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SYMMETRY GROUP OF THE EQUIANGULAR CUBED SPHERE

JEAN-BAPTISTE BELLET

Abstract. The equiangular cubed sphere is a spherical grid, widely used in computational physics. This
paper deals with the symmetry group of this grid, i.e. the group of the orthogonal transformations that leave
the cubed sphere invariant. The main result is that it coincides with the full symmetry group of the cube. In
the proof, metric properties of the cubed sphere are investigated. Indeed, we identify the shortest arcs of great
circles on the cubed sphere. In particular, we match the minimal arcs with the vertices of a cuboctahedron.

1. Introduction

1.1. Cubed sphere. Various �elds in computational physics, for instance climatology modelling [27], involve
numerical computations on the sphere. This includes the use of spherical grids [28]. The grids obtained by
radial projection of a circumscribed cube on the sphere are among the most employed. These cubed sphere
grids have been originally introduced in [24], and further studied, for example in [12, 16�18, 20�22]. A wide
variety of numerical methods have been successfully adapted to cubed sphere grids, e.g. in [2�9, 11, 13, 19,
23,25,26] and the references therein.

This paper deals with mathematical properties of a cubed sphere structured by equiangular great circles:
the equiangular cubed sphere CSN [2, 18], depicted in Figure 1 and in Appendix A. As can be observed, the
cubed sphere is quasi-uniform, is not polarized along a speci�c axis, and is shaped by the cube, including
discontinuities accross �edges� (radial projection of the edges of the circumscribed cube). Furthermore, some
symmetry properties, such as invariance under permutation of the cartesian coordinates, can be noticed.

The symmetry of the cubed sphere has been previously used in various contexts, for instance in [2,14,15,
22]. However, to the best of our knowledge, a systematic study of the isometries of CSN is not available so
far. This paper aims at �lling a gap in this direction by identifying the full set of symmetries of CSN .

Figure 1. Cubed sphere grid CSN (N = 3). A cartesian grid CN (black dots) is de�ned
on the faces of the cube [−1, 1]3, by means of the two-dimensional grid TN × TN , where
TN = {tan kπ

2N ,−
N
2 ≤ k ≤ N

2 } is an equiangular grid. The cubed sphere grid CSN (white
dots) is de�ned as the radial projection of CN on the unit sphere: CSN = ρ(CN ), with
ρ : x ∈ R3 \ {0} 7→ x

‖x‖ ∈ S2. On the faces of the cube, the grid CN de�nes a mesh (dotted

straight lines). The projection ρ maps this mesh onto a mesh of the sphere: the (dotted)
straight lines are mapped onto equiangular arcs of great circles (white curves).
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1.2. Main results. We study the symmetries of the cubed sphere, by means of its symmetry group [1]:

De�nition 1. The symmetry group of CSN is the set GN of the orthogonal matrices that leave CSN invariant:

GN =
{
Q ∈ R3×3 : QᵀQ = QQᵀ = I3 and QCSN = {Qu, u ∈ CSN} = CSN

}
.

For N = 1, CS1 = {−1/
√

3, 1/
√

3}3 is a scaling of {−1, 1}3. Hence the group G1 is exactly the symmetry
group O of the cube {−1, 1}3: G1 = O. This group is well known: it is isomorphic to the group S4×Z/2Z [1,
pp. 37,38,55]; any symmetry of the cube is indeed identi�ed with a permutation of the four principal
diagonals, combined with a toggle for inversion of the cube, or not. We refer to Appendix B for a matricial
representation of O.

The main result of this paper is that GN = O, for every N ≥ 1:

Theorem 2 (Symmetry group of the equiangular cubed sphere). Let N ≥ 1. The symmetry group GN of the
cubed sphere CSN coincides with the symmetry group O of the cube {−1, 1}3. In other words, an orthogonal
matrix Q leaves CSN invariant if, and only if, it leaves {−1, 1}3 invariant.

The most di�cult inclusion to be proved is GN ⊂ O. One possible approach deduces this result from
O ⊂ GN , using group theory as Appendix C. Instead of this theoretical approach, this paper focuses on
a direct proof which investigates metric properties of CSN . This direct approach has the advantage of
deepening the knowledge of CSN . More precisely, we solve the problem of the shortest arcs between distinct
points on CSN :

min{θ(u, v) := arccosu · v;u ∈ CSN , v ∈ CSN , u 6= v}. (P)

One original feature of problem (P) is that u and v are allowed to belong to distinct grid lines, or even distinct
panels; in particular, any spherical diagonal of the mesh is realizable. The main di�culty of problem (P)
comes from this speci�city. This is somehow the lock of Theorem 2. Any solution of (P) is given by the
following theorem.

Theorem 3 (Shortest arcs on the equiangular cubed sphere). Let u, v ∈ CSN with u 6= v. The arc {u, v} is
optimal for (P) if, and only if, there exists an isometry of the cube, Q ∈ O, such that:{

{u, v} =
{
Qρ
(
1,− tan π

4N , 1
)
, Qρ

(
1, tan π

4N , 1
)}
, if N is odd,

{u, v} =
{
Qρ (1, 0, 1) , Qρ

(
1, tan π

2N , 1
)}
, if N is even.

In other words, the minimal arcs are described by the orbit of the arc
{
ρ
(
1,− tan π

4N , 1
)
, ρ
(
1, tan π

4N , 1
)}
,

or
{
ρ (1, 0, 1) , ρ

(
1, tan π

2N , 1
)}
, for the group action (Q, {u, v}) 7→ {Qu,Qv}, Q ∈ O, {u, v} ⊂ CSN . The

matricial representation (11) of O shows immediately the following corollary:

Corollary 4. (i) If N is odd, there are precisely 12 minimal arcs on CSN (one per edge):

{ρ(−δ, ε1, ε2), ρ(δ, ε1, ε2)}, {ρ(ε1,−δ, ε2), ρ(ε1, δ, ε2)}, {ρ(ε1, ε2,−δ), ρ(ε1, ε2, δ)}, δ = tan π
4N , ε1 = ±1, ε2 = ±1.

(ii) If N is even, there are precisely 24 minimal arcs on CSN (two per edge):

{ρ(0, ε1, ε2), ρ(δ, ε1, ε2)}, {ρ(ε1, 0, ε2), ρ(ε1, δ, ε2)}, {ρ(ε1, ε2, 0), ρ(ε1, ε2, δ)}, δ = ± tan π
2N , ε1 = ±1, ε2 = ±1.

Roughly speaking, the minimal arcs are �short arcs around the midpoints on the edges�, as displayed in
Figure 2. These midpoints match with the vertices of the cuboctahedron (12). The proof of Theorem 2 is
mainly based on the invariance of this cuboctahedron under GN .

Figure 2. The bold arcs, around the midpoints on the edges, are minimal arcs on CSN .
Left: N is odd (N = 3); right: N is even (N = 4). These arcs match with the vertices of a
cuboctahedron (black line).
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1.3. Organization of the paper. The paper is organized as follows. In Section 2, we prove Theorem 2.
In Section 3, we prove Theorem 3. The proof is based on a series of lemmas which are proved in Section 4.
In Appendix A, we recall the de�nition of CSN . Some geometrical and matricial properties of O are given
in Appendix B. In Appendix C, we give a proof of Theorem 2, based on group theory.

2. Proof of the main theorem

Lemma 5. Any symmetry of {−1, 1}3 leaves CSN invariant, i.e. O ⊂ GN .

Proof. Using (u1, u2, u3) = |uj |
(
u1
|uj | ,

u2
|uj | ,

u3
|uj |

)
, the cubed sphere satis�es:

CSN =
{
u = (u1, u2, u3) ∈ S2 : ∃j ∈ {1, 2, 3}, uj 6= 0 and ∀i ∈ {1, 2, 3} \ {j}, ui

|uj | ∈ TN

}
.

Let Q ∈ O. Let u ∈ CSN . There exists 1 ≤ j ≤ 3 such that uj 6= 0, and ∀1 ≤ i ≤ 3, ui
|uj | ∈ TN (this is also

true if i = j). We show that Qu ∈ CSN . Let σ ∈ S3 and ε ∈ {−1, 1}3, such that Q = [ε1eσ1 ε2eσ2 ε3eσ3 ].
Since Q is an isometry, ‖Qu‖ = ‖u‖ = 1: Qu ∈ S2. The component σj of Qu is eσj ·Qu = εjuj 6= 0. To �nish

with, the component σk of Qu is eσk · Qu = εkuk, thus
eσk ·Qu
|eσj ·Qu|

= εk
|εj |

uk
|uj | , with

εk
|εj | = ±1, and uk

|uj | ∈ TN .

Since TN is symmetric with respect to 0,
eσk ·Qu
|eσj ·Qu|

∈ TN . We have proved that QCSN ⊂ CSN . Since Q is

bijective, QCSN = CSN . �

Remark 6. The result can be extended for other cubed sphere grids: the equiangular property of the grid
TN does not matter; the key property is the symmetry of TN .

Theorem 7. Let Ω be the cuboctahedron (12). Let Q ∈ GN . The isometry Q leaves Ω invariant.

Proof. Case 1: N is odd. We introduce the midpoints of the minimal arcs:

Ω′ = {12(u+ v), {u, v} is minimal for (P)}.

By Corollary 4, Ω′ is a scaling of Ω:

Ω′ = {(2 + tan2 π
4N )−1/2x, x ∈ Ω}.

We prove that Ω′ is left invariant by Q. Fix w = u+v
2 ∈ Ω′ with {u, v} minimal. Then {Qu,Qv} is minimal

due to Q ∈ GN . As a result Qw = Qu+Qv
2 ∈ Ω′. Thus QΩ′ ⊂ Ω′. Finally QΩ = Ω.

Case 2: N is even. We prove that ρ(Ω) = {2−1/2x, x ∈ Ω} is left invariant by Q. By Corollary 4,

ρ(Ω) = {u ∈ CSN : n(u) = 2},

where n(u) denotes the number of v such that {u, v} is minimal:

n(u) = ]{v ∈ CSN : {u, v} is minimal for (P)}, u ∈ CSN .

By the way, the arc {u, v} is minimal if, and only if, {Qu,Qv} is minimal (due to Q ∈ GN ). At the end, for
every u ∈ CSN , n(u) = n(Qu), and

u ∈ ρ(Ω)⇔ n(u) = 2⇔ n(Qu) = 2⇔ Qu ∈ ρ(Ω).

Then Qρ(Ω) = ρ(Ω) and QΩ = Ω. �

Proof of Theorem 2. We have proved O ⊂ GN in Lemma 5. The converse is a corollary to Theorems 7 and 21:
any Q ∈ GN leaves the cuboctahedron Ω invariant, so it leaves the cube {−1, 1}3 invariant. �

3. Proof of Theorem 3

In this section we minimize the great circle distance θ(u, v) = arccosu · v between u 6= v ∈ CSN . Brie�y,
any minimal arc on CSN is minimal on the edge (I) ∩ (V ), up to an isometry of the cube.

Notation 8. On the edge (I) ∩ (V ) =
{
ρ
(
1, tan kπ

2N , 1
)
, |k| ≤ N

2

}
, the shortest arc-length is denoted by

m∗ := min{θ(u, v), u 6= v ∈ (I) ∩ (V )}. (1)

Theorem 9. Let u 6= v ∈ CSN . If {u, v} is optimal for (P), then there exists Q ∈ O such that {Qu,Qv} is
optimal for (1), on the edge (I) ∩ (V ).
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Proof of Theorem 9. By Lemma 5, for every Q ∈ O, {Qu,Qv} is optimal: θ(Qu,Qv) = θ(u, v). One or both
of the following cases applies.

Case 1: u, v belong to the same panel. We de�ne an isometry Q ∈ O such that Qu,Qv ∈ (I). Then
{Qu,Qv} is optimal for (3), on the panel (I). By Lemma 12, {Qu,Qv} is optimal for (2), on the grid lines
of the panel (I). By Lemma 11, there exists P ∈ O such that {PQu, PQv} is optimal for (1), on the edge
(I) ∩ (V ).

Case 2: u, v belong to adjacent panels. We set an isometry Q ∈ O such that Qu ∈ (I) and Qv ∈ (V ).
Then {Qu,Qv} is optimal for (4), on the adjacent panels (I) and (V ); Lemma 13 shows that Qu and Qv
belong to the same panel. We conclude using Case 1 for {Qu,Qv}.

Case 3: u, v belong to opposite panels. We set an isometry Q ∈ O such that Qu ∈ (I) and Qv ∈ (III).
We apply Lemma 14: {Qu,Qv} is optimal for (5), on the opposite panels (I) and (III), with Qu ·Qv = 1

3 .

If N = 1, CSN = {−1/
√

3, 1/
√

3}3, then Qu and Qv belong to the same edge. So we conclude with Case 1
for {Qu,Qv}. If N ≥ 2, this case is impossible. Otherwise, θ(u, v) = θ(Qu,Qv) > m∗ which contradicts the
optimality of {u, v}. �

Proof of Theorem 3. Problem (P) is an optimization problem, over a �nite set. Therefore there exists an
optimal arc: {u, v} ⊂ CSN , with u 6= v. Then, by Theorem 9, there exists Q ∈ O such that {Qu,Qv} ⊂
(I)∩ (V ) is optimal for (1), on the edge (I)∩ (V ). This arc is one of the arcs of Lemma 10. Furthermore the
minimal value (P) is θ(u, v) = θ(Qu,Qv) = m∗. This shows that {Qu,Qv} is optimal for the full problem (P).
Then, by Lemma 5, for every P ∈ O, {PQu, PQv} is optimal for (P): θ(PQu, PQv) = θ(u, v). �

We formulate hereafter the lemmas that are used in the proofs of Theorems 3 and 9. They are proved in
Section 4.

Lemma 10 (Shortest arc on an edge). (i) If N is odd, there exists a unique minimal arc for (1):

{u, v} =
{
ρ
(
1,− tan π

4N , 1
)
, ρ
(
1, tan π

4N , 1
)}
.

(ii) If N is even, there are precisely two minimal arcs for (1):

{Qu,Qv} =
{
ρ (1, 0, 1) , ρ

(
1,± tan π

2N , 1
)}
, with Q =

1 0 0
0 ±1 0
0 0 1

 ∈ O.
Lemma 11 (Shortest arc on the grid lines). The shortest arc-length on the grid lines of the panel (I) satis�es:

min
{
θ(u, v); u = ρ(1, X, Y ), v = ρ(1, Z, T ), X = Z or Y = T, (X,Y ) 6= (Z, T ) ∈ T2

N

}
= m∗. (2)

Moreover, the arc {u, v} is optimal for (2), if, and only if, {Qu,Qv} is optimal for (1), where Q is one of
the following symmetry of the cube

I3, Q1 :=

1 0 0
0 0 1
0 1 0

 , Q2 :=

1 0 0
0 0 −1
0 −1 0

 , Q3 :=

1 0 0
0 1 0
0 0 −1

 ∈ O.
Lemma 12 (Shortest arc on a panel). The shortest arc-length between distinct points on the panel (I)
satis�es:

min{θ(u, v); u ∈ (I), v ∈ (I), u 6= v} = m∗; (3)

moreover, the arc {u, v} is optimal for (3) if, and only if, {u, v} is optimal for (2).

The shortest arcs on the panel (I) are displayed in Figure 3.

Figure 3. Shortest arcs between distinct points in (I) (in dark). If N is odd (left), there are
4 minimal arcs, obtained by rotation of {ρ(1,− tan π

4N , 1), ρ(1, tan π
4N , 1)} ⊂ (I)∩(V ). If N is

even (right), there are 8 minimal arcs, obtained by symmetry of {ρ(1, 0, 1), ρ(1, tan π
2N , 1)} ⊂

(I) ∩ (V ).
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Lemma 13 (Shortest arc between adjacent panels). Let u ∈ (I) \ (V ) and v ∈ (V ) \ (I). The arc (u, v) is
not a minimal arc between (I) and (V ):

θ(u, v) > min{θ(u′, v′);u′ ∈ (I), v′ ∈ (V ), u′ 6= v′}. (4)

Lemma 14 (Shortest arc between opposite panels). The shortest arc-length between the panels (I) and (III)
satis�es:

min{θ(u, v);u ∈ (I), v ∈ (III), u 6= v} = θ (ρ(1,−1, 1), ρ(1, 1, 1)) ≥ m∗, (5)

with equality if, and only if, N = 1.

Lemmas 13−14 are illustrated in Figure 4.

Figure 4. The distance between points on distinct panels is dominated by the distance
between some points in a panel. Left: the edge between the corners ρ(1, 1, 1) and ρ(−1, 1, 1) is
a minimal arc between the opposite panels (I) and (III). Middle: ρ(1, T, Z) ∈ (I) is closer to
ρ(1, X, Y ) ∈ (I) than the symmetric ρ(Z, T, 1) ∈ (V ). Right: the distance between ρ(1, X, Y )
and ρ(t,X, 1) (on the dashed line) decreases when t increases from Y to 1; ρ(1, X, 1) ∈ (I)∩(V )
is closer to ρ(1, X, Y ) than ρ(Y,X, 1) ∈ (V ).

4. Proof of Lemmas 10−14

In this section, we minimize the arc-length θ(u, v) over various subsets of the cubed sphere, or, equivalently,
we maximize the cos-angle cos θ(u, v) = u · v (cos is decreasing on [0, π]). Most of the proofs are based on
Lemma 15.

4.1. Technical lemma. This subsection is about the continuous face containing the �rst panel:

ρ({1} × [−1, 1]2) = {ρ(1, X, Y ), (X,Y ) ∈ [−1, 1]2} ⊃ (I).

We investigate various strategies that increase the cos-angle

F (X,Y, Z, T ) := ρ(1, X, Y ) · ρ(1, Z, T ) =
1 +XZ + Y T

(1 +X2 + Y 2)1/2(1 + Z2 + T 2)1/2
, X, Y, Z, T ∈ [−1, 1].

Firstly, the cos-angle satis�es the following symmetries:

F (X,Y, Z, T ) = F (Y,X, T, Z) = F (Z, T,X, Y ) = F (T,Z, Y,X) (6)

= F (−X,Y,−Z, T ) = F (X,−Y,Z,−T ) = F (−X,−Y,−Z,−T ). (7)

Secondly, the following inequalities are easily checked:

XZ ≤ 0⇒ F (X,Y, Z, T ) = F (−|X|, Y, |Z|, T ) ≤ F (|X|, Y, |Z|, T ), (8)

Y T ≤ 0⇒ F (X,Y, Z, T ) = F (X,−|Y |, Z, |T |) ≤ F (X, |Y |, Z, |T |), (9)

F (|X|, |Y |,−|Z|,−|T |) ≤ F (X,Y, Z, T ) ≤ F (|X|, |Y |, |Z|, |T |). (10)

Lastly, we summarize various monotonicity properties:

Lemma 15. Let F (X,Y, Z, T ) = ρ(1, X, Y ) · ρ(1, Z, T ), X,Y, Z, T ∈ [−1, 1].
(i) Let −1 ≤ X < Z ≤ 1. The function Y ∈ [0, 1] 7→ F (X,Y, Z, Y ) is increasing.
(ii) Let 0 < δ ≤ π

4 , and 0 ≤ Y ≤ 1. The function x ∈ [− δ
2 ,

π
4 − δ] 7→ F (tanx, Y, tan(x+ δ), Y ) is decreasing

if Y > 0, and constant if Y = 0.
(iii) The function X ∈ [0, 1] 7→ F (−X, 1, X, 1) is decreasing.
(iv) Let −1 < Z ≤ 1 and −1 ≤ Y ≤ 1. The function X ∈ [−1, Z] 7→ F (X,Y, Z, Y ) is increasing.
(v) Let −1 ≤ X < 1 and −1 ≤ Y ≤ 1. The function Z ∈ [X, 1] 7→ F (X,Y, Z, Y ) is decreasing.
(vi) Let 0 ≤ X < Z ≤ 1 and 0 < Y ≤ 1. The function T ∈ [0, Y ] 7→ F (X,Y, Z, T ) is increasing.
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(vii) Let 0 ≤ X < Z ≤ 1 and 0 < T ≤ 1. The maximum of the function Y ∈ [0, T ] 7→ F (X,Y, Z, T ) is

reached only for Y = Y ∗(X,Z, T ) = T (1+X2)
1+ZX ∈ (0, T ].

(viii) Let 0 < δ ≤ π
4 and 0 < T ≤ 1. The function x ∈

[
0, π4 − δ

]
7→ F (tanx, Y ∗(tanx, tan(x+δ), T ), tan(x+

δ), T ) is decreasing.
(ix) Let 0 ≤ Y ≤ 1, −1 ≤ Z, T ≤ 0. The function X ∈ [0, 1] 7→ F (X,Y, Z, T ) is non-increasing.
(x) Let 0 ≤ X,Y ≤ 1, −1 ≤ T ≤ 0. The function Z ∈ [−1, 0] 7→ F (X,Y, Z, T ) is non-decreasing.

Figure 5. Illustrations of Lemma 15. We plot two arcs of great circle associated with two
values of F ; the bold arc is shorter (F is larger). The dashed arcs are iso-X or iso-Y , in
{ρ(1, X, Y ), (X,Y ) ∈ [−1, 1]2}.
(i) F (X,Y, Z, Y ) < F (X, 1, Z, 1), X < Z, 0 ≤ Y < 1.
(ii) F (tanx, Y, tan(x+ δ), Y ) < F (− tan δ

2 , Y, tan δ
2 , Y ), 0 < δ, 0 < Y , − δ

2 < x.
(iii) F (−X1, 1, X1, 1) < F (−X2, 1, X2, 1), 0 ≤ X2 < X1.
(iv) F (X1, Y, Z, Y ) < F (X2, Y, Z, Y ), −1 ≤ X1 < X2 ≤ Z.
(vi) F (X,Y, Z, T ) < F (X,Y, Z, Y ), 0 ≤ X < Z, 0 ≤ T < Y .
(vii) F (X,Y, Z, T ) < F (X,Y ∗(X,Z, T ), Z, T ), 0 ≤ X < Z, 0 < T ≤ 1, 0 ≤ Y ≤ T ,

Y 6= Y ∗(X,Z, T ) := T (1+X2)
1+ZX .

(viii) F (tanx, Y ∗(tanx, tan(x+ δ), T ), tan(x+ δ), T ) < F (0, T, tan δ, T ), 0 < δ, T, x.
(ix) F (1, Y, Z, T ) ≤ F (X,Y, Z, T ), X,Y ≥ 0, Z, T ≤ 0.

Before the proof, we comment the results from a geometrical point of view; see Figure 5.
(i) The length of an iso-Y arc between two �xed meridians (iso-X) decreases from the equator Y = 0 to the
edge Y = 1.
(ii) In the Northern Hemisphere, the length of an iso-Y arc between two meridians, separated from a longitude
δ, decreases when the meridians moves towards the central position (longitudes ±δ/2). Along the equator,
it is constant.
(iii) Along the edge Y = 1, the arc-length between the symmetric meridians X = −X1 and X = X1 decreases
with X1.
(iv)-(v) The length of an iso-Y arc between two meridians decreases when the longitudes of the meridians
get closer.
(vi) In the eastern part of the Northern Hemisphere, we consider a spherical quadrangle delimited by two
meridians and two iso-Y arcs. The two meridians and the northernmost iso-Y arc are �xed. The length of the
NorthWest-SouthEast diagonal decreases when the southernmost iso-Y arc moves towards the northernmost
one.
(vii) With the same pattern than (vi), the length of the SouthWest-NorthEast diagonal reaches its minimum
value for some position of the southernmost iso-Y arc (Y = Y ∗).
(viii) The minimal SouthWest-NorthEast diagonal of (vii) decreases when the westernmost meridian moves
towards the central meridian X = 0, while keeping a �xed longitude δ between the meridians.
(ix-x) We consider the arc between a point in the eastern part of the Northern Hemisphere and a point in
the western part of the Southern Hemisphere. The arc-length does not decrease when the easternmost point
moves towards the East (along the iso-Y arc), or when the westernmost point moves towards the West.
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Proof of Lemma 15. For each case, we denote by f the considered function. We give an expression that
contains the sign of the derivative f ′; these expressions have been checked by symbolic computation. By the
chain-rule, the derivative f ′ always involves the gradient ∇F , whose components are analogous expressions
to:

∂F (X,Y,Z,T )
∂X =

(1+Z2+T 2)(Z(1+Y 2)−X(1+TY ))
(1+X2+Y 2)3/2(1+Z2+T 2)3/2

.

(i) The derivative of f(Y ) = F (X,Y, Z, Y ), 0 ≤ Y ≤ 1, is f ′(Y ) = ∂F
∂Y + ∂F

∂T . Thus the sign of f ′(Y ) is the

sign of: Y (Z −X)2(1 + Y 2 − ZX). Then f ′(0) = 0 and f ′(Y ) > 0 if Y > 0.
(ii) We set X = tanx and Z = tan(x + δ). The derivative of f(x) = F (X,Y, Z, Y ), x ∈ [− δ

2 ,
π
4 − δ], is

f ′(x) = ∂F
∂X

dX
dx + ∂F

∂Z
dZ
dx , with

dX
dx = 1 +X2 and dZ

dx = 1 +Z2. The sign of f ′(x) is the sign of: −(1 +Y 2)(Z−
X)2Y 2(X + Z). If Y = 0, then f ′(x) = 0. Otherwise, if Y > 0, the sign of f ′(x) is the sign of −(X + Z)
(Z 6= X). Since −(X + Z) is a decreasing function of x (derivative:−2−X2 − Z2 < 0) that takes the value
0 for x = − δ

2 , then f
′(− δ

2) = 0, and f ′(x) < 0 if x > − δ
2 .

(iii) For f(X) = F (−X, 1, X, 1), 0 ≤ X ≤ 1, the sign of the derivative f ′(X) = − ∂F
∂X + ∂F

∂Z is the sign of:

−8X(2 +X2).
(iv) The sign of the derivative of f(X) = F (X, 1, Z, 1),−1 ≤ X ≤ Z, is the sign of: (1 + Y 2)(Z −X).
(v) The sign of the derivative of f(Z) = F (X,Y, Z, Y ), X ≤ Z ≤ 1, is the sign of: (1 + Y 2)(X − Z).
(vi) The sign of the derivative of f(T ) = F (X,Y, Z, T ), 0 ≤ T ≤ Y, is the sign of: Y (1 + Z2)− T (1 + ZX).

Then f ′(T ) > 0 if T < Y 1+Z2

1+ZX , whereas Y < Y 1+Z2

1+ZX .

(vii) The sign of the derivative of f(Y ) = F (X,Y, Z, T ), 0 ≤ Y ≤ T, is the sign of: T (1 +X2)− Y (1 +ZX).

For Y ∗ = T (1+X2)
1+ZX ∈ (0, T ], f ′(Y ) > 0 if Y < Y ∗, f ′(Y ∗) = 0, and f ′(Y ) < 0 if Y > Y ∗.

(viii) We set X = tanx, Z = tan(x+ δ), Y ∗ = Y ∗(X,Z, T ), f(x) = F (X,Y ∗, Z, T ), x ∈
[
0, π4 − δ

]
. Then

f ′(x) = ∂F
∂X (X,Y ∗, Z, T )(1 +X2) + ∂F

∂Y (X,Y ∗, Z, T )dY
∗

dx + ∂F
∂Z (X,Y ∗, Z, T )(1 + Z2).

By construction of Y ∗, ∂F∂Y (X,Y ∗, Z, T ) = 0. Then, the sign of (1 + ZX)3f ′(x) is the sign of:

−(1 +X2)(Z −X)2ZT 2[(1 + ZX)2 + T 2(1 +X2)] < 0.

(ix) The sign of the derivative of f(X) = F (X,Y, Z, T ), 0 ≤ X ≤ 1, is the sign of: Z(1+Y 2)−X(1+TY ) ≤ 0.
(x) The derivative of f(Z) = F (X,Y, Z, T ),−1 ≤ Z ≤ 0 has the sign of: X(1 + T 2)− Z(1 + Y T ) ≥ 0. �

4.2. Proof of Lemmas 10−14.

Proof of Lemma 10. We solve: max{F (X, 1, Z, 1), X 6= Z ∈ TN}. Let X 6= Z ∈ TN .
Case 1: N is even

Case 1.a: XZ < 0. Combination of (8) and Lemma 15,(iv) shows:

F (X, 1, Z, 1) = F (−|X|, 1, |Z|, 1) < F (0, 1, |Z|, 1), 0 6= |Z| ∈ TN .

Case 1.b: XZ ≥ 0. By (6)-(7),

F (X, 1, Z, 1) = F (|X|, 1, |Z|, 1) = F (|Z|, 1, |X|, 1) = F (X ′, 1, Z ′, 1),

with 0 ≤ X ′ = min(|X|, |Z|) < Z ′ = max(|X|, |Z|); X ′, Z ′ ∈ TN .

Write X ′ = tanx, Z ′ = tan(x+ δ), with 0 ≤ x < z = x+ δ ≤ π
4 , and δ ≥

π
2N . By Lemma 15, (ii) and (v),

F (X, 1, Z, 1) = F (X ′, 1, Z ′, 1) ≤ F (0, 1, tan δ, 1) ≤ F (0, 1, tan π
2N , 1),

with equalities if, and only if, x = 0 and δ = π
2N , i.e. {|X|, |Z|} = {X ′, Z ′} = {0, tan π

2N }. This is the
maximum.

Case 2: N is odd.
Case 2.a: XZ ≥ 0. As Case 1.b,

F (X, 1, Z, 1) = F (tanx, 1, tan(x+ δ), 1), 0 ≤ x < z = x+ δ ≤ π
4 , δ ≥

π
2N .

Then tan δ
2 ≥ tan π

4N and Lemma 15,(ii)-(iii), shows that

F (X, 1, Z, 1) < F (− tan δ
2 , 1, tan δ

2 , 1) ≤ F (− tan π
4N , 1, tan π

4N , 1).

Case 2.b: XZ < 0. Lemma 15,(iv)-(v), combined with (8), shows:

F (X, 1, Z, 1) = F (−|X|, 1, |Z|, 1) ≤ F (− tan π
4N , 1, Z, 1) ≤ F (− tan π

4N , 1, tan π
4N , 1),

with equality if, and only if, |X| = |Z| = tan π
4N . This is the maximum. �
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Proof of Lemma 11. We maximize F (X,Y, Z, T ), (X,Y ) 6= (Z, T ) ∈ T2
N , and, X = Z or Y = T . Let

(X,Y, Z, T ) be an optimal solution. Equivalently, {u = ρ(1, X, Y ), v = ρ(1, Z, T )} is minimal for (2). We
prove that there exists Q ∈ {I, Q1, Q2, Q3} such that {Qu,Qv} is minimal for (1); this implies θ(u, v) =
θ(Qu,Qv) = m∗, because Q ∈ O.

Case 1: X 6= Z and Y = T ≥ 0. Combination of (6) and Lemma 15,(i) shows that

F (X,Y, Z, T ) = F (Z, T,X, Y ) ≤ F (X, 1, Z, 1) = F (Z, 1, X, 1),

with equality if, and only if, Y = 1. By optimality of (X,Y, Z, T ), we obtain Y = 1. Then {u, v} ⊂ (I)∩ (V )
is optimal for (1), on the edge (I) ∩ (V ).

Case 2: X 6= Z and Y = T < 0. The invariance (7) shows that F (X,−Y,Z,−T ) = F (X,Y, Z, T ), where
(X,−Y ) 6= (Z,−T ) ∈ T2

N with −Y = −T ≥ 0. Then (X,−Y,Z,−T ) is optimal. We deduce from Case 1
that {Q3u,Q3v} = {ρ(1, X,−Y ), ρ(1, Z,−T )} is optimal for (1).

Case 3: X = Z ≥ 0 and Y 6= T . The invariance (6) shows F (X,Y, Z, T ) = F (Y,X, T, Z), where (Y,X) 6=
(T,Z) ∈ T2

N withX = Z ≥ 0. Then (Y,X, T, Z) is optimal. By Case 1, {Q1u,Q1v} = {ρ(1, Y,X), ρ(1, T, Z)}
is optimal for (1).

Case 4: X = Z < 0 and Y 6= T . The invariances (6)-(7) show that F (X,Y, Z, T ) = F (−Y,−X,−T,−Z),
where (−Y,−X) 6= (−T,−Z) ∈ T2

N with −X = −Z ≥ 0. Then (−Y,−X,−T,−Z) is optimal. We conclude
with Case 1: {Q2u,Q2v} = {ρ(1,−Y,−X), ρ(1,−T,−Z)} is optimal for (1).

Conversely, for all Q ∈ {I, Q1, Q2, Q3} and {u∗, v∗} minimal for (1), {u, v} = {Qᵀu∗, Qᵀv∗} is realizable
for (2), and θ(u, v) = θ(Qᵀu∗, Qᵀv∗) = m∗ is the minimal value of (2), so {u, v} is minimal for (2). �

Proof of Lemma 12. Equivalently, we maximize F (X,Y, Z, T ) on the �rst panel: (X,Y ) 6= (Z, T ) ∈ T2
N . Let

X 6= Z and Y 6= T in TN . We prove that F (X,Y, Z, T ) is strictly dominated by a value on the grid lines:
F (X ′, Y ′, Z ′, T ′), with (X ′, Y ′) 6= (Z ′, T ′) ∈ T2

N and, X ′ = Z ′ or Y ′ = T ′.

Case 1: XZ ≥ 0 and Y T ≥ 0.
Case 1.a: 0 ≤ X < Z ≤ 1 and 0 ≤ T < Y ≤ 1. By Lemma 15,(vi), F (X,Y, Z, T ) < F (X,Y, Z, Y ).
Case 1.b: 0 ≤ X < Z ≤ 1 and 0 ≤ Y < T ≤ 1. According to Lemma 15,(vii)-(viii),

F (X,Y, Z, T ) ≤ F (X,Y ∗(X,Z, T ), Z, T ) ≤ F (0, Y ∗(0, tan δ, T ), tan δ, T ), δ = arctanZ − arctanX,

with equalities if, and only if, Y = Y ∗(X,Z, T ) and X = 0. If X 6= 0, the last inequality is strict. Otherwise,
Y ∗(X,Z, T ) = Y ∗(0, tan δ, T ) = T > Y , and the �rst inequality is strict. In both cases:

F (X,Y, Z, T ) < F (0, T, tan δ, T ), tan δ ≥ tan π
2N .

Application of Lemma 15,(v) and (ii), shows:

F (0, T, tan δ, T ) ≤ F (0, T, tan π
2N , T ) ≤ F (− tan π

4N , T, tan π
4N , T ).

If N is even, resp. odd, we conclude with the �rst, resp. second, inequality.
Case 1.c: 0 ≤ Z < X ≤ 1. By relation (6), F (X,Y, Z, T ) = F (Z, T,X, Y ). The right member is

dominated using Case 1.a or Case 1.b.

Case 2: XZ < 0 or Y T < 0.
Case 2.a: X = −Z or Y = −T . Similarly to (8)-(9),

F (X,Y, Z, T ) <

{
F (|X|, Y, |Z|, T ) = F (|X|, Y, |X|, T ), if X = −Z,
F (X, |Y |, Z, |T |) = F (X, |Y |, Z, |Y |), if Y = −T.

Case 2.b: X 6= −Z and Y 6= −T . By (10):

F (X,Y, Z, T ) ≤ F (|X|, |Y |, |Z|, |T |).

The right member is dominated using Case 1. �

Proof of Lemma 13. Let u ∈ (I) \ (V ) and v ∈ (V ) \ (I): u = ρ(1, X, Y ), and v = ρ(Z, T, 1), with
(X,Y ), (Z, T ) ∈ T2

N , such that Y,Z < 1. We prove that u · v < cosm∗.
Case 1: (T,Z) 6= (X,Y ), as in the middle of Figure 4. Let

Q =

0 0 1
0 1 0
1 0 0

 ∈ O, w = Qv = ρ(1, T, Z) ∈ (I).

It is clear that 0 < (1− Z)(1− Y ), so Z +XT + Y < 1 +XT + Y Z, i.e. u · v < F (X,Y, T, Z) = u · w. By
the way, u 6= w ∈ (I) so u · w ≤ cosm∗.
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Figure 6. Left: construction of the equiangular grid TN = {tan kπ
2N ,−

N
2 ≤ k ≤

N
2 } (N = 6).

On the unit circle x21 + x22 = 1, we consider N + 1 equidistributed angles: kπ
2N ,−

N
2 ≤ k ≤

N
2 .

The origin and the point (1, tan kπ
2N ) ∈ {1} × TN (black dot on the dotted line) are aligned

with (cos kπ
2N , sin

kπ
2N ) (black dot on the arc of circle). Right: construction of a panel of the

cubed sphere by intersection of two equiangular families of great circles (N = 5).

Case 2: (T,Z) = (X,Y ), as in the right of Figure 4. We prove that u · v < F (X,Y,X, 1) using the
auxiliary function

f(t) = ρ(1, X, Y ) · ρ(t,X, 1), t ∈ [Y, 1];

f(t) represents the cos-angle between ρ(1, X, Y ) and ρ(t,X, 1). The sign of f ′(t) is the sign of (1+X2 + t2)−
(X2 + Y + t)t = X2(1 − t) + 1 − Y t > 0. Thus f is increasing and f(Y ) < f(1), i.e. u · v < F (X,Y,X, 1).
Due to ρ(1, X, Y ) 6= ρ(1, X, 1) ∈ (I), u · v < F (X,Y,X, 1) ≤ cosm∗. �

Proof of Lemma 14. Since v ∈ (III) ⇔ −v ∈ (I), we solve m := min{θ(u,−w);u 6= w ∈ (I)}, or, equiva-
lently:

cosm = max{−u · w;u 6= w ∈ (I)} = −min{F (X,Y, Z, T ); (X,Y ) 6= (Z, T ) ∈ T2
N}.

Fix X,Y, Z, T ∈ TN . We apply: (10), Lemma 15,(ix-x), (6), and Lemma 15,(ix-x) again:

F (X,Y, Z, T ) ≥ F (|X|, |Y |,−|Z|,−|T |)
≥ F (1, |Y |,−|Z|,−|T |)
≥ F (1, |Y |,−1,−|T |) = F (|Y |, 1,−|T |,−1)

≥ F (1, 1,−|T |,−1)

≥ F (1, 1,−1,−1).

Thus the minimal value of F is reached on a diagonal: F (1, 1,−1,−1) = ρ(1, 1, 1) ·ρ(1,−1,−1). Its opposite
value represents the length of an edge: cosm = −F (1, 1,−1,−1) = ρ(1, 1, 1) · ρ(1,−1, 1). By Lemma 10,
m > m∗ if N ≥ 2, and m = m∗ if N = 1. �

5. Conclusion

In this paper we have identi�ed the symmetry group of the equiangular cubed sphere: it is the symmetry
group of the cube. This result emphasizes that the cubed sphere behaves like a cube. It provides some theo-
retical foundation for numerical computation on the cubed sphere, when the symmetries play an important
role. For instance, the suitable symmetries for the coe�cients of a quadrature formula on the cubed sphere
are expected to be the symmetries of the cube. This consolidates the use of the duplicated pattern of [14].

Appendix A. Equiangular cubed sphere

In this section we recall the de�nition of the equiangular cubed sphere. Let N ≥ 1 be a �xed integer, and
the following one-dimensional grid:

TN = {tan kπ
2N ,−

N
2 ≤ k ≤

N
2 },

represented in Figure 6. The index k, resp. the angle kπ
2N , takes the N + 1 equidistributed values from −N

2

to N
2 , resp. from −

π
4 to π

4 . Note that TN is an irregular grid on [−1, 1]. Then we de�ne a cartesian grid on

the faces of the cube [−1, 1]3, based on the two-dimensional grid TN × TN , as in Figure 1:

CN = {(1, u, v), (u, 1, v), (−1, u, v), (u,−1, v), (u, v, 1), (u, v,−1);u, v ∈ TN}.

To �nish with, we project CN on the unit sphere S2 = {x ∈ R3 : ‖x‖ = 1}:
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De�nition 16. The equiangular cubed sphere grid CSN is the radial projection of CN on the sphere:
CSN = ρ(CN ), with ρ : x ∈ R3 \ {0} 7→ x

‖x‖ ∈ S2.

It is easily seen that the radial projection ρ is injective on the faces of the cube [−1, 1]3. Therefore,
there is a one-to-one correspondence between CSN and CN ; (u1, u2, u3) ∈ CN are the so-called gnomonic
coordinates of the point ρ(u1, u2, u3) ∈ CSN . By construction, the geometry of the cubed sphere is shaped
by the geometry of the cube. In particular, one can de�ne twelve edges, as the projection of the edges of the
cube, and six panels, as the projection of the grid of the faces:

CSN = ρ(CN ) = (I) ∪ (II) ∪ (III) ∪ (IV ) ∪ (V ) ∪ (V I),

(I) = ρ({1} × TN × TN ), (II) = ρ(TN × {1} × TN ), (III) = ρ({−1} × TN × TN ),

(IV ) = ρ(TN × {−1} × TN ), (V ) = ρ(TN × TN × {1}), (V I) = ρ(TN × TN × {−1}).

Two panels are said to be adjacent, resp. opposite, if they are the projection of adjacent, resp. opposite,
faces.

As in Figures 1 and 6, the cubed sphere meshes the sphere with equiangular arcs of great circles: the
radial projection maps the cartesian straight lines of the cube onto arcs of great circles. For instance, in
panel (I),

ρ({(1, tan kπ
2N , z), |z| ≤ 1}) ⊂ {u ∈ S2 : u1 sin kπ

2N − u2 cos kπ
2N = 0}, |k| ≤ N

2 ;

ρ({(1, y, tan jπ
2N ), |y| ≤ 1}) ⊂ {u ∈ S2 : u1 sin jπ

2N − u3 cos jπ
2N = 0}, |j| ≤ N

2 .

The panel (I) is obtained by intersection of two equiangular families of great circles:

ρ(1, tan kπ
2N , tan jπ

2N ) ∈ {u ∈ S2 : u1 sin kπ
2N − u2 cos kπ

2N = 0} ∩ {u ∈ S2 : u1 sin jπ
2N − u3 cos jπ

2N = 0};

the longitudinal angle kπ
2N and the latitudinal angle jπ

2N both scan a uniform grid on [−π
4 ,

π
4 ]. Analogous

properties can be derived for the other panels.

Appendix B. Symmetry group of the cube

In this section we recall properties about the symmetry group of the cube. We give short direct proofs for
completeness.

Theorem 17. Let e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). The symmetry group O of the cube {−1, 1}3
is:

O =
{[
ε1eσ1 ε2eσ2 ε3eσ3

]
, σ ∈ S3, ε ∈ {−1, 1}3

}
. (11)

Proof. ⊂: Fix an orthogonal matrix Q such that C1 = {−1, 1}3 is left invariant by Q. We remark that for
x1, x2 ∈ C1, ‖x1−x2‖ = 2⇔ ∃ε ∈ {−1, 1},∃1 ≤ σ ≤ 3, x1−x2 = 2εeσ (x1 and x2 are the vertices of an edge);

this is due to the following identity: ‖x1−x2‖2 =
∑3

j=1 |ej ·x1−ej ·x2|2, with |ej ·x1−ej ·x2| ∈ {0, 2}. Then,
the matrix Q maps x0 = (1, 1, 1) ∈ C1 onto Qx0 ∈ C1. For 1 ≤ i ≤ 3, the distance between x0, x0− 2ei ∈ C1

is 2. Then the distance between Qx0, Qx0−2Qei ∈ C1 is also 2, i.e. there exist σi ∈ {1, 2, 3} and εi ∈ {−1, 1}
such that Qei = εieσi . To �nish with, the indices σ1, σ2, σ3 de�ne a permutation; otherwise Q would contain
at least two collinear columns.
⊃: Conversely, let Q = [ε1eσ1 ε2eσ2 ε3eσ3 ], with σ ∈ S3 and ε ∈ C1. It is clear that QᵀQ = I3. Let
x ∈ C1. Then Qx is a permutation of [ε1x1 ε2x2 ε3x3]

ᵀ ∈ C1: Qx = [eσ1 eσ2 eσ3 ][ε1x1 ε2x2 ε3x3]
ᵀ; so Qx ∈ C1.

Then QC1 ⊂ C1. But Q is bijective; so the �nite sets QC1 and C1 have the same cardinal number, and
QC1 = C1. �

Remark 18. The group O contains 3! · 23 = 48 symmetries, determined by a permutation of S3 and three
signs.

From a geometrical point of view, any symmetry of the cube permutes the centers of the faces:

Corollary 19. The symmetry group O of the cube {−1, 1}3 coincides with the symmetry group of the fol-
lowing octahedron: {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1)}.

De�nition 20. The centers of the edges of the cube [−1, 1]3 de�ne the cuboctahedron

Ω := {(0, ε, η), (ε, 0, η), (ε, η, 0), ε = ±1, η = ±1}. (12)

Theorem 21. The symmetry group of the cuboctahedron Ω coincides with the symmetry group O of the cube
{−1, 1}3.
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Proof. ⊂: Let Q be in the symmetry group of Ω: Q is orthogonal and leaves Ω invariant. Then Q maps
(1, 0, 1) onto x = (x1, x2, x3) ∈ Ω; let j be such that xj = 0, and xi = ±1, i 6= j. The vector (1, 0, 1) and
(1, 0,−1) are orthogonal, so Q maps (1, 0,−1) onto x̄ = (x̄1, x̄2, x̄3) ∈ Ω such that x · x̄ = 0. Thus x̄j = 0, and
there are i 6= j, such that x̄i = xi, and x̄k = −xk, for k 6= i, j. Then, the vector e1 = 1

2((1, 0, 1) + (1, 0,−1))

is mapped onto Qe1 = 1
2(x+ x̄) = xiei. This shows that Q maps the center of face e1 onto the center of face

Qe1 = ε1eσ1 , with ε1 = xi ∈ {−1, 1}, and σ1 = i ∈ {1, 2, 3}. A similar procedure shows that Qe2 = ε2eσ2 ,
Qe3 = ε3eσ3 , with ε2, ε3 ∈ {−1, 1}, and σ2, σ3 ∈ {1, 2, 3}. To �nish with, the vectors Qei are orthogonal so
(σ1, σ2, σ3) ∈ S3.
⊃: Let Q ∈ O: Q = [ε1eσ1 ε2eσ2 ε3eσ3 ], with σ ∈ S3, ε ∈ C1. Fix x ∈ Ω: x = η1ei1 + η2ei2 , with η1, η2 = ±1,
1 ≤ i1 6= i2 ≤ 3. It is clear that Qx = η1εi1eσi1 + η2εi2eσi2 ∈ Ω. Then QΩ ⊂ Ω. �

Appendix C. Proof of the main theorem using group theory

In this section, we prove shortly Theorem 2 using classi�cation of subgroups of orthogonal groups. We
refer to [1, Theorems 11.1, 19.1 and 19.2] for more details.

Theorem 22 (Lagrange's Theorem). The order of a subgroup of a �nite group is always a divisor of the
order of the group.

Theorem 23. A �nite subgroup of O2 = {Q ∈ R2×2 : QᵀQ = I2} is either cyclic or dihedral.

Theorem 24. A �nite subgroup of SO3 = {Q ∈ R3×3 : QᵀQ = I3, detQ = 1} is isomorphic either to
a cyclic group, a dihedral group, or the rotation group of a Platonic solid (tetrahedron, cube/octahedron,
dodecahedron/icosahedron).

Proof of Theorem 2 using group theory. Lemma 5 proves O ⊂ GN . We deduce O = GN from Theorem 24.
Firstly, we focus on the rotation subgroups, O+ = O ∩ SO3 and G+N = GN ∩ SO3. Indeed, O = GN ⇔

O+ = G+N , because −I3 ∈ O ⊂ GN , so O = O+ ∪ {−Q,Q ∈ O+}, and GN = G+N ∪ {−Q,Q ∈ G
+
N}. Secondly,

G+N is a �nite subgroup of SO3, by injection into a �nite permutation group. Indeed, CSN = {xj , 1 ≤ j ≤M}
is a �nite set which contains three linearly independent vectors. So σ : Q ∈ G+N 7→ σ[Q] ∈ SM such that
Qxj = xσ[Q](j), 1 ≤ j ≤M , is injective.

By Theorem 24, G+N is isomorphic either to a cyclic group, a dihedral group, or the rotation group of a

Platonic solid. Since O+ ⊂ G+N , we eliminate all the candidates, except the rotation group of the cube. By

Lagrange's Theorem, the order of O+ (24) is a divisor of the order of G+N . Then G+N is not isomorphic to
the group of the tetrahedron (order 12), neither the group of the dodecahedron/icosahedron (order 60). By
the way G+N is not cyclic, because O+ is not commutative. And to �nish with, G+N is not dihedral. Indeed, a
dihedral group is isomorphic to a �nite subgroup of O2 ( [10, p. 152]). So, by Theorem 23, the subgroups of
a dihedral group are either cyclic or dihedral. But the rotation group O+ of the cube is neither cyclic nor
dihedral, by Theorem 24. �

Remark 25. By Remark 6, the proof is still valid if TN is replaced by any symmetric grid. Therefore, the
group of any cubed sphere (with TN symmetric) coincides with the group of the cube.
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