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Francois-Xavier Socheleau, Senior Member, IEEE

Abstract—We consider the problem of detecting an unknown
signal that lies in a union of subspaces (UoS) and that is observed
in additive white Gaussian noise with unknown variance. The
main contribution of this paper is the derivation of a detector
that can accommodate a union made of nested subspaces. This
detector includes the generalized likelihood ratio test (GLRT) as
a special case when the subspace dimensions are all identical.
It relies on the framework of multifamily likelihood ratio tests
(MFLRT) and is shown by numerical examples to achieve better
performance than existing detectors.

Index Terms—Multifamily likelihood ratio test, nested models,
subspace detection.

I. INTRODUCTION

Testing whether a signal lies within a known subspace is a
well-studied problem in the framework of matched-subspace
detectors [1]–[6]. However, in practice, signals are often
generated by multimodal processes so that there is not one but
several possible subspace models. Among the set of possible
models, the active subspace that generated the observed signal
may be unknown a priori. This kind of signals complies with
what is referred to as the UoS model. More precisely, x ∈ RN
is an unknown signal belonging to some union of M known
subspaces, i.e., x ∈

⋃M
i=1 Si, if and only if there exists i0

such that x ∈ Si0 [7]. In other words, x belongs to one of the
subspace Si, but we do not know a priori to which one. UoS
examples include signals with unknown spectral support [7],
spectral signatures of radar targets [8] or sparse representations
[9].

Signal detection under the UoS model has been partly
addressed in the literature in the specific case where all
subspaces are distinct, i. e., there are no subspaces in the union
such that Si ⊂ S`, for i 6= ` [8]–[10]. All these works resort
to the GLRT and estimate the active subspace index i0 as
the one that maximizes the likelihood functions. By assuming
distinct subspaces, these methods fail to handle nested models
properly. In our UoS context, nesting occurs when the signal
can be expressed as the sum of an unknown number of basis
vectors so that Si ⊂ S`, for 1 ≤ i < ` ≤M . Examples include
signals of unknown duration, periodic signal with an unknown
number of harmonics, signals transmitted through an unknown
multipath channel, etc. In that case, the GLRT always chooses
the subspace model with the largest dimension leading to
possible detection losses. More generally, problems arise with
the GLRT when subspaces are of different dimensions and are
not pairwise disjoint.
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In [11], the MFLRT has been introduced as a general
solution to accommodate nested signal models. The idea is
to add a penalty term to the GLR statistic to counteract its
tendency to increase with the model order. More recently, a
new normalizing transformation has been introduced in [12].
It generalizes the results of [11] and relies on the Legendre
transform of the cumulant generating function (LT-CGF) of the
test statistic. Although effective for various applications [13],
[14], these results are not directly applicable to our context
since the GLR statistic involved in our problem does not
satisfy the required properties.

The main contribution of this letter is to adapt the LT-
CGF framework to the detection of an unknown signal in
a UoS, with possibly overlapping or nested subspaces. The
additive noise is assumed to be white Gaussian with unknown
variance. The proposed detector is obtained by establishing
a convergence result on the LT-CGF of a Fisher-z random
variable. This approach generalizes the standard GLRT under
the UoS model and includes it as a special case when the
subspace dimensions are all identical. The paper is organized
as follows. Sec. II is devoted to the problem formulation. The
derivation of the Multifamily CFAR GLRT is presented in
Sec. III. Numerical results are provided in Sec. IV, followed
by conclusions in Sec. V.

Notation: We denote by Xn
d→ X the convergence in

distribution as n → +∞. O(·), Op(·) and op(·) designate
the usual asymptotic notations for non-random and random
variables, respectively [15, Ch. 14]. That is, an = O(bn) if
the ratio an/bn is bounded for large n, Xn = Op(bn) if
the random sequence Xn/bn is stochastically bounded and
Xn = op(1) if Xn converges to zero in probability. Finally,
f (m)(x) denotes the m-th derivative of f with respect to x.

II. PROBLEM FORMULATION

Let x ∈
⋃M
i=1 Si, where Si are subspaces of RN . No

particular assumption is made with respect to the intersection
of the subspaces and we do not assume all subspaces to have
the same dimension but simply that ni = dim(Si) < N , ∀ i.
The detection problem addressed in this paper can be stated
as {

H0 : y = w
H1 : y = x + w,

(1)

where y is the observation vector and w is a zero-mean
white Gaussian vector with unknown variance. Because of the
unknown parameters involved in the problem, no uniformly
powerful test exists and the likelihood ratio test cannot be
applied. A standard approach is then to resort to GLRT
techniques that replace the unknown parameters with their
maximum likelihood estimates.
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Let Hi ∈ RN×ni be a basis for the ni-dimensional subspace
Si and let PSi = Hi

(
HT
i Hi

)−1
HT
i be its projection matrix.

The GLRT for Problem (1) is a straightforward extension of
the well-studied CFAR matched-subspace detector [1, Ch. 4]
and can be written as [10]

TGLRT(y) = max
1≤i≤M

Li(y)
H1

≷
H0

ηGLRT, (2)

where ηGLRT is the threshold chosen so as to satisfy some
fixed test size. Li(y) is defined as twice the generalized log-
likelihood ratio of y when x is assumed to belong to subspace
Si. This ratio can be expressed as [16, pp. 372]

Li(y) = N log

(
yTy

yT (IN −PSi)y

)
, (3)

where IN is the N×N identity matrix. As expressed in (2), the
GLRT will always select the subspace containing the greatest
amount of signal energy. As long as the subspaces have similar
dimensions and/or are pairwise disjoint, this may be fine but
in any other cases this is problematic. The worst case happens
when the subspaces are nested, i.e., when Si ⊂ S`, for
1 ≤ i < ` ≤ M . In this scenario, the GLRT will always
implement the test statistic with the matrix PSM that projects
the data in the larger subspace. If the actual signal subspace is
smaller than SM , the GLRT will include noise-only samples
under either hypothesis, degrading the performance of the
detector. For instance, this problem is illustrated in [11] for a
signal of unknown samples and unknown length corrupted by
an additive white Gaussian noise with known variance. For this
signal model, but now with an unknown noise variance, the
GLRT (2) becomes a CFAR energy detector. More precisely,
each basis satisfies

Hi =

(
Ini

O(N−ni)×ni

)
(4)

where On×m is the n ×m null matrix and ni < n` for i <
`. The test statistic in (2) is then a monotonically increasing
function of the ratio

∑N−1
k=0 |y(k)|2/

∑N−1
k=nM

|y(k)|2, where
y(k) is the k-th entry of y. If the actual signal length is smaller
than nM , the GLRT will not be effective since this ratio will
be overestimated. More generally, this problem arises for any
signal expressed as the sum of an unknown number of basis
vectors.

Improvement of the GLRT can be achieved by using a
model order selection criterion in the decision procedure.
A well known criterion is the minimum description length
(MDL) criterion [17], which leads to the following test1

TMDL(y) = max
1≤i≤M

{Li(y)− ni logN}
H1

≷
H0

ηMDL. (5)

In [11], a multifamily likelihood ratio test (MFLRT) has also
been proposed to accommodate nested models. It implements

1Other criteria such as AIC or GIC could also be considered [18].

the following decision rule:

TMFLRT(y) =

max
1≤i≤M

{[
Li(y)− ni

(
log

(
Li(y)

ni

)
+ 1

)]
× u

(
Li(y)

ni
− 1

)}
H1

≷
H0

ηMFLRT,

(6)

where u (·) is the unit step function. As illustrated in Sec. IV,
by adding a penalty term, both tests (5) and (6) can provide a
better performance than the GLRT. However, by expanding the
scope of a new normalizing transformation introduced in [12],
we will show that the performance can be further improved.

III. MULTIFAMILY CFAR GLRT
A. Preliminary results

To begin, we give some preliminary definitions and recall
the main result of [12]. Let KX(t) be the cumulant generating
function (CGF) of some random variable X , that is,

KX(t) = logE
(
etX
)
, (7)

where E denotes the mathematical expectation. The Legendre
transform (LT) of K(·) is then defined as

K∗X(x) = sup
t∈T

(tx−KX(t)) , (8)

where T = {t : |KX(t)| < +∞}. Next, define

gX(x) = 2K∗X(x)u (X − E (X)) . (9)

Proposition 1. [12] Let Xn =
∑n
k=1 Uk where the Uk’s are

IID random variables with finite mean and variance. Also,
assume that E

(
|Uk − E(Uk)|3

)
< ∞. Define the random

variable Yn as Yn = gXn
(Xn). Then, Yn

d→ Y , where the
(generalized) probability density function (PDF) of Y satisfies

fY (y) =


1

2
√
2πy

e−y/2, y > 0
1
2δ(y), y = 0

0, otherwise.
(10)

This proposition states that, as n tends to +∞, Yn equals
zero with probability 1/2 and has a χ2

1 PDF with probability
1/2. By applying a quadratic transformation to the standardized
random variable Xn, a similar result could have been obtained
by invoking the central limit-theorem (CLT). However, as
illustrated in [12], the asymptotic regime can be reached faster
than the CLT in some cases. Prop. 1 is relevant for nested
detection problems as it can be used to equalize the model-
order dependent statistics involved in a GLRT solution. The
function g, defined in (9), actually transforms the (asymptotic)
GLR statistic to a χ2

1 random variable independent of the
model order n. As shown in [12], if Li(y) can be expressed as
the sum of ni χ2

1 random variables under H0, then g takes the
form of the expression enclosed in braces in (6). The MLFRT
(6) is thus a specific case of a more general theory resulting
from the application of Prop. 1. Unfortunately, this proposition
is not directly applicable to Problem (1) because the GLR
statistic (3) is not expressed as a sum of independent random
variables. However, by transforming (3), we will show that a
similar result to that of Prop. 1 can be obtained for our specific
problem.
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B. Proposed detector

Let L̃i(y) be the monotonically increasing function of
Li(y) defined as

L̃i(y) =
1

2
log

(
yTPSiy

yT (IN −PSi)y
× N − ni

ni

)
. (11)

The proposed detector is based on the derivation of a model-
order dependent penalty factor that results from the analysis
of the LT-CGF of L̃i(y) under H0.

Under H0, L̃i(y) is half the logarithm of an F-distribution
variate and therefore follows Fisher’s z-distribution with ni
and N − ni degrees of freedom. Let ρi = N/ni > 1, for
t < ni(ρi − 1), the CGF of L̃i(y) under H0 satisfies [19]

KL̃i
(t) =

t

2
log (ρi − 1)− log

(
Γ

(
ni(ρi − 1)

2

)
Γ
(ni

2

))
+ log

(
Γ

(
ni + t

2

)
Γ

(
ni(ρi − 1)− t

2

))
,

(12)

where Γ(z) =
∫ +∞
0

tz−1 e−t dt. The LT of KL̃i
is then

defined as K∗
L̃i

(x) = supt<ni(ρi−1)
(
tx−KL̃i

(t)
)

and

gL̃i
(x) = 2K∗

L̃i
(x)u

(
L̃i(y)− µi

)
, (13)

where µi = E
(
L̃i(y)

)
= 1

2ni

(
1

ρi−1 − 1
)

.

Proposition 2. Let Yni
be the random variable defined as

Yni
= gL̃i

(L̃i(y)) and assume that the ratio ρi = N/ni > 1

is kept constant as ni → +∞. Under H0, Yni

d→ Y , where
the PDF of Y is defined in Eq. (10).

Proof: See Appendix A.
Applying the transformation gL̃i

to the statistic L̃i(y) is
therefore a way to equalize the model-order dependent PDFs
involved in our problem. Unfortunately, gL̃i

(L̃i(y)) has no
closed-form expression. However, based on the asymptotic
analysis provided in App. B, we are in position to formulate
an explicit approximation of gL̃i

(L̃i(y)), that is

gL̃i

(
L̃i(y)

)
≈ 2
[
L̃i(y)hi(L̃i(y))−KL̃i

(hi(L̃i(y)))
]

× u
(
L̃i(y)− µi

)
,

(14)

where
hi(x) = ni

(
ρi

(ρi − 1)e−2x + 1
− 1

)
. (15)

Finally, to solve Problem (1), we propose the following test,
referred to as the MFCLRT,

TMFCLRT(y) = max
1≤i≤M

{
gL̃i

(
L̃i(y)

)} H1

≷
H0

ηMFCLRT, (16)

where the approximation (14) is used for gL̃i
. This test does

not depend on unknown parameters and therefore ensures the
CFAR property. Moreover, it can be shown that gL̃i

(
L̃i(y)

)
is

a decreasing function of ni so that it counteracts the tendency
of the GLR statistic to increase with ni. Also, note that if
the subspace dimensions are all identical (ni = n, ∀ i), then
the tests (2), (5), (6) and (16) are all equivalent since their
statistics are all monotonically increasing with Li(y).

IV. NUMERICAL RESULTS

To illustrate the performance of the MFCLRT (16), we
consider the detection of a known signal s in an unknown
deterministic multipath channel h. More precisely, x(k) =∑nM−1
l=0 h(l)s(k−l), where nM denotes the number of channel

taps. In the simulation, the channel has an exponential decay
power-delay profile, i.e., h(k) = e−k

log(10)
2k0 , where k0 > 0

denotes the 10 dB-maximum delay spread.2 Without loss of
generality, we assume that s(k) = d(k), where d(k) is the
unit impulse.3 Since the channel is unknown, the detector is
unaware of the number of significant echoes that must be
taken into account in the test statistic. The set of all possible
echoes therefore constitutes a union of nested subspaces, each
of which corresponds to a set of delays. More precisely, since
s(k) = d(k), each subspace basis is defined as in Eq. (4) for
any 1 ≤ ni ≤ nM .

We investigate the performance of the proposed detector in
terms of probability of detection Pd. The probability of false
alarm Pfa is set to 10−3. The detection thresholds and the
probabilities of detection are obtained with 100/Pfa and 104

independent trials, respectively. The signal length N is set to
100 and nM = 50. The energy-to-noise ratio (ENR) is defined
as ENR = 10 log10

(
xTx/σ2

)
, where σ2 is the noise variance.

Fig. 1 shows the probability of detection as function of the
ENR for the four tests (2), (5), (6) and (16). k0 is set to
15. The MFCLRT clearly outperforms the other tests as it
better estimates the order of the channel. The GLRT includes
all the echoes in the statistic, even those with insignificant
power, and therefore performs the worst. A detailed analysis
(not shown here) reveals that the MDL test tends to only
consider the first few powerful echoes, whereas the MFLRT
often underpenalizes insignificant echoes.

The effect of the model order is analyzed in Fig. 2 by
varying the value of the maximum delay spread k0. Once
again, the MFCLRT outperforms the other tests for any
value k0. Both the MFCLRT and the MFLRT converge to
the performance of the GLRT as k0 increases. This results
from the increase in the number of significant echoes as k0
increases, leading to a model order close to the maximum nM .
Surprisingly, a collapse of performance rapidly occurs for the
MDL test. This can be explained by the penalty term in Eq.
(5) that linearly increases with ni so that the channel tail is
too often ignored.

V. CONCLUSION

We have shown that existing methods, such as the GLRT, are
not adapted to the detection of signals in a union of possibly
nested subspaces. By adapting to our context the CGF-based
transformation presented in [12], we have derived a new detec-
tor capable of equalizing the model-order dependent statistics.
Although the equalization is of an asymptotic nature (as the
subspace dimension becomes large), the resulting test turns
out to be very efficient, even for low-dimensional subspaces.

2We recall that this is the time delay (in number of samples) after which
the multipath power falls 10 dB below the maximum.

3s(k) can be considered as the output of a correlation-based channel
sounder for instance.
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Fig. 1. Pd as a function of ENR for the GLRT, the MDL test, the MFLRT
and the MFCLRT. Pfa = 10−3, N = 100, nM = 50, k0=15.

Fig. 2. Pd as a function of k0 for the GLRT, the MDL test, the MFLRT and
the MFCLRT. Pfa = 10−3, N = 100, nM = 50, ENR=18 dB.

APPENDIX A
PROOF OF PROP. 2

Let µi and σ2
i denote the expectation and the variance of

the random variable L̃i(y) under H0. Since L̃i(y) follows
Fisher’s z-distribution, we have µi = 1

2ni

(
1

ρi−1 − 1
)

and

σ2
i = 1

2ni

(
1

ρi−1 + 1
)

. Using a Taylor expansion for the LT-
CGF about the expectation µi, we have [12, App. B]

gL̃i
(L̃i(y)) = u

(
L̃i(y)− µi

)
×

(
L̃i(y)− µi

)2
σ2
i

+
1

3
K∗

(3)

L̃i
(ξi)σ

3
i

(
L̃i(y)− µi

)3
σ3
i

 , (17)

where ξi = µi+θ(L̃i(y)−µi) and 0 < θ < 1. It is known that
the distribution of a Fisher’s z variable approaches normality
when its degrees of freedom tends to infinity [19, Sec. 15].
More precisely, let Vni = L̃i(y)−µi

σi
. For any ρi = N/ni > 1,

Vni

d→ N (0, 1). Therefore, by the continuous mapping theo-
rem, V 2

ni

d→ χ2
1. The main step of the proof is then to show that

the second term on the r.h.s of (17) is bounded in probability
by a decreasing function of ni.

First, since σ2
i is finite, then [15, Th. 14.4-1](

L̃i(y)− µi
)3
/σ3

i = Op (1). In addition, using [12,
App. A], we note that the third derivative of the LT-CGF
satisfies

K∗
(3)

L̃i
(ξi) = −

K
(3)

L̃i
(t∗i (ξi))(

K
(2)

L̃i
(t∗i (ξi))

)3 , (18)

where t∗i (x) = argsupt<ni(ρi−1)
(
tx−KL̃i

(t)
)
. Based on the

expression of the CGF defined in (12), we observe that the
ratio (18) will depend on the 3rd and 2nd-order derivative of
the logarithm of the gamma function. These derivatives are
known as the polygamma functions of order 2 and 1 [20, Ch.
6.4], respectively. Based on the asymptotic expansion given
[20, Eq. (6.4.11)], we deduce that the m-th order polygamma
function Ψ(m)(z) satisfies Ψ(m)(z) = O(z−m) (z → ∞).
Moreover, as shown in App. B, ∀x > 0, t∗i (x) is strictly
increasing in ni. Consequently, ∀x > 0,

K
(3)

L̃i
(t∗i (x))(

K
(2)

L̃i
(t∗i (x))

)3 = O

(
Ψ(2)(ni)(
Ψ(1)(ni)

)3
)

= O (ni) . (19)

In addition, provided that L̃i(y) > µi, ξi is strictly positive.
Therefore, based on Eqs (18) and (19), we get K∗

(3)

L̃i
(ξi) =

Op (ni), so that

1

3
K∗

(3)

L̃i
(ξi)σ

3
i

(
L̃i(y)− µi

)3
σ3
i

= Op

(
n
−1/2
i

)
= op(1).

(20)
In summary, gL̃i

(L̃i(y)) = u (Vni)V
2
ni

+ op(1) with Vni

d→
N (0, 1). Therefore, according to the continuous mapping
theorem and to [15, Th. 4.4-3], gL̃i

(L̃i(y)) converges in
distribution to the random variable Y whose PDF is expressed
in Eq. (10).

APPENDIX B
ASYMPTOTICS OF t∗i (x)

Let t∗i (x) be defined as t∗i (x) = argsupt<ni(ρi−1)Gi(t, x)

where Gi(t, x) =
(
tx−KL̃i

(t)
)
. From (12), we deduce that

∂Gi(t, x)

∂t
=

1

2

[
2x− log(ρi − 1)−Ψ(0)

(
1

2
(ni + t)

)
+ Ψ(0)

(
1

2
(ni(ρi − 1)− t)

)]
,

(21)

where Ψ(0)(·) is the digamma function. For any real variable
z, this function satisfies [20, Eq. (6.3.18)]: Ψ(0)(z) = log(z)+
o(z−1). Therefore, as ni →∞, we have

∂Gi(t, x)

∂t
∼

ni→∞

1

2

[
2x+ log

(
ni − t/(ρi − 1))

ni + t

)]
. (22)

By setting the derivative to zero, we can conclude that

t∗i (x) ∼
ni→∞

ni

(
ρi

(ρi − 1)e−2x + 1
− 1

)
. (23)

Note that ∂2Gi(t,x)
∂2t |t=t∗i (x) < 0, ∀x, so that t∗i (x) is an

(asymptotic) supremum. Also, observe that ∀x > 0, t∗i (x)
is strictly increasing in ni.
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