brainvisa.info.
2 dsi-studio.labsolver.org.
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within a reasonable range. The length of each cluster is measured using the Euclidean dis-
tance between two adjacent points of the cluster’s centroid.

Stage 3: fiber intersection
This step automatically calculates the intersection of the fibers with the cortical mesh, 

based on the algorithm proposed in [37] (see Fig. 13-(3)). The method first performs a subdi-
vision of 3D space into 1.5-mm-size cells, which speeds up searches in the mesh. Next, each 
fiber endpoint is projected one point backward and two points forward to extend the search 
along the fiber trajectory on ending points and avoid missing intersections. All cells that 
include these points and their neighboring cells are selected. Finally, the intersection point of 
each fiber extremity with the cortical mesh triangles is determined using Möller–Trumbore 
equation [38], based on the analysis of the triangles contained in the selected cells.

The intersection algorithm is given by Eq. 1:

where (u, v) are the exact coordinates of the intersection with the mesh triangle, V0 , V1 
and V2 are the vertices of a triangle, t is the direction, D is the normalized ray trajectory, 
and O is the ray from the point of origin.

(1)O + tD = (1− u− v)V0 + uV1 + vV2,

Fig. 13 Schematics of the labeling method. Stage 1: fiber clustering. Performs the clustering of the entire 
tractography. Stage 2: cluster filtering. Filters out the small clusters and only keep the short bundles, obtained 
in the previous stage. Stage 3: fiber intersection. Calculates the fiber bundle intersection with the cortical 
mesh. Stage 4: cluster labeling. Renames the clusters based on the two connected regions of the cortex and 
their relative position
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Finally, for each hemisphere, the indexes of the start ( Triinit ) and end triangles ( Triend ) 
where the fiber intersects the mesh are obtained, as well as the coordinates of the two 
exact points of the initial ( Pointinit ) and final ( Pointend ) intersection.

Stage 4: cluster labeling
This stage performs an automatic labeling of all the clusters based on the cortical 

regions they connect, by using a cortical ROI atlas. For testing, we use the Desikan–
Killiany atlas [39], consisting of 35 regions (gyri) per hemisphere. We use the cortical 
meshes, containing a list of vertices and triangles, and a labeling file, containing the cor-
tical region label of each mesh vertex.

First, for each cluster, each fiber is labeled according to the triangle of the mesh that 
the fiber intersects, based on the region labels of the triangle vertices. The labeling of 
each triangle is defined as the most repeated label between its three vertices (see Fig. 13-
(4.1.)). Next, the fibers require to be aligned, since, in a tractography dataset, there is 
no unique direction and fibers can be stored in direct or inverse direction. Since after 
the clustering the fibers are grouped on compact clusters, these can be aligned so that 
the starting and ending points have the same orientation in a cluster (see Fig. 13-(4.2.)). 
Hence, the fibers of a cluster are oriented based on the cluster centroid. To perform the 
alignment, we verify if the fibers are inverted with respect to the centroid. We denote 
fi as the fiber i of the bundle, with i = 1, ..., n , and the centroid of the bundle as cj , with 
j = 1, ...,m . Then, the Euclidean distance ( dE ) is calculated between the first point of the 
fiber ( fi1 ) and both endpoints of the centroid ( ci1 to cj21 ). If dE(fi1, cj1) > dE(fi1, cj21) , the 
fiber is inverted by flipping its fiber points (Fig. 14).

Next, each cluster (or bundle) is labeled according to the most connected regions. For 
each bundle, the labels of both bundle extremities, i.e., the beginning and end of each 
bundle, are processed separately. The most common label (mcl) for bundle start ( mclinit ) 
and end ( mclend ) is determined and used to name each bundle, with format mclinit-mclend 
(see Fig. 13-(4.3.)). For instance, a bundle connecting the postcentral and precentral ana-
tomical regions will have the label PoC-PrC. Note that several bundles may connect the 
same pair of anatomical regions (gyri), as each cluster extremity only intersects a portion 
of a gyrus. Then, an order is assigned to each pair of bundles defined by the index of the 
regions in the cortical region label file. For example, PrC has index 24 and PoC has index 
22, then, the bundle is named as PoC-PrC. Subsequently, bundles with inverted names 
are flipped. For example, all the bundles labeled with PrC-PoC are inverted and named 
as PoC-PrC. Finally, as several bundles may have the same name, but connecting differ-
ent specific sub-regions of the gyri. These are labeled with an extra index, indicating the 
relative position according to an axis in the brain in MNI space. The intersection points 

Fig. 14 Fiber bundle alignment with respect to its corresponding bundle centroid. The Euclidean distance 
( dE ) is calculated between the first point of the fiber ( fi1 ) and both end points of the centroid ( ci1 to cj21 ). If 
dE (fi1, cj1) > dE (fi1, cj21) , the fiber is reversed
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of all the bundle centroids in a gyrus are sorted based on a spatial coordinate (x, y or z), 
in ascending or descending order. By default the order is ascending according to y axis, 
i.e., from the bottom up.

Inter‑subject labeling

In this section, two methods are presented to obtain automatic group-wise bundle labels 
of superficial white matter bundles, among the subjects of a population. Intra-subject 
labeling, presented in the previous section, labeled the bundles of a subject based on the 
connected brain regions individually, and an order based on the coordinates, producing 
a certain similarity between the subjects’ bundles. However, this was not the main objec-
tive of the intra-subject labeling method and the correspondence between subjects can 
be improved by applying inter-subject methods. The methods used to perform this pro-
cessing are a matching algorithm and a clustering algorithm. To apply these methods, 
the tractography datasets need to be in a common space. All subjects were aligned to 
Talairach space using the affine transformation of the database, and then a rigid trans-
formation to MNI space. Both methods use a maximum distance threshold to define the 
similarity of bundles across subjects. The inter-subject labeling renames all the bundles 
according to the correspondence found in the analyzed group of subjects. The part of the 
name related to the connected cortical regions is kept, but the index is assigned again to 
all the bundles. Bundles found similar in several subjects will have the same label.

Matching algorithm for inter-subject labeling
The aim of this step is to apply a matching [40] for finding a correspondence between 

similar bundles in the different subjects. Bipartite matching algorithms find correspond-
ence between pairs of elements from two distinct sets. These algorithms are based on 
graph theory to find connections in two sets of vertices, where vertices in one set must 
match with vertices in the other set [41].

A well-known algorithm for a bipartite matching problem is the Hungarian algorithm, 
that solves the minimum weight matching, i.e., the minimum distance between vertices 
from the two sets, A and B [25]. Being V the number of vertices from the two sets, the 
algorithm receives a matrix M, containing the distances between the vertices from the two 
sets. In our application, V is the total number of bundles from a pair of subjects and matrix 
M contains the distances between the bundle centroids from the two subjects, being one 
set represented in the rows, and the other in the columns. The original algorithm performs 
a perfect matching, i.e., each vertex (or bundle) in set A is matched with a vertex in set B, 
which requires an equal number of vertices in both sets and produces a square matrix M. 
Our problem presents a different number of vertices in each set, as different number of 
bundles are found in each subject. Hence, we used an adapted algorithm that performs the 
analysis over non-squared matrices and leaves unmatched the most dissimilar elements.

More formally, each element M[i, j] in matrix M represents the distance between bun-
dle i of set A (subject A) and bundle j of set B (subject B), being the cost of matching 
between the two vertices. The result is an assignment of the elements of set A with set 
B by using the minimum assignment cost. The distance used is the minimum average 
direct-flip distance (MDF) between two pairs of fibers [26] (Eq. 2), a distance commonly 
used for tractography fiber comparison. This distance calculates the mean Euclidean 
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distance between corresponding points of a pair of centroids or fibers. To be used, fib-
ers are resampled with a defined number of K equidistant points (21 in our case). Since 
fibers can be ordered in memory in opposite directions, the distance must be calculated 
with fibers in both directions (direct and flipped order), and then the minimum value 
must be selected, which will correspond to the correct order.

The Hungarian algorithm has a complexity of O(V 3) , however, as we perform the anal-
ysis separately for each pair of anatomical regions, the analyzed datasets are small with 
low execution time.

The matching algorithm applied to inter-subject bundle labeling first performs a bun-
dle pre-processing. For each subject, previously labeled bundles with the intra-subject 
labeling, are separated into different groups depending on the pair of anatomical regions 
they connect. Then, for each region a map is created, whose key is the subject and the 
value is a list of the bundles that belong to the subject and region. For instance, for 
region PoC-PrC the bundles for Subject001, will be stored in the key-value pair: Sub-
ject001: [bundle0, bundle1, ..., bundleN]. Next, the algorithm consists of four steps:

• Step 1. Once the maps of all the regions are obtained, the bundles of each region are 
processed sequentially. First, the subjects are ordered from highest to lowest, based 
on the number of bundles they contain. For each bundle, its centroid is calculated 
using the mean of the streamline point coordinates.

• Step 2. The analysis begins with the first subject on the list as a reference subject. 
This subject is compared with each of the following subjects using the Hungarian 
algorithm, receiving as input the distance matrix. This returns a matching based on 
the distance of one bundle centroid with another. The Hungarian algorithm receives 
as input the matrix of distances, which are calculated using the MDF distance (Equa-
tion  2) between all the bundle centroid pairs of all subjects. For each bundle, the 
algorithm returns the bundle that best matches it, according to the solution of the 
minimization problem. However, the distance between a pair of bundles could be 
higher, hence, the method evaluates all the distances between the matched bundle 
centroids and only keeps the pairs of bundles in which distances do not exceed the 
established maximum distance threshold. This avoids the assignment of distant bun-
dles, leaving them unassigned. Bundles that match each other are labeled with the 
same indexes, based on the label of the reference subject. For example, for two cor-
responding bundles, they would be called PoC-PrC_0 even if they are from different 
subjects.

• Step 3. Two cases can happen with unassigned bundles: (i) Bundles of the reference 
subject. They are not similar to any other bundle in the dataset and they are labeled 
with a new index. (ii) Bundles of the remaining subjects. The bundles are stored. In 

(2)

ddirect(a, b) = d(a, b) =
1

K

K∑

i=1

|ai − bi|

dflipped(a, b) = d(a, bF ) = d(aF , b)

MDF(a, b) = min(ddirect(a, b), dflipped(a, b)).
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the iteration in which the subject is taken as a reference, comparisons are made again 
with the rest of the subjects.

• Step 4. Repeat Step 2 with the unassigned bundles of the following subjects, taking as 
reference the next subject in the list with unassigned bundles.

Figure 15 shows an example scheme of the algorithm for three subjects and the bundles 
connecting PoC-PrC regions. Each circle corresponds to a bundle. First, the subjects are 
ordered from highest to lowest number of bundles (see Fig. 15-(1.)). Second, Subject001 
that is being compared with the rest is the reference. It is compared with the Subject002 
and does match only the first two bundles, leaving an unassigned bundle in Subject002, 
which will be saved for later comparison (see Fig. 15-(2.)). Third, Subject001 continues to 
be compared with the remaining subjects, in this case, with Subject003, which leads to 
the matching of bundles 1 and 2. In Subject003 there remains an unassigned bundle (see 
Fig. 15-(3.)). Finally, once Subject001 is compared with all subjects, the reference subject 
becomes the next one, in this case, Subject002. Then, unassigned bundles are compared, 
for example, Subject002 is compared with Subject003 and the two unassigned bundles 
are matched (see Fig. 15-(4.)). The bundle with the highest reproducibility in the exam-
ple is the 1, since it is present in all subjects, and would be named as PoC-PrC_1, accord-
ing to the label of the first reference subject of the bundle.

We used the implementation of the Hungarian algorithm available at scipy library [42].
Clustering algorithm for inter-subject labeling

Fig. 15 Schematics of the Hungarian algorithm for inter‑subject labeling of bundles connecting PoC‑PrC 
regions. First, the bundles are ordered from highest to lowest number of bundles. Second, the reference 
subject, Subject001, is compared to Subject002, leaving unassigned bundles. Third, it continues comparing to 
the rest of the subjects. Finally, the reference passes to the next subject with unassigned bundles, Subject002 
and these are compared with the rest of the subjects. This process is repeated until all subjects are analyzed
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Clustering is an unsupervised classification method, which groups similar elements 
into subsets called clusters. Each cluster is made up of elements that have similar charac-
teristics, however, the elements of each cluster are different from each other [43].

The clustering method used to group the clusters is a well-known fiber clustering algo-
rithm called QuickBundles (QB) [26, 44]. QB is a clustering method specialized in group-
ing white matter fibers from tractography datasets quickly and with good quality. This 
unsupervised clustering algorithm groups the fibers into clusters, without recalculat-
ing the clusters, like classical methods such as K-means. The algorithm uses a distance 
threshold to define whether a new fiber will be assigned to the closest cluster or will 
start a new cluster. The algorithm has a single parameter, which is the minimum average 
direct-flip distance (MDF) between two pairs of fibers. It is one of the fastest methods 
that exist today, with runtime O(N 2) , being N the size of the dataset.

Before applying QB, we apply the same bundle pre-processing as for the matching, to 
create a map for each pair of regions, with the bundles of each subject. Next, the QB 
algorithm is performed sequentially to each pair of regions. For each pair of regions and 
all the subjects, the centroids of all clusters are calculated. The algorithm is applied to 
the complete set of clusters, i.e., from all subjects for the pair of regions. Once the inter-
subject clusters are obtained, all intra-subject clusters belonging to the same inter-sub-
ject cluster are labeled with the same label. If several clusters of the same subject belong 
to the same inter-subject cluster, they are merged.

Fig. 16 Schematics of the QB algorithm for labeling inter‑subject bundles for PoC‑PrC regions. First, the 
cluster centroids are computed. Second, QB is applied to all the intra‑subject clusters, to obtain inter‑subject 
clusters. Bundles belonging to an inter‑subject cluster are labeled using the same name. Finally, clusters of 
the same subject that belong to the same inter‑subject cluster are merged
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Figure 16 shows an example scheme for QB application to three subjects on the PoC-
PrC regions. First, it starts with the computation of all the cluster centroids. Unlike 
matching, in this case, it is not necessary that the clusters are ordered (see Fig. 16-(1.)). 
Second, the QB method is applied to all clusters, generating inter-subject clusters. 
Bundles within inter-subject clusters are labeled with the same name (see Fig. 16-(2.)). 
Finally, the clusters of a subject that are in the same inter-subject clusters are merged 
(see Fig.  16-(3.)). The clusters with the highest reproducibility are 0 and 3 since they 
appear in all subjects, whose tags would be: PoC-PrC_0 and PoC-PrC_3. In addition, 
there may be some loose cluster, which will be individually labeled with another index.

Statistical analysis
Histograms have been used to evaluate the reproducibility of inter-subject bundles 
(clusters) in terms of the number of subjects in where they are found, for the two tested 
methods and different distance thresholds. The greater the number of subjects, the more 
reproducible the bundle is. Another histogram displays the number of inter-subject bun-
dles obtained for different inter-cluster distance ranges. The greater the number of clus-
ters with a lower distance, the more precise the classification of the method is.

On the other hand, heatmaps were created to visually evaluate the reproducibility and 
variability of the bundles in the different subjects. First, the presence or absence of a bun-
dle in a subject can be observed. Also, the normalized number of fibers is displayed using 
a heat colormap. The stronger the color indicates a higher number of fibers in the bundle.

Simple averages were used to compute the execution times over the different subjects.
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