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AAA+ ATPases are a diverse protein superfamily which power a

vast number of cellular processes, from protein degradation to

genome replication and ribosome biogenesis. The latest

advances in cryo-EM have resulted in a spectacular increase in

the number and quality of AAA+ ATPase structures. This

abundance of new information enables closer examination of

different types of structural insertions into the conserved core,

revealing discrepancies in the current classification of AAA+

modules into clades. Additionally, combined with biochemical

data, it has allowed rapid progress in our understanding of

structure-functional relationships and provided arguments

both in favour and against the existence of a unifying molecular

mechanism for the ATPase activity and action on substrates,

stimulating further intensive research.
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Introduction: the AAA+ domain architecture
AAA+ ATPases are widely used by cells as motors to

power mechanical work or to act as molecular switches or

scaffolds, often as parts of macromolecular machines

[1–4]. The universal AAA+ ATPase module is composed

of two subdomains [4–6]. The N-terminal ‘large’ aba
subdomain belongs to the ASCE group of P-loop

NTPases, and is built around a central 5-strand b-sheet
carrying the highly conserved Walker A and Walker B

motifs, as well as sensor 1 (S1) and arginine finger

(R-finger) residues (Figure 1a,b). The Walker A motif

(i.e. the P-loop) stabilises ATP binding while Walker B

coordinates an ATP-bound magnesium ion and provides
www.sciencedirect.com 
the catalytic glutamate that, together with the polar S1

residue, primes a water molecule for ATP hydrolysis.

Oligomerisation of AAA+ ATPases completes the ATP

binding pocket, with most AAA+ proteins forming ring-

shaped hexamers (Figure 1c). Oligomerisation allows the

R-finger to act in trans, contacting the g-phosphate of the

ATP molecule bound to the anticlockwise neighbouring

subunit during hydrolysis (Figure 1d). In most AAA+

ATPases, the large subdomain is fused to a ‘small’

C-terminal a-helical lid subdomain that closes over the

nucleotide binding site and mediates oligomeric assem-

bly. This subdomain often contributes a second arginine

residue called sensor 2 (S2) to the ATP binding site,

which acts either in cis or in trans depending on the AAA+

ATPase family (Figure 1d). ATPase activity results in

relative movements between the large and the small

subdomains, which are propagated within the oligomeric

AAA+ assembly and transduced to the functional target.

The name ‘AAA+ (ATPases associated with various cel-

lular activities)’ highlights the remarkable diversity of this

protein superfamily, which is due to the fact that the

conserved AAA+ ATPase module can be appended to a

plethora of different accessory domains conferring a vast

number of functions [7��]. The most common function of

AAA+ proteins is the ATP hydrolysis-driven translocation

of protein or DNA substrates through the central hex-

americ channel. Often assisted by additional domains,

cofactors, and binding partners, protein translocation by

AAA+ ATPases results in target unfolding, disassembly

and remodelling, whereas DNA translocation leads to

unwinding during replication and transcription or pack-

aging of viral genomes.

Classification of AAA+ ATPases into clades

In an effort to infer evolutionary relationships and

common functional and mechanistic principles between

AAA+ ATPases, AAA+ modules were classified into seven

distinct clades based on sequence and structural informa-

tion available in 2004–2006 [3–5,8]. This analysis

revealed that in addition to N-terminal and C-terminal

accessory domains, the functions of AAA+ proteins are

fine-tuned by insertions of specific structural elements in

the conserved AAA+ core. Each clade is defined as an

evolutionary lineage and is further subdivided into pro-

tein families. A summary of the structural features defin-

ing the AAA+ clades is presented in Figure 1a,b.

Clades 1 and 2 are mostly non-hexameric AAA+ proteins

and contain DNA polymerase clamp loaders and
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Figure 1

(a)

(b)

(c)
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Overview of the AAA+ ATPase structure. (a) Overview of secondary structural features and key sequence motifs. The locations of clade-specific

insertions in the AAA+ core are indicated (except for the N-terminal and C-terminal helices of Clade 4). (b) 3D structures of representative

monomers from each of Clade 1–7. Clade 1 = RFC3 (PDB ID: 1SXJ), Clade 2 = Orc5 (PDB ID: 5V8F), Clade 3 = ClpA-NTD (PDB ID: 6UQE), Clade

4 = E1 helicase (PDB ID: 2V9P), Clade 5 = RuvB (PDB ID: 1HQC), Clade 6 = NtrC1 (PDB ID: 4LY6), Clade 7 = RavA (PDB 3NBX). The Clade

6 NtrC1 structure is enlarged to show the location of key motifs in (a). Key motifs and insertions are coloured as in (a), as well as the Clade 3 pore

loop 1 (PL1) coloured dark green. (c) Hexameric structure of LonA (PDB ID: 6ON2) with monomers A–F coloured individually and bound substrate

shown as a red surface in the centre of the hexameric ring. Dotted boxes are shown over two adjacent monomers, coloured as in (d). A side view

(below) focussed on centre of the hexameric ring show a spiral staircase arrangement of pore loops around the substrate. (d) Overview of the ATP

Current Opinion in Structural Biology 2021, 66:119–128 www.sciencedirect.com
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DNA-replicative helicase loaders respectively; the first is

the ‘archetypal’ AAA+ domain, whereas the second has

an a-helical insertion between b2 and a2. Clade 3 also

has an extra a-helix inserted between b2 and a2, but this

helix is shorter and is followed by a substrate-binding

loop (pore loop 1 or PL1) (Figure 1b). Members of this

‘classic’ protein-remodelling clade possess a second

R-finger and lack an S2 residue. Clade 3 is the most

widely studied and extensively reviewed clade [7��], and

includes prominent members such as Vps4, katanin, and

the N-terminal AAA+ domains of double-ringed unfol-

dases such as ClpB and Hsp104. Clades 4–7 all share a

b-hairpin insertion between a3 and b4, before the S1

motif, and are therefore grouped into the pre-sensor

1 insert (PS1i) superclade. Clade 4 is composed exclu-

sively of viral helicases, and possesses a unique domain

formed by a-helices N-terminal and C-terminal to the

aba core instead of the canonical AAA+ lid subdomain.

Clade 5 is termed the HCLR Clade, reflecting the main

families that it is composed of — HslU/ClpX, ClpABC-

CTD, Lon, and RuvB. Members of Clade 5 possess no

additional features to the PS1i, and similarly to Clade 3,

are involved in protein unfolding and remodelling. Clade

6 is characterised by a b-hairpin insertion in a2 termed

the helix-2 insert (H2i), and contains bacterial enhancer

binding proteins (bEBPs) such as NtrC1 and PspF, and

the unusual ‘AAA+ GTPase’ McrB. Clade 7 members

also possess the H2i, but have an additional a-helical
insertion between a5 and a6 called the pre-sensor

2 insert (PS2i). Several functionally divergent families

such as the MCM helicase, MoxR, and dynein families

are attributed to this clade.

Cryo-EM insights into the AAA+ ATPase mechanism

As the classification of AAA+ ATPases was performed

15 years ago, only about a dozen high resolution structures

of different representatives of this superfamily were

available, mostly from X-ray crystallographic studies. At

this time, the prevailing consensus was that AAA+

ATPases formed symmetric closed rings, with a few

isolated exceptions [3,4,9]. Since the cryo-EM revolution

in 2015 a vast number of new structures of AAA+ ATPases

have been published, and there have been more than

50 publications presenting cryo-EM structures of AAA+

ATPases since the start of 2019 (Supplementary Table 1).

It is now apparent that most AAA+ ATPases show an

asymmetric spiral arrangement of six monomers around

the central pore (Figure 1c). Many of the published

structures were obtained in the presence of a substrate,
(Figure 1 Legend Continued) binding site of (left) Clades 1–6 (ClpA-CTD, P

two neighbouring monomers are shown above; large and small subdomains

subdomains from a neighbouring monomer are labelled L0 and S0 respective
swapped architecture of Clade 7 members means that the S2 arginine acts

unlike the canonical S2 of Clades 1–6 which act in cis. Both binding sites a

analogue. Key motifs are coloured as in (a), publication references for all PD

www.sciencedirect.com 
which may play a role in the rearrangement of planar

hexameric rings into spirals to facilitate threading of the

substrate through the pore [10–12]. As the binding of

ATP is known to be required for substrate engagement,

most of the structures were obtained with ATP binding-

efficient but hydrolysis-defective Walker B mutants, or in

the presence of non-hydrolysable ATP analogues. Sub-

strate-binding pore loops form a spiral staircase engaging

the substrate, with pore loop positions correlating with

the nucleotide state (ATP, ADP, or an apo ‘seam’). These

structures have allowed the inference of a common

mechanism for ATP hydrolysis [7��,12] which is based

on the sequential hydrolysis of ATP around the hexame-

ric ring, with corresponding ‘hand-over-hand’ movements

of pore loops driving unidirectional translocation of sub-

strate through the pore. However, the universality of this

mechanism is still under debate [13��]. In addition, the

majority of structures used to define this mechanism are

of proteins from the Classic Clade [7��,12]. In contrast, the

PS1i superclade is much less studied despite its huge

functional diversity. In this review, we present an over-

view of recent structures of AAA+ ATPases, with a

particular focus on structural insertions in the AAA+ core

of PS1i superclade members. We discuss the functional

roles of these insertions, and revisit the classification of

AAA+ ATPases in light of recently solved structures.

Finally, we address the controversy surrounding the

mechanism of AAA+ ATPase activity, underscoring the

need for further investigation to clarify the general appli-

cability of proposed ATP hydrolysis mechanisms to the

entire AAA+ superfamily.

Structure and function of insertions in the AAA
+ core
Clade 3 is by far the best-characterised clade, with

many recent high resolution cryo-EM structures of

Clade 3 members, including those of the proteasome

[14��,15–17], Vps4 [18], katanin [19], spastin [20,21],

Bcs1 [22], Cdc48/p97/VCP [23–25], and ClpABC-NTD

[26–29] yielding valuable insight into the action of pro-

tein-translocating AAA+ ATPases. As stated above, PL1,

a short loop before a2, is responsible for binding to

substrates during translocation. These loops usually con-

tain an aromatic residue that non-specifically intercalates

between protein substrate residues, forming a spiral stair-

case in the central pore (Figure 1c) [7��,12,30]. A second-

ary loop termed pore loop 2 (PL2), less conserved than

PL1 [7��], is located between b3 and a3 forms another

spiral staircase below PL1. The roles of PL1 and PL2 in
DB ID: 6UQE) and (right) Clade 7 (MCM, PDB ID 6XTX). Schematics of

 of one AAA+ monomer are labelled L and S, while corresponding

ly. As shown in zooms of the ATP binding site (below), the domain-

 in trans and contacts the g-phosphate of the neighbouring monomer,

re occupied by ATPgS, a commonly used non-hydrolysable ATP

B IDs are presented in Supplementary Table 2.

Current Opinion in Structural Biology 2021, 66:119–128



122 Folding and binding
substrate translocation are extensively reviewed in Refs.

[7��] and [12].

The Classic Clade is functionally similar to the HCLR

Clade 5, with members of both being involved protein

unfolding, remodelling, and proteolysis, as reviewed in

Ref. [30]. For some, such as the Lon protease, the AAA+

module is fused to a dedicated protease domain. For

others, protease binding partners such as ClpP and HslV

degrade substrates. While Clade 5 lacks the a-helical
insertion typical to Clade 3, several Clade 5 members

also interact with substrate via a short loop between b2
and a2. For other members of Clade 5 as well as both

Clade 6 and 7, other insertions in the AAA+ core, namely

the PS1i and H2i, instead play roles in substrate recogni-

tion and translocation. Despite differences in the location

of these insertions, the spiral staircase conformation seen

for the Clade 3 PL1 is conserved across clades, as dis-

cussed below.

Pre-sensor 1 insert

The PS1i b-hairpin, often positioned in the centre of the

hexameric ring, is crucial to the function of many AAA+

proteins in the PS1i superclade. For some, it fulfils a

similar role to the PL1 in Clade 3. In the viral helicases of

Clade 4, the PS1i protrudes directly into the central pore

and interacts with double-stranded DNA during origin

recognition and with single-stranded DNA during heli-

case unwinding, forming a spiral staircase around sub-

strate [31,32]. Similarly, in the Clade 7 DNA helicase

MCM, recent structures revealed that the PS1i is

involved in coordinating the phosphate backbone of

single-stranded DNA during translocation [33,34�,
35–37]. For others, however, the PS1i plays more diverse

roles. Early studies on RuvB, an evolutionarily distinct

member of Clade 5, showed that the PS1i is not involved

in substrate translocation but rather in mediating an

interaction with its binding partner RuvA [38]. Two

recent cryo-EM structures of the Clade 5 unfoldase ClpX

bound to substrate demonstrate that the PS1i is involved

in substrate recognition rather than translocation, with the

majority of substrate-interacting residues coming instead

from PL1 [39,40]. The structure of the Escherichia coli
ClpX reveals that the PS1i reaches into and above the

central pore to engage substrate, which is later unfolded

and translocated through the hexameric pore [40]. In

contrast, high-resolution cryo-EM structures of sub-

strate-engaged ClpA [26], ClpB [27,28] and Hsp104

[41�] have all been published recently showing that the

PS1i in the C-terminal AAA+ domain is displaced away

from the centre of the pore (Figure 2), with inserted loops

in helix a2 instead binding the substrate during translo-

cation. Although these insertions are close to the location

of the Clade 3 PL1, they appear to be much longer and are

in the middle of a2, bearing a closer resemblance to the

H2i of Clade 6 and 7 members. The relative arrangements

of PS1i loops and these substrate-coordinating pore loops
Current Opinion in Structural Biology 2021, 66:119–128 
for the ClpABC-CTD family are similar to those seen in

recent cryo-EM structures of LonA [42,43], another Clade

5 protein, and several members of Clades 6 and 7

(Figure 2).

The PS1i is termed loop 2 (L2) in the Clade 6 members

McrB and bEBPs such as NtrC1 and PspF. In bEBPs, the

PS1 inserts lack the typical b-hairpin secondary structure

and are more disordered compared to other members of

the PS1i superclade, and interact with substrates along

with the H2i (see below) [44]. In some cases, such as for

the MoxR family CbbQ, classified into Clade 7, the PS1i

interacts with the H2i which would allow the transmission

of conformational changes from the H2i to the nucleotide

binding site [45].

H2 insert

Similarly to the PS1i, the H2i b-hairpin plays a crucial role

in interactions with substrate or partner proteins. In Clade

6 bEBPs (extensively reviewed in Ref. [44]), a conserved

motif in the H2i (termed loop 1, L1 or PL1 due to its

similarity to the Clade 3 PL1) facilitates the interaction

between the AAA+ module and s54-bound RNA poly-

merase. bEBPs use the energy from ATP hydrolysis to

remodel RNA polymerase from a closed to an open

conformation, thereby activating transcription. The

cryo-EM structure of PspF showed that the H2 inserts

of PspF sit in the centre of the hexameric ring and

facilitate an interaction with promoter DNA [46]. In

NtrC1, another bEBP, the H2 inserts are arranged in a

spiral staircase [47]. However, these proteins do not act as

motors but rather as molecular switches, and as such are

unlikely to translocate substrate through the central

channel [44]. The McrB H2i facilitates protein-protein

interactions with the endonuclease McrC, which sits in

the central hexameric pore, but it is unclear whether the

GTPase activity of McrB is used for threading DNA

substrate through the pore [48�].

The H2 inserts of Clade 7 members play a variety of

roles. The H2i of MCM acts together with the PS1i to

coordinate substrate DNA, meaning that each MCM

protomer contributes two loops to a continuous spiral

staircase (Figure 2) [33,34�,35–37]. Key residues in the

H2i are necessary for the MoxR protein CbbQ to

function as a RuBisCO activase, and in the CbbQ

hexamer the H2is protrude into the central hexameric

pore [45]. The H2i also plays important functional

roles in the motor protein dynein and the ribosome

biogenesis protein Midasin/Rea1. The H2i in the

second AAA+ domain of dynein (AAA2) is critical

for dynein’s motor activity, with AAA2 H2i mutants

still able to hydrolyse ATP but not to perform the

power stroke associated with motor function [49].

Cryo-EM structures  of Midasin/Rea1 showed that

AAA2 H2i is instead extended by an a-helical bundle,

which sits in the centre of the hexameric ring as a plug
www.sciencedirect.com
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Figure 2

Current Opinion in Structural Biology

Hexamer structures of selected PSI-insert superclade members showing PS1i, H2i and PS2i locations. Coloured boxes indicate clade

classification: red = Clade 4, magenta = Clade 5, green = Clade 6, blue = Clade 7. Insertions are coloured as for Figure 1 (large AAA+ subdomain

= light brown, small AAA+ subdomain = orange, PS1i = magenta, H2i = green, PS2i = navy blue, Clade 4-specific N-terminal and C-terminal helices

= light blue and coral respectively, grey = inter-protomer linkers). Bound substrates, when present, are coloured red. All PDB IDs are listed in

Figure 3d, except for LonA (6ON2), MCM (6XTX) and RavA (6SZB), and publication references for all PDB IDs are presented in Supplementary

Table 2.
and inhibits ATPase action of the hexamer when not

bound to its substrate [50,51]. Additionally, the recent

cryo-EM structure of Rea1 in complex with the Rix1/

pre-60S ribosome particle showed that the H2i of

AAA2 promotes an interaction with Rix1 while the
www.sciencedirect.com 
H2i of AAA5 instead contacts the Rea1 MIDAS

domain [52]. However, it is unclear whether these

pore loop-facilitated interactions are involved in

threading substrate, or rather in mediating protein-

protein interactions alone.
Current Opinion in Structural Biology 2021, 66:119–128
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Figure 3

(a)

(b)

(c)

Current Opinion in Structural Biology

Discrepancies in AAA+ ATPase classification. (a) Comparison of monomer structures for Clade 7 members. While MCM, RavA, BchI and

CHU_0153 (not shown) possess the clade-defining PS2i (coloured navy blue) and display repositioned small AAA+ subdomains, CbbQ, Dynein

(AAA2 monomer shown) and Rea1 (AAA3 monomer shown) instead display a canonical arrangement of AAA+ subdomains. (b) Comparison of

selected Clade 5 and 6 monomers, focussed on the region surrounding a2 (light blue) and a3 (medium blue). Insertions in a2 are coloured light

green and the PS1i is coloured magenta. While the Clade 5 members ClpX, RuvB, Torsin and HslU possess a continuous a2, ClpA-CTD, ClpB-

CTD, LonA and LonB possess an insertion very similar to those seen for Clade 6 members NtrC1, PspF, FlrC, McrB, as well as FleQ and ZraR

(not shown but almost identical to NtrC1). ClpC-CTD and Hsp104-CTD structures (3PXI and 6D00 respectively) lack built-in residues at this

location, however the number of missing residues at the break in a2 are consistent with an inserted loop. (c) Structural similarity dendrogram of

Current Opinion in Structural Biology 2021, 66:119–128 www.sciencedirect.com



Structure and function of AAA+ ATPase insertions Jessop, Felix and Gutsche 125
Pre-sensor 2 insert

The PS2i, the defining feature of Clade 7 AAA+ ATPases,

forms a long a-helix that drastically repositions the small

subdomain relative to the large subdomain [4]. Despite

this repositioning, the overall arrangement of large and

small subdomains in the hexamer and the architecture of

the ATP binding site is preserved (Figure 1d). In other

AAA+ clades, the linker between large and small sub-

domains operates as a hinge, with ATP hydrolysis linked

to conformational changes within a monomer. The recent

cryo-EM structure of the Clade 7 ATPase RavA from the

MoxR family showed that these hinge-like motions are

conserved, but occur instead between the large and small

subdomains of neighbouring monomers [53�]. In addition,

similarities between twofold symmetric closed ring states

of ClpX [54] and RavA [53�], and in particular the pres-

ence of a nucleotide-free ‘double seam’, support the idea

of a conserved ATPase mechanism between Clades 5 and

7, despite the huge differences in domain architecture.

Although there are several recent cryo-EM structures of

Clade 7 ATPases with the PS2i, in particular MCM and

RavA [34�,35–37,53�], the effects of AAA+ subdomain

repositioning are not well-explored. Clade 7 is much less

characterised than other clades, and further investigation

may uncover the role of the PS2i in modulating the

ATPase activity. Finally, several AAA+ proteins classified

into Clade 7 clearly lack the PS2i, as discussed below,

raising questions about the current classification scheme.

Discrepancies in AAA+ classification
Just as the vast number of recent AAA+ ATPase struc-

tures has facilitated the increased understanding of their

molecular mechanism, it also offers us a chance to make

extensive structural comparisons and reveals discrepan-

cies in the current classification scheme, particularly in

the PS1i superclade. Because the grouping into clades is

often used to extend hypotheses from one protein to

members of the same clade and to contrast observations

between members of different clades [4,42], working

within the framework of an accurate and up-to-date

classification system seems important, in particular for

the investigation of the general applicability of currently

proposed AAA+ ATPase mechanisms, as discussed

below.

Members of Clade 7 offer the most apparent example

of discrepancies in classification. Indeed, structural

alignment of Clade 7 AAA+ ATPases shows that while

several members possess the characteristic PS2i, dynein,

Midasin/Rea1 and CbbQ lack it and retain the canonical
(Figure 3 Legend Continued) PSI-insert superclade AAA+ ATPases genera

coloured according to the clade classification. The ‘all-against-all’ option wa

PDB files, generating distance matrices that describe distances between eq

Newick format dendrogram [61]. Where necessary, missing loop residues w

Dendrogram visualisation was carried out using iTOL [63]. A table of PDB ID

with proteins coloured by clade. Publication references for all PDB IDs used

www.sciencedirect.com 
arrangement of large and small AAA+ subdomains

(Figure 3a) [53�,55]. In addition, although dynein is

classified an H2i AAA+ ATPase, the sequence stretch

originally identified [3] as being an H2i in AAA3, the third

tandem AAA+ domain, in fact appears as a loop between

a2 and b3 while the only insertion in the middle of a2
appears to be in AAA2 [55]. This suggests that either the

other five AAA+ domains in dynein have subsequently

lost their H2i, or probably more likely, there was a later

independent insertion into a2 of AAA2 after branching

from other PS1i proteins [55]. In contrast, all six tandem

AAA+ domains in Midasin/Rea1 possess an H2i [50].

As introduced above, several members of Clade 5, namely

ClpA-CTD, ClpB-CTD, ClpC-CTD, Hsp104-CTD and

Lon also have insertions in a2 that interact with sub-

strates in a similar way to the H2is of Clade 6 and 7. On

the face of it, this feature would place these proteins in

the H2i-containing Clade 6. Comparison of the monomer

structures of these proteins with those of Clade 6 and

7 shows a high degree of structural conservation

(Figure 3b). However, as is possibly the case for the

H2i in the AAA2 domain of dynein, it is conceivable that

these insertions arose independently multiple times.

Indeed, a structural similarity dendrogram based on struc-

tural alignment of monomers across the PS1i superclade,

generated using the distance matrix-based structural

alignment algorithm on the DALI server [56], does not

maintain a single grouping for proteins containing H2is

but rather splits them into several different groups

(Figure 3c). Therefore, the original classification of

AAA+ ATPases based on structural PS1i, H2i and PS2i

insertions and assuming their emergence only once in the

course of the superfamily evolution may be outdated.

The evolutionary history of the AAA+ superfamily may

be more complex, suggesting that a fresh look at the

classification system based on large-scale analysis is

needed in light of the ever-growing structural informa-

tion, particularly for the comparatively understudied

Clades 6 and 7. In addition, some proteins such as

Pch2/TRIP13 do not fit in the current classification

scheme, but possess features of multiple clades [57].

Finally, it may be worth asking whether is it still useful

to refer to clades at all, or whether it is better to group

AAA+ ATPases according to their functional similarities.

Perspectives — a universal AAA+ ATPase
mechanism?
Although the recent wealth of structural information

has yielded substantial insight into the mechanism of
ted from a structural alignment using DALI [56] with outside lines

s used — this carries out sequential pairwise comparisons between all

uivalent Ca atoms, and hierarchically clusters these matrices into a

ere modelled using the Phyre2 server [62] before structural alignment.

s used as input for the creating the dendrogram is shown on the right,

 are presented in Supplementary Table 2.

Current Opinion in Structural Biology 2021, 66:119–128
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AAA+ ATPase action and the orthodox ‘hand-over-hand’

model of sequential ATP hydrolysis has become widely

accepted, several recent publications call it into question

[30,40,53�,58��]. For example, high-speed atomic force

microscopy of the histone chaperone Abo1 has provided

direct evidence for ATP hydrolysis at non-adjacent sites

in the hexameric ring [58��]. In parallel, two recent cryo-

EM papers on the Clade 5 unfoldase ClpXP have reig-

nited debate over whether a sequential or stochastic ATP

hydrolysis mechanism is correct by interpreting very

similar structures in terms of two very different but

plausible mechanisms [13��,39,40]. Despite the attrac-

tiveness of the idea of a unifying ATPase mechanism

for all AAA+ proteins, the reality may be more nuanced. It

is conceivable that depending on cellular conditions and

interactions with binding partners or cofactors, AAA+

ATPases may be able to switch between strictly sequen-

tial and stochastic modes of action [7��,30]. In addition,

while most AAA+ ATPases act as motors with continual

ATP turnover, others such as the Clade 1 clamp loaders,

Clade 2 helicase loaders and Clade 6 bEBPs instead act as

‘switches’, with a single ATPase cycle linked to a single

event. Whether these switch-like ATPases all function

with the same mechanism as the more extensively char-

acterised AAA+ ATPases ‘motors’ is still uncertain [44],

although the recent cryo-EM structure of the Clade

1 RFC suggests that this is unlikely [59]. Besides, other

non-conventional AAA+ proteins exert force on their

protein substrate laterally such as dynein, or act on

membranes via unexplored mechanisms such as the

unusual Clade 5 ATPase Torsin, which forms long helical

polymers [60]. Therefore, in parallel to allowing investi-

gation of mechanistic commonalities, the current flurry of

cryo-EM structures may also inspire the disentangling of

clade or even protein-specific functional differences and

their structural underpinning.
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