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SYMMETRY GROUP OF THE EQUIANGULAR CUBED SPHERE

JEAN-BAPTISTE BELLET

Abstract. The equiangular cubed sphere is a spherical grid, widely used in computational physics.
This paper deals with mathematical properties of this grid. We identify the symmetry group, i.e. the
group of the orthogonal transformations that leave the cubed sphere invariant. The main result is that
it coincides with the symmetry group of a cube. The proposed proof emphasizes metric properties of
the cubed sphere. We study the geodesic distance on the grid, which reveals that the shortest geodesic
arcs match with the vertices of a cuboctahedron. The results of this paper lay the foundation for future
numerical schemes, based on rotational invariance of the cubed sphere.

1. Introduction

1.1. Cubed sphere. Various �elds in computational physics, for instance climatology modelling [31],
involve numerical computations on the sphere. This includes the use of spherical grids [32]. The grids
obtained by radial projection of a circumscribed cube on the sphere are among the most employed.
These cubed sphere grids have been originally introduced in [27], and further studied, for example
in [13,18�20,22,23,25]. A wide variety of numerical methods have been successfully adapted to cubed
sphere grids, e.g. in [3�10,12,14,21,26,29,30] and the references therein.

This paper deals with mathematical properties of a cubed sphere structured by equiangular great
circles: the equiangular cubed sphere CSN [3, 20], depicted in Figure 1 and in Appendix A. As can be
observed, the cubed sphere is quasi-uniform, is not polarized along a speci�c axis, and is shaped by
the cube, including discontinuities accross �edges� (radial projection of the edges of the circumscribed
cube). Furthermore, some symmetry properties, such as invariance under permutation of the cartesian
coordinates, can be noticed.

The symmetry of the cubed sphere has been previously used in various contexts, for instance in
[3, 16, 17, 25]. However, to the best of our knowledge, a systematic study of the isometries of CSN is
not available so far. This paper aims at �lling this gap by identifying the symmetry group of CSN .
Such a study provides a valuable mathematical background for the applications. Indeed, knowing the
symmetry group of a grid supports the design of numerical schemes, such as interpolation methods [24],
quadrature rules [28], or Discrete Fourier Transforms [15].

1.2. Main results. We study the symmetries of the cubed sphere, by means of its symmetry group [1]:

De�nition 1.1. The symmetry group of CSN is the set GN of the orthogonal matrices that leave CSN
invariant:

GN =
{
Q ∈ R3×3 : QᵀQ = QQᵀ = I3 and QCSN = {Qu, u ∈ CSN} = CSN

}
.

For N = 1, CS1 = {−1/
√

3, 1/
√

3}3 is a scaling of {−1, 1}3. Hence the group G1 is exactly the
symmetry group O of the cube {−1, 1}3: G1 = O. This group is well known: it is isomorphic to the
group S4 × Z/2Z [1, pp. 37,38,55]; any symmetry of the cube is indeed identi�ed with a permutation
of the four principal diagonals, combined with a toggle for inversion of the cube, or not. We refer to
Appendix B for a matricial representation of O. The main result of this paper is that GN = O, for
every N ≥ 1:

Theorem 1.2 (Symmetry group of the equiangular cubed sphere). Let N ≥ 1. The symmetry group
GN of the cubed sphere CSN coincides with the symmetry group O of the cube {−1, 1}3. In other words,
an orthogonal matrix Q leaves CSN invariant if, and only if, it leaves {−1, 1}3 invariant.
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2 JEAN-BAPTISTE BELLET

Figure 1. Cubed sphere grid CSN (N = 3). A cartesian grid CN (black dots) is de�ned
on the faces of the cube [−1, 1]3, by means of the two-dimensional grid TN ×TN , where
TN = {tan kπ

2N ,−
N
2 ≤ k ≤ N

2 } is an equiangular grid. The cubed sphere grid CSN
(white dots) is de�ned as the radial projection of CN on the unit sphere: CSN = ρ(CN ),
with ρ : x ∈ R3 \ {0} 7→ x

‖x‖ ∈ S2. On the faces of the cube, the grid CN de�nes a mesh

(dotted straight lines). The projection ρ maps this mesh onto a mesh of the sphere: the
(dotted) straight lines are mapped onto equiangular arcs of great circles (white curves).

The most di�cult inclusion to be proved is GN ⊂ O. One possible approach deduces this result from
O ⊂ GN , using group theory as Appendix C. Instead of this theoretical approach, this paper focuses
on a direct proof which investigates metric properties of CSN . This direct approach has the advantage
of deepening the knowledge of CSN . More precisely, we solve the problem of the shortest geodesic arcs
on CSN :

min{θ(u, v) := arccosu · v;u ∈ CSN , v ∈ CSN , u 6= v}. (P)

One original feature of problem (P) is that u and v are allowed to belong to distinct grid lines, or even
distinct panels; in particular, any spherical diagonal of the mesh is realizable. The main di�culty of
problem (P) comes from this speci�city. This is somehow the lock of Theorem 1.2. Any solution of (P)
is given by the following theorem.

Theorem 1.3 (Shortest arcs on the equiangular cubed sphere). Let u, v ∈ CSN with u 6= v. The arc
{u, v} is optimal for (P) if, and only if, there exists an isometry of the cube, Q ∈ O, such that{

{u, v} =
{
Qρ
(
1,− tan π

4N , 1
)
, Qρ

(
1, tan π

4N , 1
)}
, if N is odd,

{u, v} =
{
Qρ (1, 0, 1) , Qρ

(
1, tan π

2N , 1
)}
, if N is even.

In other words, the minimal arcs are described by the orbit of{
ρ
(
1,− tan π

4N , 1
)
, ρ
(
1, tan π

4N , 1
)}
,
{
ρ (1, 0, 1) , ρ

(
1, tan π

2N , 1
)}
,

for the group action (Q, {u, v}) 7→ {Qu,Qv}, Q ∈ O, {u, v} ⊂ CSN . The matricial representation (B.1)
of O shows immediately the following corollary.

Corollary 1.4. (i) If N is odd, there are precisely 12 minimal arcs on CSN (one per edge):

{ρ(−δ, ε1, ε2), ρ(δ, ε1, ε2)}, {ρ(ε1,−δ, ε2), ρ(ε1, δ, ε2)}, {ρ(ε1, ε2,−δ), ρ(ε1, ε2, δ)},
δ = tan π

4N , ε1 = ±1, ε2 = ±1.

(ii) If N is even, there are precisely 24 minimal arcs on CSN (two per edge):

{ρ(0, ε1, ε2), ρ(δ, ε1, ε2)}, {ρ(ε1, 0, ε2), ρ(ε1, δ, ε2)}, {ρ(ε1, ε2, 0), ρ(ε1, ε2, δ)},
δ = ± tan π

2N , ε1 = ±1, ε2 = ±1.

Roughly speaking, the minimal arcs are �short arcs around the midpoints on the edges�, as displayed
in Figure 2. These midpoints match with the vertices of the cuboctahedron (B.3). Our proof of
Theorem 1.2 is mainly based on the invariance of this cuboctahedron under GN .
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Figure 2. The bold arcs, around the midpoints on the edges, are minimal arcs on
CSN . Left: N is odd (N = 3); right: N is even (N = 4). These arcs match with the
vertices of a cuboctahedron (black line).

1.3. Organization of the paper. The paper is organized as follows. In Section 2, we prove The-
orem 1.2. In Section 3, we prove Theorem 1.3. The proof is based on a series of lemmas which are
proved in Section 4. In Appendix A, we recall the de�nition of CSN . Some geometrical and matricial
properties of O are given in Appendix B. In Appendix C, we give a proof of Theorem 1.2, based on
group theory.

2. Proof of the main theorem

Lemma 2.1. Any symmetry of {−1, 1}3 leaves CSN invariant, i.e. O ⊂ GN .

Proof. Firstly, it is clear from the de�nition (A.1) that CSN is stable under the following operations:

• permutation of some coordinates;
• toggle the sign of some coordinates.

The last point is due to the symmetry of the set TN (u ∈ TN ⇒ −u ∈ TN ). Secondly, by (B.2), any
Q ∈ O is a composition of two such operations; therefore, QCSN ⊂ CSN . Since Q is orthogonal, then
QCSN = CSN and Q ∈ GN . �

Remark 2.2. The result can be extended for other cubed sphere grids: the equiangular property of the
grid TN does not matter; the key property is the symmetry of TN .

Theorem 2.3. Let Ω be the cuboctahedron (B.3). Let Q ∈ GN . The isometry Q leaves Ω invariant.

Proof. Case 1: N is odd. We introduce the midpoints of the minimal arcs:

Ω′ = {12(u+ v), {u, v} is minimal for (P)}.

By Corollary 1.4, Ω′ is a scaling of Ω:

Ω′ = {(2 + tan2 π
4N )−1/2x, x ∈ Ω}.

We prove that Ω′ is left invariant by Q. Fix w = u+v
2 ∈ Ω′ with {u, v} minimal. Then {Qu,Qv} is

minimal due to Q ∈ GN . As a result Qw = Qu+Qv
2 ∈ Ω′. Thus QΩ′ ⊂ Ω′. Finally QΩ = Ω.

Case 2: N is even. We prove that ρ(Ω) = {2−1/2x, x ∈ Ω} is left invariant by Q. By Corollary 1.4,

ρ(Ω) = {u ∈ CSN : n(u) = 2},
where n(u) denotes the number of v such that {u, v} is minimal:

n(u) = ]{v ∈ CSN : {u, v} is minimal for (P)}, u ∈ CSN .

By the way, the arc {u, v} is minimal if, and only if, {Qu,Qv} is minimal (due to Q ∈ GN ). At the
end, for every u ∈ CSN , n(u) = n(Qu), and

u ∈ ρ(Ω)⇔ n(u) = 2⇔ n(Qu) = 2⇔ Qu ∈ ρ(Ω).

Then Qρ(Ω) = ρ(Ω) and QΩ = Ω. �
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Proof of Theorem 1.2. We have proved O ⊂ GN in Lemma 2.1. The converse is a corollary to Theo-
rems 2.3 and B.5: any Q ∈ GN leaves the cuboctahedron Ω invariant, so it leaves the cube {−1, 1}3
invariant. �

3. Proof of Theorem 1.3

In this section we minimize the great circle distance θ(u, v) = arccosu · v between u 6= v ∈ CSN .
Brie�y, any minimal arc on CSN is minimal on the edge (I) ∩ (V ), up to an isometry of the cube.

Notation 3.1. On the edge (I)∩ (V ) =
{
ρ
(
1, tan kπ

2N , 1
)
, |k| ≤ N

2

}
, the shortest arc-length is denoted

by
m∗ := min{θ(u, v), u 6= v ∈ (I) ∩ (V )}. (3.1)

Theorem 3.2. Let u 6= v ∈ CSN be such that {u, v} is optimal for (P). Then there exists Q ∈ O such
that {Qu,Qv} is optimal for (3.1), on the edge (I) ∩ (V ).

Proof of Theorem 3.2. By Lemma 2.1, for every Q ∈ O, {Qu,Qv} ⊂ CSN is optimal: θ(Qu,Qv) =
θ(u, v). One or both of the following cases applies.

Case 1: u, v belong to the same panel. We de�ne an isometry Q ∈ O such that Qu,Qv ∈ (I). Then
{Qu,Qv} is optimal for (3.3), on the panel (I). By Lemma 3.5, {Qu,Qv} is optimal for (3.2), on
the grid lines of the panel (I). By Lemma 3.4, there exists P ∈ O such that {PQu, PQv} is optimal
for (3.1), on the edge (I) ∩ (V ).

Case 2: u, v belong to adjacent panels. We set an isometry Q ∈ O such that Qu ∈ (I) and Qv ∈ (V ).
Then {Qu,Qv} is optimal for (3.4), on the adjacent panels (I) and (V ); Lemma 3.6 shows that Qu
and Qv belong to the same panel. We conclude using Case 1 for {Qu,Qv}.

Case 3: u, v belong to opposite panels. We set an isometry Q ∈ O such that Qu ∈ (I) and
Qv ∈ (III). We apply Lemma 3.7: {Qu,Qv} is optimal for (3.5), on the opposite panels (I) and
(III), with Qu · Qv = 1

3 . If N = 1, CSN = {−1/
√

3, 1/
√

3}3, then Qu and Qv belong to the same
edge. So we conclude with Case 1 for {Qu,Qv}. If N ≥ 2, this case is impossible. Otherwise,
θ(u, v) = θ(Qu,Qv) > m∗ which contradicts the optimality of {u, v}. �

Proof of Theorem 1.3. Problem (P) is an optimization problem, over a �nite set. Therefore there
exists an optimal arc: {u, v} ⊂ CSN , with u 6= v. Then, by Theorem 3.2, there exists Q ∈ O such
that {Qu,Qv} ⊂ (I) ∩ (V ) is optimal for (3.1), on the edge (I) ∩ (V ). This arc is one of the arcs
of Lemma 3.3. Furthermore the minimal value (P) is θ(u, v) = θ(Qu,Qv) = m∗. This shows that
{Qu,Qv} is optimal for the full problem (P). Then, by Lemma 2.1, for every P ∈ O, {PQu, PQv} is
optimal for (P): θ(PQu, PQv) = θ(u, v). �

We formulate hereafter the lemmas that are used in the proofs of Theorems 1.3 and 3.2. They are
proved in Section 4.

Lemma 3.3 (Shortest arc on an edge). (i) If N is odd, there exists a unique minimal arc for (3.1):

{u, v} =
{
ρ
(
1,− tan π

4N , 1
)
, ρ
(
1, tan π

4N , 1
)}
.

(ii) If N is even, there are precisely two minimal arcs for (3.1):

{Qu,Qv} =
{
ρ (1, 0, 1) , ρ

(
1,± tan π

2N , 1
)}
, with Q =

1 0 0
0 ±1 0
0 0 1

 ∈ O.
Lemma 3.4 (Shortest arc on the grid lines). The shortest arc-length on the grid lines of the panel (I)
satis�es:

min
{
θ(u, v); u = ρ(1, X, Y ), v = ρ(1, Z, T ), X = Z or Y = T, (X,Y ) 6= (Z, T ) ∈ T2

N

}
= m∗. (3.2)

Moreover, the arc {u, v} is optimal for (3.2), if, and only if, {Qu,Qv} is optimal for (3.1), where Q
is one of the following symmetry of the cube

I3, Q1 :=

1 0 0
0 0 1
0 1 0

 , Q2 :=

1 0 0
0 0 −1
0 −1 0

 , Q3 :=

1 0 0
0 1 0
0 0 −1

 ∈ O.
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Lemma 3.5 (Shortest arc on a panel). The shortest arc-length between distinct points on the panel
(I) satis�es:

min{θ(u, v); u ∈ (I), v ∈ (I), u 6= v} = m∗; (3.3)

moreover, the arc {u, v} is optimal for (3.3) if, and only if, {u, v} is optimal for (3.2).

The shortest arcs on the panel (I) are displayed in Figure 3.

Figure 3. Shortest arcs between distinct points in (I) (in dark). If N is odd (left),
there are 4 minimal arcs, obtained by rotation of {ρ(1,− tan π

4N , 1), ρ(1, tan π
4N , 1)} ⊂

(I) ∩ (V ). If N is even (right), there are 8 minimal arcs, obtained by symmetry of
{ρ(1, 0, 1), ρ(1, tan π

2N , 1)} ⊂ (I) ∩ (V ).

Lemma 3.6 (Shortest arc between adjacent panels). Let u ∈ (I) \ (V ) and v ∈ (V ) \ (I). The arc
(u, v) is not a minimal arc between (I) and (V ):

θ(u, v) > min{θ(u′, v′);u′ ∈ (I), v′ ∈ (V ), u′ 6= v′}. (3.4)

Lemma 3.7 (Shortest arc between opposite panels). The shortest arc-length between the panels (I)
and (III) satis�es:

min{θ(u, v);u ∈ (I), v ∈ (III), u 6= v} = θ (ρ(1,−1, 1), ρ(1, 1, 1)) ≥ m∗, (3.5)

with equality if, and only if, N = 1.

Lemmas 3.6−3.7 are illustrated in Figure 4.

Figure 4. The distance between points on distinct panels is dominated by the dis-
tance between some points in a panel. Left: the edge between the corners ρ(1, 1, 1)
and ρ(−1, 1, 1) is a minimal arc between the opposite panels (I) and (III). Middle:
ρ(1, T, Z) ∈ (I) is closer to ρ(1, X, Y ) ∈ (I) than the symmetric ρ(Z, T, 1) ∈ (V ). Right:
the distance between ρ(1, X, Y ) and ρ(t,X, 1) (on the dashed line) decreases when t in-
creases from Y to 1; ρ(1, X, 1) ∈ (I)∩ (V ) is closer to ρ(1, X, Y ) than ρ(Y,X, 1) ∈ (V ).

4. Proof of Lemmas 3.3−3.7

In this section, we minimize the arc-length θ(u, v) over various subsets of the cubed sphere, or,
equivalently, we maximize the cos-angle cos θ(u, v) = u · v (cos is decreasing on [0, π]). Most of the
proofs are based on Lemma 4.1.
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4.1. Technical lemma. This subsection is about the continuous face containing the �rst panel:

ρ({1} × [−1, 1]2) = {ρ(1, X, Y ), (X,Y ) ∈ [−1, 1]2} ⊃ (I).

We investigate various strategies that increase the cos-angle

F (X,Y, Z, T ) := ρ(1, X, Y ) · ρ(1, Z, T ) =
1 +XZ + Y T

(1 +X2 + Y 2)1/2(1 + Z2 + T 2)1/2
,

X, Y, Z, T ∈ [−1, 1].

Firstly, the cos-angle satis�es the following symmetries:

F (X,Y, Z, T ) = F (Y,X, T, Z) = F (Z, T,X, Y ) = F (T,Z, Y,X) (4.1)

= F (−X,Y,−Z, T ) = F (X,−Y, Z,−T ) = F (−X,−Y,−Z,−T ). (4.2)

Secondly, the following inequalities are easily checked:

XZ ≤ 0⇒ F (X,Y, Z, T ) = F (−|X|, Y, |Z|, T ) ≤ F (|X|, Y, |Z|, T ), (4.3)

Y T ≤ 0⇒ F (X,Y, Z, T ) = F (X,−|Y |, Z, |T |) ≤ F (X, |Y |, Z, |T |), (4.4)

F (|X|, |Y |,−|Z|,−|T |) ≤ F (X,Y, Z, T ) ≤ F (|X|, |Y |, |Z|, |T |). (4.5)

Lastly, we summarize various monotonicity properties:

Lemma 4.1. Let F (X,Y, Z, T ) = ρ(1, X, Y ) · ρ(1, Z, T ), X,Y, Z, T ∈ [−1, 1].
(i) Let −1 ≤ X < Z ≤ 1. The function Y ∈ [0, 1] 7→ F (X,Y, Z, Y ) is increasing.
(ii) Let 0 < δ ≤ π

4 , and 0 ≤ Y ≤ 1. The function x ∈ [− δ
2 ,

π
4 − δ] 7→ F (tanx, Y, tan(x + δ), Y ) is

decreasing if Y > 0, and constant if Y = 0.
(iii) The function X ∈ [0, 1] 7→ F (−X, 1, X, 1) is decreasing.
(iv) Let −1 < Z ≤ 1 and −1 ≤ Y ≤ 1. The function X ∈ [−1, Z] 7→ F (X,Y, Z, Y ) is increasing.
(v) Let −1 ≤ X < 1 and −1 ≤ Y ≤ 1. The function Z ∈ [X, 1] 7→ F (X,Y, Z, Y ) is decreasing.
(vi) Let 0 ≤ X < Z ≤ 1 and 0 < Y ≤ 1. The function T ∈ [0, Y ] 7→ F (X,Y, Z, T ) is increasing.
(vii) Let 0 ≤ X < Z ≤ 1 and 0 < T ≤ 1. The maximum of the function Y ∈ [0, T ] 7→ F (X,Y, Z, T ) is

reached only for Y = Y ∗(X,Z, T ) = T (1+X2)
1+ZX ∈ (0, T ].

(viii) Let 0 < δ ≤ π
4 and 0 < T ≤ 1. The function

x ∈
[
0, π4 − δ

]
7→ F (tanx, Y ∗(tanx, tan(x+ δ), T ), tan(x+ δ), T ) is decreasing.

(ix) Let 0 ≤ Y ≤ 1, −1 ≤ Z, T ≤ 0. The function X ∈ [0, 1] 7→ F (X,Y, Z, T ) is non-increasing.
(x) Let 0 ≤ X,Y ≤ 1, −1 ≤ T ≤ 0. The function Z ∈ [−1, 0] 7→ F (X,Y, Z, T ) is non-decreasing.

Before the proof, we comment the results from a geometrical point of view; see Figure 5.
(i) The length of an iso-Y arc between two �xed meridians (iso-X) decreases from the equator Y = 0
to the edge Y = 1.
(ii) In the Northern Hemisphere, the length of an iso-Y arc between two meridians, separated from a
longitude δ, decreases when the meridians move towards the central position (longitudes ±δ/2). Along
the equator, it is constant.
(iii) Along the edge Y = 1, the arc-length between the symmetric meridians X = −X1 and X = X1

decreases with X1.
(iv)-(v) The length of an iso-Y arc between two meridians decreases when the longitudes of the merid-
ians get closer.
(vi) In the eastern part of the Northern Hemisphere, we consider a spherical quadrangle delimited
by two meridians and two iso-Y arcs. The two meridians and the northernmost iso-Y arc are �xed.
The length of the NorthWest-SouthEast diagonal decreases when the southernmost iso-Y arc moves
towards the northernmost one.
(vii) With the same pattern than (vi), the length of the SouthWest-NorthEast diagonal reaches its
minimum value for some position of the southernmost iso-Y arc (Y = Y ∗).
(viii) The minimal SouthWest-NorthEast diagonal of (vii) decreases when the westernmost meridian
moves towards the central meridian X = 0, while keeping a �xed longitude δ between the meridians.
(ix-x) We consider the arc between a point in the eastern part of the Northern Hemisphere and a
point in the western part of the Southern Hemisphere. The arc-length does not decrease when the
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Figure 5. Illustrations of Lemma 4.1. We plot two arcs of great circle associated with
two values of F ; the bold arc is shorter (F is larger). The dashed arcs are iso-X or
iso-Y , in {ρ(1, X, Y ), (X,Y ) ∈ [−1, 1]2}.
(i) F (X,Y, Z, Y ) < F (X, 1, Z, 1), X < Z, 0 ≤ Y < 1.
(ii) F (tanx, Y, tan(x+ δ), Y ) < F (− tan δ

2 , Y, tan δ
2 , Y ), 0 < δ, 0 < Y , − δ

2 < x.
(iii) F (−X1, 1, X1, 1) < F (−X2, 1, X2, 1), 0 ≤ X2 < X1.
(iv) F (X1, Y, Z, Y ) < F (X2, Y, Z, Y ), −1 ≤ X1 < X2 ≤ Z.
(vi) F (X,Y, Z, T ) < F (X,Y, Z, Y ), 0 ≤ X < Z, 0 ≤ T < Y .
(vii) F (X,Y, Z, T ) < F (X,Y ∗(X,Z, T ), Z, T ), 0 ≤ X < Z, 0 < T ≤ 1, 0 ≤ Y ≤ T ,

Y 6= Y ∗(X,Z, T ) := T (1+X2)
1+ZX .

(viii) F (tanx, Y ∗(tanx, tan(x+ δ), T ), tan(x+ δ), T ) < F (0, T, tan δ, T ), 0 < δ, T, x.
(ix) F (1, Y, Z, T ) ≤ F (X,Y, Z, T ), X,Y ≥ 0, Z, T ≤ 0.

easternmost point moves towards the East (along the iso-Y arc), or when the westernmost point moves
towards the West.

Proof of Lemma 4.1. For each case, we denote by f the considered function. We give an expression that
contains the sign of the derivative f ′; these expressions have been checked by symbolic computation.
By the chain-rule, the derivative f ′ always involves the gradient ∇F , whose components are analogous
expressions to:

∂F (X,Y,Z,T )
∂X =

(1+Z2+T 2)(Z(1+Y 2)−X(1+TY ))
(1+X2+Y 2)3/2(1+Z2+T 2)3/2

.

(i) The derivative of f(Y ) = F (X,Y, Z, Y ), 0 ≤ Y ≤ 1, is f ′(Y ) = ∂F
∂Y + ∂F

∂T . Thus the sign of f ′(Y ) is

the sign of: Y (Z −X)2(1 + Y 2 − ZX). Then f ′(0) = 0 and f ′(Y ) > 0 if Y > 0.
(ii) We set X = tanx and Z = tan(x + δ). The derivative of f(x) = F (X,Y, Z, Y ), x ∈ [− δ

2 ,
π
4 − δ],

is f ′(x) = ∂F
∂X

dX
dx + ∂F

∂Z
dZ
dx , with

dX
dx = 1 + X2 and dZ

dx = 1 + Z2. The sign of f ′(x) is the sign of:

−(1 + Y 2)(Z −X)2Y 2(X +Z). If Y = 0, then f ′(x) = 0. Otherwise, if Y > 0, the sign of f ′(x) is the
sign of −(X+Z) (Z 6= X). Since −(X+Z) is a decreasing function of x (derivative:−2−X2−Z2 < 0)
that takes the value 0 for x = − δ

2 , then f
′(− δ

2) = 0, and f ′(x) < 0 if x > − δ
2 .

(iii) For f(X) = F (−X, 1, X, 1), 0 ≤ X ≤ 1, the sign of the derivative f ′(X) = − ∂F
∂X + ∂F

∂Z is the sign

of −8X(2 +X2).
(iv) The sign of the derivative of f(X) = F (X, 1, Z, 1),−1 ≤ X ≤ Z, is the sign of (1 + Y 2)(Z −X).
(v) The sign of the derivative of f(Z) = F (X,Y, Z, Y ), X ≤ Z ≤ 1, is the sign of (1 + Y 2)(X − Z).
(vi) The sign of the derivative of f(T ) = F (X,Y, Z, T ), 0 ≤ T ≤ Y, is the sign of Y (1+Z2)−T (1+ZX).

Then f ′(T ) > 0 if T < Y 1+Z2

1+ZX , whereas Y < Y 1+Z2

1+ZX .

(vii) The sign of the derivative of f(Y ) = F (X,Y, Z, T ), 0 ≤ Y ≤ T, is the sign of T (1+X2)−Y (1+ZX).

For Y ∗ = T (1+X2)
1+ZX ∈ (0, T ], f ′(Y ) > 0 if Y < Y ∗, f ′(Y ∗) = 0, and f ′(Y ) < 0 if Y > Y ∗.

(viii) We set X = tanx, Z = tan(x + δ), Y ∗ = Y ∗(X,Z, T ), f(x) = F (X,Y ∗, Z, T ), x ∈
[
0, π4 − δ

]
.
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Then

f ′(x) = ∂F
∂X (X,Y ∗, Z, T )(1 +X2) + ∂F

∂Y (X,Y ∗, Z, T )dY
∗

dx + ∂F
∂Z (X,Y ∗, Z, T )(1 + Z2).

By construction of Y ∗, ∂F∂Y (X,Y ∗, Z, T ) = 0. Then, the sign of (1 + ZX)3f ′(x) is the sign of

−(1 +X2)(Z −X)2ZT 2[(1 + ZX)2 + T 2(1 +X2)] < 0.

(ix) The sign of the derivative of f(X) = F (X,Y, Z, T ), 0 ≤ X ≤ 1, is the sign of Z(1 + Y 2)−X(1 +
TY ) ≤ 0.
(x) The sign of the derivative of f(Z) = F (X,Y, Z, T ),−1 ≤ Z ≤ 0, is the sign of X(1 + T 2)− Z(1 +
Y T ) ≥ 0. �

4.2. Proof of Lemmas 3.3−3.7.

Proof of Lemma 3.3. We solve: max{F (X, 1, Z, 1), X 6= Z ∈ TN}. Let X 6= Z ∈ TN .
Case 1: N is even

Case 1.a: XZ < 0. Combination of (4.3) and Lemma 4.1,(iv) shows:

F (X, 1, Z, 1) = F (−|X|, 1, |Z|, 1) < F (0, 1, |Z|, 1), 0 6= |Z| ∈ TN .

Case 1.b: XZ ≥ 0. By (4.1)-(4.2),

F (X, 1, Z, 1) = F (|X|, 1, |Z|, 1) = F (|Z|, 1, |X|, 1) = F (X ′, 1, Z ′, 1),

with 0 ≤ X ′ = min(|X|, |Z|) < Z ′ = max(|X|, |Z|); X ′, Z ′ ∈ TN .

Write X ′ = tanx, Z ′ = tan(x+ δ), with 0 ≤ x < z = x+ δ ≤ π
4 , and δ ≥

π
2N . By Lemma 4.1, (ii) and

(v),

F (X, 1, Z, 1) = F (X ′, 1, Z ′, 1) ≤ F (0, 1, tan δ, 1) ≤ F (0, 1, tan π
2N , 1),

with equalities if, and only if, x = 0 and δ = π
2N , i.e. {|X|, |Z|} = {X ′, Z ′} = {0, tan π

2N }. This is the
maximum.

Case 2: N is odd.
Case 2.a: XZ ≥ 0. As Case 1.b,

F (X, 1, Z, 1) = F (tanx, 1, tan(x+ δ), 1), 0 ≤ x < z = x+ δ ≤ π
4 , δ ≥

π
2N .

Then tan δ
2 ≥ tan π

4N and Lemma 4.1,(ii)-(iii), shows that

F (X, 1, Z, 1) < F (− tan δ
2 , 1, tan δ

2 , 1) ≤ F (− tan π
4N , 1, tan π

4N , 1).

Case 2.b: XZ < 0. Lemma 4.1,(iv)-(v), combined with (4.3), shows:

F (X, 1, Z, 1) = F (−|X|, 1, |Z|, 1) ≤ F (− tan π
4N , 1, Z, 1) ≤ F (− tan π

4N , 1, tan π
4N , 1),

with equality if, and only if, |X| = |Z| = tan π
4N . This is the maximum. �

Proof of Lemma 3.4. We maximize F (X,Y, Z, T ), (X,Y ) 6= (Z, T ) ∈ T2
N , and, X = Z or Y = T . Let

(X,Y, Z, T ) be an optimal solution. Equivalently, {u = ρ(1, X, Y ), v = ρ(1, Z, T )} is minimal for (3.2).
We prove that there exists Q ∈ {I, Q1, Q2, Q3} such that {Qu,Qv} is minimal for (3.1); this implies
θ(u, v) = θ(Qu,Qv) = m∗, because Q ∈ O.

Case 1: X 6= Z and Y = T ≥ 0. Combination of (4.1) and Lemma 4.1,(i) shows that

F (X,Y, Z, T ) = F (Z, T,X, Y ) ≤ F (X, 1, Z, 1) = F (Z, 1, X, 1),

with equality if, and only if, Y = 1. By optimality of (X,Y, Z, T ), we obtain Y = 1. Then {u, v} ⊂
(I) ∩ (V ) is optimal for (3.1), on the edge (I) ∩ (V ).

Case 2: X 6= Z and Y = T < 0. The invariance (4.2) shows that F (X,−Y,Z,−T ) = F (X,Y, Z, T ),
where (X,−Y ) 6= (Z,−T ) ∈ T2

N with −Y = −T ≥ 0. Then (X,−Y, Z,−T ) is optimal. We deduce
from Case 1 that {Q3u,Q3v} = {ρ(1, X,−Y ), ρ(1, Z,−T )} is optimal for (3.1).

Case 3: X = Z ≥ 0 and Y 6= T . The invariance (4.1) shows F (X,Y, Z, T ) = F (Y,X, T, Z), where
(Y,X) 6= (T,Z) ∈ T2

N with X = Z ≥ 0. Then (Y,X, T, Z) is optimal. By Case 1, {Q1u,Q1v} =
{ρ(1, Y,X), ρ(1, T, Z)} is optimal for (3.1).
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Case 4: X = Z < 0 and Y 6= T . By invariance (4.1)-(4.2), F (X,Y, Z, T ) = F (−Y,−X,−T,−Z),
where (−Y,−X) 6= (−T,−Z) ∈ T2

N with −X = −Z ≥ 0. Then (−Y,−X,−T,−Z) is optimal. By
Case 1, {Q2u,Q2v} = {ρ(1,−Y,−X), ρ(1,−T,−Z)} is optimal for (3.1).

Conversely, for all Q ∈ {I, Q1, Q2, Q3} and {u∗, v∗} minimal for (3.1), {u, v} = {Qᵀu∗, Qᵀv∗} is
realizable for (3.2), and θ(u, v) = θ(Qᵀu∗, Qᵀv∗) = m∗ is the minimal value of (3.2), so {u, v} is
minimal for (3.2). �

Proof of Lemma 3.5. Equivalently, we maximize F (X,Y, Z, T ) on the �rst panel, with (X,Y ) 6= (Z, T ) ∈
T2
N . Let X 6= Z and Y 6= T in TN . We prove that F (X,Y, Z, T ) is strictly dominated by a value on

the grid lines: F (X ′, Y ′, Z ′, T ′), with (X ′, Y ′) 6= (Z ′, T ′) ∈ T2
N and, X ′ = Z ′ or Y ′ = T ′.

Case 1: XZ ≥ 0 and Y T ≥ 0.
Case 1.a: 0 ≤ X < Z ≤ 1 and 0 ≤ T < Y ≤ 1. By Lemma 4.1,(vi), F (X,Y, Z, T ) < F (X,Y, Z, Y ).
Case 1.b: 0 ≤ X < Z ≤ 1 and 0 ≤ Y < T ≤ 1. According to Lemma 4.1,(vii)-(viii),

F (X,Y, Z, T ) ≤ F (X,Y ∗(X,Z, T ), Z, T ) ≤ F (0, Y ∗(0, tan δ, T ), tan δ, T ), δ = arctanZ−arctanX,

with equalities if, and only if, Y = Y ∗(X,Z, T ) and X = 0. If X 6= 0, the last inequality is strict.
Otherwise, Y ∗(X,Z, T ) = Y ∗(0, tan δ, T ) = T > Y , and the �rst inequality is strict. In both cases:

F (X,Y, Z, T ) < F (0, T, tan δ, T ), tan δ ≥ tan π
2N .

Application of Lemma 4.1,(v) and (ii), shows

F (0, T, tan δ, T ) ≤ F (0, T, tan π
2N , T ) ≤ F (− tan π

4N , T, tan π
4N , T ).

If N is even, resp. odd, we conclude with the �rst, resp. second, inequality.
Case 1.c: 0 ≤ Z < X ≤ 1. By relation (4.1), F (X,Y, Z, T ) = F (Z, T,X, Y ). The right member is

dominated using Case 1.a or Case 1.b.

Case 2: XZ < 0 or Y T < 0.
Case 2.a: X = −Z or Y = −T . Similarly to (4.3)-(4.4),

F (X,Y, Z, T ) <

{
F (|X|, Y, |Z|, T ) = F (|X|, Y, |X|, T ), if X = −Z,
F (X, |Y |, Z, |T |) = F (X, |Y |, Z, |Y |), if Y = −T.

Case 2.b: X 6= −Z and Y 6= −T . By (4.5):

F (X,Y, Z, T ) ≤ F (|X|, |Y |, |Z|, |T |).

The right member is dominated using Case 1. �

Proof of Lemma 3.6. Let u ∈ (I) \ (V ) and v ∈ (V ) \ (I): u = ρ(1, X, Y ), and v = ρ(Z, T, 1), with
(X,Y ), (Z, T ) ∈ T2

N , such that Y,Z < 1. We prove that u · v < cosm∗.
Case 1: (T,Z) 6= (X,Y ), as in the middle of Figure 4. Let

Q =

0 0 1
0 1 0
1 0 0

 ∈ O, w = Qv = ρ(1, T, Z) ∈ (I).

It is clear that 0 < (1−Z)(1− Y ), so Z +XT + Y < 1 +XT + Y Z, i.e. u · v < F (X,Y, T, Z) = u ·w.
By the way, u 6= w ∈ (I) so u · w ≤ cosm∗.

Case 2: (T,Z) = (X,Y ), as in the right of Figure 4. We prove that u · v < F (X,Y,X, 1) using the
auxiliary function

f(t) = ρ(1, X, Y ) · ρ(t,X, 1), t ∈ [Y, 1];

f(t) represents the cos-angle between ρ(1, X, Y ) and ρ(t,X, 1). The sign of f ′(t) is the sign of (1 +
X2 + t2) − (X2 + Y + t)t = X2(1 − t) + 1 − Y t > 0. Thus f is increasing and f(Y ) < f(1), i.e.
u · v < F (X,Y,X, 1). Due to ρ(1, X, Y ) 6= ρ(1, X, 1) ∈ (I), u · v < F (X,Y,X, 1) ≤ cosm∗. �
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Proof of Lemma 3.7. Since v ∈ (III) ⇔ −v ∈ (I), we solve m := min{θ(u,−w);u 6= w ∈ (I)}, or,
equivalently, cosm = max{−u · w;u 6= w ∈ (I)} = −min{F (X,Y, Z, T ); (X,Y ) 6= (Z, T ) ∈ T2

N}. Fix
X,Y, Z, T ∈ TN . We apply: (4.5), Lemma 4.1,(ix-x), (4.1), and Lemma 4.1,(ix-x) again:

F (X,Y, Z, T ) ≥ F (|X|, |Y |,−|Z|,−|T |)
≥ F (1, |Y |,−|Z|,−|T |)
≥ F (1, |Y |,−1,−|T |) = F (|Y |, 1,−|T |,−1)

≥ F (1, 1,−|T |,−1)

≥ F (1, 1,−1,−1).

Thus the minimal value of F is reached on a diagonal:

F (1, 1,−1,−1) = ρ(1, 1, 1) · ρ(1,−1,−1).

Its opposite value represents the length of an edge:

cosm = −F (1, 1,−1,−1) = ρ(1, 1, 1) · ρ(1,−1, 1).

By Lemma 3.3, m > m∗ if N ≥ 2, and m = m∗ if N = 1. �

5. Conclusion and perspectives

In this paper we have identi�ed the symmetry group of the equiangular cubed sphere: it is the
symmetry group of the cube. Moreover, we have studied the geodesic distance between points of the
grid. Our results provide some theoretical foundation for upcoming numerical computation on the
cubed sphere.

The symmetry group of a grid plays a central role in several contexts. It can be used to build
spherical quadrature rules which are valid for as many spherical harmonics as possible [28]. Our
main result shows that the group of the cube is the suitable symmetry group for the determination
of quadrature weights on the cubed sphere. This background supports a quadrature rule of ongoing
works [2]. Moreover, for quadrature rules, the geometric distribution of the nodes is often examinated.
Our study of the geodesic distance could serve as a tool to quantify the �uniformity� of the cubed
sphere grid.

Another subject of interest concerns the building of a discrete Fourier analysis on the cubed sphere,
based on the invariance under the action of the symmetry group, in the spirit of [15]. Here again, our
result is a �rst step in this direction, since it identi�es the group to be considered.

Appendix A. Equiangular cubed sphere

In this section we recall the de�nition of the equiangular cubed sphere. Let N ≥ 1 be a �xed integer,
and the one-dimensional grid

TN = {tan kπ
2N ,−

N
2 ≤ k ≤

N
2 },

represented in Figure 6. The index k, resp. the angle kπ
2N , takes the N + 1 equidistributed values from

−N
2 to N

2 , resp. from −
π
4 to π

4 . Then we de�ne a cartesian grid on the faces of the cube [−1, 1]3, based
on the two-dimensional grid TN × TN , as in Figure 1,

CN = {(1, u, v), (−1, u, v), (u, 1, v), (u,−1, v), (u, v, 1), (u, v,−1); u, v ∈ TN}.

To �nish with, we project CN on the unit sphere S2 = {x ∈ R3 : ‖x‖ = 1}.

De�nition A.1. The equiangular cubed sphere grid CSN is the radial projection of the cartesian grid
CN on the sphere: CSN = ρ(CN ), with ρ : x ∈ R3 \ {0} 7→ x

‖x‖ ∈ S2. Equivalently,

CSN :=
{

1
r (±1, u, v), 1

r (u,±1, v), 1
r (u, v,±1); u, v ∈ TN , r =

√
1 + u2 + v2

}
. (A.1)

The radial projection ρ can be checked to be injective on the faces of the cube [−1, 1]3. There-
fore, there is a one-to-one correspondence between CSN and CN ; (u1, u2, u3) ∈ CN are the so-called
gnomonic coordinates of the point ρ(u1, u2, u3) ∈ CSN . By construction, the geometry of the cubed
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Figure 6. Left: construction of the equiangular grid TN = {tan kπ
2N ,−

N
2 ≤ k ≤ N

2 }
(N = 6). On the unit circle x21 + x22 = 1, we consider N + 1 equidistributed angles:
kπ
2N ,−

N
2 ≤ k ≤ N

2 . The origin and the point (1, tan kπ
2N ) ∈ {1} × TN (black dot on the

dotted line) are aligned with (cos kπ
2N , sin

kπ
2N ) (black dot on the arc of circle). Right:

construction of a panel of the cubed sphere by intersection of two equiangular families
of great circles (N = 5).

sphere is shaped by the geometry of the cube. In particular, we de�ne twelve edges, as the projection
of the edges of the cube, and six panels, as the projection of the grid of the faces:

CSN = ρ(CN ) = (I) ∪ (II) ∪ (III) ∪ (IV ) ∪ (V ) ∪ (V I),

(I) = ρ({1} × TN × TN ), (II) = ρ(TN × {1} × TN ), (III) = ρ({−1} × TN × TN ),

(IV ) = ρ(TN × {−1} × TN ), (V ) = ρ(TN × TN × {1}), (V I) = ρ(TN × TN × {−1}).

Two panels are said to be adjacent, resp. opposite, if they are the projection of adjacent, resp. opposite,
faces.

As in Figures 1 and 6, the cubed sphere meshes the sphere with equiangular arcs of great circles: the
radial projection maps the cartesian straight lines of the cube onto arcs of great circles. For instance,
in panel (I),

ρ({(1, tan kπ
2N , z), |z| ≤ 1}) ⊂ {u ∈ S2 : u1 sin kπ

2N − u2 cos kπ
2N = 0}, |k| ≤ N

2 ;

ρ({(1, y, tan jπ
2N ), |y| ≤ 1}) ⊂ {u ∈ S2 : u1 sin jπ

2N − u3 cos jπ
2N = 0}, |j| ≤ N

2 .

The panel (I) is obtained by intersection of two equiangular families of great circles:

ρ(1, tan kπ
2N , tan jπ

2N ) ∈ {u ∈ S2 : u1 sin kπ
2N − u2 cos kπ

2N = 0} ∩ {u ∈ S2 : u1 sin jπ
2N − u3 cos jπ

2N = 0};

the longitude kπ
2N and the latitude jπ

2N both scan a uniform grid on [−π
4 ,

π
4 ]. Analogous properties can

be derived for the other panels.

Appendix B. Symmetry group of the cube

In this section we recall properties about the symmetry group of the cube. We give short direct
proofs for completeness.

Theorem B.1. Let e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). The symmetry group O of the cube
{−1, 1}3 is:

O =
{[
ε1eσ1 ε2eσ2 ε3eσ3

]
, σ ∈ S3, ε ∈ {−1, 1}3

}
. (B.1)

Proof. ⊂: Fix an orthogonal matrix Q such that C1 = {−1, 1}3 is left invariant by Q. We remark
that for x1, x2 ∈ C1, ‖x1 − x2‖ = 2 ⇔ ∃ε ∈ {−1, 1},∃1 ≤ σ ≤ 3, x1 − x2 = 2εeσ (x1 and x2 are the

vertices of an edge); this is due to the following identity: ‖x1 − x2‖2 =
∑3

j=1 |ej · x1 − ej · x2|2, with
|ej · x1 − ej · x2| ∈ {0, 2}. Then, the matrix Q maps x0 = (1, 1, 1) ∈ C1 onto Qx0 ∈ C1. For 1 ≤ i ≤ 3,
the distance between x0, x0 − 2ei ∈ C1 is 2. Then the distance between Qx0, Qx0 − 2Qei ∈ C1 is also
2, i.e. there are σi ∈ {1, 2, 3} and εi ∈ {−1, 1} such that Qei = εieσi . To �nish with, the indices σ1,
σ2, σ3 de�ne a permutation; otherwise Q would contain at least two collinear columns.
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⊃: Conversely, let Q = [ε1eσ1 ε2eσ2 ε3eσ3 ], with σ ∈ S3 and ε ∈ C1. It is clear that QᵀQ = I3. Let
x ∈ C1. Then Qx is a permutation of [ε1x1 ε2x2 ε3x3]

ᵀ ∈ C1:

Qx = [eσ1 eσ2 eσ3 ][ε1x1 ε2x2 ε3x3]
ᵀ, (B.2)

so Qx ∈ C1. Then QC1 ⊂ C1. But Q is bijective; so the �nite sets QC1 and C1 have the same cardinal
number, and QC1 = C1. �

Remark B.2. The group O contains 3! · 23 = 48 symmetries, determined by a permutation of S3 and
three signs.

From a geometrical point of view, any symmetry of the cube permutes the centers of the faces. The
result can also be formulated as follows.

Corollary B.3. The symmetry group O of the cube {−1, 1}3 coincides with the symmetry group of
the octahedron {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1)}.

De�nition B.4. The centers of the edges of the cube [−1, 1]3 de�ne the cuboctahedron

Ω := {(0, ε, η), (ε, 0, η), (ε, η, 0), ε = ±1, η = ±1}. (B.3)

Theorem B.5. The symmetry group of the cuboctahedron Ω coincides with the symmetry group O of
the cube {−1, 1}3.

Proof. ⊂: Let Q be in the symmetry group of Ω: Q is orthogonal and leaves Ω invariant. Then Q
maps (1, 0, 1) onto x = (x1, x2, x3) ∈ Ω; let j be such that xj = 0, and xi = ±1, i 6= j. The vector
(1, 0, 1) and (1, 0,−1) are orthogonal, so Q maps (1, 0,−1) onto x̄ = (x̄1, x̄2, x̄3) ∈ Ω such that x · x̄ = 0.
Thus x̄j = 0, and there are i 6= j, such that x̄i = xi, and x̄k = −xk, for k 6= i, j. Then, the vector
e1 = 1

2((1, 0, 1)+(1, 0,−1)) is mapped onto Qe1 = 1
2(x+ x̄) = xiei. This shows that Q maps the center

of face e1 onto the center of face Qe1 = ε1eσ1 , with ε1 = xi ∈ {−1, 1}, and σ1 = i ∈ {1, 2, 3}. A similar
procedure shows that Qe2 = ε2eσ2 , Qe3 = ε3eσ3 , with ε2, ε3 ∈ {−1, 1}, and σ2, σ3 ∈ {1, 2, 3}. To �nish
with, the vectors Qei are orthogonal so (σ1, σ2, σ3) ∈ S3.
⊃: Let Q ∈ O: Q = [ε1eσ1 ε2eσ2 ε3eσ3 ], with σ ∈ S3, ε ∈ C1. Fix x ∈ Ω: x = η1ei1 + η2ei2 , with
η1, η2 = ±1, 1 ≤ i1 6= i2 ≤ 3. It is clear that Qx = η1εi1eσi1 + η2εi2eσi2 ∈ Ω. Then QΩ ⊂ Ω. �

Appendix C. Proof of the main theorem using group theory

In this section, we prove shortly Theorem 1.2 using classi�cation of subgroups of orthogonal groups.
We refer to [1, Theorems 11.1, 19.1 and 19.2] for more details.

Theorem C.1 (Lagrange's Theorem). The order of a subgroup of a �nite group is always a divisor of
the order of the group.

Theorem C.2. A �nite subgroup of O2 = {Q ∈ R2×2 : QᵀQ = I2} is either cyclic or dihedral.

Theorem C.3. A �nite subgroup of SO3 = {Q ∈ R3×3 : QᵀQ = I3, detQ = 1} is isomorphic either to
a cyclic group, a dihedral group, or the rotation group of a Platonic solid (tetrahedron, cube/octahedron,
dodecahedron/icosahedron).

Proof of Theorem 1.2 using group theory. Lemma 2.1 proves O ⊂ GN . We deduce O = GN from
Theorem C.3.

Firstly, we focus on the rotation subgroups, O+ = O ∩ SO3 and G+N = GN ∩ SO3. Indeed, O =

GN ⇔ O+ = G+N , because −I3 ∈ O ⊂ GN , so O = O+ ∪ {−Q,Q ∈ O+}, and GN = G+N ∪ {−Q,Q ∈
G+N}. Secondly, G

+
N is a �nite subgroup of SO3, by injection into a �nite permutation group. Indeed,

CSN = {xj , 1 ≤ j ≤ M} is a �nite set which contains three linearly independent vectors. So σ : Q ∈
G+N 7→ σ[Q] ∈ SM such that Qxj = xσ[Q](j), 1 ≤ j ≤M , is injective.

By Theorem C.3, G+N is isomorphic either to a cyclic group, a dihedral group, or the rotation group of

a Platonic solid. Since O+ ⊂ G+N , we eliminate all the candidates, except the rotation group of the cube.

By Lagrange's Theorem, the order of O+ (24) is a divisor of the order of G+N . Then G
+
N is not isomorphic

to the group of the tetrahedron (order 12), neither the group of the dodecahedron/icosahedron (order
60). By the way G+N is not cyclic, because O+ is not commutative. And to �nish with, G+N is not
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dihedral. Indeed, a dihedral group is isomorphic to a �nite subgroup of O2 [11, p. 152]. So, by
Theorem C.2, the subgroups of a dihedral group are either cyclic or dihedral. But the rotation group
O+ of the cube is neither cyclic nor dihedral, by Theorem C.3. �

Remark C.4. By Remark 2.2, the proof is still valid if TN is replaced by any symmetric grid. Therefore,
the group of any cubed sphere (with TN symmetric) coincides with the group of the cube.
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