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This article reviews the electronic and transport properties of carbon nanotubes. The focus is mainly
theoretical, but when appropriate the relation with experimental results is mentioned. While simple
band-folding arguments will be invoked to rationalize how the metallic or semiconducting character of
nanotubes is inferred from their topological structure, more sophisticated tight-binding and ab initio
treatments will be introduced to discuss more subtle physical effects, such as those induced by
curvature, tube-tube interactions, or topological defects. The same approach will be followed for
transport properties. The fundamental aspects of conduction regimes and transport length scales will
be presented using simple models of disorder, with the derivation of a few analytic results concerning
specific situations of short- and long-range static perturbations. Further, the latest developments in
semiempirical or ab initio simulations aimed at exploring the effect of realistic static scatterers
(chemical impurities, adsorbed molecules, etc.) or inelastic electron-phonon interactions will be
emphasized. Finally, specific issues, going beyond the noninteracting electron model, will be
addressed, including excitonic effects in optical experiments, the Coulomb-blockade regime, and the
Luttinger liquid, charge density waves, or superconducting transition.
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I. INTRODUCTION

The physics of one-dimensional (1D) systems has been
a rich and active playground for theorists for more than
50 years, with major conceptual breakthroughs arising
from the specific properties of the confined electron gas.
While the reduced dimensionality is often used in intro-
ductory textbooks as a convenient way to simplify the
analytic study of electronic properties, the enhanced in-
teraction between electrons in 1D yields several insta-
bilities that are not reproduced by standard tools devel-
oped for 3D solids. This richness and complexity
involved in extending the basics of condensed matter
physics to low-dimensionality systems explain the wealth
of work and theories developed to deal with 1D solids or
molecular chains.

The difficulty in synthesizing clean 1D systems with
metallic behavior has for many decades confined this
theoretical work to formal developments and unverified
predictions. However, progress in synthesis and charac-
terization techniques in the late 1970s allowed a con-
frontation between theory and experiments. Besides
these fundamental aspects, the technological interest in
controlling the properties of nanosized and/or plastic
conductors was a strong driver for exploring this field.
The attribution of the chemistry Nobel prize in 2000 to
A.J. Heeger, A. G. MacDiarmid, and H. Shirakawa for
the “discovery and development of conductive poly-
mers” was a clear recognition from the community of
the importance, and the difficulty, of obtaining conju-
gated one-dimensional metallic systems. Further, even
when metallic, the conductivity in such systems has been
shown to usually remain very low, with in most cases
polaron-assisted transport leading to very large effective
masses for the carriers. As a paradigmatic example, the
conducting (and even superconducting) properties of
DNA, at the frontiers of physics, chemistry, and biology,
are currently generating fierce controversies in the lit-
erature.

The field of nanotubes has strongly benefited from
this broad fundamental and technological interest. Not
only can nanotubes be metallic, they are also mechani-
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cally very stable and strong, and their carrier mobility is
equivalent to that of good metals, suggesting that they
would make ideal interconnects in nanosized devices.
Further, the intrinsic semiconducting character of other
tubes, as controlled by their topology, allows us to build
logic devices at the nanometer scale, as already demon-
strated in many laboratories. Finally, the large fullerene
community (yet another area recognized by the Nobel
prize in chemistry in 1996), and the even larger family of
researchers interested in carbon-based systems, natu-
rally joined this novel and promising field. This merging
of interests and communities can certainly explain the
formidable success and burgeoning activity generated by
the discovery of nanotubes in 1991.

A nanotube is a honeycomb lattice rolled into a hol-
low cylinder with nanometric diameter and um length.
Depending on the community, specific interests, and tar-
geted applications, nanotubes are regarded as either
single molecules or quasi-one-dimensional crystals with
translational periodicity along the tube axis. As there
are an infinite number of ways of rolling a sheet into a
cylinder, the large variety of possible helical geometries,
defining the tube chirality, provides a family of nano-
tubes with different diameters and microscopic struc-
tures. Some properties of these nanotubes, such as the
elastic ones, can be explained within a macroscopic
model of a homogeneous cylinder. Others depend cru-
cially on the atomic configuration. For instance, the elec-
tronic and transport properties, which constitute the
scope of the present review, are certainly among the
most significant physical properties of carbon nanotubes,
and crucially depend on the diameter and chirality. This
dependence on the atomic configuration, an effect ex-
plained below, is quite unique in solid-state physics. This
sensitivity constitutes a challenge for synthesis tech-
niques, since well-controlled properties are often de-
sired, but it is also a source of innovation for applica-
tions.

In the following sections, we show how carbon nano-
tubes can be either (semi)metallic or semiconducting,
with a band gap varying from zero to a few tenths of an
eV, depending on their diameter and chirality. Further,
the band gap of semiconducting tubes, or the energy
difference between the peaks in the electronic density of
states (the so-called van Hove singularities), can be
shown to first order to be simply related to the tube
diameter. Such remarkable results can be obtained from
a variety of considerations, starting from the so-called
band-folding approach, based on knowledge of the elec-
tronic properties of the graphene sheet, to the direct
study of nanotubes using semiempirical tight-binding ap-
proaches. The comparison with more sophisticated ab
initio calculations, and with available experimental re-
sults, allows us to set the limits of these simple treat-
ments, with the introduction of finer considerations,
such as curvature or trigonal warping effects.

Knowledge of the electronic properties of nanotubes
further permits one to study their response to external
probes. This is a crucial issue as it conditions most of the
potentiality for the integration of tubes in real devices
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and allows us to relate the structural and electronic
properties with the experimental optical, Raman, etc.,
spectra. In particular, the effect of a magnetic field on
the electronic band structure, the optical absorption and
emission spectra, and finally the transport properties of
tubes will be presented.

The tremendous importance of the transport proper-
ties of nanotubes, from both a fundamental and techno-
logical point of view, justifies devoting the second part of
this review to that subject. First, the main characteristics
of ballistic transport will be clarified, followed by a few
analytical results about the absence of backscattering in
the presence of long-range disorder and the derivation
of the elastic mean free path induced by short-range dis-
order. All transport regimes will be reviewed in the pres-
ence of elastic disorder, starting with the simple Ander-
son model, followed by an extended analysis of more
realistic disorders such as chemical substitutions or func-
tionalization, topological defects, and so on. Quantum
interference effects will then be addressed with a focus
on weak- and strong-localization regimes, in light of re-
cent experiments. Further, the contribution of inelastic
scattering mechanisms (through electron-electron and
electron-phonon interactions) will be scrutinized, with a
discussion of the inelastic scattering times and decoher-
ence mechanisms. As a specific case of transport (or tun-
neling), with much technological importance, the physics
of field emission from nanotubes will be briefly pre-
sented.

Several topics strongly related to quantum confine-
ment and dimensionality effects will be addressed at the
end of this review. At the heart of the complex behavior
of 1D systems, the physics of the Luttinger-liquid transi-
tion will be highlighted and the signature of this transi-
tion in available transport experiments will be put in
perspective. Coulomb-blockade effects and their mani-
festation in transport measurements will then be sum-
marized. Finally, the competing charge-density-wave (or
Peierls) and superconducting instabilities upon switching
on the electron-phonon interaction, observed experi-
mentally, will be discussed.

The contents of the present review are theoretical,
and experimental results are used primarily to provide
the necessary and crucial evidence for validation of the
theory. As a matter of fact, the difficulty in performing
the synthesis and characterization of well-defined and
isolated nanotubes has on many occasions granted to
theory the important, but also dangerous, role of predic-
tion. In return, these experimental difficulties have fos-
tered the elaboration of original and creative experi-
mental techniques. As emphasized below, most of the
theoretical predictions seem now to be confirmed by
many experimental results.

Even with a focus on theoretical results, space limita-
tions impose a drastic, and necessarily subjective, selec-
tion of topics and references. Thorough lists of refer-
ences and a more complete picture (with, e.g., a
description of the synthesis and characterization tech-
niques) can be found in the excellent books devoted to
the subject (Dresselhaus et al., 1996, 2001; Endo et al.,
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1996; Ebbesen, 1997; Saito et al., 1998; Harris, 1999;
Tomének and Enbody, 1999; Reich et al., 2004; Loiseau
et al., 2000).

II. STRUCTURE OF CARBON NANOTUBES

Carbon nanotubes were discovered and first charac-
terized in 1991 by lijima from NEC laboratories (Japan)
(Iijima, 1991). This discovery was made possible thanks
to the use of state-of-the-art transmission microscopy.
The first nanotubes discovered were made of several
concentric cylindrical-like shells regularly spaced by an
amount of about 3.4 A as in conventional graphite
materials (Fig. 1, left). These multiwall nanotubes
(MWNTs) were first synthesized with diameters ranging
from a few nanometers to several hundred nanometers
for the inner and outer shells, respectively. As for the
length, MWNTs extending over several microns are cur-
rently synthesized.

Shortly after the discovery of multiwall carbon nano-
tubes, single-wall carbon nanotubes (SWNTs) were syn-
thesized in abundance using arc-discharge methods with
transition-metal catalysts (Bethune et al., 1993; Iijima
and Ichihashi, 1993). A carbon nanotube made of a
single graphite layer (the graphene sheet) rolled up into
a hollow cylinder is called a single-wall nanotube. These
tubes have quite small and uniform diameter, on the or-
der of 1 nm=10"" m. This unprecedentedly small diam-
eter, combined with the crystalline perfection of the
atomic network, explains why these objects were quickly
considered as the ultimate carbon-based 1D systems.

Crystalline ropes (or bundles) of SWNTs, with each
rope containing tens to hundreds of tubes of similar di-
ameter, closely packed in a hexagonal configuration,
have also been synthesized using a laser vaporization
method (Guo et al., 1995) and arc-discharge and chemi-
cal vapor deposition (CVD) techniques (Fig. 1, right).
Various synthesis methods have provided ample
amounts of sufficiently characterized samples for study-
ing the fundamental properties of SWNTs.

Because the microscopic structure of SWNTs is
closely related to that of graphene, the tubes are usually
labeled in terms of the graphene lattice vectors. As illus-
trated in Fig. 2 a single-wall carbon nanotube is geo-
metrically obtained by rolling up a single graphene strip
(Saito et al., 1998). Its structure can be specified or in-
dexed by its circumferential vector (C,), as defined by
the chiral vector (AA’ in Fig. 2) which connects two
crystallographically equivalent sites (A and A’) on a
graphene sheet. In this way, a SWNT’s geometry is com-
pletely specified by a pair of integers (n,m) denoting the
relative position C,=na;+ma, of the pair of atoms on a
graphene strip which, when rolled onto each other, form
a tube (a; and a, are unit vectors of the hexagonal hon-
eycomb lattice; see Fig. 2).

This chiral vector C,, defines the circumference of the
tube. The diameter d, of the nanotube can thus be esti-
mated from
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FIG. 1. High-resolution transmission electron microscopy pictures of a multiwall carbon nanotube (left) and a bundle of single-
wall nanotubes (right), illustrating two different possible geometries for nanotubes. Courtesy of Gavillet, 2001.

d,:|Ch|/7T=£\/n2+nm+m2, (1)
T

where a is the lattice constant of the honeycomb net-
work: a=\3xa,. (a,=142 A, the C-C bond length).
The chiral vector C;, uniquely defines a particular (n,m)
tube, as well as its chiral angle 6, which is the angle
between C, and a; (zigzag direction of the graphene
sheet; see Fig. 2). The chiral angle 6 can be calculated as
follows:

NA

FIG. 2. Graphene honeycomb network with lattice vectors a;
and a,. The chiral vector C,=5a;+3a, represents a possible
wrapping of the two-dimensional graphene sheet into a tubular
form. The direction perpendicular to C,, is the tube axis. The
chiral angle @ is defined by the C, vector and the a; zigzag
direction of the graphene lattice. In the present example, a
(5,3) nanotube is under construction and the resulting tube is
illustrated on the right.
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Ch-al 2n+m
cos = = . (2)
|Chlla]  2vn? + nm + m?

The value of @is in the range 0<|6| <30°, because of the
hexagonal symmetry of the graphene lattice. This chiral
angle 6 also denotes the tilt angle of the hexagons with
respect to the direction of the nanotube axis. Nanotubes
of the type (n,0) (6=0°) are called zigzag tubes, because
they exhibit a zigzag pattern along the circumference.
Such tubes display carbon-carbon bonds parallel to the
nanotube axis. Nanotubes of the type (n,n) (§=30°) are
called armchair tubes, because they exhibit an armchair
pattern along the circumference. Such tubes display
carbon-carbon bonds perpendicular to the nanotube
axis. Both zigzag and armchair nanotubes are achiral
tubes, in contrast with general (n,m # n # 0) chiral tubes
(Fig. 3).

The geometry of the graphene lattice and the chiral
vector determine not only the diameter of the tube, but
also the unit cell and its number of carbon atoms. The
smallest graphene lattice vector T perpendicular to C,

FIG. 3. Atomic structures of (12,0) zigzag, (6,6) armchair, and
(6,4) chiral nanotubes.
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TABLE 1. Structural parameters for a (r,m) carbon nanotube. In this table, n, m, t, t, are integers.

681

Symbol Name Formula Value
a lattice constant a= \e“gacc =246 A ae=142 A
aj, a, basis vectors \§ 1 \3 1
22/ \ 22/
by, by reciprocal-lattice i'l 27 (1 1 2
vectors 37 a3 a
C, chiral vector C,=na;+ma,=(n,m) (0<|m|<n)
dt tube diameter dt: M _a ‘er
T
0 chiral angle 3m T
& sin@:% 0<|o<—
2Nn“+nm+m 6
2n+m /3
COS b= ———= tan 6=
2\n?+nm+m? 2n+m
T translational vector T=t1a;+ha,=(t;,1,) ged(ty,1,) =12
, 2m+n  2n+m Nr=gedm+n,2n+m)?
1= NR s 12— NR
N¢ number of C atoms 4(n®+nm+m?)
per unit cell c= N
R

gcd(n,m) denotes the greatest common divisor of the two integers n and m.

defines the translational period ¢ along the tube axis.
The lattice vector T can also be expressed in terms of
the basis vectors a; and a, as T=t;a;+5a,. Using C,-T
=0, the expressions for #; and ¢, are given by

, 2m+n 2n+m
1= 5 = 5
Ng Ng

Ly=- (3)
where Ny is the greatest common divisor of (2m+n) and
(2n+m). The length of the translational vector ¢ is given
by

R —
t=|T| = \3a\n? + nm + m*N. (4)

The nanotube unit cell is thus formed by a cylindrical
surface with height ¢ and diameter d,. The number of
carbon atoms per unit cell N can also be expressed as a
function of n and m:

Nc =4(n* + nm + m?)/Ng. (5)

The symmetry of carbon nanotubes can be described by
the so-called line groups, which are full space groups of
one-dimensional systems including translations in addi-
tion to the point-group symmetries like rotations or re-
flections. The carbon-nanotube line groups are nonsym-
morphic groups as they always contain a screw axis.
Every (n,m) carbon nanotube belongs to a different line
group (Damnjanovic er al., 1999; Reich et al., 2004). Only

Rev. Mod. Phys., Vol. 79, No. 2, April-June 2007

armchair (n,n) and zigzag (n,0) tubes with the same n
belong to the same symmetry group. Moreover, by start-
ing with a single carbon atom and successively applying
all symmetry operations of the line group, the whole
tube is constructed. However, for many applications,
such as optical transitions or first-order Raman scatter-
ing, it is not necessary to work with the full line group,
the point group being quite sufficient. These point
groups are D, for chiral nanotubes (n,m#n+0) and
D,,,;, for achiral tubes such as (n,n) or (n,0). After the
symmetry operations of the nanotube have been deter-
mined using its point group and its most basic structural
properties (diameter, chirality, lattice, and reciprocal lat-
tice vectors, as summarized in Table I), the correspond-
ing graphene strip can be constructed and rolled up into
a cylinder. The next step is now to predict its electronic
behavior.

III. ELECTRONIC PROPERTIES OF CARBON
NANOTUBES

Carbon nanotubes are characterized by two types of
bond, in analogy with graphene, which exhibits so-called
planar sp? hybridization. Among the four valence orbit-
als of the carbon atom (the 2s, 2p,, 2p,, and 2p orbitals,
Z perpendicular to the sheet), the (s,p,,p,) orbitals com-
bine to form in-plane o (bonding or occupied) and o
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FIG. 4. The o bonds in the carbon hexagonal network connect
the carbon atoms and are responsible for the binding energy
and the elastic properties of the graphene sheet (left). The
bonds are perpendicular to the surface of the sheet. The cor-
responding bonding and antibonding o bands are separated by
a large energy gap (right), while the bonding and antibonding
7 states lie in the vicinity of the Fermi level (Ep). Adapted
from Loiseau et al., 2006.

(antibonding or unoccupied) orbitals (Fig. 4). Such orbit-
als are even with respect to planar symmetry. The o
bonds are strong covalent bonds responsible for most of
the binding energy and elastic properties of the
graphene sheet. The remaining p, orbital, pointing out
of the graphene sheet, is odd with respect to the planar
symmetry and cannot couple with the o states. The lat-
eral interaction with neighboring p, orbitals (labeled the
pp interaction) creates delocalized 7 (bonding) and 7
(antibonding) orbitals. In analogy, the o bonds in the
nanotube form a hexagonal network which strongly con-
nects the carbon atoms in the cylinder wall of the tube.
The 7 bonds are perpendicular to the surface of the
nanotube and are responsible for the weak interaction
between SWNTs in a bundle, similar to the weak inter-
action between carbon layers in pure graphite (Charlier
et al., 1991). The energy levels associated with the in-
plane o bonds are known to be far away from the Fermi
energy in graphite (Fig. 4, right) and thus do not play a
key role in its electronic properties. In contrast, the
bonding and antibonding 7 bands cross the Fermi level

@) 10

>
)
=

-2
0M

at high-symmetry points in the Brillouin zone of
graphene (Wallace, 1947). For a good understanding of
the electronic properties of SWNTs, the electronic struc-
ture of graphene will be briefly discussed in the next
section.

A. From graphite to nanotubes

Although graphite has been studied for decades,
graphene was only isolated experimentally in 2004 after
a long struggle (Novoselov et al., 2004). Further, and de-
spite early predictions (Wallace, 1947), its remarkable
conducting properties, in which electrons mimic the be-
havior of massless, relativistic particles, have only been
observed recently (Novoselov et al., 2005; Zhang et al.,
2005).

The electronic bands of graphene along the high-
symmetry M-I"-K directions are presented in Fig. 5. The
m and 7 bands cross at the vertices of the hexagonal
Brillouin zone (Fig. 6). Such vertices are labeled by their
momentum vector usually written as K. Consequently,
graphene is a special semimetal whose Fermi surface is
reduced to the six distinct K points of the hexagonal
Brillouin zone. Close to the Fermi energy, the 7 and 7"
bands are nearly linear, in contrast with the quadratic
energy-momentum relation obeyed by electrons at band
edges in conventional semiconductors. This linear
energy-momentum relation of electrons will explain the
extremely good conductivity in graphene and bears
much importance in the Luttinger-liquid (LL) behavior
for low-energy excitations in nanotubes (see Sec.
IV.E.3).

The bonding and antibonding o bands are well sepa-
rated in energy (>10 eV at I'). These bands are fre-
quently neglected in semiempirical calculations as they
are too far away from the Fermi level to play a role in
the electronic properties of graphene. The remaining
two 7 bands can be simply described with a rather
simple tight-binding Hamiltonian, leading to analytical
solutions for their energy dispersion and the related
eigenstates. This simple approach can be further ex-

f’u’l‘*

e
£5-23105050

(d) (e)

g st

FIG. 5. Electronic properties of graphene. (a) Electronic band structure of graphene. The bonding ¢ and antibonding ¢ bands are
separated by a large energy gap. The bonding 7 (last valence) band and antibonding 7" (first conduction) band cross at the K
points of the Brillouin zone. The Fermi energy is set to zero, and ¢ indicates the work function. Above the vaccuum level (dotted
horizontal line), the states of the continuum are difficult to describe and merge with the o bands. (b),(d) 7 state at K and (c),(e)
o state at I', seen from above and from the side of the graphene plane. Note that the 7 wave function cancels on a hexagonal
sublattice due to the exp(iK-r) phase factor. The 7 (o) state is odd (even) with respect to the graphene plane reflection. Courtesy

of Fernandez-Serra, 2006.
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FIG. 6. Brillouin zone and reciprocal space. (a) Basis vectors
in the hexagonal lattice of graphene. (b) Brillouin zone. The
corresponding reciprocal basis vectors read b;=b(1/2, \3/2)
and by=b(1/2,-\3/2), with b=4m/a\3.

tended to study the properties of nanotubes by combin-
ing these analytic results with the requirement that the
wave functions in tubes must satisfy the proper bound-
ary conditions around the tube circumference. This is
what we show in the next sections.

B. Tight-binding model of graphene

As mentioned in the previous section, the graphene
plane is a hexagonal lattice with two atoms per unit cell
(A and B) and a basis defined by vectors (a;,a,) (see Fig.
6). The condition a;-b;=27J; allows one to obtain the
reciprocal-lattice vectors (b;,b,). Every carbon atom
possesses four valence electrons (two 2s and two 2p elec-
trons). When the atoms are placed onto the graphene
hexagonal lattice, as in Fig. 6, the electronic wave func-
tions from different atoms overlap. However, such an
overlap between the p, orbitals and the s or p, and p,
electrons is strictly zero by symmetry. Consequently, the
p. electrons, which form the 7 bonds in graphene, can
be treated independently of other valence electrons.
Within this 7-band approximation, the A atom (B atom)
is uniquely defined by one orbital per atom site p.(r
1) [p.(r-1p)].

To derive the electronic spectrum of the total Hamil-
tonian, the corresponding Schrodinger equation has to
be solved, and by applying the Bloch theorem, the wave
functions can be written as follows:

V(k,1) = c4(k)p2 (k1) + cpk)pL(k,r), (6)
with
plk,r) = —E e (r—ry-0), (7)
VNes ¢

prk,r) = —Ee’”
v cells €

(r—rp—9), (8)

where k is the electron momentum (the quantum num-
ber), N is the number of unit cells in the graphene
sheet, and ¢ is the cell position index. The spectrum is
derived by solving the Schrodinger equation which re-
duces to a 2 X2 matrix diagonalization:

Han—E  Hyup
( )
Hpa Hpp— E
where the matrix elements are defined as
Haak) = —— 2 e®C=0palp|path, (10)
cells f,f’
Hap(k) = —— 2 X 0L pt'y (11)

cells &g’

with the notation pA/B "=p,(r-ry3—7). Here we have

neglected the overlap matrix elements S= (pz | pz> be-
tween neighboring p, orbitals (neglect of overlap inte-
grals defines the so-called orthogonal tight-binding
schemes). After simple manipulations and restricting in-
teractions to first nearest neighbors only, one gets

Hapk) = (L M%) + e 1 (p [ H|pZ ™)

+ e P = yak),  (12)
with v, the transfer integral between first-neighbor
orbitals (a typical value for 7y, is 2.9eV), a(k)=(1
+e ki emkn) and (pMOH|pAO=(pEH|pEY=0 as

the energy reference. The dispersion relations are then
readily obtained:

E*(k) = + yo\f’3 +2cos(k-a;) +2cos(k-a,) +2cos[k-(a, —a;)], (13)

which can be further developed as

Bk.a k,a

Bk, k
E*(ky,ky) = iyo\/1+4cos X 5 cos —— 254

+4 cos
(14)

by setting a=13a,, (a,,=1.42 A). The k=(k,,k,) vectors
that belong to the first hexagonal Brillouin zone (BZ)
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constitute an ensemble of available electronic momenta.
In Fig. 7, these simple tight-binding dispersion relations
are represented with dashed lines along high symmetry
directions of the BZ, defined by the I' and M points
together with the six BZ vertices (K points).

With one p, electron per atom in the -7 model (the
three other s, p,, and p, electrons fill the low-lying o
band), the (—) band (negative energy branch) in Eq. (14)
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FIG. 7. Limitations of the w7 model. (a) Ab initio (solid
lines) and nearest-neighbor orthogonal tight-binding [dashed
lines, from Eq. (14)] 7 and 7" electronic bands for graphene.
(b) Difference AE between the ab initio and tight-binding band
structures. Adapted from Reich, Maultzsch, Thomsen, and Or-
dejon, 2002.

is fully occupied, while the (+) branch is empty. These
occupied and unoccupied bands cross at the K points
[one verifies that a(k=K)=0]. The Fermi level Ej (or
charge-neutrality point) is therefore the zero-energy ref-
erence in Fig. 7, and the Fermi surface is defined by the
set of K points. Since the occupied and unoccupied
bands do cross, the graphene sheet displays a metallic
(zero-gap) character. However, as the Fermi surface is of
zero dimension (since it is reduced to a discrete and fi-
nite set of points), the term semimetal is usually used.

This simple orthogonal tight-binding model yields =
and 7 zone-center I' energies which are symmetric
(x7,) with respect to Ep. In fact, the antibonding (unoc-
cupied) 7 bands are located at a higher energy if the
overlap integral S is not set to zero (see Fig. 7). A better,
but more complicated, 7-7 parametrization can be
found in Reich, Maultzsch, Thomsen, and Ordejon
(2002) where a careful comparison between ab initio and
various tight-binding schemes is presented for graphene
and several nanotubes. The main advantage of the
present nearest-neighbor approximation is the very
simple analytical expression for the 7 electronic states of
graphene.

C. Zone-folding approximation

Due to periodic boundary conditions along the cir-
cumferential direction of the tube, the allowed wave
vectors “around” the nanotube circumference are quan-
tized: they can take only a set of discrete values. In con-
trast, the wave vectors along the nanotube axis remain
continuous (for infinite tubes). Plotting these allowed
vectors for a given nanotube onto the Brillouin zone of
graphene generates a series of parallel lines. The length,
number, and orientation of these cutting lines depend on
the chiral indices (n,m) of the nanotube. The basic idea
behind the zone-folding approximation is that the elec-
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tronic band structure of a specific nanotube is given by
superposition of the graphene electronic energy bands
along the corresponding allowed k lines. This is what we
explain now.

A specific carbon nanotube defines a unique chiral
vector C,=(n,m) expressed in the basis (a;,a,) (Fig. 2)
that fixes its symmetry and its diameter. As mentioned in
Sec. 1II, the chiral vector length |C,| equals
V3a.\n*+nm+m? or md, (d, being the nanotube diam-
eter). The application of periodic boundary conditions
around the tube circumference leads to some restrictions
on the allowed wave function quantum phase:

Wy (r + Cp) = ™ W, (1) = Wy (1), (15)

with the vectors r and k taken on the tube surface. The
first equality stems from the Bloch theorem. Depending
on the tube symmetry, that is, on the chiral vector C,
=(n,m), two situations can occur.

1. Metallic nanotubes

We make an analysis in the neighborhood of the
Fermi surface, so that we write k=K + Jk, with dk small,
taking, e.g., K=(b;-b,)/3=(0,47/3a), so that k
=(6k,,4m/3a+6k,). When e®Ci=1 (which is possible
only when n—m=3l[, with [ an integer), then the con-
straint on the wave function becomes 5k-C,=2mqg (g in-
teger). Each index ¢ defines a line of allowed k vectors,
and each line contributes to one occupied 7 band and
one unoccupied 7 band. The condition n—m=3I is al-
ways satisfied for armchair tubes and for the subset of
the (n,0) zigzag tubes with n multiples of 3. Rewriting
the dispersion relation in the general case as Ez(kx,ky)
=1vj|al* and performing a second-order perturbation ex-
pansion in the vicinity of the K points, one finally ob-
tains |a(k, k,)|>= (ki+ ok;) + O(Sk%) (with Sk, and ok,
related by &k-C,=2mq). Close to Ep, the dispersion re-
lation then reads E*(5k)=+(y3a/2) Yll5k[|, a linear
energy-momentum relation mentioned above. There-
fore, states arbitrarily close in energy to the Fermi level
can be found for g=0 and the system is metallic (see Fig.
8). The Fermi velocity vp= \e@ayo/ Zﬁ:%accyo/ h is typi-
cally given by vy=8X10° ms~! for 1,=2.9 eV. The lin-
ear band dispersion close to Er will be shown to have
useful consequences.

A simple expression for the eigenstates can also be
derived close to E within the same type of approxima-
tion. Such an expression will be used in Sec. IV.C.2 to
show that elastic backscattering is quenched in nano-
tubes if the disorder is long ranged. One notes that, for a
general helical symmetry, the full properties of the
eigenstates can be derived by constructing generalized
Bloch states satisfying helical (rototranslation) symme-
tries (Mintmire et al., 1992).

2. Semiconducting nanotubes

The second possible choice for (n,m) nanotubes is
given by the condition n—m=3[+1. In this situation
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FIG. 8. The band-folding scheme. (a) Brillouin zone of
graphene. The white rectangle is the Brillouin zone associated
with the four-atom cell with lattice vectors C,/n=a;+a, and T
(T=a;—a, for an armchair tube). Thick lines are the allowed k
lines for the (5,5) armchair tube. To obtain the (5,5) band struc-
ture in the band-folding approach, fold the colored corners
onto the rectangular cell and superimpose the graphene energy
bands calculated along the obtained thick lines of length
27/|T|. In particular, the K points are folded at two-thirds of
I'’X (or its inversion symmetry image). The bands are indexed
by the integer g such that k-C,=2mq. In the corresponding
(5,5) tube, ¢ is also the azimuthal quantum number. (b) Disper-
sion relations Ei(kx,ky) for the graphene plane, together with
that of an armchair nanotube (bold line).

e®Ch=+¢™3 and one gets Sk=Q2w/|Cyl)(g+£1/3)k,
+kyx; with «, and k; the basis vectors along the C, and
T directions, respectively, where T is the translational
vector along the tube axis, as defined in Sec. II. By fol-
lowing a similar calculation as for the prior case, one
obtains in the vicinity of the Fermi level a new disper-
sion relation, namely,

-
. \3a 20 \? 1\?
E;(ku) =+ 7)/0 \/(m) (q + 5) + kﬁ, (16)

where the integer variable g counts the available bands,
whereas kj is the part of the wave vector that continu-
ously describes the states within a given subband (and
associated with the direction parallel to the tube axis).
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FIG. 9. Dispersion relations Ei(kx,ky) for the graphene plane,
together with that of a zigzag semiconducting nanotube (bold
line).
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This case leads to an obvious gap opening at the Fermi
level (Fig. 9) since

2
TN _ B (17)
V3|Cy)

It appears that AE! decreases as the inverse of the tube
diameter d, (d,=|C,|/ ). For a very large diameter, one
finds as expected a zero-gap semiconductor since we re-
cover the graphene sheet. For realistic tubes, with, e.g., a
diameter of 1.4 nm [helical vector (17,0)], one gets AE;,
=(0.59 eV. This 1/d dependence of the gap on the diam-
eter relies on the assumption of a linear dispersion of
the bands around Ep, a result first derived by White and
Mintmire (1998). In reality, the bands are not linear
away from Ep, an effect called trigonal warping (Saito,
Dresselhaus, and Dresselhaus, 2000) which induces a de-
pendence of the band gap not only on the diameter, but
on the (n,m) indices as well.

In relation to the study of transport properties an im-
portant quantity linked to the dispersion relation is the
so-called effective mass of the charge carriers. In semi-
conducting nanotubes, this quantity can be derived from
Eq. (16),

E, o(kj=0) = E _o(k;=0) =

EZ_y= £ \(m'vi)2+ (hkyvp)?,

defining m"=2m#/3|C,|vE, which is thus inversely pro-
portional to the nanotube diameter and tends to zero as
the diameter tends to infinity (graphene limit). This con-
cept has been used (Zhou et al., 2005) to estimate the
charge mobility properties in semiconducting nanotubes.

In summary, early theoretical calculations (Hamada et
al., 1992; Mintmire et al., 1992; Saito et al., 1992) showed
that the electronic properties of carbon nanotubes are
very sensitive to their geometric structure. Although
graphene is a semimetal, theory has predicted that car-
bon nanotubes can be metals or semiconductors with an
energy gap that depends on the tube diameter and he-
licity, i.e., on the indices (n,m). These results can be
simply understood within a band-folding picture, as il-
lustrated in the present section. This approach is made
relatively simple in nanotubes because of the special
shape of the graphene Fermi surface and the restriction
of the electronic bands to the -7 manifold.
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When forming a tube, owing to the periodic boundary
conditions imposed in the circumferential direction, only
a certain set of k vectors in the graphene BZ are al-
lowed. This allowed set of Bloch momenta depends on
the diameter and helicity of the tube. Whenever the al-
lowed k vectors include the point K, the system is a
metal with a nonzero density of states at the Fermi level,
resulting in a one-dimensional metal with two bands dis-
persing linearly close to Er. When the K point is not
included, the system is a semiconductor with a small
band gap that depends mainly on the diameter. In this
case, the conduction- and valence-band edges come
from states with k vectors located on the allowed line(s)
closest to the K point.

Within the zone-folding approximation, the general
rules for the metallicity of single-wall carbon nanotubes
are as follows: a nanotube defined by the (n,m) indices
will be metallic (semiconductor) if n—m=3/, with [ an
integer (n—m=3[+1). Consequently, most carbon nano-
tubes are semiconductors and only a fraction (1/3) are
metallic (or semimetallic).

To conclude this subsection, we note that the index g,
as defined above by the condition k-C,=2mq [Eq. (15)]
is also the azimuthal quantum number associated with
the states on the corresponding allowed k line. This
quantum number therefore characterizes the behavior
of eigenstates with respect to rotations around the axis
that transform the tube into itself. It can be used in par-
ticular to study, on the basis of symmetry-related selec-
tion rules (Vucovic et al., 2002), the effect of a perturba-
tion on various subbands and their mixing upon static
(e.g., tube squashing, interaction with a substrate, etc.)
or time-dependent (e.g., optical excitation) perturba-
tions.

D. Band structures and densities of states

As the nanotubes are one dimensional, their Brillouin
zone is one dimensional as well, with zone edges usually
labeled X, namely, X=+(7/T)x;, with & and T defined
above. The nanotube band structure is therefore repre-
sented along the I'X direction (I'X’ with X’'=-X sym-
metric by time reversal). In the band-folding approach,
one obtains therefore a superposition of all allowed
E;(ku) graphene eigenvalues, with ¢ the allowed line in-
dex (two bands per line) and k; the continuous momen-
tum along «; (from now on, as there is only one direc-
tion, we drop the Il subscript and write k;=k). One says
that the allowed k lines are “folded” onto the I'X direc-
tion [see Fig. 8(a) for armchair tubes]. We now study the
band structure and related density of states of (n,m)
tubes as given by the band folding of the 7-7" bands of
graphene within the orthogonal tight-binding scheme
presented above.

The electronic band structure of an armchair (5,5) car-
bon nanotube is presented in Fig. 10. Six bands for the
conduction and an equal number for the valence states
are observable. However, four of them are degenerate,
leading to ten electronic levels in each case, consistent
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FIG. 10. Band structure and density of states for a (5, 5) arm-
chair nanotube within the zone-folding model. The 1D energy
dispersion relations are presented in the [-37,;37,] energy in-
terval in dimensionless units (y, being the nearest-neighbor
C-C tight-binding overlap energy ~2.9 eV). The energy bands
are plotted along the X-I'-X direction. The Fermi level is lo-
cated at zero energy.

with the ten hexagons around the circumference of the
(5,5) nanotube. Indeed, the bands coming from two al-
lowed lines with opposite ¢ index, for g==1 to g=+4
[see Fig. 8(a)], are degenerate by symmetry. For all arm-
chair nanotubes, the energy bands exhibit a large degen-
eracy at the zone boundary, where k==+m/a (X point),
so that Eq. (14) becomes E(k=+m/a)=+v,. This comes
from the absence of dispersion along the segments con-
necting the neighboring centers of the BZ sides (the M
points), an effect that will yield the so-called trigonal
warping of the bands as discussed below. The valence
and conduction bands for armchair nanotubes cross at
k=kp=+2m/(3a), a point that is located at two-thirds of
I'’X [Fig. 8(a)]. This means that the original K vertices of
the original graphene hexagonal BZ are folded at two-
thirds of the I'X line (or its inversion symmetry image).
As discussed above, the (5,5) armchair nanotube is thus
a zero-gap semiconductor which will exhibit metallic
conduction at finite temperatures, since only infinitesi-
mal excitations are needed to promote carriers into the
conduction bands.

The density of states (DOS) AN/AE represents the
number of available states AN for a given energy inter-
val AE (AE—0). This DOS is a quantity that can be
measured experimentally under some approximations.
The shape of the density of states is known to depend
dramatically on dimensionality. In 1D, as shown below,
the density of states diverges as the inverse of the square
root of the energy (1/ VE) close to band extrema. These
“spikes” in the DOS are called Van Hove singularities
(VHSs) and manifest the confinement properties in di-
rections perpendicular to the tube axis. As carbon nano-
tubes are one dimensional, their corresponding DOSs
exhibit such a spiky behavior at energies close to band
edges (see Fig. 10). The position of these Van Hove sin-
gularities can be analytically derived from the dispersion
relations. The density of states is defined by
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plE) = TS~ )], (18)

where 8(E—"H) is the spectral measure; the trace is ex-
panded within a complete basis, and () is the volume of
the considered system. For the set of eigenvalues Ef](k),
where s== refers to the sign of the solution in Eq. (14),
the DOS can be expressed as

p(E) = E 2 | dk&(E - Ej(k))
q s=
OES (k) |~
——EE dk S(k = kg) | —2L— M )
P ok
where k,, are the roots of the equation E- Es(k) 0,

while Q= 47T|Ch|/ \3a? is the volume (surface) of “the re-
ciprocal space for each allowed state divided by the dis-
tance between allowed lines in the graphene Brillouin
zone (see above). In the vicinity of K, where one can use
the linear energy-momentum relation, the contribution
of k to the density of states is related to

JE(k) |72 El(k
A1 S o0
ok Byoa (EK) - &2,
where g, gives the energy position of the Van Hove

singularities. In the vicinity of Ep, those positions are
given by |e,|=3ypaAk? /2 with Ak?=|(k—K)-C,/|C,]|

=2m3qg-n+m|/3|C,). Hence & 45l = TY0acc3g -1
203, By
p(E) = —_— (21)

.
70| Chl 521 5 V(E;)* (k) - sfls

For all metallic nanotubes, the density of states per unit
length along the nanotube axis is a constant at the Fermi
energy (Ep) and can be expressed analytically (Mintmire
and White, 1998):

plep) = 2\Bac/(m|Cyl). (22)

Beyond the linear-band approximation, one can rewrite
Eq. (14) for metallic armchair (n,n) nanotubes to obtain
the following band dispersion relation:

k k
E'k) =+ yo\/1+4cos—acosq—77+4cosz—a, (23)
4 2 n 2

where g=1,2n corresponds to the discrete part of the
wave vector (band index) and k is the continuous part
of the wave vector, describing states in a specific band
(-m<ka<r). The positions of the Van Hove singulari-
ties can then be derived analytically directly from Eq.
(23), and a simple calculation gives e, .=+, sin gm/n.
In Fig. 10, the spikes in the DOS are localized at
£4=1,105=+= £ Yo SIN q7/5.

We now turn to zigzag tubes. The calculated 1D dis-
persion relations E(k) for the (9,0) and (10,0) zigzag
nanotubes are illustrated in Figs. 11 and 12, respectively.
As expected, the (9,0) tube is metallic, with the Fermi
surface located at I', whereas the (10,0) nanotube exhib-
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FIG. 11. Band structure and density of states for a (9, 0) zigzag
nanotube within the zone-folding model. The Fermi level is
located at zero energy.

its a finite energy gap at I'. In particular, in the case of
the (10,0) nanotube, there is a dispersionless energy
band at E/y,==1, which gives a singularity in the DOS
at these particular energies. For a general (n,0) zigzag
nanotube, when 7n is a multiple of 3, the energy gap at
k=0 (I" point) becomes zero. However, when n is not a
multiple of 3, an energy gap opens at I'. The correspond-
ing densities of states have a zero value at the Fermi
energy for the semiconducting nanotube and a small
nonzero value for the metallic one.

It should be noted that the k values for the band
crossing at Er in metallic nanotubes are k=+27/3T or
k=0 for armchair or zigzag tubes, respectively. These k
values are also the locations of the band gaps for semi-
conducting zigzag nanotubes. The same k values denote
as well the positions of the energy gaps (including zero
energy gaps) for the general case of chiral nanotubes. In
Fig. 13, the dispersion relations E(k) for the (8,2) chiral
nanotube are shown. Since n—m is a multiple of 3, this
nanotube exhibits a metallic behavior with a band cross-
ing at k= +27/3T. Other chiral nanotubes, like the (9,6),
display a zero energy gap at k=0. The DOS of chiral

—
=

p(E)

FIG. 12. Band structure and density of states for a (10,0) zigzag
nanotube within the zone-folding model. The Fermi level is
located at zero energy.
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FIG. 13. Band structure and density of states for a (8,2) chiral
nanotube within the zone-folding model. The Fermi level is
located at zero energy.

nanotubes (see Fig. 13) also displays Van Hove singulari-
ties as for achiral tubes (Charlier and Lambin, 1998;
Mintmire and White, 1998; White and Mintmire, 1998).

In semiconducting zigzag or chiral nanotubes, the
band gap [as expressed by Eq. (17)] is independent of
the chiral angle and varies inversely with the nanotube
diameter: AE}g:ZyOacc/ d, (in the linear-band approxima-
tion). Density-of-states measurements by scanning tun-
neling spectroscopy (STS) provide a powerful tool for
probing the electronic structure of carbon nanotubes. It
can be shown, indeed, that under some assumptions the
voltage-current derivative dI/dV is proportional to the
DOS. These experiments (Odom et al., 1998; Wildoer et
al., 1998) confirmed that the energy band gap of semi-
conducting tubes is roughly proportional to 1/d, and
that about 1/3 of nanotubes are conducting, while the
other 2/3 are semiconducting. Resonances in the DOS
have also been observed experimentally (Odom et al.,
1998; Wildoer et al., 1998) on both metallic and semicon-
ducting nanotubes whose diameters and chiral angles
were determined using a scanning tunneling microscope
(STM) (Venema et al., 2000). Several other experimental
techniques, such as resonant Raman scattering (Jorio et
al., 2001) and optical absorption and emission measure-
ments (Bachilo et al., 2002; O’Connell et al., 2002; Le-
febvre et al., 2003), have also confirmed this structure in
Van Hove singularities of the electronic densities of
states in single-wall carbon nanotubes.

E. Band structures in a magnetic field

The application of a uniform external magnetic field
has profound consequences on the electronic band struc-
ture of carbon nanotubes. There exist two cases of high
symmetry for the direction of the magnetic field with
respect to the nanotube axis. When the magnetic field is
applied parallel to the tube axis, electrons within the
nanotube are influenced by the electromagnetic poten-
tial, whose dominating effect is to add a new phase fac-
tor to the quantum wave function (with subsequent
modification of the associated momentum), and in the
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cylinder geometry this phase factor will be driven in a
periodic fashion by the magnetic flux threading the
nanotube cross section. This quantum phenomenon was
first described theoretically by Aharonov and Bohm
(1959), whereas field-periodic oscillations of the magne-
toresistance were experimentally measured in ordinary
metallic rings (Webb et al., 1985), opening a new field for
mesoscopic physics (Imry, 1997).

Given that the metallic or semiconducting character
of carbon nanotubes results from the existence of the
allowed momentum k at the K points of the hexagonal
Brillouin zone, the superimposed Aharonov-Bohm
phase factor, modulated by the field, will induce some
field-dependent disruption of the initial eigenstate distri-
bution in reciprocal space, with a first spectacular effect
of the band gap opening for an initially metallic system,
as first described by Ajiki and Ando (1993). In this sec-
tion, we provide the basics for understanding the
Aharonov-Bohm phenomenon in carbon nanotubes and
its consequences on the electronic spectrum. In Sec.
IV.D.1, its corresponding effects on transport properties
will be further described.

1. Aharonov-Bohm quantum phase

To further deepen and illustrate these effects, let us
describe the modifications of the quantum phase factor,
driven by the vector potential A and associated with the
external magnetic field B=B(u,,u,,u,) (with B=rotA).
Within the tight-binding scheme, the Bloch functions in
the static B can be written as

1 oo
P(k,r) = ?E M ReICRD (1 ).
VN r

With R a lattice vector and ¢y the phase factor associ-
ated with the magnetic field, it can be shown that ¢g(r)
=[RA@")dr’ =f3(r—R)‘A(R+)\[r—R])d)\ (Luttinger,
1951), so that the total matrix elements of H=(p/2m
—eA)?+V(r), in the presence of B, are simply obtained
through multiplication of those in the zero-field case by
the phase factor (Saito et al., 1998). For a general de-
scription of the B-dependent band-structure effects, one
possibility is to adopt the Cartesian basis (e,,e,,e;)
where e, and e, are, respectively, taken along and per-
pendicular to the tube axis. In the Landau gauge A
=B(0,ux,u,y), the Aharonov-Bohm phase acquired
during an electronic motion between an orbital located
at (x;,y;,z;) and another located at (x;,y;,z,) can be eas-
ily derived:

YitVil (o4

[ (zj— z)uy 5

2 X;+Xx
(Pij:?oB (y]'_yi)uzTL
where ¢, is the quantum flux. This result is applicable
whatever the direction of B with respect to the tube axis
and gives the axial configuration for (u,=0,u,=1) and
the perpendicular configuration for (u,=1,u,=0). This
further allows us to compute the remormalized field-
dependent coupling overlap between 7 orbitals, y;(B)
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FIG. 14. Representation of the first Brillouin zone of a
graphene sheet together with allowed states for an armchair
tube (dashed lines) at zero flux. Modifications of allowed states
in the vicinity of k points, under the effect of a magnetic field
applied parallel to the tube axis (circles give the equipotentials
close to the Fermi energy).

=y expl(2im/ ¢o) [UA(r)dr]=yye %, known as the
Peierls substitution (Peierls, 1933).

2. Parallel field: The band-gap opening and orbital
degeneracy splitting

In the axial case, however, the use of another basis set
makes understanding of the Aharonov-Bohm effect
straightforward. Indeed, if one considers the two-
dimensional Cartesian coordinates ¥=(X,y) in the basis
defined by the directions (C,,T), then the vector poten-
tial is recast as A=(¢/|C;|,0) and the magnetic phase
factor between two 7 orbitals located at ¥;=(x;,y;) and
I;=(%;,y,) is simply written as ¢;— ¢;=i¢(X;—%)/|C,|. Ac-
cordingly, the periodic boundary conditions on the quan-
tum phase will be modified as

) r+Cpy
V(r+|Cpl) = e‘k'chexp<(2w/¢0) A(r’)dr’)‘lfk(r),
and since the additional magnetic phase factor thus re-
duces to 27/ ¢, the change in the quantum momentum
becomes

2—W(qig+£>, (25)
Lo 3

with a=0 for metallic tubes, and o= +1 for semiconduct-
ing tubes. In Fig. 14 the effect of this change in momen-
tum is illustrated in reciprocal space. From Egs. (16) and
(25), the field-dependent gap oscillation for an initially
metallic tube is obtained,

AEg = Ej_o(ky, ¢l ) = E ok, dl o) = BAE bl by,

if ¢=< ¢y/2, where AE§:27mCCyO/\f§|Ch| denotes the gap
at zero flux as given by Eq. (17). If ¢y/2=<¢=< ¢, then
AEB:3AE;|1—¢/¢0|, so that the band gap exhibits an

K, — Kk (P)=
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FIG. 15. (Color online) Density of states of the (5,5) carbon
nanotube for several magnetic flux values: ¢/¢y=0 (a), ¢/ ¢y
=0.1 (b), ¢/ py=0.2 (c), and ¢/¢y=0.5 (d). This is a metallic
tube at zero magnetic flux but a gap opens up once a finite flux
is applied and increases with the flux.

oscillation between 0 and AE; with a period ¢, (Ajiki
and Ando, 1993, 1994, 1996; Tian and Datta, 1994; Lin et
al., 1995; Lu, 1995). For instance, AEz~75 meV at 50 T
for the (22,22) tube (diameter=3 nm), while AEp
~40meV at 60T for the (10,10) tube (diameter
=1.4 nm). In addition, to obtain a field equivalent to ¢
= ¢y in nanotubes with diameters of 1, 10, 20, and 40 nm,
one typically needs magnetic fields of 5325, 53, 13, and
3 T, respectively.

In addition to such ¢y-periodic band-gap oscillations,
the Aharonov-Bohm effect more generally affects the
whole subband structure, as evidenced by Van Hove sin-
gularity splitting and shifts (Jiang et al., 2000; Roche et
al., 2000; Shyu et al., 2003). These effects result from the
influence of the magnetic field on the orbital degeneracy.
Indeed, the initial symmetry of the carbon nanotubes
implies that each available energy level is initially four-
fold degenerate (including spin and orbital degeneracy).
The orbital degeneracy is attributed to the symmetry
between clockwise (+) and counterclockwise (—) elec-
tronic motions around the tube. In the presence of an
external magnetic field, electrons in degenerate (+) and
(—) eigenstates will acquire opposite orbital magnetic
moments +u,,, Which will thus produce an upshift of
the energy of (+) and a downshift of the energy of (—),
resulting in lifting the orbital degeneracy (or Van Hove
singularity splitting).

This mechanism is illustrated in the DOS plots for the
(5,5) and (10,10) tubes in Figs. 15 and 16, respectively,
which are both metallic nanotubes at zero magnetic field
(Roche et al., 2000). The calculations have been per-
formed using a simple tight-binding model in the
mr-orbital approximation, while nearest-neighbor hop-
ping integrals have been renormalized in the presence of
a magnetic field using Eq. (24).
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FIG. 16. Density of states of the (10,10) metallic tube as a
function of energy for several magnetic flux values (see text).
Curves have been vertically offset for clarity. Inset: Evolution
of one VHS with magnetic flux. Adapted from Roche et al.,
2000.

As predicted theoretically, by applying a finite mag-
netic flux ¢ threading the tube, the band gap opens and
increases linearly with ¢, to reach a maximum value at
half the quantum flux (¢,/2). Further, the band gap is
linearly reduced until it finally closes back when the field
reaches one quantum flux. The labels (a)-(e) in Fig. 16
are the DOSs for the (10,10) tube at ¢/¢y=(a) 0, (b)
0.125, (c) 0.25, (d) 0.375, and (e) 0.5. For ¢/¢,=0.125
[trace (b)], one notices that in the vicinity of the charge-
neutrality point (i.e., e=0), a new VHS appears, indicat-
ing the gap opening. In (c), (d), and (e), the gap is seen to
increase, reaching its maximum value at ¢/ ¢,=0.5. The
evolution of the VHS is then reversed and the gap closes
again at ¢/¢y=1. For VHSs at higher energies (e.g.,
those located at g,_,), the oscillatory behavior is slightly
more involved: at low fields a splitting is observed for
each VHS, which is followed by crossing at higher flux,
and finally all VHSs return to the original positions
when ¢/ py=1 (see the inset of Fig. 16).

In the case of armchair (n,n) metallic tubes, the mag-
nitude of the field-dependent splitting of the gth VHS
can be analytically ascertained:

AEg(eq, ¢l o) = ZyO[sin (cos ¢ _ 1)
q q%o

— cos = sin W—¢] (26)
q 4o
Semiconducting tubes [i.e., (n,m) tubes with n—m
=3[+1 (I being an integer)] are affected in a similar way,
but the gap expression is slightly different. One finds
AEp=AE,|1-3¢/ | if 0<¢=<d¢y/2 and AEp=AE,2
~3¢/ ¢y when Po/2< =< ¢,. Hence, the initial zero-
field energy gap (AE;) continuously decreases with in-
creasing ¢, to reach zero at ¢=¢,/3. The gap further
opens as ¢ increases from ¢,/3, reaching a local maxi-
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FIG. 17. Density of states of the (21,23) tube at zero and finite
flux. Top inset: Expanded plot of the DOS. Bottom inset: Evo-
lution of the VHS splitting Ap as a function of magnetic field.

mum (AE1/2) at ¢=¢,/2, before closing again at ¢
=2¢,/3, and finally recovering its original value AE1 at
¢= . In Fig. 17, the DOS of a 3-nm-diameter semlcon-
ducting single-walled tube for various magnetic flux is
illustrated. One notes that magnetic-field-induced lifting
of the spin degeneracy brings some additional contribu-
tion to the total electron magnetic moment (Zeeman ef-
fect). This effect has been shown to yield an energy level
displacement between spin up and spin down, linear
with the magnetic flux, but inversely proportional to the
squared radius of the tube (Jiang et al., 2000).

The Van Hove singularity splitting was recently ob-
served by spectroscopic experiments (Zaric et al., 2004).
In addition, several experimental studies of electronic
transport spectroscopy at low temperature in the Cou-
lomb blockade regime (Kanda et al., 2002; Coskun et al.,
2004; Jarillo-Herrero et al., 2004; Minot et al., 2004) or in
the Fabry-Perot regime (Cao et al., 2004; Jarillo-Herrero
et al., 2005) have also provided compelling evidences of
the Aharonov-Bohm effect. The experimental estima-
tion of the orbital magnetic moment was found to be of
the order of =0.7-1.5meV/T (Minot et al, 2004;
Jarillo-Herrero et al., 2005).

Magnetoresistance oscillations were also a subject of
intense controversy in the early stage of carbon nano-
tube studies, since the origin and value of the Aharonov-
Bohm oscillation period were apparently of different na-
tures. Indeed, while some studies of large-diameter
multiwall carbon nanotubes (Bachtold er al., 1999) first
revealed clear signatures of weak localization, with
negative  magnetoresistance and  (¢y/2)-periodic
Aharonov-Bohm oscillations driven by quantum inter-
ferences (Altshuler and Aronov, 1985), other reports as-
signed their magnetoresistance oscillations to field-
modulated band structure effects, assuming a negligible
contribution from interference effects (Fujiwara et al.,
1999; Lee et al., 2000). The superimposed contributions
to the Aharonov-Bohm oscillations from both band-
structure and quantum interferences effects have been
clearly disentangled recently (Stojetz et al, 2005) and
will be discussed in Sec. IV.D.1.
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FIG. 18. Energy dispersion relation of a (10,0) tube as a function of the dimensionless wave vector n=k;|T|/2 for several values
of the dimensionless inverse magnetic length ». (a) »=0.0, (b) 1.0, (c) 2.0, and (d) 3.0. (e), (f), (g) The energy at k;=0 as a function
of 1”/Ng [Ny is the highest common divisor of (2n+m,n+2m)] for tubes (20,0), (20,20), and (9,9), respectively. Adapted from

Saito, Dresselhaus, and Dresselhaus, 1994.

3. Perpendicular field: The onset of Landau levels

In the situation where the magnetic field is applied
perpendicular to the tube axis, the modifications of the
electronic spectrum are profoundly different. First the
two-dimensional vector potential within the Landau
gauge for the nanotube surface is now given by A
=(0,(|Cy|B/2m)sin(2mx/|Cp|)), keeping (¥,y) as the co-
ordinates along the circumferential and nanotube axis
directions. For evident symmetry reasons, the net mag-
netic flux threading the tube is now zero. The phase fac-
tors can be computed using either this basis or the Car-
tesian basis defined earlier. The energy dispersion can
then be evaluated as a function of magnetic field inten-
sity (Ajiki and Ando, 1993, 1996; Saito et al., 1994). In
Fig. 18, the dispersion relation of the energy E/y, is
reported as a function of the dimensionless wave vector
k||T|/27 (Saito et al., 1994), for several values of the
dimensionless inverse magnetic length v=|C,|/27¢,,,
where ¢,,=\#/eB is the magnetic length (first cyclotron
orbit radius).

As seen in Fig. 18, as the intensity of the magnetic
field is enhanced, the subband dispersion is reduced,
with a particularly strong effect in the vicinity of the
charge-neutrality point. This onset of a Landau-type
subband can be further rationalized analytically. Indeed,
by using the k-p method, an expression for the eigen-
states under magnetic field close to the K points can be
derived analytically for metallic tubes (see Sec. IV.C.1
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for the zero-field case). The k-p equation at the charge-
neutrality point (6k=0) in the presence of a perpendicu-
lar magnetic field can be decoupled into two equations
(Ando and Seri, 1997):

9 ol (zmzﬂ o

{— e 27T€%n sin 7|Ch| fff,(x)—O, 27)
9 1G] (277)2)} o

{+ P 271_{)3” sin c,) ff‘g(x)—O, (28)

from which two independent solutions can be obtained:

1 0
WA(X) = (0 )FA(f)7 Wp(X) = (1 )fg(i),

1 27X
S———)
F4(X) s exp{ cos )
Fp(X) = ———=c¢ex |:+V2COS<27Tx>i|

X =T Ao T~ | s
e c|

where [,(217) is a modified Bessel function of the first
kind. Note that for sufficiently large magnetic field (v
>1) these wave functions become strongly localized in
the circumference direction; that is, W 4(X) is a wave
function localized around %= +|C,|/2 at the bottom side
of the cylinder, whereas Wg(¥) is localized around the
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FIG. 19. Density of states of the (10,10) tube in a perpendicu-
lar magnetic field for several field strengths. The field strengths
are expressed in terms of the dimensionless parameter v
=|C,|/27¢,,, where €,,=\%/eB is the magnetic length.

top side ¥=0. As a result, the boundary condition on the
wave function becomes irrelevant and the resulting band
structures, starting from an initially metallic or semicon-
ducting nanotube, become identical (Ajiki and Ando,
1993). For a small &k around the K points, the low-
energy properties are described by an effective Hamil-
tonian, which can be determined by the two degenerate
states ¥4, and V5 as

— iyySkl; (217 ) 29)

0
Hegp =
. <+ ivo0kI5'(212) 0

whose eigenvalues are Ej_,=+ y|ok|/Iy(2 1?), with a
group velocity given by v=1,/%1,(21?), while the density

of states becomes p(Ep) ~Iy(217)/ myy~e” INdmA(v
>1) (Ando and Seri, 1997). The DOS at the charge-
neutrality point thus diverges exponentially with in-
creasing magnetic field. This is shown in Fig. 19 for the
(10,10) tube for several magnetic field strengths.

Given the diameter-dependent scaling property of the
band structure, the larger the tube diameter, the smaller
the required value of the magnetic field to fully develop
such a Landau subband at the charge-neutrality point.
This effect has also been investigated analytically using a
supersymmetry framework (Lee and Novikov, 2003).
The appearance of the so-called Hofstadter butterfly
was further explored numerically for large diameter
nanotubes (Nemec and Cuniberti, 2006). As already
seen in the field-dependent band structures (Fig. 18), the
whole DOS also progressively degrades as the Landau
subbands start to emerge within the whole spectrum, al-
though strong mixing between high-energy subbands re-
mains (Fig. 19).

As soon as v=|C,|/2m{,,=1 is satisfied, the electronic
spectrum becomes fully dominated by Landau levels.
One finds that for tubes with diameters of 1, 10, 20, and
40 nm, the condition v=1 corresponds to magnetic field
strengths of 2635, 26, 6.6, and 1.6 T, respectively.
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In each case, €,,<¢, (or w,7,>1) has to be further
satisfied for clear observation of Landau quantization,
where €, is the mean free path, w.=eB/m is the cyclo-
tron frequency, and 7, is the scattering time (this condi-
tion is easily met at such high magnetic fields in carbon
nanotubes since €, can be as long as 1 um). Some signa-
ture of such Landau level formation was first reported
by Kanda and co-workers (Kanda et al., 2002).

F. Curvature effects: Beyond the zone-folding model

In the preceding sections, a model for the electronic
properties of SWNTs was based on the confinement of
electrons around the tube circumference, a confinement
shown to induce selection on allowed k, Bloch vector
components. As a matter of fact, since the states se-
lected in the band-folding scheme were those of the pla-
nar graphene sheet, curvature effects are neglected.
However, carbon nanotubes are not just stripes of
graphene but small cylinders. Carbon atoms are placed
on a cylindrical wall, a topology that induces several ef-
fects different from those of a planar graphene sheet: (a)
the C-C bonds perpendicular and parallel to the axis are
slightly different, so that the a; and a, basis vectors now
have different lengths; (b) these bond length changes,
and the formation of an angle for the two p, orbitals
located on bonds not strictly parallel to the axis, yield
differences in the three hopping terms 7, between a car-
bon atom and its three neighbors; and (c) the planar
symmetry is broken so that the 7 and o states can mix
and form hybrid orbitals that exhibit partial sp? and sp>
character. Such curvature effect is not taken into ac-
count in the zone-folding model of graphene, where the
7 orbitals cannot mix with the o states as they show
different parity with respect to planar reflection. In the
present section, the effect of finite curvature on the elec-
tronic properties of single-wall nanotubes will be inves-
tigated.

The effects labeled (a) and (b) modify the conditions
that define the k point at which occupied and unoccu-
pied bands do cross (a point we label k) and shift this
Fermi vector kr away from the Brillouin zone corners
(K point) of the graphene sheet (Kane and Mele, 1997,
Yang and Han, 2000). For armchair nanotubes, taking
curvature into account shifts the Fermi wave vector
along an allowed line of the graphene Brillouin zone.
Consequently, for symmetry reasons, armchair tubes al-
ways preserve their metallic character with finite curva-
ture. However, for metallic nonarmchair nanotubes, kp
moves away from the K point perpendicularly to the
allowed k lines such that the allowed 1D subband (k,q)
no longer passes through kj, opening a very small band
gap at E (see Fig. 20).

In summary, when accounting for curvature effects,
the only zero-band-gap tubes are the (n,n) armchair
nanotubes. The (n,m) tubes with n—m =3[, where [ is a
nonzero integer, are tiny-gap semiconductors. Armchair
tubes are sometimes labeled type-I metallic tubes, while
the others are of type-II. All other nanotubes are
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FIG. 20. Magnitude of primary (El) and secondary (Ez) gaps
in carbon nanotubes with radii less than 15 A. The primary
gap (AE ) scales as 1/R (top panel). The secondary gap (AE>
or cuvature induced gap) scales as 1/R? The dots at AE§,
—AE2 0 correspond to the armchair nanotubes which always
preserve their metallic character. Adapted from Kane and
Mele, 1997.

intermediate-gap (a few tenths of an eV) semiconduc-
tors. For the tiny-gap semiconducting nanotubes, the so-
called secondary gap (due to the curvature) depends on
the diameter and the chiral angle, and scales as 1/d?
(Kane and Mele, 1997). For the quasimetallic zigzag
nanotubes (chiral angle=0), this secondary gap is given
by

2
3 Yolcc

AE? =
7 4d?

(30)

and is so small that, for most practical purposes, all n
—m =3l tubes can be considered as metallic at room tem-
perature (see Fig. 20). Density-of-states measurements
by scanning tunneling spectroscopy (Ouyang et al.,
2001b) confirm the expected 1/ dt2 dependence for three
zigzag nanotubes and show that armchair nanotubes re-
main truly metallic. Consequently, the band-folding pic-
ture, based on the tight-binding approach (Hamada et
al., 1992; Mintmire et al., 1992; Saito et al., 1992), contin-
ues to be valid for large diameter tubes.

We now discuss point (c). For small tubes, the curva-
ture is so strong that some rehybridization among the o
and 7 states appears. In such a case, the zone-folding
picture may fail completely and ab initio calculations
should be performed to predict the electronic properties
of small diameter nanotubes. As an example, the ab ini-
tio band structure of the (6,0) tube is shown in Fig. 21.
These first-principles pseudopotential local density func-
tional (LDA) calculations (Blase, Benedict, Shirley, and
Louie, 1994) indeed revealed that hybridization effects
can occur in small radius nanotubes sufficiently strong to
significantly alter their electronic structure. Strongly
modified low-lying conduction band states are intro-
duced into the band gap of insulating tubes because of
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FIG. 21. Ab initio electronic band structure and density of
states of a (6,0) carbon nanotube, illustrating the strong hybrid-
ization that occurs between 7 and o states in a small-diameter
tube. A new band ¢” appears and crosses the 7 states around
the center of the Brillouin zone. The Fermi level is at zero
energy. Adapted from Blase, Benedict, Shirley, and Louie,
1994.

hybridization of the ¢ and 7" states. As a result, the
energy gaps of some small radius tubes are decreased by
more than 50%. In the specific case of the (6,0) tube,
which is predicted to be a semimetal in the band-folding
scheme, a singly degenerate hybrid o'-7 state (see Fig.
21) is found to lie 0.83 eV (at I') below the doubly de-
generate state that forms the top of the valence band in
the zone-folding model. This band overlap makes the
(6,0) tube a true metal within the LD A, with a density of
states at the Fermi level equal to 0.07 state/eV atom.
The o'-7" hybridization can be clearly observed by
drawing the charge density associated with the states
around the Fermi level. Such states are no longer anti-
symmetric with respect to the tube wall, with a clear
“charge spilling” out of the tube. For nanotubes with
diameters greater than 1 nm, these rehybridization o-m
effects are unimportant. Further, as discussed above,
symmetry considerations suggest that armchair tubes are
less affected by such rehybridization.

Ultrasmall radius single-wall carbon nanotubes (diam-
eter of about 4 A) have been produced by confining
their synthesis inside inert AIPO4-5 zeolite channels
(with inner diameter of about 7.3 A) (Wang et al., 2000).
The diameter of these tubes gives them many unusual
properties such as superconductivity (Tang et al., 2001).
Such a narrow distribution of diameters around 4 A re-
duces the potential carbon nanotube candidates to
three: the (3,3), (4,2), and (5,0). The properties of these
ultrasmall tubes have already been extensively investi-
gated by ab initio simulations (Dubay et al., 2002; Liu
and Chan, 2002; Machén et al., 2002; Cabria et al., 2003).
In particular, it was shown that the (5,0) tube, expected
to be semiconducting following the band-folding picture,
is actually a metal with two bands (one doubly degener-
ate) crossing the Fermi level (yielding two different k).
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FIG. 22. Band crossing and band repulsion. (a) Schematic diagram of the crossing of the two linear bands for an isolated (n,n)
carbon nanotube. One band has 7-bonding character and the other has m-antibonding (7") character. E is the Fermi energy and
k is the wave vector. (b) Repulsion of the bands due to breaking of mirror symmetry. Adapted from Delaney et al., 1998.

This is a clear manifestation of curvature effects. We will
come back to such small tubes when discussing the
Peierls and superconducting instabilities in Sec. IV.F.
The armchair (3,3) tube remains semimetallic, but with a
m-m band crossing at E that is displaced off its ideal
2I' X /3 position, confirming as described above that arm-
chair tubes are much less sensitive to curvature effects.

G. Nanotube bundle and multiwall system

From the previous section, we can deduce that only a
special achiral subset of these carbon structures (arm-
chair nanotubes) exhibits a true metallic behavior. Such
metallic character can be explained by the high symme-
try of these (n,n) tubes, namely, the n vertical planes
and glide planes. Incorporating an armchair tube into a
bundle, or inside another nanotube as in a multiwall sys-
tem, could modify its intrinsic electronic properties as
the symmetry is lowered.

Single-wall carbon nanotubes are grown by a laser-
ablation, arc-discharge, or CVD method and always oc-
cur in bundles of 10-100 nanotubes. These bundles usu-
ally consist of nanotubes with different chirality and
slightly different diameter. Even a ‘“perfect” crystal
made of identical tubes will alter the properties of the
constituent CNTs through tube-tube interaction. Indeed,
first-principles calculations reveal that broken symmetry
of the (10,10) tube caused by interactions between tubes
in a bundle induces a pseudogap of about 0.1 eV at the
Fermi energy (Delaney et al, 1998). This pseudogap
strongly modifies many of the fundamental electronic
properties of the armchair tubes, with a specific signa-
ture in the temperature dependence of the electrical
conductivity and in the infrared absorption spectrum.

In the limit of an isolated (10,10) tube, the two bands
crossing at Ep belong to different irreducible represen-
tations with respect to the tube symmetry planes, so that
crossing is allowed. Upon breaking of this symmetry by
tube-tube interaction in the hexagonal bundle symmetry,
these bands can mix and start to repel at Ey (Fig. 22).
The presence and magnitude (which depends inversely
on the nanotube radius) of this pseudogap have been
observed experimentally using low-temperature scan-
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ning tunneling spectroscopy (Ouyang et al., 2001b). In
contrast, if (6,6) nanotubes are arranged in a hexagonal
lattice which fully preserves the Dg, symmetry of the
hexagonal packing, the band gap due to these intertube
interactions is not observed (Charlier et al., 1995). A
small rotation of the (6,6) tubes in such an arrangement
would break the Dg;, symmetry of the (6,6) bundle and
would open up this expected gap at the Fermi energy
(Reich, Thomsen, and Ordején, 2002).

Another possibility to tailor the electronic properties
of nanotubes can be observed in the multilayering effect.
In fact, the weak interaction between the concentric
shells in a multiwall nanotube may have important ef-
fects on the electronic properties of the constituent iso-
lated nanotubes (Lambin et al, 1994; Kwon and
Tomének, 1998). Interwall coupling, which, as just men-
tioned, opens a pseudogap in bundles of single-wall
nanotubes (due to symmetry lowering), may periodically
open and close four such pseudogaps near the Fermi
energy in a metallic double-wall nanotube upon rotation
of its inner shell with respect to the nanotube axis.

Figure 23 illustrates the intriguing interplay between
geometry and electronic structure during the rotation of
an inside (5,5) armchair nanotube in an outside (10,10)
nanotube (both tubes sharing the same axis). The indi-
vidual (5,5) and (10,10) tubes are both metallic and show
the preferred graphitic interwall separation of 3.4 A
when nested. To determine the electronic properties of
the double-wall nanotube, a tight-binding technique
with parameters determined by ab initio calculations for
simpler structures has been used (Lambin et al., 1994;
Kwon and Tomanek, 1998). Due to the relatively high
symmetry of the coaxial system, consisting of a D, (5,5)
nanotube nested inside a D,g;, (10,10) nanotube, the de-
pendence of the intertube interaction on the tube orien-
tation shows a periodicity of 18°. In the absence of the
intertube interaction, the band structure of each tube is
characterized by two crossing linear bands near Ef, one
for left- and one for right-moving electrons. The band
structure of a pair of decoupled (5,5) and (10,10) nano-
tubes, a mere superposition of the individual band struc-
tures, is shown in Fig. 23(a). Switching on the intertube
interaction in the (5,5)@(10,10) double-wall tube re-
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FIG. 23. Band structures of the same double-wall tube for different relative orientations. Near-degenerate bands with no gap
characterize the (5,5)@(10,10) double-wall nanotube without intertube interaction (a). In the presence of intertube interaction,
depending on the mutual tube orientation, the (5,5)@(10,10) system may show a zero gap (b) in the most symmetric (point group
symmetry D) or four pseudogaps (c) in a less symmetric and stable configuration (point group symmetry Cs). Adapted from

Kwon and Tomanek, 1998.

moves the near degeneracy of the bands near E as well
[see Figs. 23(b) and 23(c)]. In the most stable orienta-
tion, the double-wall system is still characterized by the
D, symmetry of the inner tube. The four bands cross,
with a very small change in the slope [Fig. 23(b)]. While
the same argument also applies to the least-stable con-
figuration, a markedly different behavior is obtained at
any other tube orientation that lowers the symmetry,
giving rise to four band crossings [Fig. 23(c)]. This trans-
lates into four pseudogaps in the density of states near
Ep.

At the Fermi level, the density of states of double-wall
nanotubes is thus affected by the mutual orientation of
the two constituent nanotubes, since the positions of the
four pseudogaps depend significantly on it. The opening
and closing of pseudogaps during the libration motion of
the double-wall tube is a unique property that cannot be
observed in single-wall nanotube ropes (Kwon and
Tomaének, 1998).

Finally, self-consistent charge-density and potential
profiles for double-wall nanotubes, considering various
chiralities, have been determined (Miyamoto et al., 2001)
and demonstrate that the inner tube modifies the charge
density associated with states near E, even outside the
outer tube. A significant amount of charge, originating
mainly from 7 electrons, is transferred into an interwall
state, related to the interlayer state in graphite. In the
limit of small tubes, the significant evolution of the CNT
work function with respect to diameter shows as well
that charge transfer may occur from one tube to another.

H. Structural defects in carbon nanotubes

In the previous sections, curvature effects and inter-
tube and intershell interactions have been shown to sig-
nificantly modify the electronic properties of carbon
nanotubes from those obtained by a simple band folding
of the graphene band structure. However, until now,
each constituent nanotube was assumed to be perfect. In
reality, the intrinsic honeycomb network of CNTs is
probably not as perfect as usually assumed. Defects like
pentagons, heptagons, vacancies, adatoms, or substitu-
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tional impurities have been proposed theoretically and
recently observed experimentally (Hashimoto et al,
2004; Fan er al., 2005). These defects are found to
modify, at least locally, the electronic properties of the
host nanotubes. Consequently, the introduction of de-
fects in the carbon network is an interesting way to tai-
lor its intrinsic properties, enabling new potential nano-
devices and fostering innovative applications in nano-
electronics (Gémez-Navarro et al., 2005). The cases of
chemical doping and functionalization will be explored
in Sec. IV.C.4 where their effect on conductance will be
analyzed.

1. Finite length and capping topologies

We have dealt so far with the properties of infinitely
long nanotubes. In reality, nanotubes have a finite length
(up to a few microns), a property which has two main
consequences: (a) the confinement of the electronic
states along the tube length; and (b) the disruption of the
atomic network at the two ends, also labeled tips or
apexes, with specific reconstructions and local electronic
properties.

A conducting nanotube cut to a finite length should
display standing waves characteristic of a one-
dimensional particle-in-a-box model. Indeed, when elec-
trons are confined in a box, quantum mechanics tells us
that electrons can have only discrete values of kinetic
energy. The energy spacing of the eigenvalues depends
directly on the dimensions of the box: AE=h%/2mL?,
with L the length of the box. If this energy spacing is
much higher than the thermal energy (AE>kgT), there
are only completely occupied and completely empty lev-
els and the system is an insulator. Further, the eigen-
states are standing waves of the form sin(kz), with k
=2mm/L and m an integer (the variable z is along the
nanotube axis).

These standing waves have been studied theoretically
by Rubio et al. (1999), and the highest occupied molecu-
lar orbital (HOMO), lowest unoccupied molecular or-
bital (LUMO), and “tip states” associated with a typical
finite-length tube are illustrated in Fig. 24. Such station-
ary states have also been observed experimentally by
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FIG. 24. Ab initio simulated STS images of the (a) HOMO, (b)
LUMO, and (c) tip states of a 4.18-nm-long armchair tube. The
solid line (A) in (b) corresponds to the line scan shown in (d)
where the maxima of the electronic wave function are com-
pared to the Fermi wavelength (\r). Adapted from Rubio et
al., 1999.

means of STS (Venema et al., 1999; Lemay et al., 2001)
which essentially sees the square of the wave functions
close to the Fermi level [dI(V,x)/dV ~|¥(x)[*]. The
STS scans display several maxima repeated with a peri-
odicity Ap=0.74 nm. Such an observation requires a
higher energy resolution than the eigenstate separation
(AE) and an electron coherence length larger than the
tube length, which was satisfied for L,,.~30 nm and
T=4 K.

We now turn to the properties of tube tips or apexes.
Due to the finite length, interesting structural features
occur near the ends of all tubes. The closure of the
graphene cylinder results from incorporation of topo-
logical defects, such as pentagons, which induce a discli-
nation in the planar hexagonal carbon lattice. Such
modifications of the structure modify, even though fairly
locally, the tube electronic properties, while the tube
body properties are essentially unchanged due to the
large aspect ratio of most CNTs. Complex apex struc-
tures can arise, for instance, conical-shaped sharp tips,
due to the way pentagons are distributed near the ends
for full closure. Each topology leads to a specific local
electronic structure (Tamura and Tsukada, 1995; Char-
lier and Rignanese, 2001).

These topological changes in the atomic structures
near the end of closed carbon nanotubes are known to
initiate sharp resonances in the DOS close to the Fermi
energy region (Carroll ef al., 1997), affecting locally the
electronic properties of the system, with, for example,
expected consequences on field-emission energy-
resolved spectra (see Sec. IV.G), or the chemical activity
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FIG. 25. (Color online) Densities of states along a (10,10)
nanotube capped with half a C,4y molecule. The horizontal
bars indicate zero densities. The Fermi level is located at zero
energy. The DOS curves are averaged over the atoms compos-
ing the sections labeled by a—g on the right-hand side.
Adapted from Charlier, 2002.

of the apex, such as an enhanced sensitivity to oxidation
(Ajayan et al., 1993), a property used for selective tube
opening at the apex. The energy positions of these reso-
nant states with respect to the Fermi level depend sen-
sitively on the relative positions of pentagons and their
degree of confinement at the tube ends (De Vita et al.,
1999). The variations of the density of states along a (10,
10) nanotube capped by a hemispherical Cyy, tip apex,
containing six pentagons in a fivefold-symmetric ar-
rangement, are shown in Fig. 25 for illustration.

2. Connecting nanotubes

Since carbon nanotubes can be metallic or semicon-
ducting, depending on their structure, they can be
used to form metal-semiconductor, semiconductor-
semiconductor, or metal-metal junctions. These junc-
tions have an interesting potential for applications in
logical devices. The key issue is to connect two semi-
infinite nanotubes of different chirality but with equiva-
lent diameters to allow for a smooth (energetically rea-
sonable) tube-tube junction. It has been shown that the
introduction of pentagon-heptagon pair defects into the
hexagonal network of a single carbon nanotube can
change the helicity of the carbon nanotube and funda-
mentally alter its electronic structure (Dunlap, 1994;
Lambin et al., 1995; Charlier et al., 1996; Chico, Crespsi,
Benedict, Louie, and Cohen, 1996; Saito et al., 1996).
Both the existence of such local atomic rearrangements
and the measurement of their respective electronic and
transport properties have been resolved experimentally
(Yao et al., 1999; Ouyang et al., 2001a).

Such defects must induce zero net curvature to pre-
vent the tube from flaring or closing. The smallest topo-
logical defect with minimal local curvature (hence mini-
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FIG. 26. (Color online) Nanotube-based junctions. (a) Atomic
structure of a (8,0)/(7,1) intramolecular carbon nanotube
junction. The large balls denote atoms forming the heptagon-
pentagon pair. (b) The electron densities of states related to
the two perfect (8,0) and (7,1) nanotubes are illustrated with
thick and thin lines, respectively. Adapted from Charlier, 2002.

mizing the energy cost) and zero net curvature is a
pentagon-heptagon pair. When the pentagon is attached
to the heptagon, as in the aniline structure, it only cre-
ates topological changes (but no net disclination) which
can be treated as a single local defect. Such a pair will
create only a small local deformation and may also gen-
erate a small change in the helicity, depending on its
orientation in the hexagonal network.

Figure 26 depicts the connection, using a single 5-7
pair, between two nanotubes exhibiting different elec-
tronic properties. The (8,0) nanotube has a 1.2-eV gap in
the tight-binding approximation, and the (7,1) tube is a
semimetal (although a small curvature-induced gap is
present close to the Fermi energy). Such a system repre-
sents thus a semiconductor/metal Schottky junction
which could be used, together with similar junctions, as
building blocks in nanoscale electronic devices, provided
that their growth is controlled. These carbon-carbon
junctions have been generalized to the case of C/BN
heterojunctions (Blase et al., 1997), with BN (boron-
nitride) tubes displaying a large band gap (see Sec. IIL.I).
Such junctions could result from the segregation of car-
bon atoms in composite boron-carbon-nitrogen tubes, a
segregation which is energetically favorable and has
been observed experimentally (Suenaga ef al., 1997).

While the spontaneous formation during growth of
5-7 pairs conveying the synthesis of tube-tube junctions
seems difficult to engineer, another approach has been
developed to connect nanotubes. The beam of a trans-
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FIG. 27. Carbon-based ideal junctions, exhibiting, respectively,
(a) X, (b) T, and (c) Y geometries, respectively. Adapted from
Terrones et al., 2002.

mission electron microscope can indeed be used to lo-
cally irradiate carbon-based nanostructures. Covalently
connected crossed single-wall carbon nanotubes have
been created using electron beam welding at elevated
temperatures (Terrones, Terrones, Banhart, Charlier,
and Ajayan, 2000; Terrones et al., 2002). These molecu-
lar junctions of various geometries (X, Y, and T) are
found to be stable after the irradiation process. Figure
27(a) depicts an ideal X-shaped nanotube connection,
where a (5,5) armchair nanotube intersects a (11,0) zig-
zag tube. In order to generate a smooth topological
welding at the junctions, six heptagons are introduced at
each crossing point to create the needed negative curva-
ture. The electronic properties of such junctions, with
the signature of the heptagonal rings, are characterized
by an enhancement of the DOS close to Ef, an effect
similar to that described in the case of pentagons at the
tube apex (Charlier, 2002).

Electronic transport measurements on multiwall
Y-shaped junctions showed that these carbon nanostruc-
tures behave as intrinsic nonlinear devices, displaying
strong rectifying behavior at room temperature (Papa-
dopoulos et al., 2000). However, theoretical calculations
have shown that the rectifying behavior of Y-shaped
junctions is not an intrinsic property of the branching,
but is solely due to the properties of the interfaces be-
tween the nanotube branches and metallic leads (Meu-
nier et al., 2002). Much more research is needed to pave
the way toward the controlled fabrication of nanotube-
based molecular junctions and network architectures ex-
hibiting interesting electronic behavior.

3. Vacancies, adatoms, Stone-Wales, etc.

As in many other materials, the existence of defects in
nanotubes affects the material properties. These defects
can occur in various forms, among which are atomic va-
cancies (El-Barbary et al., 2003). A vacancy is simply the
absence of a carbon atom in the hexagonal network.
However, as illustrated in Fig. 28(a), an atomic recon-
struction of the vacancy (C;) is found to be more stable
energetically as compared to the unreconstructed va-
cancy (Dsj) in the graphene sheet. Removing the re-
maining two-coordinated C atom [see Fig. 28(a)] leads to
a “divacancy,” which is composed of two pentagons
separated by an octagon (Gémez-Navarro ef al., 2005).
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FIG. 28. Defects in the hexagonal network. (a) Graphene por-
tion containing a vacancy. The carbon network exhibits some
reconstruction. (b) Graphene portion displaying a Stone-Wales
defect (two adjacent heptagons surrounded by two pentagons).
Adapted from Ewels et al., 2002.

Electron irradiation induces structural transforma-
tions in carbon nanotubes, mainly vacancies and intersti-
cials, created by the impact of high-energy electrons, fol-
lowed by saturation of highly reactive dangling bonds at
undercoordinated carbon atoms (Banhart, 1999). De-
fects have been intensively studied in irradiated graphite
(Telling et al., 2003), and the carbon vacancy-adatom
pair is certainly one of the most common (Ewels et al.,
2002). In addition, it is suggested that both the adatom
and the single monatomic vacancy induce magnetic
properties in these carbon nanostructures (Lehtinen ef
al., 2003).

Another well-known form of defect that occurs in car-
bon nanotubes is the Stone-Wales reconstruction [Fig.
28(b)], which creates two pentagon-heptagon pairs by
the 90° rotation of any C-C bond in the hexagonal net-
work (Stone and Wales, 1986). Such a topological defect
can be induced by strain and determines the plastic re-
sponse and mechanical resistance to tension applied to
the nanotube (Orlikowski et al, 2000; Jensen et al.,
2002).

Most of the outstanding properties of carbon nano-
tubes rely on them being almost atomically perfect, but
the amount of imperfections and the effect that they
have on the tube properties have been poorly under-
stood to date. Defects are known to modify the elastic,
mechanical, and electrical response of carbon nano-
tubes. Such defects are present in as-grown tubes, but
controlling their density externally (i.e., using ion irra-
diation) may open a path toward the tuning of the elec-
tronic characteristics of the nanotube (Gémez-Navarro
et al., 2005).

Following the previous idea of introducing five- and
seven-membered rings into hexagonal networks, a novel
class of perfect crystals, consisting of layered sp?-like
carbon sheets containing periodic arrangements of pen-
tagons, heptagons, and hexagons, has been proposed
(Terrones, Terrones, Hernandez, Grobert, Charlier, and
Ajayan, 2000). These sheets are rolled up so as to gen-
erate single-wall nanotubes (Fig. 29), which resemble lo-
cally the radiolaria drawings of Haeckel (1998).

Calculations indicate that these Haeckelite structures
are more stable than Cgy and have energies of the order
of 0.3-0.4 eV/atom with respect to graphene. These ide-
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FIG. 29. Nonchiral Haeckelite nanotubes of similar diameter
(1.4 nm). (a) Nanotube segment containing only heptagons and
pentagons paired symmetrically. (b) Nanotube segment exhib-
iting repetitive units of three agglomerated heptagons, sur-
rounded by alternating pentagons and hexagons. (c) Nanotube
segment containing pentalene and heptalene units bound to-
gether and surrounded by six-membered rings. Adapted from
Terrones, Terrones, Hernandez, Grobert, Charlier, and
Ajeyan, 2000.

ally defective tubes exhibit intriguing electronic proper-
ties: density-of-states calculations of Haeckelite tubes
revealed an intrinsic metallic behavior, independent of
orientation, tube diameter, and chirality. Further, a
rather large DOS at the Fermi level is noticed for the
family of tubes depicted in Fig. 29(b). Such properties
are clearly related to our discussion of the 5-7 defects
and extend an early prediction on the evolution of elec-
tronic properties with increasing defect concentration
(Crespi et al., 1997). The predicted ab initio infrared and
Raman frequencies (Rocquefelte et al., 2004) allow one
to distinguish these structures unambiguously and may
help in identifying them in future syntheses.

I. Optical properties and excitonic effects

We conclude this section on the electronic properties
of nanotubes by exploring their optical response. As op-
tical absorption spectra are conventionally interpreted
in terms of transitions between the valence and conduc-
tion bands, discussing the interaction with photons just
after discussing the electronic band structure looks like a
good idea. However, the importance of many-body ef-
fects (electron-hole interactions or excitons) significantly
complicates this interpretation.

The optical properties of nanotubes are of major im-
portance not only for potential applications of CNTs in
optoelectronic devices (Misewich et al., 2003), but also as
a powerful tool to relate the observed absorption or
photoluminescence (PL) spectra to the (n,m) indices of
the tubes, complementing other techniques such as Ra-
man, diffraction, or STM studies. Experimentally, an im-
portant step forward was taken with the observation of a
rather bright and structured PL spectra in the infrared,
associated with CNTs isolated in cylindrical micelles
(Bachilo et al., 2002; O’Connell ef al., 2002). The aggre-
gation of tubes in bundles is indeed expected to strongly
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FIG. 30. Energy separation E;(d) for all (n,m) values as a
function of CNT diameter d,, with 0.7=d,<3.0 nm. Crosses
and open circles denote the peaks of semiconducting and me-
tallic tubes, respectively. Solid squares denote E;;(d) values for
zigzag tubes. Adapted from Saito, Dresselhaus, and Dressel-
haus, 2000.

quench and broaden the luminescence of carbon tubes
through transfer of hot electrons to metallic tubes where
they can recombine nonradiatively. This subject of the
optical properties of SWNTs is rapidly growing, and the
following topics should be considered as a brief intro-
duction to the field.

The first analysis of the optical data relied on the as-
sumption that the absorption peaks can be mapped onto
the energy differences between Van Hove singularities
in the valence and conduction bands. In the case of
nanotubes, the accumulation of states at VHS suggests
that the optical spectrum will be dominated by transi-
tions between these spikes in the density of states. Fur-
ther, as the absorption is strongly quenched by the de-
polarizing fields for light polarized in transverse
directions (Benedict, Louie, and Cohen, 1995;
Marinopoulos et al., 2003), the selection rules associated
with light polarized parallel to the tube (Ag=0, g the
azimuthal quantum number) will even specify that the
strongest optical transitions will take place between sub-
bands with the same angular momentum, yielding the
so-called Ej; excitation energies. We recall that in the
orthogonal (7-7") model, each g index yields two sym-
metric bands, one occupied and one unoccupied, and
transitions between these two subbands are therefore
allowed.

This analysis led to the useful Kataura’s plot (Kataura
et al., 1999; Saito, Dresselhaus, and Dresselhaus, 2000;
Popov and Henrard, 2004) which gathers on the same
graph the E;(d,) transition energies as a function of di-
ameter d,. The interest of such a representation (see Fig.
30) stems from an early remark by White and Mintmire
(1998) that the E;; transitions should depend only on the
nanotube diameter, and not its chirality, leading to well-
defined and -separated E;(d,) lines (see Sec. IIL.D
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above). The same arguments were developed for the pri-
mary band gaps in semiconducting tubes. In particular, it
was suggested that the diameter of CNTs could be
straightforwardly inferred from the optical absorption
peaks or the resonance energies in Raman spectra,
complementing data obtained from the evolution with
diameter of the RBM frequency. This diameter-only de-
pendence of E;; transitions works remarkably well at low
excitation energies, but strong deviations can be seen on
the plot of Kataura et al. by a marked broadening of the
high-energy E;; lines. This broadening was shown to
originate in deviations from the linear dispersion of the
energy bands away from the Fermi level, an effect des-
ignated as “trigonal warping” (Saito, Dresselhaus, and
Dresselhaus, 2000).

However, accurate absorption studies on well-
calibrated (n,m) nanotubes showed evidence for some
deviations from the analysis of Kataura et al. since peaks
in the absorption spectra and Ej; transition energies in
between Van Hove singularities showed systematic de-
viations (Bachilo ef al., 2002; O’Connell et al., 2002;
Wang and Griffoni, 2005). In particular, the ratio
E,,/ Eqy, predicted to be equal to 2 in the approximation
where bands are linear close to Er (Mintmire and White,
1998), was found to be significantly smaller (Bachilo et
al., 2002), even in the limit of large tubes where the ap-
proximation is supposed to work best. While trigonal
warping effects can easily account for deviations from 2
of the Ey/Eq ratio in small SWNTs, it was a puzzling
result in the limit of large tubes. This is the so-called
ratio problem in SWNTs (Kane and Mele, 2003). Fur-
ther, Bachilo ef al. (2002) reported the decrease of the
PL intensity for SWNTs with small chiral angles (zigzag
tubes), an effect that is difficult to understand within the
independent-electron model.

These deviations triggered several theoretical studies
to explore excitonic effects in the CNT optical spectra.
Excitonic effects in purely 1D systems have been shown
to exhibit very specific features, such as a divergency of
the binding energy of the electron-hole pairs (Loudon,
1959) in a simple 1D generalization of the Mott-Wannier
model (Elliott, 1957), or the quenching of the so-called
Sommerfeld factors (Ogawa and Takagahara, 1991a,
1991b) which compensates for the Van Hove singularity
at the E; edge. It is not clear, however, that such effects,
valid for strictly 1D objects, should be easily observed in
carbon nanotubes.

Following early predictions based on semiempirical
approaches (Ando, 1997; Kane and Mele, 2003; Perebei-
nos et al., 2004), accurate ab initio calculations showed
that bound excitons with binding energies of up to an eV
could be found in semiconducting tubes (Chang et al.,
2004; Spataru et al., 2004). This is shown in Fig. 31 in the
case of the (8,0) carbon nanotube. Such calculations
were based on the resolution of the so-called Bethe-
Salpeter equations which can be written as follows:
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FIG. 31. Excitons in nanotubes. (a) Quasiparticle band struc-
ture and (b) optical absorption spectra (with and without
electron-hole interaction) for a semiconducting (8,0) carbon
nanotube. Adapted from Spataru et al., 2004.

(Eg— Eq)AS .+ X, (vek|K|v'c'k')AS , = Q5AS

vk’

vek»

(31)

where A3, is the exciton amplitude, K¢ is the electron-
hole kernel, and |vck) is the electron-hole two-body
wave functions in the absence of interactions (taken as a
basis to expand the interacting electron-hole eigen-
states). The first term on the left-hand side of Eq. (31)
corresponds to the quasiparticle spectrum in the absence
of electron-hole interactions (yielding the E;; energies).
The second term accounts for the electron-hole interac-
tions. The kernel K¢ includes two contributions:
screened Coulomb interaction and an exchange term.
This latter stabilizes triplet states, yielding potentially
low-lying dark excitons with vanishingly small dipole
matrix elements with the ground state which is a singlet.
This is a crucial issue since the existence of low-lying
dark excitons dramatically reduces the PL efficiency of
isolated tubes. The application of a magnetic field, by
mixing singlet and triplet states, allows us to bypass this
problem, even though very large fields are needed (Zaric
et al., 2005). Clearly, as the electron-hole interactions are
screened, excitonic effects will be predominant when-
ever screening is weak, namely, in semiconducting tubes.
Further, the binding energy is expected to be large in
small tubes where holes and electrons are spatially con-
fined.
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These theoretical evaluations of the exciton binding
energies were confirmed by experimental measurements
yielding values of 0.3—-0.4 eV for nanotubes with diam-
eters in the 0.7-0.9-nm range (Maultzsch et al., 2005;
Wang et al., 2005a). Concerning the helicity-related PL
intensity, it was suggested by Reich et al. (2005) that
exciton-exciton resonance effects, strongly depending on
the Ey,/Eq, ratio, and thus on chirality through trigonal
warping, might explain the experimental observations.
On more general grounds, the PL efficiency of nano-
tubes is found to be rather small. This suggests the exis-
tence of rather long radiative lifetimes, allowing for non-
radiative processes and/or the existence of low-lying
optically inactive (dark) excitons. Radiative lifetimes in
SWNTs are under intensive theoretical and experimen-
tal investigation and results are still very scattered
(Hagen et al., 2004, 2005; Wang et al., 2004; Spataru et al.,
2005). Other topics, such as electroluminescence, based
on the recombination of electrons and holes injected at
the two different electrodes of an ambipolar transistor
(Misewich et al., 2003) or generated by impact excitation
(Chen, Perebeinos, Freitag, Tsang, Fu, Lin, and Avouris,
2005; Marty et al., 2006), or photoconductivity, where, on
the contrary, the optically excited electron-hole pairs are
separated by an applied bias, are also under investiga-
tion, and theoretical results are still very scarce (Perebei-
nos and Avouris, 2006).

We conclude this section on the optical properties of
nanotubes by making a small incursion into the physics
of “composite” BCN tubes. Boron nitride nanotubes
(Blase, Rubio, Cohen, and Louie, 1994; Rubio et al.,
1994) are wide-gap insulators and strong excitonic ef-
fects have been shown theoretically (Arnaud et al., 2006;
Park et al., 2006; Wirtz et al., 2006) to explain the experi-
mentally available optical results (Watanabe et al., 2004;
Arenal et al., 2005; Lauret et al., 2005). The prospect of
obtaining lasing materials in the uv range (215 nm, Wa-
tanabe et al., 2004) is strong motivation for pursuing the
study of 4#-BN systems. Finally, intermediate between
metallic or small-gap CNTs and insulating BN tubes,
composite B,C,N, systems have been synthesized and
PL in the visible range has been demonstrated for sys-
tems with a BC,N stoichiometry (Watanabe et al., 1996;
Chen et al., 1999; Bai et al., 2000). It has been shown on
the basis of ab inito calculations that the band gap of
such systems could vary in the visible range depending
on the size of segregated pure carbon or BN sections, a
segregation phenomenon which stabilizes the structure
(Blase et al., 1997, 1999; Mazzoni et al., 2006). Such sys-
tems, even though opening the way for the design of
tube-based optoelectronic devices, remain much less
studied than CNTs.

IV. TRANSPORT PROPERTIES OF CARBON NANOTUBES

A. Preliminary remarks

Coherent quantum transport in mesoscopic and low-
dimensional systems can be rigorously investigated with
either the Kubo-Greenwood (Kubo, 1966) or the
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Landauer-Biittiker formalisms (Biittiker et al., 1985).
The first approach, which derives from the fluctuation-
dissipation theorem, allows one to evaluate the intrinsic
conduction regimes within the linear response and gives
direct access to the fundamental transport length scales,
such as the elastic mean free path (€,) and localization
length (£). While €, results from elastic backscattering
driven by static perturbations (defects, impurities) of an
otherwise clean crystalline structure, £ denotes the scale
beyond which quantum conductance decays exponen-
tially with the system length (L), owing to the accumu-
lation of quantum interference effects that progressively
drive the electronic system from weak to strong localiza-
tion. The coherence length L, gives the scale beyond
which localization effects are fully suppressed owing to
decoherence mechanisms, such as electron-phonon
(e-ph) or electron-electron (e-e) couplings, treated as
perturbations on the otherwise noninteracting electronic
gas (weak-localization regime). When €, becomes longer
than the length of the nanotube between voltage probes,
the carriers propagate ballistically and contact effects
prevail. In such a situation, the Landauer-Biittiker for-
malism becomes more appropriate, since it rigorously
treats transmission properties for open systems and ar-
bitrary interface geometries. In addition, its formal ex-
tensions [nonequilibrium Green’s functions (NEGFs)
and the Keldysh formalism] further enable one to inves-
tigate quantum transport in situations far from equilib-
rium, of relevance for high-bias regimes or situations
with a dominating contribution of Coulomb interactions
(Datta, 1995).

Interestingly, to investigate coherent quantum trans-
port in a nanotube of length L with reflectionless
contacts to external reservoirs, the two transport formal-
isms are formally fully equivalent (Szafer and Stone,
1988). Within the linear response theory, the Kubo con-
ductance can be numerically computed as G(E,L)

=(2¢%/ L)lim, .. Tr{8(E- H)D(E,1)}, where SE-H) is
the spectral measure operator, the trace of which

gives the total density of states, whereas DA(I):[)A((I)

~-X (0)]?/t is the diffusivity operator, defining X (1) as the
position operator in the Heisenberg representation and
L as the relevant length scale associated with the nor-
malization factor (Roche and Mayou, 1997, Roche,
1999). In the presence of static disorder, the diffusivity
for a given wave packet will reach a saturation regime
whose value will be related to the elastic mean free path
{,(E) through D(E)~v(E){,(E), with v(E) the velocity
of wave packets with energy E. The wave-packet quan-
tum dynamics is numerically explored by solving the
time-dependent Schrodinger equation. Such an ap-
proach, implemented using order-N computational tech-
niques, has been successfully compared to analytical re-
sults derived from Fermi’s golden rule (FGR) for
uniform disorder (White and Todorov, 1998; Roche et
al., 2000). Figure 32 (top) shows the various conduction
regimes (ballistic, diffusive, and localized) for wave
packets propagating in CNTs with on-site random fluc-
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FIG. 32. Conduction regime in nanotubes. Top: Diffusion co-
efficient for three typical conduction regimes in (10,10) metal-
lic nanotubes. From left to right: ballistic, diffusive, and local-
ized regimes are seen at a long time scale. Bottom: Kubo
conductance for the ballistic case.

tuations (Anderson-type elastic disorder). In Fig. 32
(bottom), the quantum conductance obtained with the
Kubo formula for a clean infinite metallic armchair
nanotube is shown to be quantized, retrieving the
Landauer-Biittiker formulation in terms of conducting
channels.

On the other hand, the Landauer-Biittiker conduc-
tance is evaluated from the transmission coefficient

T(E) = u{l L(E) G (E)UR(E) Gt B} (32)
given as a function of the retarded Green’s function
G E)={EI-Hyype =2 L (E) =2 g(E)Y ™ where 3 (3,) is
the self-energy accounting for the coupling with the
right (left) electrode and f‘in(EAL)—EA(Z) (Datta, 1995).
These quantities are generally computed through some
order-N decimation technique (Lépez-Sancho et al.,
1984). The Landauer-Biittiker formula can be imple-
mented with different effective models, such as a tight-
binding Hamiltonian or a Hamiltonian derived from first
principles.

In the following, the main transport characteristics of
metallic carbon nanotubes in ballistic or weakly disor-
dered regimes will be first addressed. Transport length
scales will be discussed, as well as conduction regimes
such as weak and strong localization. Further, the effects
of e-ph and e-e interactions will be scrutinized in regard
to their fundamental contribution either to decoherence
and inelastic scattering or to the temperature depen-
dence of the conductance. The possibility of a strong
departure from Fermi-liquid behavior will also be dis-
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FIG. 33. Band structure (left), density of states (middle), and
conductance (right) for the (5,5) armchair nanotube.

cussed through a presentation of the Luttinger-liquid
model, mainly derived for armchair nanotubes, the pre-
dictions of which have received experimental supporting
evidence.

B. The clean limit

1. Ballistic motion and conductance quantization

For a carbon nanotube of length L between metallic
contact reservoirs, the transport regime is ballistic if the
measured conductance is L independent and only given
by the energy-dependent number of available quantum
channels N, (E) times the conductance quantum G
=2¢?/h, that is, G(E)=2¢*/h X N | (E), including spin de-
generacy. This occurs only in the case of perfect (reflec-
tion less) or ohmic contacts between the CNT and the
metallic voltage probes. In this regime, the expected
energy-dependent conductance spectrum is easily de-
duced, from band structure calculations, by counting the
number of channels at a given energy. For instance, me-
tallic armchair nanotubes present two quantum channels
at the Fermi energy Ep=0, or charge-neutrality point,
resulting in G(E()=2G. At higher energies, the conduc-
tance increases as more channels become available to
conduction. For illustration, the electronic bands and
conductance of the (5,5) metallic tube are displayed in
Fig. 33 within the symmetric -7 model.

These values are, however, the uppermost theoretical
limits that could be experimentally measured. In practi-
cal situations, lower values are found since reflectionless
transmission at the interface between the voltage probes
and nanotubes is fundamentally limited by interface
symmetry mismatch, inducing Bragg-type backscatter-
ing. Additionally, topological and chemical disorder, as
well as intershell coupling, introduce intrinsic back-
scattering along the tube, which also reduces the trans-
mission capability. To account for both effects, one gen-
erally introduces T,(E)=<1, the transmission amplitude
for a given channel, at energy FE, so that G(E)
=GoZ,-1 v, T(E) (Datta, 1995).

Rev. Mod. Phys., Vol. 79, No. 2, April-June 2007

FIG. 34. Quantum conductance in nanotube-based junctions.
(a) Top: Illustration of a nanotube-based metal-(12,0)/
semiconductor-(11,0)/metal-(12,0)  heterojunction. Bottom:
Close-up of the interface region with pentagon-heptagon pair
defect at the origin of chirality changes. (b) Corresponding
conductance spectra for the single nanotube (11,0) showing the
exact number of conduction channels (dotted line), together
with the conductance of the double junctions (11,0)-(12,0)
(bold line) and (12,0)-(11,0)-(12,0) (bold dashed line).

2. Transport properties of CNT-based junctions and contact
resistance

Beyond the fundamental interest in understanding the
transport properties of 1D systems, the integration of
CNTs in electronic devices such as field-effect transistors
(CNFETs) (Martel et al., 1998; Tans et al., 1998) raises
the question of the contact resistance, that is, the ability
for electrons to jump from a metallic electrode, used as
the source or drain, onto the nanotube. In particular, in
contrast to the predictions of quantized conductance ob-
tained for clean infinite systems, for a given nanotube/
electrode contact geometry, a lowering of the transmis-
sion across the interface will be systematically obtained.

As first analyzed by Chico and co-workers (Chico,
Benedict, Louie, and Cohen, 1996), even for the most
favorable case, i.e., for an intramolecular nanotube-
based heterojunction, the symmetry mismatch between
incoming and outgoing electronic states yields a trans-
mission probability lower than 1. This is illustrated in
Fig. 34 for clean nanotubes with different helicities
(Triozon et al., 2005). Note that such intramolecular
junctions have been experimentally observed by STM
(Odom et al., 2002). The reduction of transmission at the
interface is general to all realistic nanoscale junctions
between a nanotube and a metallic electrode, or other
interface geometries leading to different charge injec-
tion capabilities.

To discuss this point, we first define two different
classes of metal-nanotube junctions, namely, the metal—-
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metallic-nanotube-metal (M-MCNT-M) and metal-
semiconducting-nanotube-metal (M-SCCNT-M) junc-
tions. For the former case of metal-metal Ohmic
contacts, that is, in situations where there is hardly any
interface potential barrier to tunnel through, the contact
resistance mainly depends on the local atomic bonding
and orbital rehybridization at the interface. For the lat-
ter case of M-SCCNT-M junctions, several experiments
suggest that CNTFETs may operate as Schottky-barrier
transistors, with a very large contact resistance at low
bias related to a tunneling barrier which can be tuned
with the gate voltage (Heinze et al., 2002; Chen, Appen-
zeller, Knoch, Lin, and Avouris, 2005). The charge redis-
tribution through the interface, associated with the phys-
ics of band bending and its resulting depletion layers,
and the possible occurrence of metal-induced gap states
(Tersoff, 1984), are expected to depend strongly on the
relative positions of the Fermi level and band edges of
the metal and nanotube in contact. It is unclear, how-
ever, if these concepts, accepted for standard 3D de-
vices, should be valid in the case of nanotubes, which
can be described as either molecular objects or 1D sys-
tems. It has been shown in particular that various scaling
laws, such as the length of the depletion layer as a func-
tion of dopant fraction or the interface dipole, differ sig-
nificantly in 1D from their 3D analogs (Léonard and
Tersoff, 1999; Heinze et al., 2003).

We consider the case of a M-MCNT-M and assume
that |k,y=3%n!|¢l ) (or |kp=Z.e*|¢kr)) are the
propagating states with k,, (ky) the wave vector in the
metal (nanotube). We take |‘P{\IT> as the localized atomic
basis orbitals (p, like) in cell (/), which will have nonzero

overlap with |<p£,;) for only a few unit cells defining the
contact area [(/—/’) small]. The scattering rate between
the metal and nanotube can be qualitatively written fol-
lowing the FGR and will be related to {k,,|Hcontactl k)
the coupling operator between the tube and electrodes.
This matrix element is related to the chemical nature of
the interface bonding (covalent, ionic, etc.) and to the

overlap (@ <pf,;>, which will depend strongly on the ge-
ometry and contact configuration between the nanotube
and electrodes (end or side/bulk contacts, length of the
contact, etc.) as illustrated in Fig. 35, together with the
angular momentum of the atomic orbitals contributing
to |k,,). The coupling is further optimized whenever
wave-vector conservation is best satisfied, i.e., when k,,
~kp. For instance, in the case of metallic armchair
tubes, larger coupling will be achieved for &k,
=21/ 3\s‘§acc. A much smaller metallic wave vector will
yield a small coupling rate. The tunneling rate from the
metal to the nanotube is qualitatively given by

1 2
;_ -~ ?|<km|Hcontact|kF>|2pNT(EF)Pm(EF)s (33)

with pnT(EpR) [p(ER)] the density of states of the nano-
tube (metal) at the Fermi level. Note that these consid-
erations are derived for the low-bias regime.
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FIG. 35. Contact type between a nanotube and electrode first
layers: (a) end contacts and (b) side or bulk contacts. Courtesy
of J.J Palacios (Palacios et al., 2003).

Intriguingly, some experiments on metallic tubes have
measured only a single channel G =G at low bias, in-
stead of the two theoretically predicted channels, assum-
ing 77 degeneracy at the charge-neutrality point.
Anantram (2001) and Mingo and Han (2001) have pro-
posed an interpretation in terms of imbalanced coupling
strength between the m-metal (jellium) contact and the
' -metal contact. In Fig. 36, the contribution of both
channels to the conductance at charge-neutrality point is
reported as a function of nanotube length and for two
different nanotube diameters. The contribution of the
7 metal is shown to almost vanish for a sufficiently
large diameter.

Several theoretical papers emphasized the importance
of the hybridization between carbon and metal orbitals
at the contact (Nardelli et al., 2001; Dag et al., 2003;
Palacios et al., 2003; Okada and Oshiyama, 2005; Ke
et al., 2006; Nemec et al., 2006), while other work dis-
cussed the role of the Schottky barrier (Dag et al., 2003;
Shan and Cho, 2004; Xue and Ratner, 2004; Okada and

0.5

G[G]

40,40y 7 P

0 50 100 0 50 100
Nanotube Length [A]

(10,10)

0

FIG. 36. Contribution of 7 and 7" channels at the charge-
neutrality point to the total nanotube conductance for arm-
chair (10,10) and (40,40) armchair tubes and modeling the
metal contact by a jellium. Adapted from Mingo and Han,
2001.
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Oshiyama, 2005; Park and Hong, 2005; Odbadrakh et al.,
2006; Zhu and Kaxiras, 2006). The variations in contact
geometry (end, side, or melted) nanotube length, and
metal type can certainly explain that the conclusions are
still quite scattered. Further, while charge transfers, in-
terface states, and the suggested modification of the
Schottky barrier height by surrounding molecular di-
poles (Auvray et al., 2005) are expected to be well de-
scribed by ab initio simulations, it is yet impossible to
tackle with such accurate approaches micron-long tubes
in the presence of a gate voltage.

Finally, for higher bias voltage between conducting
probes, due to the potential drop profile along the tube,
the modifications of bands along the tube axis produce
additional backscattering (Anantram, 2000). This Bragg
reflection is a fundamental point that could explain the
experimental observation of limited turn-on current
with increasing bias voltage (Frank et al., 1998; Pon-
charal et al., 2002; Urbina et al., 2003).

C. Effect of disorder on transport

1. Electronic eigenstates and pseudospin symmetry

In the vicinity of the charge-neutrality point, the bal-
listic character of transport properties in metallic carbon
nanotubes or graphene is particularly strong, owing to
the linear dispersion relation in conjunction with the
specific symmetry of the eigenstates. These properties
have been derived within the the so-called k-p approxi-
mation (Slonczewski and Weiss, 1958; DiVicenzo and
Mele, 1984). Instead of the tight-binding model, which
allows one to compute the full band structure, the k-p
approximation is a local description around the Fermi
surface, where the Schrodinger equation is written by
decomposing the Bloch states as Wy_g, 5(r) =€/ uk(r),
uk(r) obeying the general Bloch condition. For a given
periodic potential V(r), the Schrodinger equation can
thus be simplified as (DiVicenzo and Mele, 1984)

=

( P> Rk hisk
+—+ +

+ V(l’)>u1<(l’) = Ex. atx(r),

(34)

2m 2m

where p=-iV is the momentum operator and m the
electron mass. The task in the k-p approximation con-
sists in extracting information by expanding u,(r)
around the Fermi level, in the same spirit as the tight-
binding approximation. Ando and co-workers (Ando
and Nakanishi, 1998; Ando, Nakanishi, and Saito, 1998)
extended the k-p approximation to the case of metallic
(armchair) nanotubes by expanding the wave functions
around the K and K’ points. The properties of Bloch
wave functions in the vicinity of K points can be derived
as follows. First, their Wannier representation up to a
normalization factor is given by
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V)= X X bDaxr—0)+b,Dpr—0)], (35)

€ all cells

where ®,_4 g(r)=p,(r—r,_4 p) to account for the two or-
bitals per unit cell, whereas (b{,b,) describe the ampli-
tude of the p, orbital for the two carbon atoms in the
unit cell. Then, following the definitions of Fig. 2 and
using Eq. (12), the eigenstates for k=K+ &k are derived

from
E(k - k b 0
( (*) Yoo ))( 1):( )) (36)
- ya (k) E(k) b, 0
with  a(k)=1+e*%4e7k®2 By  choosing K

=(4m/3\3a,.,0), one obtains a(k)=1+e 2™ il
+e?m3¢71%ya12 and the problem is recast into

( E(5k) 3y0a..(Sk, + iaky)/2> (bl) ~ (0)
30 (Ok — i 0k,)/2 E(5k) b,/ \0)°
(37)

The dispersion relations are found by setting the deter-
minant to zero, E(Jk)==+%vg|dk| [noticing that E(k)
=E(K)+ &k JE/k=E(k)], whereas the eigenvectors
must satisfy b%(&kx—iﬁk ):b%(ékxﬂ'&ky). An obvious
solution  is  bye % Py b,e!%?  [defining 6
=arctan(dk,/ k), the angle between &k and the k, axis
which corresponds to the tube axis direction], yielding
two possible choices

1 se—i0k/2
|S= il>=?< eiﬁk/Z ), (38)

V2
where s=1 indicates positive energy, whereas s=—1 de-
scribes states with negative energy, with respect to the
charge-neutrality point. In the basis {|s=1);|s=-1)}, the
Hamiltonian reads H =%v &k|o,, with o, the usual Pauli
matrix. The Schrodinger equation in the k- p approxima-
tion can thus be viewed as a (decoupled) two-component
matrix equation (one component for each sublattice),
which is formally equivalent to the Dirac equation,
where the spinor is not the electron spin but a pseu-
dospin representing the sublattice. Additionally, since
the energy of the bands touches Ej, the problem is
analogous to a free massless neutrino on a cylinder
(Ando, 2005). The vectors 1/ \5(11 ,1) are eigenstates of
o, with eigenvalues +1, and the pseudospin for a state
with arbitrary vector Sk is deduced by applying to
1/42(«1,1) a rotation operator with angle 6, about the z
axis [perpendicular to the tube direction; Fig. 37(c)],with

the corresponding rotation matrix (Ando, Naka-
nishi, and Saito, 1998)
ei()k/Z 0

RL6]= ( 0 e %2 ) (39)

Thus, finally, in the vicinity of the K points, the elec-
tronic wave functions can be expanded, up to some nor-
malization factor, as
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1 <S6+i0k/2

2\ it )ei(gkxx+5k’vy)‘ (40)
vZie

Wik ok s=21(F) ~
In Fig. 37 a schematic representation of eigenstates is
provided for the sake of illustration. Assuming an initial
Fermi energy slightly downshifted with respect to the
charge-neutrality point (s=-1), the two available orbit-
als for elastic intravalley scattering are shown. The total
wave function is given by Wy _k. g - 1(r) [Eq. (40)] times
the bonding or antibonding component (set as symbols
in Fig. 37), which are obtained in the limit |k)=|K),
where E(K)=0, and which gives two degenerate eigen-
states formed by either a symmetric or an antisymmetric
combination of the p, orbitals (|Vx)={|K,),K.)}):

oKl
(rlK.) = 2 - lpelr—rs = 0+ polr —rp = )]

(7r-antibonding state),

oK
xK)=2 = lp.x—ry—0) - p.(r—rp-1)]
¢ N2

(7"-bonding state).

2. Long-range disorder and the absence of backscattering

If we consider an impurity bound to the surface of
the tube, typically by van der Waals coupling, the impu-
rity potential U(r) is slowly varying on the scale of the
interatomic distance a... U(r) can thus be regarded as a
perturbation to the Hamiltonian H,.,, and the matrix
elements (W, ([U(r)| ¥, ) of the potential between the
Bloch states [Eq. (40)] describe the scattering probabil-
ity amplitude k— Kk’ due to the single impurity, which in
principle results in decreasing conductance. Such a long-
range potential generally involves low momentum trans-
fer, which guarantees the applicability of the effective
mass approximation, generally ignoring interband tran-
sitions.

U(~ Sk — Sk, UK, — 5K,_y) -

Assuming a long-range impurity potential, Ando et al.
(Ando and Nakanishi, 1998; Ando, Nakanishi, and Saito,
1998) demonstrate that both intravalley (k=K=+ &k —k’
=K = &k and the same changing K to K’) and intervalley
(k=K+8k—k’'=K’'+ &k and the same changing K to
K’) scattering probabilities were vanishingly small. The
case of intravalley scattering (say around K) was inves-
tigated by computing the terms (s, 5k|7[s’, k'), develop-
ing the 7 matrix recursively through a Dyson equation
[G=(E~Ho~U)"]

T=U+UGU=U+UGU +UGUUGU + -~

1 1
U+ u U+ -+ . (41)
E-Hy E-H,

1
=U+U
E-H,

In this expansion, the k-p Hamiltonian around the K
point can be reduced to Hy=yy(op+0,p,) (0, and o,
the Pauli matrices), whereas U/ has a diagonal represen-
tation, whose elements provide the impurity potential
on-site energies (Ando, Nakanishi, and Saito, 1998). The
term of type (s’,k’|7]s, k) can be expanded on the ba-
sis of eigenstates, and one is left with

<S,,61(’|U|S,ék> ~ U((Sk _ (Sk’)(s eiﬁk/Z’efin/Z)

s e—igkf/S
X( ikl )
= U(Sk — Sk’ )(ss" e (O 0k

+ e+i(0k+0kr)/2)’ (42)

where U(Sk— k') = [dr U(r)e *~*)T The backscatter-
ing amplitude for the case (s=s'==x1) thus becomes
(s, k|Uls,— k) =U2 k)cos(8,+60_;)/2=0. This can be
straightfowardly generalized to all higher-order terms in

the perturbation series (Ando, Nakanishi, and Saito,
1998) given by

“U(Sk, — 5K)

(sim KTEPl, + A =3 S 3 A

s1kq spky

Spkp [E - sxp(ﬂ(p)][E - 8sp71(61(p—1)] Tt [E - 851(5'(1)]

X (s|RLO_ IR ekp]lsp><sp—l IR[ 0kp][R_l [ 0kp71]|sp—1> - (sy|RL ﬂkl]R_l [Oc]ls), (43)

where the rotation matrix R[6; ] is defined by Eq. (39).
Therefore, because of the symnl;etries of eigenstates, all
time-reversal terms [like those illustrated in Fig. 37, bot-
tom, (a) and (b)] cancel out, so that the total amplitude is
proportional to

(sIRLOIRO_]ls) = cos( b + 04)/2, (44)
which equals zero since 6,+6_,==+m (see Fig. 37). In

conclusion, to all orders in the perturbation expansion,
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backscattering is suppressed in the low-energy range
around the charge-neutrality point. This property has
also been confirmed by numerical calculations (Ando
and Nakanishi, 1998; McEuen et al., 1999).

The applicability of this result is, however, restricted
to metallic nanotubes, in situations of slowly varying po-
tential, and for energy windows that shrink to zero
around the charge-neutrality point as the diameter of
the nanotube increases. For semiconducting tubes, these



706 Charlier, Blase, and Roche: Electronic and transport properties of nanotubes

E(kz, ky = 0)
0T Tlole) Wi kaskis=t1)
K —8k\ K + 6k 0 ~Ip) — [pF)
9 kp ' ~[p2) + 105
Ep |- 10)  [Wi=Ktok;s=—1)
s=-—1
(a) 5k (b) sk ) .
5,'0'1 $ —d0ko
gHA
. é —5121
Sky oz ~ “lcu/2
5k —ok h

FIG. 37. Scattering states. Top panel: Representation of linear
dispersion bands in the vicinity of a K point. The eigenstates
available for scattering are pinpointed for a given Fermi level
below the charge-neutrality point. Bottom panel: Schematic
illustration of the pseudospin rotation corresponding to scat-
tering processes (a) 6k — ok; — ok, ——dk and (b) ok — -k,
— -8k ——6k. We choose 6;,=0 and 6_,=. In (c), a represen-
tation of the local axis orientations with respect to the nano-
tube.

pseudospin properties do not apply and backscattering is
found to be much stronger. This picture has been dis-
cussed on the basis of experimental data by McEuen
et al. (1999).

3. Short-range disorder and elastic mean free path: Model
analysis

For a more general and in-depth understanding of dis-
order effects, including interband scattering in the pres-
ence of short-range disorder, evaluation of the elastic
mean free path is fundamental. For sufficiently weak dis-
order, a perturbative treatment can be performed within
the FGR, giving direct access to the elastic mean free
path €,=vpr. This was first derived by White and
Todorov (1998), by reducing the band structure to a two-
band approximation, as an effective model of the two
degenerate bands at the charge-neutrality point for arm-
chair nanotubes. By further considering the on-site
Anderson-type disorder (see below), an analytical for-
mula for €, was derived. €, was found to scale linearly
with diameter for a fixed disorder strength, while at a
fixed diameter the expected disorder scaling was shown
to be £,~1/W?, W measuring the variation range of the
on-site perturbing potential. The analytical derivation of
such a fundamental length scale first requires the calcu-
lation of the total density of states (DOS) in the vicinity
of the Fermi level. As shown in Sec. III, the DOS is
written as p(E)= éTr[é(E —H)] where the trace has to be
developed over a complete basis set. Using the DOS
given by Eq. (22), application of the FGR yields

1 2= y _ 2
T = 1 Ok o k)
><p(EF)]Vc]Vring (45)

with N and Ny, respectively, the number of pair atoms
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along the circumference and the total number of rings
taken in the unit cell used for diagonalization, whereas
the eigenstates at the Fermi level are rewritten as

|q,n1’n2(kF)> - [ : E eimkF| anl,n2(m)>s
NLVring m=1,Nyjpe
with
1 X
|1 (m)) = \TCE ™INL|pZ (mn)) + [pE(mn))],
1 X
|a,p(m)) = \2—% H™INL|p 2 (mn)) — [pZ(mn))].

(46)
The disorder considered here is an uncorrelated white

noise (Anderson-type) distribution given by

PAmn)|Up2(m'n")) = & A(m,1) 8 St »
(PEmn)|Ulpt(m'n")) = &5(m,1) Sy St »

P2 mn)|UlpA(m'n")) =0, (47)

where gz(m,n) and e4(m,n) are the on-site energies on
atoms A and B in position (#1,n), randomly distributed
within the interval [-W/2,W/2] and following some uni-
form distribution with probability P=1/W. Then by re-
placing Eq. (46) in Eq. (45) and using Eq. (47), a straight-
forward calculation gives

1 _ WP(EF)< 1

> €

Te(EF) B h \”/Nching NNiing
1 2 )
+ 2 €p|- (48)
\“’Nching Nching

Hence, if the disorder is described by random fluctua-
tions of on-site energies with uniform probability 1/W
(W the disorder bandwidth), the mean free path can fi-
nally be analytically derived as (White and Mintmire,
1998; Roche et al., 2000)

18a..%;
€, = W2

For the armchair m=n=5 nanotube, with disorder W
=0.2yy, by applying Eq. (49), one finds €,~560 nm,
which is much larger than the circumference length. As
shown in Figs. 38 and 39, numerical studies (Triozon et
al., 2004) confirm the scaling law of the mean free path
with the nanotube diameter close to the charge-
neutrality point. For semiconducting bands, the 1/W?
scaling law is still satisfied, but the mean free paths are
seen to be much smaller and do not scale with diameter.

Besides such analytical results, a numerical analysis of
the Landauer conductance in the case of such static uni-
form disorder was first performed by Anantram and
Govindan (1998). The conductance was found to be
much more sensitive in regions of higher densities of

-
V2 + m? + nm. (49)
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FIG. 38. Energy-dependent mean free path as a function of
diameter. Inset: 1/W? scaling in agreement with the Fermi
golden rule. Adapted from Triozon et al., 2004.

states, whereas it was almost unaffected by moderate
disorder close to the charge-neutrality point (Ando and
Seri, 1997).

4. Influence of doping on transport properties

The issue of doping is central to the use of CNTs in
electronic devices. In particular, standard logic devices
are based on p- or n-doped junctions, even though it has
been proposed that a field effect could be achieved with
undoped tubes thanks to a gate-voltage tuning of the
Schottky barrier at the tube/electrode interface (Heinze
et al., 2002; Appenzeller et al., 2004; Chen, Appenzeller,
Knoch, Lin, and Avouris, 2005).

While the desired effect of doping in semiconducting
tubes is to bring the Fermi level in (or close) to the
valence or conduction bands, several theoretical works
have emphasized that the perturbing potential created
around an impurity in CNTs can induce a strong back-
scattering of the propagating wave packets at specific

500 T T T T
[}
14 s
Lo "
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300 W =0.2y

= ---(5,5)
B —&5)
=300}
200
0

FIG. 39. Mean free paths for the metallic (5,5) and semicon-
ducting (8,0) tubes with the same value of disorder strength.
The conductance results (inset) are equivalent in both the
Kubo and Landauer formalisms. Adapted from Triozon et al.,
2004.

Rev. Mod. Phys., Vol. 79, No. 2, April-June 2007

energies, thus reducing the mean free path and mobility
of the corresponding free carriers (Ando and Nakanishi,
1998; Ando, Nakanishi, and Saito, 1998; Choi et al., 2000;
Kaun et al., 2002; Latil et al., 2004; Mahan, 2004; Son et
al., 2005; Adessi et al., 2006). Similar effects can be as-
cribed to the presence of defects such as vacancies, di-
vacancies, or pentagon or heptagon rearrangements
(Chico, Bendedict, Louie, and Cohen, 1996; Chico, Cre-
spi, Benedict, Louie, and Cohen, 1996; Orlikowski et al.,
2000). This reduction of conductance occurs in particular
at the energy of the (quasi)bound states (Choi et al.,
2000; Mahan, 2004) associated with the defects or impu-
rities in the CNTs, leading to the terminology of reso-
nant backscattering. The same physics of resonant back-
scattering has been seen in the case of doped silicon
nanowires (Ferndandez-Serra et al., 2006a, 2006b). The
scaling properties of such bound states in the case of
disorder and mixed B and N doping have been analyzed
by Lammert and co-workers (Lammert et al., 2001).

Several interesting effects related to the presence of
such bound states were theoretically proposed. The po-
sition in energy of these quasibound states was shown to
be strongly affected by an applied electric field with the
possibility of switching the current with a transverse E
field (Son et al., 2005). Further, it was proposed that the
trapping of localized states by defects or impurities
should result in the formation of quantum dots along the
CNT body (Chico et al., 1998).

Substitutional doping by nitrogen or boron impurities
has certainly been the most studied at the theoretical
level (Choi et al., 2000; Lammert et al., 2001; Kaun et al.,
2002; Latil et al., 2004; Son et al., 2005; Adessi et al.,
2006). Substitutional doping by nitrogen or boron, re-
spectively, n- and p-type dopants (Yi and Bernholc,
1993), was achieved very early, either intentionally or in
several attempts to synthesize composite B,C,N, tubes.
While incorporation of boron is found to be rather lim-
ited, at least lower than 1% which is the resolution limit
of electron-energy-loss spectroscopy (EELS) chemical
analysis, nitrogen is believed to be incorporated in much
larger quantities with several types of bonding (three-
fold, pyridinelike, etc.), even though it induces at large
percentage severe topological modifications (bamboo-
shaped tubes). A thorough review of N doping has been
given by Ewels and Glerup (2005).

Figure 40 shows the effect of a single N impurity on
the DOS, the conductance, and the scattering phase
shifts of the two eigenchannels (Choi et al., 2000) for a
metallic (10,10) nanotube. This work was the first ab ini-
tio study of doped nanotubes (within the Lippman-
Schwinger approach). Even though the case of a single
impurity was studied (due to computer time limitations),
such ab initio simulations provide a unique reference
that allows one to build realistic models of the scattering
potential generated by dopants or defects. The contour
plot (Fig. 40, right) shows the quasibound state at
0.53 eV which is at the origin of strong backscattering,
whereas the rest of the spectrum is almost unaffected by
the resonance.
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FIG. 40. (Color online) Bound states and resonant backscatter-
ing. Left: Effects of a single nitrogen impurity on conductance
(top), the local density of states (middle), and the phase shift of
eigenchannels (bottom) in the (10,10) nanotube. Right: Con-
tour plot of the totally reflected state at 0.53 eV. Adapted from
Choi et al., 2000.

While most work has focused on the effect of a single
isolated defect, a few studies (Latil er al., 2004, 2005;
Adessi et al., 2006), combining ab initio calculations with
a semiempirical -7 Kubo approach to transport, have
studied the effect of a random distribution of substitu-
tional or physisorbed dopants at various concentrations
for micron long tubes. Such studies allow one in particu-
lar to extract relevant mesoscopic information such as
{,(E). In Fig. 41, the mean free path for long metallic
boron-doped nanotubes is shown as a function of impu-
rity density and CNT diameter, at a fixed Fermi energy.
The downscaling of €, with impurity density and the up-
scaling of €, (at fixed density) with tube diameter are
reproduced, showing good agreement with the FGR re-
sults derived for uniform disorder (Latil e al., 2004).
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FIG. 41. Scaling of the mean free path at the Fermi level, for a
B-doped (n,n) nanotube. Left: In the case of a (10,10) nano-
tube with various boron concentrations, ¢, behaves like the
inverse of the doping rate. Right: For a fixed concentration of
B atoms, ¢, is a linear function of the nanotube’s diameter.
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In the work of Liu and co-workers (Liu et al., 2001),
the electronic transport of boron-doped nanotubes has
been investigated experimentally. The concentration of
boron atoms was evaluated to be =1% whereas the di-
ameters of tubes were estimated in the range
[17 nm,27 nm]. Mean free paths on the order of ¢,
=220-250 nm were inferred from weak-localization
theory. Applying the analytical form of Eq. (49) for €,
with the corresponding parameters (the dopant concen-
tration and on-site boron energy can be mapped onto an
effective W value), one finds a theoretical estimate of
€,=274 nm for the tube with diameter 17 nm, in agree-
ment with experimental estimates. Such studies allow
one to test on realistic systems previous studies per-
formed on various models of uniform disorder (Anan-
tram and Govindan, 1998; White and Todorov, 1998;
Triozon et al., 2004) and make a quantitative connection
with experiments. The case of a limited number (a few
tens) of realistic scattering centers was also explored for
covalently functionalized (Lee et al., 2005) or irradiated
(Biel et al., 2005; Gémez-Navarro et al., 2005) tubes and
it was shown again that a strong modification of the
CNT atomic structure should quickly lead to a regime of
Anderson localization, provided that the transport re-
gime remains quantum-mechanically coherent (i.e., in
the absence of electron-phonon or electron-electron in-
elastic scattering).

The large drop of the mean free path (or mobility) in
substitutionally doped tubes can be partially bypassed
by adopting other doping strategies. It was shown in par-
ticular that physisorption doping, where, e.g., alkali-
metal atoms (Rao et al., 1997; Petit et al., 1999; Jouguelet
et al., 2000; Zhou et al., 2000; Bendiab et al., 2001; De-
rycke et al., 2002; Appenzeller et al., 2004; Radosavljevic
et al., 2004) or molecules (Kazaoui et al, 1999; Kong
et al., 2000; Kong and Dai, 2001; Takenobu et al., 2003;
Auvray et al., 2005) are adsorbed on the tube, leads to a
much larger mean free path than substitutional doping
(Latil et al., 2005; Adessi et al., 2006). Alkali-metal atoms
located either outside or inside CNTs act as donor im-
purities (Miyamoto et al., 1995; Rubio et al., 1996) while
halogen atoms, molecules, or chains act as acceptors
(Rao et al., 1997; Grigorian et al., 1998; Kazaoui et al.,
1999; Fan et al, 2000). As yet another example,
fullerenes or metallofullerenes, encapsulated inside
CNTs, have been used to tune the band gap and/or
Fermi level of the host tube (Smith ef al., 1998; Hirahara
et al., 2000; Hornbaker et al., 2002; Lee et al., 2002). En-
dohedral doping, that is, intercalation inside the tubes, is
expected to allow for good structural stability as the at-
oms and molecules are not expected to desorb upon in-
creasing temperature.

Several issues are still under debate. It has been ob-
served that as-grown tubes present naturally a p-type
behavior in CNTFETs (Martel et al., 1998). The presence
of holes has been ascribed either to charge transfer from
metallic electrodes (Martel et al., 1998; Tans et al., 1998)
or to the presence of oxygen adsorbed on the tube (Col-
lins et al., 2000; Kong et al., 2000; Sumanasekera et al.,
2000). Another important issue is related to the exis-
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tence or not of a Schottky barrier at the tube/electrode
interface. From this perspective, it is not clear if the
change in CNTFET characteristics upon doping is re-
lated to a modification of the intrinsic properties of the
tube or of the Schottky barrier at the tube/electrode in-
terface (Derycke et al., 2002; Appenzeller et al., 2004,
Radosavljevic ef al., 2004; Auvray et al., 2005).

To conclude this section, we emphasize that the issue
of doping by physisorption of molecules, or more gener-
ally the modification of the electronic properties of
CNTs by molecular adsorption, is at the heart of a grow-
ing and potentially important field, namely, that of
chemical sensors based on CNTs (Wong et al., 1998;
Baughman et al., 2000; Collins et al., 2000; Kong et al.,
2000; Giannozzi et al., 2003; Peng and Cho, 2003; Jhi et
al., 2005). The key issue for such devices is selectivity
and sensitivity; namely, can we distinguish from the CNT
1/V modifications upon molecular adsorption between
two different donor (or acceptor) molecules, and what
minimum adsorbate concentration is needed to induce a
measurable effect on the conductance. The 1D character
of CNTs and the large variation of conductance dis-
cussed above in the case of substitutional doping clearly
suggest that such a device should present unprecedented
sensitivity. The sensing properties of CNTs can be fur-
ther modified or tailored by covalent functionalization.
While many experimental syntheses of covalently func-
tionalized CNTs have been performed (Wong et al.,
1998; Bahr et al., 2001; Shim et al., 2001; Chiu et al., 2002;
Kamaras et al., 2003; Strano et al., 2003), the theoretical
investigation of the related electronic and transport
properties is still in its infancy (Chiu et al., 2004; Lee et
al., 2005).

5. Multishell conduction

Multiwalled nanotubes or bundles of single-walled
nanotubes present additional geometrical complexity
due to the coupling between shells, yielding multishell
transport. Multiwalled nanotubes are made of a few to
tens of shells with random helicities weakly coupled
through van der Waals interactions and weak electronic
delocalization (Charlier et al., 1994). The intershell cou-
pling can be determined within a tight-binding scheme
by keeping one p ; orbital per carbon atom, zero on-site
energies, constant nearest-neighbor hopping on each
layer n, and some effective hopping form for describing
neighboring-shell 77  coupling (Charlier and
Michenaud, 1993; Saito et al., 1993; Lambin et al., 2000),
leading to the following Hamiltonian:

H= 70[2 Ip’;><p’;|]
2

- B[E cos(a,»,»)e<dff“>/5|p-’;><pil], (50)
i

where 6; is the angle between p', and p/| orbitals and d;

denotes their relative distance. Typical parameters are

Y%=2.9 eV, a=3.34 A, and 6=0.45 A. The difference be-

tween SWNTs and MWNTs stems from the parameter 8.
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An ab initio estimate gives 8= 7,/8, which enables wave
packets to redistribute among the different shells of the
MWNT (Lambin et al., 2000). Topologically speaking,
two kinds of multiwall nanotube can be constructed.

The first class is made from nanotubes whose helici-
ties allow for commensurability between shells. As a re-
sult the full MWNT is a periodic object defined by a
single unit cell. This is, for instance, the case for
(5,5)@(10,10) formed by two armchair metallic tubes or
(6,4)@(12,8)@(18,12), which consists of two semiconduct-
ing shells enclosed by a metallic one. Indeed, ITs.5)]
=[T0,10|=2459 A whereas [T(4)|=[T25]=[Tas12)
=18.79 A, so that all shells in the MWNT have the same
translational vector unit along the common axis.

In contrast, in MWNTSs such as (6,4)@(10,10)@(17,13)
there exists an intrinsic incommensurability between
shell registries. Indeed, the translational vectors along
each shell are, respectively, |Tig4)|=3v19%, [To10)
=\3a,,, and |T(1713|=31167%,,, so that the ratios of the
lengths of the individual shell translational vectors be-
come irrational numbers and no unit cell can be defined.

As a consequence, depending on the individual shell
helicity, one can obtain either translationnally invariant
or aperiodic objects. The weak electronic coupling be-
tween neigbhoring shells thus defines the possibility of
very different intertube coupling and charge-transfer
characteristics, whose consequences on electronic band
structure and transport properties are discussed in the
next section.

a. Commensurate multiwalled nanotubes

Since commensurate MWNTs are periodic objects
with a well-defined unit cell, the Bloch theorem applies
and their band structures can be easily computed. Given
that shells interact only weakly, the conductance spec-
trum of a MWNT in the ballistic conduction regime is
given as the sum of all conducting channels at a given
energy (Fig. 42). Accordingly, a very small intrinsic resis-
tance is expected at Er for a metallic MWNT, provided
ballistic conduction is established and the charge is al-
lowed to explore all available conducting channels.
However, as discussed below, at various energies an in-
tershell interaction might be at the origin of the stepwise
reduction of conduction channels. We consider a generic
MWNT made of coaxial metallic shells with perfect
commensurability, namely, armchair double-walled
(5,5@(10,10) and triple-walled (5,5)@(10,10)
@(15,15) nanotubes. Such MWNTSs have a fivefold com-
mon symmetry. Their respective orientation might also
possess additional symmetry planes perpendicular to the
tube axis. In that case, the interwall interaction yields no
changes over the whole spectrum, which is a superposi-
tion of independent spectra. At the charge-neutrality
point the conductance should thus be G=6G,. However,
if the symmetry is lowered by disorienting (rotationally
and translationally) one nanotube with respect to an-
other, then splitting of the degeneracy occurs and
pseudogaps are formed (Kwon and Tomdének, 1998;
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FIG. 42. Effect of the rotational symmetry breaking for a com-
mensurate (5,5)@(10,10)@(15,15) MWNT on (a) its electronic
properties, (b) its DOS, and (c) its band structure. Adapted
from Lambin er al., 2000. Pseudogaps (d) and associated con-
ductance spectra (e) for (5,5)@(10,10)@(15,15). Adapted from
Sanvito et al., 2000.

Lambin er al., 2000). Figure 42 illustrates such a phe-
nomenon.

The presence of pseudogaps in the density of states
has direct consequences on the available energy-
dependent conduction channels. As shown by Sanvito
and co-workers (Sanvito et al., 2000), the conductance is
reduced at the charge-neutrality point. One notes that
this effect of intershell interaction is, however, specific to
rotational disorientations of neighboring shells with Cs,
symmetry. Other commensurate MWNTs such as
(6,6)@(11,11) with no Cs;, symmetry will not be sensi-
tive to this phenomenon.

b. Incommensurate multiwalled nanotubes

The case of incommensurate shells is even more in-
triguing and challenging, since the Bloch theorem is no
longer applicable, owing to the lack of translational in-
variance along the MWNT axis. To ascertain the intrin-
sic quantum transport properties in these incommensu-
rate systems, it is necessary to investigate how
propagating wave packets are sensitive to the intershell
-1 orbital coupling.

Analysis of the time-dependent evolution of an elec-
tronic wave packet initially localized in the outer shell is
a first instructive step. This is achieved by solving the
time-dependent Schrodinger equation. In a commensu-
rate system, some redistribution of the weight of the
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FIG. 43. Time-dependent evolution of total wave-function
probability on a given shell (m,n) of a multiwalled nanotube, if
at initial time (r=0) the wave packet is fully localized in the
outer shell. Left: Commensurate case (6,4)@(12,8)@(18,12),
with a close-up of the situation for shell (12,8) in the inset.
Right: Incommensurate case (6,4)@(10,10)@(17,13).

wave packet on each inner shell was numerically found
to occur at a time scale 7;,~#v,/8* defined by the inter-
shell coupling strength and well understood within the
Fermi golden rule. This is illustrated in Fig. 43 where the
redistribution of a wave packet initially localized in the
outer shell is shown (Roche er al., 2001a). From those
results, one can estimate that for a source-drain spacing
of the order of ~1 um, the ballistic time of flight
~4500%/ vy, will be two orders of magnitude larger than
7 (for B=1,/8), which points toward the important con-
tribution of multishell conduction.

Nevertheless, the nature of the intrinsic conduction
regime has been strongly debated, with some numerical
works in favor of a negligible contribution of intershell
scattering for charge energies at the charge-neutrality
point, whatever the underlying aperiodic potential
(Yoon et al., 2002; Mayer, 2005; Uryu and Ando, 2005).
In contrast, by studying numerically the quantum dy-
namics of wave packets over a larger range of energies,
the situation was found to become more complex, with a
general nonballistic regime, described by \J’W~At’7
(Roche et al., 2001a; Triozon et al., 2004). The coefficient
7 is found to decrease from 1 to ~1/2 depending on the
degree of registry mismatch between neighboring shells
and the energy of the charge carriers (Roche et al.,
2001b). Figure 44 shows, at several energies, the time
dependence of the diffusion coefficients for the incom-
mensurate (6,4)@(17,0)@(15,15) and commensurate
(5,5)@(10,10)@(15,15) MWNTs (Triozon et al., 2004).
Whatever the Fermi energy of the wave packets, the
conduction remains ballistic in a defect-free commensu-
rate MWNT. In contrast, for incommensurate systems,
depending on the considered energy of charge carriers
and the resulting hybridization strength between neigh-
boring shells, charge conduction displays a general
power-law behavior of D(¢). This anomalous diffusion
yields a specific length scaling of conductance as shown
in Fig. 44 (right frame). At the charge-neutrality point,
wave packets essentially remain confined to the outer
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FIG. 44. Time-dependent diffusion coefficient for incommen-
surate and commensurate disorder-free MWNTs (with g
=7,/8). Right: Length dependence of conductance for two
Fermi energies for (6,4)@(17,0)@(15,15). Adapted from Trio-
zon et al., 2004.

shell as they spread in time and the carrier motion re-
mains ballistic with a quantized conductance G=4¢?/h.
In contrast, at energy E=15eV, G(L)~(2¢*/h)
X(L/Ly)"Y7 with L, (or 5) an energy-dependent
characteristic length (exponent). This anomalous length
scaling of the conductance has been obtained numeri-
cally using both Kubo and Landauer calculations (Trio-
zon et al., 2004; Chen and Yang, 2005).

Recently, Wang and Grifoni (2005) have succeeded in
investigating analytically the electronic scattering rate of
electrons propagating in the outer shell of a double-
walled nanotube, due to an effective aperiodic potential
produced by the inner shell, and treated perturbatively.
General helicity-dependent selection rules were analyti-
cally established, and in the case of incommensurate
shells the contribution of the coupling to the inner shell
was shown to yield a diffusive regime in the outer shell,
allowing for the extraction of an elastic mean free path
€,. This elastic length scale was found to decrease with
increasing energy, showing a systematic strong suppres-
sion at each new subband onset. For the (9,0)@(10,10)
CNT, the mean free path in the outer shell at the charge-
neutrality point was found to be of the order of €,
~20 um and decreasing by one order of magnitude for
each higher subband.

The occurrence of a diffusive regime and intrinsic
elastic mean free path due to intershell multiple-
scattering phenomena was also confirmed by numerical
calculations on double-walled (9,0)@(10,10) and triple-
walled (6,4)@(17,0)@(15,15) nanotubes (Wang et al.,
2006). This novel fundamental elastic length scale ({,),
which results from the intrinsic aperiodicity of objects
with a high degree of crystallinity, is unprecedented in
mesoscopic physics.

Experiments on boron-doped MWNTs have reported
on the anomalous scaling of the conductance (Krsti¢ ef
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al., 2003). However, the obtained exponent 7~1/2,
pointing toward a diffusive regime, could not be unam-
biguously attributed to multishell conduction, owing to
the superimposed contribution of chemical disorder.
Some estimation of the intershell resistance of
~10 kQ pum was performed (Bourlon et al., 2004), and
although its value was found to be very small, this evi-
dences the contribution of multishell conduction in real
experiments. Finally, it has been recently possible to
fully characterize the chiral indices of individual shells of
double-walled nanotubes by means of electron diffrac-
tion (Hirahara et al., 2006). This geometrical determina-
tion of shell helicities in conjunction with transport mea-
surements (Kociak et al., 2002) opens novel perspectives
for an in-depth exploration of conductance scaling prop-
erties in these objects.

c¢. Crossed carbon nanotubes junctions, bending and twisting
deformations

Crossed nanotube junctions result from interacting in-
dividual SWNT shells, which are either present in
bundles, on ropes of compacted nanotubes or intention-
ally manufactured for a given application purpose. In
crossed-tube junctions, the intertube distance can to a
certain extent be controlled by applying pressure, for
instance, by means of an atomic force microscope
(AFM) tip. As a result, a change in the overlap of
neighboring-shell wave functions is induced by struc-
tural deformations. This was analyzed by Yoon and co-
workers (Yoon et al., 2001), who performed first-
principles calculations of armchair-based crossed-tube
junctions, and found that the intertube conductance
fluctuations was on the order of =(0.1-0.2)G,, depend-
ing on the applied contact force, roughly a few to about
15 pN (Fig. 45).

On the other hand, the effect of structural distortions
on the electronic and transport properties has also been
investigated. Electronic band structure calculations
showed that progressive bending of CNTs results in a
decrease of the transmission coefficient in certain energy
ranges [Fig. 46(a)], where curvature-induced o-7 hybrid-
ization effects produce localized states and strongly en-
hanced backscattering (Rochefort ef al., 1999; Lammert
et al., 2000). Similarly twisting operations were also
shown to produce band-gap openings in otherwise gap-
less metallic armchair nanotubes, with particular band-
gap oscillations depending on the twisting angle [Fig.
46(b)].

D. Quantum interference effects

1. Weak localization and the Aharonov-Bohm effect

Weak localization is a quantum interference phenom-
enon that develops beyond the length scale of the elastic
mean free path, provided the wave function maintains
its phase coherence (Altshuler et al., 1981). From quan-
tum mechanics, the quantum transmission between two
chosen points in real space, let us say P and Q, generally
reads
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FIG. 45. Calculated intratube and intertube conductances as a
function of the contact force for a (5,5) crossed junction. Solid
(dashed) lines and left (right) y axis indicate intertube (in-
tratube) conductances. Top: Structural relaxation of the (5,5)
crossed CNT junction with a 15-nN contact force. Adapted
from Yoon et al., 2001.

2 2
G= fPPﬂQ, (51)

where P, which is the probability for an electronic wave
packet to go from one site P to another Q, can be fur-
ther expanded as
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FIG. 46. Transmission coefficient as a function of Fermi level
for isolated bent (6,6) nanotubes with increasing bending angle
(left) or for twisted models of distortions (right). Upper draw-
ings show the corresponding nanotube structures. Adapted
from Rochefort et al., 1999.
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Ppoo= 2 |AL+ 2 A, (52)
i i#j

defining Ae'® as the probability amplitude to go from P
to Q via the i path. In order to extract the main univer-
sal transport features of a given disordered system, an
average over a statistical distribution of random configu-
rations has to be performed. In this averaging process,
most of the interference terms in the second summation
will vanish. However, two scattering events (paths) topo-
logically returning back to the origin (clockwise and
counterclockwise) will yield a constructive contribution
of quantum interferences, thus reducing the absolute
conductance compared to its classical value. For these
paths with topological symmetry, the probability of re-
turn to the origin is written as

Po_o =A% + A_e" ™[> = 4| A, (53)

which thus enhances the classical value by a factor of 2.
To compute the total quantum correction (6Gy,;) due to
weak-localization effects, one has to integrate over the
whole class of such paths, so that

2¢°D [~
Gy ~ e_f Po_ot)(e 70— e'). (54)

hJo

The quantum correction is thus phenomenologically
given by the integrated probability of return to the ori-
gin between the elastic scattering time 7, and coherence
time 7,. The coherence time is the time scale that limits
the contribution of quantum interference effects. It
originates from the intrinsic decoherence mechanisms
between clockwise and counterclockwise paths, which
are driven by the coupling of the quantum phase to a
time-dependent fluctuating potential mimicking either a
fluctuating electromagnetic field or a phonon bath
(Chakravarty and Schmid, 1986). Applying a magnetic
field is a powerful tool for unveiling these quantum in-
terference effects. Indeed, switching on a magnetic field
breaks the time-reversal symmetry between these paths,
resulting in an increase of conductance or decrease of
resistance  (negative magnetoresistance). Another
magnetic-field-induced quantum interference effect in a
ring or cylinder geometry is the modulation of resistance
with period ¢,/2. The phase factor can then be written
as (A is the vector potential)

e 2
a+:i—ng-dr:J_r—ng-dr, (55)
fic ®o

and so the amplitude is given by | A[?|1+e/*2)?, result-
ing in a modulation factor cos(2w¢/ ¢;). This phenom-
enon was first reported in carbon nanotubes by Bachtold
and co-workers (Bachtold et al., 1999).

a. Application to metallic (armchair) carbon nanotubes

Here the weak-localization phenomena in metallic
carbon nanotubes are illustrated, on the basis of numeri-
cal results (Roche et al., 2001a). The behavior of the
field-dependent  diffusion coefficient D(7,, ¢/ ) is
shown in Fig. 47 for the (9,0) nanotube as a function of
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FIG. 47. Diffusion coefficient D(7,, ¢/ ¢) (in units of Azyo/h)
for the (9,0) nanotube evaluated at time 7,> 7, for two disor-
der strengths W/y,=3 and 1 such that the mean free path (¢,
~0.5 and 3 nm, respectively) is either shorter (dashed line) or
longer (solid line) than the nanotube circumference (|C|
~2.3 nm). The right y axis is for the dashed line, and the left y

axis is for the solid line. Inset: D(7,, ¢/ ) for €,=3 nm and
L(7y) <2L,.

£, using Eq. (49). By using Anderson-type disorder, the
value of ¢, can be tuned by the disorder strength W and
several situations of interest can be explored.

First, the weak-localization regime (Altshuler et al.,
1981) is analyzed under the condition €,<|C,|<L(7y).
Figure 47 shows that the diffusivity increases at low
fields (negative magnetoresistance) and that the periodic
Aharonov-Bohm oscillations are dominated by a ¢y/2
period, i.e., D(7,, b+ ¢y/2)=D(7,,¢) in agreement with
weak-localization theory. In contrast, when ¢,>|C,,
L(7,<2¢,), the system exhibits a positive magnetoresis-
tance associated with D(7y4, ¢+ ¢y)=D(7,,¢). For the
case €,>|C;|, L(7,>2¢,), negative magnetoresistance
and Aharonov-Bohm oscillations with period ¢, are ob-
tained. Note that, with the analytical formula for the
mean free path and estimates of disorder values, one
gets €,=10%C,|, where |C,| is the circumference of the
outer nanotube in the experiment of Bachtold and co-
workers (Bachtold et al., 1999). This leads to some in-
consistency since the theoretical value of the mean free
path is a priori too large to be consistent with a ¢y/2
Aharonov-Bohm oscillation. In that respect, an impor-
tant observation is that the magnetic field amplitude
needed to observe conventional weak localization also
strongly modifies the band structure, with a ¢q-periodic
oscillation of 1D band positions as discussed in Sec.
III.LE.2. Although the band-gap opening and oscillations,
as well as other band structure changes (Van Hove sin-
gularity splitting and shifting), are likely to be smoothed
by disorder, the magnetofingerprints will obviously re-
sult from an entangled situation, which goes much be-
yond the conventional theory of weak localization (Alt-
shuler et al., 1981). Several early experiments suggested
such additional complexity in analyzing magnetotrans-
port measurements (Fujiwara et al., 1999; Fedorov et al.,
2005). Roche and Saito (2001) theoretically found that,
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for a fixed disorder strength, magnetotransport finger-
prints present strong fluctuations as a function of Fermi
level position, CNT diameter, and orientation of the
magnetic field with respect to the tube axis. Thanks to
the engineering of efficient electrostatic gating of the
nanotube, some experimental evidence of such multiple
Aharonov-Bohm effects, with a ¢,/2 oscillation driven
by weak localization superimposed on to ¢y-periodic re-
sistance fluctuations related to band structure modula-
tions, have been reported (Stojetz et al., 2006).

The issue of the weak-localization regime in chemi-
cally disordered carbon nanotubes has been investigated
recently for the case of boron (Latil et al., 2005) and
nitrogen doping (Avriller et al., 2006). For an axial mag-
netic field, the interplay between field-dependent band
structures and quantum interference effects was shown
to induce strong electron-hole asymmetry of the magne-
toresistance patterns. For a given chemical impurity con-
centration and at a finite magnetic flux threading the
initially metallic nanotube, the contribution of boron-
induced quasibound states was found to induce strong
localization effects for hole transport; in contrast, elec-
tron transport remains weakly affected by disorder, with
quasiballistic conduction (Latil et al., 2005). In the case
of a magnetic field applied perpendicular to the nano-
tube axis, an upward shift in energy of the nitrogen-
induced quasibound states was found to be driven by the
field intensity, with large magnetoresistance fluctuations
resulting under small Fermi level shifts (Avriller et al.,
2006).

Finally, some spectacular energy-dependent behavior
of the coherence length and elastic mean free path could
also be measured (Stojetz et al., 2005). The obtained en-
ergy dependence of ¢, was in full agreement with theo-
retical results (Triozon et al., 2004). Roche and co-
workers (Roche et al., 2005a) further studied the energy
dependence of the coherence length by computing the
total Kubo conductance in nanotubes in the presence of
both static disorder (Anderson type) and a time-
dependent fluctuating potential (resulting from phonon
induced atomic displacement field). By evaluating both
the full Kubo conductance and its classical value, the
quantum correction could be deduced,

e’ N, €, (E)
OGy (E)=2——""—
wi(E) n L(E.)

- G(E), (56)
and the energy dependence of L4(E) in the weak-
localization regime could be extrapolated on the basis
of the conventional phenomenology, ie., Ly4E)
=8Gw(E)/L(E,1) and  74(E)=Ly(E)/[v(E){(E)],
where L(E,t) corresponds to the relevant length scale
entering in the Kubo normalization factor. In Fig. 48,
various contributions to the conductance are shown for
two selected values of static disorder and acoustic pho-
non modulation (twist mode). L4(E) and 7,(E) are seen
to decrease at each onset of new subbands, in agreement
with experiments (Stojetz et al., 2005). Further, for a
fixed energy L 4(E) downscales with increasing static dis-
order potential. For Anderson-type on-site disorder, one
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FIG. 48. Quantum conductance and coherence length in disor-
dered nanotubes. Top: Computed Kubo conductance for a
weakly disordered (10,10) nanotube for two time scales [¢
=(3500,35 000)7%:/ yo), together with the classical value and the
deduced quantum correction. Bottom: Coherence length
L 4(E) for two values of static disorder and acoustic phonon
modulation (twist mode). Adapted from Roche et al., 2005b.

gets L y(W=0.1vy) ~75-400 nm, whereas L, W=0.2v,)
~50-200 nm and L 4 W=0.5y,) ~20-50 nm.

In the case of multiwalled carbon nanotubes, the situ-
ation becomes even more complicated. First, each shell
has a different diameter, with a difference of ~3 A be-
tween neighboring shells. So for a given ¢, flux thread-
ing one given shell, neighboring shells will be sensitive
to either Larger or smaller flux, leading to multiple con-
tributions of incommensurate Aharonov-Bohm oscilla-
tion periods. In addition, even if the MWNTs are free
from any other source of contamination, the incommen-
surability between neighboring shells produces an un-
derlying aperiodic potential for m-electron motion, as
explained in Sec. IV.C.5. This phenomenon was shown
to be at the origin of various energy-dependent magne-
totransport fingerprints, such as ¢,-periodic magnetore-
sistance oscillations at certain energies, that will trans-
form into ¢y/2 oscillations for a shifted Fermi level
position (Roche et al., 2001a; Triozon et al., 2004).

2. From weak to strong localization

In low-dimensional systems, the relation between the
mean free path and the localization length is an impor-
tant issue. Thouless (1973) derived the simple relation
£=2¢, between the two quantities in strictly 1D systems.
By means of random matrix theory (Beenakker, 1997)
this result was generalized for quasi-1D systems with a
large number of conduction channels é~N ¢, For
transport regimes that are said to be ergodic, the aver-
age properties do not depend on the precise nature of
the underlying disorder, but are predicted to be driven
by the universal symmetry class of the Hamiltonian; that
is, &= %{,B(NL—I)+2}€L,, with B=1 if the Hamiltonian is
symmetric under the time-reversal operator and B=2
otherwise.
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In metallic carbon nanotubes at the charge-neutrality
point, assuming uniform Anderson-type disorder (with
strength W), the localization length is thus expected,
at zero field, to be given by &E=0)
=(36a..v5/ W?)yn*+m?+nm, and will consequently also
scale linearly with the tube diameter for low disorder
(Roche et al., 2000; Hjort and Stafstrom, 2001; Jiang et
al., 2001). Its experimental observation assumes that an
exponential increase of the resistance develops from a
certain nanotube length L, i.e., G=(2¢?/h)exp(-L/§),
and the localization length &(F) is predicted to be energy
dependent, with a systematic decrease at each onset of
new subbands, following the mean-free-path pattern.

Some evidence of Anderson localization has been ob-
tained experimentally (Shea et al., 2000; Gomez-Navarro
et al., 2005). First, Shea and co-workers studied low-
temperature magnetotransport in a ring of a rope of
SWNTs. Although a weak-localization signature was ob-
served for T=3 K, a drastic resistance increase was
measured below 1 K, with strong departure of magne-
toresistance behavior from weak-localization theory. No
clear understanding of the origin of localization or its
intrinsic features could be achieved. More recently,
Gomez-Navarro and co-workers (Gémez-Navarro et al.,
2005) reported an exponential increase of the resistance
in Ar*-irradiated carbon nanotubes. By tuning the ion
irradiation time exposure to enhance the defect density
(assigned to bivacancies), the resulting resistance in-
crease was analyzed in terms of decreasing localization
length. These measurements were supported by ab initio
calculations (Biel et al., 2005), giving the first direct evi-
dence of a metal-insulator transition in quasi-1D sys-
tems.

Other recent work has further theoretically investi-
gated simultaneously both the elastic mean free path
and the localization length (Avriller et al., 2006) for a
realistic model of chemical disorder (substitutional ni-
trogen impurities). The Thouless relationship between
the two was confirmed in the absence and presence of an
external magnetic field (Thouless, 1977) and in agree-
ment with the theoretical predictions of random matrix
theory (Beenakker, 1997).

E. Inelastic scattering

1. Electron-phonon coupling

Discussion of the vibrational properties of nanotubes
would require a full review that is beyond the scope of
the present work. However, some aspects of the elec-
tronic and transport properties of nanotubes cannot be
understood without treating the coupling of electrons
with phonons. Such aspects include (nonexhaustively)
the charge density wave or superconducting instability
of the Fermi sea (Sec. IV.F), the inelastic scattering of
electrons by phonons in a transport experiment (Sec.
IV.E.2), the Raman intensities, and the relaxation of hot
electrons in an optical experiment. Thorough reviews or
papers on the phonon properties in CNTs can be found
in the literature (Sanchez-Portal et al., 1999; Dresselhaus
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FIG. 49. Electron-phonon scattering processes. (a) Symbolic
scattering processes (phonon emission): I'y, and ', are zone-
center (intravalley) backward and forward scattering, while K
and Ky, are zone-boundary (intervalley) backward and forward
processes. (b) Symbolic phonon emission process with the en-
ergy and momentum of the initial and final electron and pho-
non states.

and Eklund, 2000; Dubay and Kresse, 2003). A review of
the role of electrons and phonons in CNT Raman spec-
tra can be found in Dresselhaus et al. (2005).

As an introductory remark to electron-phonon cou-
pling (EPC), we note that conservation of energy and
momentum imposes that only zone-center and zone-
boundary phonons with momentum q=K can couple
with electrons in the case of metallic CNTs (in this sec-
tion, q will label the phonon momentum). This stems
from the fact that phonon energies are much smaller
than the electronic Fermi energy. Therefore, rather few
phonon modes will be able to scatter electrons from one
band to another. Further, depending on the relative signs
of the Fermi velocity for the initial and final electronic
states, the electron-phonon scattering processes are clas-
sified as “forward” or “backward,” a notion that is cru-
cial in transport theories. The different electron-phonon
scattering processes (here a phonon emission) are sum-
marized in Fig. 49.

We first start with a discussion of the EPC in the
graphene sheet and reproduce in Fig. 50 the optical
mode branches combining accurate experimental and ab
initio calculations (Maultzsch et al., 2005). At the zone
center, the important modes for the EPC are the twofold
Ei, high-energy in-plane modes which split away from I’
in a longitudinal and a transverse branch. At the zone
boundary, the q=K A{ mode strongly couples to elec-
trons. A clear manifestation of the EPC can already be
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FIG. 50. (Color online) Inelastic x-ray scattering and ab initio
calculations (open circles) of the phonon dispersion in graph-
ite. Adapted from Maultzsch et al., 2005.
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FIG. 51. Band gap opening by optical phonons. (a) Displace-
ment pattern of the longitudinal (transverse) A; mode in a
zigzag (armchair) tube. Band structure for a metallic zigzag
tube in (b) the equilibrium positions and (c) for the distortion
compatible with the A;(L) mode. Adapted from Dubay e al.,
2002.

Foull 4

found in the phonon band structures where a frequency
softening can be observed. In the case of graphene, the
peculiar shape of the graphene BZ induces a significant
phonon softening of the £2 and K-A] modes, related to
a Kohn anomaly, which manifests itself by a linear dis-
persion of the Eé longitudinal and A| modes away from
I' and K, respectively (Piscanec et al., 2004).

In the D,,;, symmetry group of the achiral (n,n) or
(n,0) tubes (Damnjanovic ef al., 1999; Reich et al., 2004),
the graphene I‘-Efg degenerate mode splits into I'-A;
longitudinal (L) and transverse (7) polarization modes
(labeled as well ILO or ITO for in-plane L or T optical
modes). The I'-A; modes EPC coupling in tubes was first
shown to rationalize the redshift with decreasing radius
of the Raman G band (Dubay et al., 2002). In particular,
the different evolution of the A;(L) mode for metallic
and semiconducting zigzag tubes clearly pointed to an
electronic contribution to the frequency softening. A
clear illustration of the coupling is obtained by observ-
ing the evolution of the band structure upon distortion
of the atomic network along the phonon eigenmodes
with some amplitude 8d,, (¢ and v are the phonon mo-
mentum and band index). As shown in Fig. 51, the A(L)
phonon opens a gap at the Fermi level of metallic zigzag
tubes, thus strongly affecting the electronic properties.
As a matter of fact, the deformation potential D4/ (in
eV/A), which is a measure of the shift e, of the band
edges divided by éd,,, can be related to the intraband
EPC matrix elements (¢,|6V,,|¥), with 6V, the
change upon lattice distortion of the potential seen by
electrons (Khan and Allen, 1984) in the case of totally
symmetric phonons.

The optical mode deformation potentials for (6,6) and
(11,11) tubes have been determined with ab initio calcu-
lations by Lazzeri et al. (2005). They were compared, in
particular, to the values obtained from a band-folding
analysis of graphene I‘-Ei, arzd K-A| deformation poten-
tials (D=6.7 and 10.0 eV/A, respectively), showing a
~20% difference for the smaller tube (~8 A diameter)
as a manifestation of curvature effects. Similar values
were obtained on the basis of a tight-binding approach
for a (10,10) tube (Jiang et al., 2005). However, the
strong dependence of the deformation potential on the
parametrization of the distance derivative of the hop-
ping integral leads to rather scattered values (Mahan,
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2003; Park et al., 2004; Jiang et al., 2005; Perebeinos et
al., 2005; Popov and Lambin, 2006b).

The differences between graphene and tubes can be
seen more clearly in the case of acoustic modes. The
most documented example is that of the out-of-plane
acoustic mode of graphene which becomes the radial
breathing mode (RBM) in nanotubes. Since a change in
the tube radius involves bond stretching and wagging,
the RBM displays a nonzero frequency with a 1/R ra-
dius dependence exploited to calibrate tubes in Raman
experiments (Rao et al., 1997; Jorio et al., 2001; Macho6n
et al., 2005; Meyer et al., 2005; Popov and Lambin,
2006a). Further, evolution of the deformation potential
and related EPC matrix elements was shown on the ba-
sis of ab initio calculations to strongly depend on the
tube radius and helicity (Machén, 2005). In addition to
the RBM, the acoustic in-plane transverse mode of the
graphene sheet becomes the so-called twiston mode in
tubes, which has been suggested to lead to a significant
EPC coupling on the basis of tight-binding (Jishi et al.,
1993; Hertel and Moos, 2000; Mahan, 2003; Jiang et al.,
2005) or continuous elastic theories (Suzuura and Ando,
2002; De Martino and Egger, 2003).

An interesting issue is to distinguish the influence of
confinement and curvature (namely, o-7 rehybridiza-
tion) on the evolution with the diameter of the phonon
frequency and EPC strength. In an early work (Bene-
dict, Crespi, Louie, and Cohen, 1995), quite general sym-
metry arguments were developed to show that curvature
would lead to a 1/R increase of the EPC matrix ele-
ments with decreasing radius R. This stems from the
evolution from pp to ppo bonding upon increasing cur-
vature, an effect that can be connected to the very large
deformation potential at the origin of the superconduct-
ing transition in all-sp® (or o-bonded) doped diamond
(Blase et al., 2004) and clathrates (Connétable et al.,
2003). In particular, modes such as the zone-center out-
of-plane optical (ZO) and acoustic modes do not couple
in the graphene sheet but show nonzero coupling in the
case of tubes. Further, electronic and vibrational eigen-
state normalization leads to a 1/VR dependence of
the EPC matrix elements (Benedict, Crespi, Louie, and
Cohen, 1995). This dependence will mainly affect modes
that are already large in the planar graphene sheet (I‘-E§
and K-A).

A quite general analysis of the evolution of the EPC
matrix elements with radius, chiral angle, and tube type
(metallic types I and II or semiconducting) has been de-
veloped on the basis of tight-binding analysis, allowing
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for analytic formulas at high-symmetry points (Mahan,
2003; Jiang et al., 2005; Popov and Lambin, 2006b). Such
matrix elements were used to compare the experimental
and calculated PL and resonant Raman scattering inten-
sities (Jorio et al., 2006). The importance of accurately
evaluating EPC matrix elements has also been empha-
sized recently in attempting to identify the origin and
nature of the so-called high-energy G* and G~ bands
(Lazzeri et al., 2006; Popov and Lambin, 2006a). Such an
identification is closely related to the above-mentioned
Kohn anomaly, leading to significant mode softening in
the limit of small radii.

2. Inelastic transport length scales

We now extend our discussion of the electron-phonon
coupling to its influence on transport in the normal state
(in contrast to the superconducting phase treated in Sec.
IV.F). Electronic transport is sensitive to inelastic effects
stemming from either e-ph or e-e scattering. An investi-
gation of the temperature dependence of conductance
provides a wealth of information about decoherence
mechanisms and inelastic scattering rates. Low-bias
measurements show that G~a/T (Yao et al., 2000), a
scaling law that has been related to e-ph scattering
driven by low-energy vibrational modes. By using a phe-
nomenological relationship between the conductance
and the scattering rate,

G~ (57)

a typical scattering length €;,~1-2 um (300 K) was in-
ferred and attributed to e-ph coupling involving acoustic
modes. On the other hand, the inelastic scattering rates
can be theoretically computed by means of the FGR
derived from either a first-principles (Lazzeri et al., 2005)
or a semiempirical approach (Jiang et al., 2005). The
FGR consists here in calculating the scattering rate be-
tween eigenstates of the zero-phonon Hamiltonian. This
assumes that the phonon and electronic populations are
at equilibrium and can be treated independently, the
e-ph coupling being assumed to remain of a perturbative
nature. In that framework, the inelastic scattering length
associated with a given phonon mode is readily deduced
from €,,=v;,, with v the relevant average velocity of the
charge carrier energy. Three important phonon modes
yield contributions to inelastic backscattering. As de-
picted in Fig. 52, the first process is driven by acoustic
phonons with low energy and small momentum. Within
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the FGR, the scattering rate (with phonon emission)
T;_lph(q) is written as

2 ~
E% Kk + q,n, + 1T, pulk,n )P ey — &1 — hw,)
X1+ n )M = fler_g) Ifer), (58)

with Q) the surface of the tube and f‘e_ph the electron-
phonon scattering operator, while n, and f(e;) give the
phonon and electron distributions, respectively. In me-
tallic tubes, the acoustic torsional mode (twisting mode
or twiston) is a purely circumference-directional defor-
mation, while its velocity is equal to a transverse acous-
tic mode of the graphene sheet [w(q) =Vyis/q|]- A crude
estimation due to inelastic scattering gives T;_lph
~ (47 h)D*(kgT/2ppvii) | hvE, With py, the mass den-
sity and D the deformation potential (Park et al., 2004).
It has to be noted that, unlike in ordinary metals, the
linear temperature dependence of the electronic resistiv-
ity persists well below the Debye temperature, essen-
tially because these phonon modes are heavily thermally
populated (Kane et al, 1998). With reasonable param-
eters, the inelastic acoustic scattering time is found to be
=3Xx107'%s, with a subsequent inelastic mean free path
Ceph=VFTepn=2.4 um for a 1.8-nm nanotube (Yang and
Han, 2000; Park et al., 2004). A theoretical derivation
has also predicted some helical-dependent contribution
to electron-phonon backscattering and the resistance
value in the high-temperature regime (Suzuura and
Ando, 2002).

In the high-bias regime, experiments have reported on
a Gupe~ B!V scaling law, a behavior attributed to an
electronic coupling to zone-center optical as well as
zone-boundary phonon modes. By using the same phe-
nomenological relationship G~ (2¢?/h)¢;,/ Ly, Park
and co-workers (Park er al., 2004) experimentally esti-
mated the inelastic mean free paths €;, in the high-bias
regime. For bias voltage of the order of 1V, ¢,
~10 nm was assigned to a contribution to both optical
and zone-boundary modes. Within the framework of the
effective mass formula and deformation potential ap-
proximation, the theoretical electron—acoustic-phonon
scattering length was estimated to be =2.4 um in the
low-bias regime, while optical and zone-boundary
modes were associated with €;, of the order of 180 and
37 nm, respectively. By applying Matthiessen’s rule, the
total inelastic length at high bias was deduced to be of
the order of 30 nm.

In a different approach, Javey and co-workers (Javey
et al., 2004) used a CNT-FET experiment, and by fitting
with semiclassical Monte Carlo models, they estimate
€;,=300 nm for acoustic modes and ¢;,=15 nm for opti-
cal modes.

Thus, the reported values for inelastic mean free paths
strongly fluctuate within the range [10 nm, 200 nm] for
the case of electron—(optical-)phonon coupling. Further,
a comparison of experimental values with FGR calcula-
tions from first principles leads to a disagreement of
about one order of magnitude (Lazzeri et al., 2005).
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Perebeinos, Tersoff, and Avouris (2005) recently pro-
posed to investigate the effect of inelastic scattering
on the conductance by following the semiclassical
Bloch-Boltzmann treatment of transport theory. The au-
thors derive a phenomenological law for the zero-field
charge-carrier mobility w(7T,dpe) = L300 K)/ T dype/
(1 nm)]?, exhibiting some specific temperature and di-
ameter dependences (here @=12000cm?/Vs and «a
~2.25).

In contrast, other theoretical works have investigated
the influence of structural lattice fluctuations on the
electronic band structure (Dubay et al., 2002) and trans-
port (Georghe et al., 2005; Roche et al., 2005b). The su-
perimposed contribution of optical phonon vibrations
has yielded time-dependent band structure changes
which affect the conductance scaling features (Roche et
al., 2005b). A more general quantum treatment of in-
elastic transport in metallic nanotubes, going beyond the
linear response and within a true many-body approach,
has revealed the occurrence of a Peierls-like mechanism
associated with the longitudinal optical mode activation
(Foa-Torres and Roche, 2006). These recent results high-
light effects which are beyond the scope of semiclassical
transport theories. Their impact on the simulation of
carbon-nanotube-based field-effect transistors remains
an open issue.

3. Electron-electron scattering and Luttinger-liquid models

The contribution of e-e interactions can be envisioned
from two perspectives. In the first case, high dimension-
ality and screening effects are sufficient to warrant that
Coulomb interactions can be treated perturbatively,
while charge transport remains well described within the
Fermi-liquid picture. The stability of the Fermi liquid is
actually well established for 3D systems, owing to the
fact that the Pauli exclusion principle strongly quenches
the electron-electron interaction (Nozieres and Pines,
1999). At zero temperature, the discontinuity of the
Fermi-Dirac distribution at £y, combined with the con-
servation of energy and momentum, causes the number
of final (empty) available states to which an electron of
energy E<FEp can be scattered to go quadratically to
zero as a function of E—Ep. This is the famous result
that the lifetime 7°¢ of an electron, with respect to
electron-electron interactions, scales as 1/(E—Ef)? close
to the Fermi level.

Such a Fermi-liquid description has been extensively
employed for describing quantum transport in MWNTs
with large diameters, given the reported strong evidence
of weak localization (Bachtold et al., 1999; Stojetz et al.,
2005). At low temperatures, the e-e interaction then acts
as a source of decoherence in the weak-localization re-
gime, limiting the contribution of quantum interference
and localization effects. Similarly, screening by a metallic
substrate, or a surrounding gate, seems to be at the ori-
gin of good agreement between the measured STM den-
sity of states in small-diameter SWNTs and tight-binding
calculations performed assuming noninteracting states
(see Sec. II1.D). At higher temperature, e-e scattering
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FIG. 53. Elementary excitations in 1D systems. (a) Symbolic
representations of a linear band around k. The decay of a
single-electron excitation into n=3 subprocesses is repre-
sented. (b), (c) Single-particle and plasmon (energy, momen-
tum) diagrams in 3D and 1D systems. Note that long-
wavelength single-particle excitation and plasmon w, energies
are decoupled in 3D but resonant in 1D.

can drive the temperature dependence of transport co-
efficients. For instance, Balents and Fisher (1997) dem-
onstrated that umklapp scattering due to e-e interactions
yields a resistance linear in temperature. Within this re-
gime, the transport physics is still generally well de-
scribed within the standard Fermi-liquid single-particle
picture, where by starting from extended wave functions
with wave vector k the interactions appear as scattering
processes between states with different k values, the rel-
evant events being forward and backward scattering
with energies close to the Fermi surface.

On the other hand, carbon nanotubes also provide
new opportunities to search for strong deviations from
the Fermi-liquid theory, since, especially in the case of
small-diameter SWNTs, their low dimensionality consid-
erably enhances the strength of repulsive Coulomb in-
teractions. As a matter of fact, independent of the range
and strength of the interaction between electrons, it can
be shown that scattering of a single charge carrier in-
duces a “collective” response of the 1D electron gas.
From that standpoint, the concept of single-particle scat-
tering seems useless and one should adopt a description
where all electrons are collectively modified by an exter-
nal pump or probe. Collective electronic excitations can
be described in terms of the well-known charge and spin
waves (plasmons and spinons). This point can be illus-
trated by observing that, sufficiently close to the Fermi
level, an electronic band can always be linearized
around kg E(k)=vi(k—kp), with vp the Fermi velocity
[Fig. 53(a)]. The excitation energy associated with an in-
traband scattering can then be linearly related to the
variation of momentum through dE=vgdk. Clearly, con-
servation of momentum and energy is preserved if one
replaces the (dk,dE) single excitation by n (dk/p,dE/p)
processes involving p electrons. Namely, there is a mo-
mentum and energy resonance between single-electron

H, 1
int =

N
kl,kz,k3,k4,0',0',

(\If \P k3o.r\If k40'+ H.c. ) + (‘P

+kl¢r +k(r
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scatterings and excitations involving an arbitrarily large
number of particles. One says that single-particle excita-
tions decay into collective plasmon modes [Fig. 53(c)].

To describe the charge and spin collective excitations
in 1D systems in the presence of a strong Coulomb in-
teraction, a heuristic approach is used based on the
Wannier representation. In the Wannier picture, the
many-electron Hamiltonian, represented in terms of
wave functions localized around the site m
=1,2,3,...,N of the lattice, is a Hubbard type where the
dominant interaction is between electrons at the same
site. The (bare) Coulomb interaction is, however, of
long-range nature, so the simple Hubbard model will
represent only physical situations for which e-e interac-
tions are strongly screened. By considering an extended
version of the on-site Hubbard model (retaining e-e¢ in-
teractions between nearest neighbors), one can enlarge
the range of the Coulomb potential to nearest-neighbor
sites. The Wannier version of the Hamiltonian is then
written as (Baeriswyl and Degiorgi, 1990)

— _ i il
H= HO + Hint - 702 (cmg—cm+1(r + Cm+1g—cmu-)

maoa
+ UOE an”ml + VOE NyMypt1s (59)
m m

where cj'm (¢,uo) creates (annihilates) an electron at site
m with spin projection o=1,/, nm,,=c:gwcmo, and n,,
=N, +n,, . For a half-filled band (one electron per site),
the U, term favors an alternating charge density. If one
now imposes periodic boundary conditions, i.e., Cy,1s
=c, the Bloch representation can be introduced
through the canonical transformation Cono
=(1/\N)Zekme, . with k=2mv/N and —~N/2<v<N/2,
i.e., k can be chosen to lie in the first Brillouin zone
—m<k=<a. This transformation diagonalizes the first
term of the Hamiltonian as ngEkskc}L,ckU (kinetic en-
ergy), with e, =—27, cos k. If one is restricted to the lin-
ear part of the spectrum and defines ¥ + ko= Ck ko ANd
Y jo=Ckpikom which is just a gauge transformation, we
obtain

Hy=2, ﬁVFk(‘Pj-,kU\II-*—,kU - \I,i,ka\lr—,ko')v (60)
ko

the ¥, ,, and ¥_,, operators representing the right-
and left-moving states with wave vectors +ky and —kp,
respectively. These states were introduced by Luttinger
(1963). Rewriting Hj, in terms of these new operators
one gets

i T + i
> 5k1+k2,k3+k4(g 1‘I’+,klgq'_,kzar‘l’+,k3a"1’—,k4a + g2\II+,k]o'\I,_’kzg—’\II—,kBO"\I,+,k4O'

& ¥ +
v, q’+,k3a’q,+,k4o + ‘P,klo'\I,—,kzlr"\P—,k3o"‘P—,k4o')) > (61)

+k1¢r +kyo!
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where terms that can be incorporated within the chemi-
cal potential have been neglected. The coupling con-
stants g; are related to the Hubbard parameters as fol-
lows: gi=g3= UO—ZVO and gy=g4= l~]0+2‘~/0. All
scattering processes in H;, can be pictorially repre-
sented by Feynman diagrams. The first process g; corre-
sponds to backward scattering, while the process g, is a
forward-scattering event, and g5 arises as an umklapp
process, which becomes irrelevant far from half-filling.
Finally g, leads to a small renormalization of the Fermi
velocity, which is usually neglected. The whole Hamil-
tonian Hy+ H,,, defines the one-dimensional Fermi gas
model (Solyom, 1979). A simple solvable case of the
one-dimensional Fermi gas model is the Tomonaga-
Luttinger model (Tomonaga, 1950; Luttinger, 1963),
where only forward scattering (g,) is taken into account
(g1=g3=g4=0). It has been solved by Mattis and Lieb
(1965), who showed that this model describes a particu-
lar type of system where the conventional Fermi surface,
defined in terms of a step in the momentum distribution,
does not exist for arbitrarily small g,=g. Haldane (1981)
later extended their analysis to a more general situation
and coined the term “Luttinger liquid” (LL) in analogy
with the Fermi liquid. If for simplicity one is restricted to
the the case of spinless fermions, the LL. Hamiltonian is
written
H=Hy+ Hig = 2 vk (W W =W W)
ko

+,ko

1
+ NE g@pi1(@paq), (62)
q

with py(q)=SW! W, ., while pa(q) =S¥ W, Tn
the ground state of H,, all negative-energy states are
occupied, while all positive-energy states remain empty.
The density operators p;(q) act like Bose creation and
annihilation operators of elementary excitations with
energy fivgq| and momentum ¢ (the so-called bosoniza-
tion scheme). Several important quantities can be ex-
actly calculated for the LL model, including the momen-
tum distribution function (Mattis and Lieb, 1965) and
various response functions (Solyom, 1979), which gener-
ally exhibit power-law behavior (Voit, 1995; Giamarchi,
2004).

Despite the early predictions of the LL transition, the
difficulty in performing low-temperature experiments on
isolated 1D systems explains why experimental confir-
mation of LL behavior has remained scarce. In that re-
spect, synthesis of CNTs has provided a unique play-
ground to test the theoretical concepts. A formal
description of the LL in armchair metallic SWNTs was
proposed (Egger and Gogolin, 1997, 1998; Kane et al.,
1997). In regard to the strict single-channel case, carbon
nanotubes display more complex quasi-1D characteris-
tics, which are required to reconsider (and extend) the
basics of LL theory. First, the Fermi surface is described
by four kp points of the Brillouin zone, instead of the
two kp points found for a single channel. In addition,
depending on the CNT diameter and chirality, the den-
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sity of states varies for small Fermi level shifts, which
complicates the extension of analytical results obtained
for a 1D channel with constant DOS. In particular, at
each onset of new subbands, large fluctuations of the
DOS (~1/+E) make the LL description technically in-
appropriate (Giamarchi, 2004). Finally, in real experi-
ments, the structural quality of CNTs as well as the effi-
ciency of electronic contact with external voltage probes
are often insulticiently high, all factors that may also
limit the applicability range of the LL model in CNTs.

Notwithstanding, whenever the CNT/electrode inter-
face is dominated by a weak tunneling contact and as
long as one is restricted to low-energy transport proper-
ties, extensions of the LL model to account for addi-
tional complexities such as elastic scatterers, intershell
tunneling, and multichannel degeneracy have been de-
veloped (Egger and Gogolin, 1997, 1998; Kane et al.,
1997; Egger, 1999; Mora et al., 2006).

For the sake of illustration, we derive the main LL
properties in CNTs, restricting ourselves for simplicity to
the spinless electron case (following Mora et al., 2006).
We define x as the coordinate along the CNT axis, while
r, denotes the coordinate in the perpendicular direc-
tion, so that the wave functions can be expanded as fol-
lows (n=1,2 for the channel degeneracy):

2
U, = e, (r )i, . (x), (63)

n=1

where ¢,(r,) are the transverse eigenmodes normalized
according to [dr, ¢, (x,)¢,(x,)=35,,. Explicitly, ¢,(r,)
=|C,| 72 exp(2miny/|Cy|), with |Cyl=277 e, While y is
an angular variable. Each one of the two channels will
intersect the Fermi surface at k=z+k,, with its own
Fermi momentum k,, and Fermi velocity v,. The kinetic
part of the Hamiltonian at low energy is rewritten as
(Egger and Gogolin, 1997)

Hy=—ivp J dx[ W ()3, ¥, (x) - ¥ (x)a,W_(x)], (64)

with the noninteracting DOS given by v=2/mvy. The
exact repulsive Coulomb interaction Ucgyyomp among
electrons can be described by the extended Hubbard-
Wannier model as previously described. Recently
Lopez-Sancho and co-workers (Lopez-Sancho et al.,
2001) established, within the mean-field unrestricted

Hartree-Fock approximation, a phase diagram (U, V)
for the spectrum modifications of metallic armchair and
zigzag nanotubes. They found that a true metallic phase
persists if on-site and nearest-neighbor interaction pa-

rameters are such that U0$270,17$ Y0, Whereas charge
or spin density wave phases develop for larger values,
along with small gap openings.

However, from a more general perspective, the e-e
interaction term should include the screened long-range
part of the potential, which can only be estimated in
some approximations. For low-energy properties, fol-
lowing Mora and co-workers (Mora ef al., 2006), the in-
teraction is taken as long ranged on length scales larger
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than |C,|, so that the long-range tail of the interaction
dominates all 1D Coulomb matrix elements, giving

! ! !
Umn:ferer_UCoulomb(x_x ,l’l,l'J_)

X|¢n(ri)|2|¢m(rl)|2' (65)

For |x—x'|>1C|, Ucouiomp becomes nearly independent
of the transverse coordinates and the projected interac-
tion is independent of the channel indices U,,,=U(x
—x"). By expanding the wave functions, the resulting in-
teraction term for the LL (keeping only forward scatter-
ing) reads

s s

2 +,— n,m=1_2
XW, (¥, (x), (66)

dx dx'U(x — x’)‘I’;Jr(x)‘I’L,_(x')

which reduces to % Jdx dx'p(x)U(x—x")p(x"), indicating
that the interaction induces effective coupling between
1D charge density fluctuations. In the long-wavelength
limit, one can approximate the Fourier transform U(k)
by a constant Uy=U(0)—U(2kp) (which will set the inter-
action strength), to end with a final expression for the
interaction term as H,;=(U,/2«) [ dx p*(x), with « the rel-
evant dielectric constant. In real situations, the Coulomb
interaction can be externally screened on a scale L,
which remains long compared to the CNT radius but
shorter than the CNT length. This would occur by as-
suming a surrounding cylinder of radius L, placed
around the tube. In this case, from elementary electro-
statics, the energy to charge the nanotube with an elec-
tron density epy Will be (€%/ k)In(Lye,/ Fgpe) f dx plyy.

For this LL model in the metallic armchair tube, a
single interaction parameter g will drive the power-law
temperature-dependent (for eV <kyzT) and voltage-
dependent (for eV>kyT) tunneling conductances. The
density of states for an electron tunneling from the me-
tallic electrode into the nanotube is p,,(E) ~ E* with an
exponent a,=(g+g '-2)/8, provided electrons tunnel
from the metallic (Fermi-liquid) contact into the center
of the nanotube (referred to as the bulk contact). Ac-
cordingly, the low-temperature conductance dI/dV=G
=V%,_  while the linear conductance becomes G(T)
=T*. The conductance suppression at low temperature
or bias has been shown to become even more dramatic
for tunneling into the end of a long nanotube, with an
exponent that now reads a,=(g”'-1)/4 (Egger and
Gogolin, 1997). On the other hand, the generic form of
the Luttinger parameter is g=(1+2U,/A)"> with U, the
charging energy, whereas A is the single-particle level
spacing. If A is unequivocally given by Avz/2L ., the
charging energy follows from the capacitive properties
of the metal-nanotube junction and from the electronic
structure, so that no universal value can be derived. In
the weak-screening limit, the tube length becomes the
physical cutoff of the e-e interactions, i.e., Ly~ Lype
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(Kane et al., 1997, Egger and Gogolin, 1998), which al-
lows a phenomenological form of the interaction param-
eter:

8 2 L -1/2
I —t“be> . (67)

=1+
& ( TKhV R T'tube

Taking as a typical value L./ 7 e ~ 10°, the theoretical
interaction parameter for a metallic armchair nanotube
becomes g=0.28. Subsequently, the bulk-tunneling and
end-tunneling exponents are, respectively, given by ¢,
=0.24 and «,=0.65 (Egger and Gogolin, 1997; Kane et
al., 1997). More generally, the differential conductance
for a single tunnel junction is given by a universal scaling
curve

2

dl |4 1+
— = AT%. cosh( 722 ) F( P

dv oT
2
, (68)

. ieV )
727TkBT

which means that (dI/dV)/ T« is a universal function of
eV/kgT and I'(x) is the Gamma function.

The non-Ohmic behavior of the conductance at low
bias voltage is often referred to as the zero-bias anomaly
(ZBA) and is a clear signature of a tunneling contact
between a Fermi liquid and a strongly correlated system.
Some experiments have reported on power-law conduc-
tance behaviors with exponent values in the range of
theoretical predictions either for individual single-walled
nanotubes (Bockrath et al., 1999; Yao et al., 1999) or for
crossed metallic junctions of SWNTs (Gao et al., 2004),
giving confidence in the manifestation of a Luttinger-
liquid state in small-diameter SWNTs. Alternatively, by
means of angle-integrated photoemission measurements
of SWNTs, some power-law behavior of the spectral
function and intensities was also found to be in good
agreement with LL model predictions (Ishii et al., 2003).

Similarly, STM experiments on SWNTs have provided
some possible alternative signatures for the non-Fermi-
liquid properties of metallic nanotubes (Lee et al., 2004).
In this work, the tunneling properties of electrons from
a metallic tip to a metallic tube deposited on a gold
substrate were analyzed in terms of e-e interaction-
induced charge-spin separation. The strength of the
Coulomb interaction inside the nanotube was, however,
found to be reduced from its expected theoretical value
(Eggert, 2000), possibly due to the screening effect of the
underlying metallic substrate. This is illustrated in Fig.
54, where a tight-binding calculation shows the two
standing waves with different wavelengths caused by
separate spin and charge bosonic excitations. The slopes
calculated near the K points, +8.8 and +11.9 cm™!, cor-
respond to a larger charge-mode group velocity of
~vr/0.55, whereas the spin-mode velocity remains simi-
lar to the Fermi velocity vy obtained for noninteracting
electrons. The deduced value for the g parameter is
~(0.55, much larger than the predicted value given by the
unscreened Coulomb potential, g~0.3 (Kane et al,
1997). This indicates a possible screening of e-e interac-
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FIG. 54. (Color online) Fourier-transformed map of dI/dV
(density of states) as a function of electron momentum k and
sample bias V. Ovals near the Fermi levels indicate the corners
of the Brillouin zone nearest (elongated black dots) or second
nearest (elongated white dots) to the I" point. Curves give the
energy dispersions of the (19,7) tube by tight binding, whereas
superimposed color lines indicate the Luttinger-liquid result.
Adapted from Eggert, 2000.

tions, induced by the metallic substrate, which can be
substantiated by replacing L, by a screened length in
Eq. (67). A straightforward evaluation yields ~1.4r,. to
fit the experimental data (Lee ef al., 2004).

In the case of MWNTs composed of N metallic arm-
chair shells, intershell coupling has been predicted to
induce additional screening of the Coulomb interaction,
screening that can be recast by renormalizing the power-
law exponents by a factor of 1/N (for both cases «;,/N
and «,/N). This produces an increase of g which tends to
1 in the limit N— o0 (Fermi-gas limit) (Egger, 1999). One
also notes that, in the case of a tunneling contact to
MWNTs, the observed zero-bias anomaly and power-law
behaviors of transport quantities have been assigned to
a different physical mechanism known as the environ-
mental Coulomb blockade, which can, like the LL
model, describe the same kind of universalities in the
conductance scaling anomalies (Rollbiihler and Grabert,
2001; Tarkiainen et al., 2001; Dayen et al., 2005). Further,
several groups (Egger and Gogolin, 2001; Mishchenko et
al., 2001; Mishchenko and Andreev, 2002) have per-
formed a nonperturbative calculation of the e-e interac-
tion in disordered MWNTs, showing a crossover from
the Luttinger-liquid result (valid at sufficiently high en-
ergy) to a new low-energy behavior of the density of
states.

We end by discussing the case of graphite, which we
have often used to illuminate the properties of CNTs
through band-folding arguments. Several theoretical
(Gonzdlez et al., 1996; Spataru et al., 2001) and experi-
mental (Xu et al., 1996; Moos et al., 2001) studies have
revealed an anomalous (E-Ey) linear behavior of the
inverse 1/7°¢ lifetime, deviating from the standard
Fermi-liquid theory. However, such effects stem from
the specific band structure of graphite and cannot be
used for laying the grounds for a LL transition in nano-
tubes.

4. Transport spectroscopy in the Coulomb blockade regime

In the situation of high contact resistance between
metallic or semiconducting CNTs and voltage probes,
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FIG. 55. (Color online) Conductance spectrum for several
temperatures as a function of external gate voltage applied to
the single-walled nanotube contacted with noble metal. Inset:
G(V,) for a device at 4.2 K showing a regular series of Cou-
lomb conductance peaks. Adapted from Nygard et al., 1999.

the low-temperature transport properties turn out to be
dominated by the Coulomb-blockade effect. This phe-
nomenon, first observed in semiconductor quantum dots
and small metallic grains (Grabert and Devoret, 1992),
occurs at low enough temperature, when the total ca-
pacitance C of a metallic island becomes so small that
adding even a single electron requires an electrostatic
energy E,=e?/2C larger than the thermal energy kzT.
This situation generally develops when the conducting
island is weakly coupled to source and drain leads
through tunnel barriers with a resistance larger than the
quantum resistance h/e?.

As a matter of illustration, if one considers a nano-
tube at a distance z away from a conducting substrate
(metallic gate), the total «capacitance is C
=27k, €0 Liune/ IN(22/ Fipe), K, being the average dielectric
constant of the environment. Using €,=2 (for compari-
son, k,=3.9 for Si0,), z=300 nm, and ry.=0.7 nm, the
charging energy becomes E.=(5 meV)/[L . (um)].
Thus for a typical ~1 um long tube, Coulomb blockade
should set in below =50 K (kzT=5 meV). For small
electrode spacing, the total capacitance is often domi-
nated by the capacitance of the leads.

Level splitting due to the finite size of the nanotube
is another relevant energy scale. A simple particle-
in-a-box estimate yields AE=hvp/4Lyp.=(1 meV)/
[Lipe (um)]; the factor of 2 accounts for the channel
degeneracy at the charge-neutrality point. Both £, and
AE scale inversely with length (up to a logarithmic fac-
tor), but the ratio £./AE is thus roughly independent of
length, i.e., the level spacing is always a small but appre-
ciable fraction of the charging energy.

In Fig. 55 (main frame), the experimental conductance
dl/dV at small bias and as a function of gate voltage is
shown for various temperatures for a single-walled car-
bon nanotube. When kT < E, single-electron tunneling
prevails as revealed by the fine structure of the conduc-
tance spectrum. Each conductance peak represents the
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addition of an extra charge to the nanotube, whereas the
peak spacing is given by (2E.+AE)C/eC,, with C, and C
the capacitance of the gate and the total capacitance,
respectively. The regularity (periodicity) of the peaks is
related to the size of the coherent conducting island
(nanotube). In the case of an irregular conductance spec-
trum, the nanotube is believed to be split into a series of
conducting parts separated by local tunneling contacts.

The overall diagram of conductance as a function of
bias and gate voltage generally appears as a diamond-
shaped structure [Fig. 55, inset (b)], referred to as the
Coulomb diagram. For a fixed gate voltage, the current
increases stepwise with increasing bias voltage, produc-
ing the excited-state spectrum. Each step in the current
is related to a new higher-lying energy level that enters
the bias window [Fig. 55, inset (a), V). Within each
diamond, the electron number of the nanotube is fixed
and the current vanishes [Fig. 55, inset (a), V] The
boundary of each diamond represents the transition be-
tween N and N+1 electrons, and the parallel lines out-
side the diamonds correspond to excited states. Such a
plot is well understood within the constant-interaction
model, in which the capacitance is independent of the
electronic states. Some significant deviations from this
simple picture were, however observed (Tans et al.,
1998). The ground-state spin configuration in a nanotube
was determined by studying the transport spectrum in a
magnetic field. Cobden and co-workers (Cobden ef al.,
1998) observed that the level spectrum is split by the
Zeeman energy gugB, where up is the Bohr magneton
and the g factor is found to be 2, indicating the absence
of orbital effects as expected for nanotubes; the total
spin of the ground state alternates between 0 and 1/2 as
successive electrons are added, demonstrating a simple
shell-filling, or even-odd, effect, i.e., successive electrons
occupy the levels in spin-up and spin-down pairs. The
semiconducting case was treated by Jarillo-Herrero et al.
(2004). Some value of the orbital magnetic moment
could also be estimated using the magnetic field effect to
lift the orbital degeneracy (Jarillo-Herrero et al., 2005).

Finally, in the Coulomb-blockade regime, transport
measurements on suspended single-wall carbon nano-
tubes have shown spectacular signatures of phonon-
assisted tunneling, mediated by longitudinal vibrational
(stretching) modes (Sapmaz et al., 2006). In this experi-
ment, the current-voltage characteristics show multiple
steps whose heights are in reasonable agreement with
the Franck-Condon predictions of a large e-ph coupling
constant. On the other hand, in this regime, Coskun and
co-workers (Coskun et al., 2004) succeeded in measuring
Aharonov-Bohm ¢, periodic oscillations of the band
structure for a MWNT.

On the theoretical side, a calculation of the total
transmission coefficient, based on expanding the many-
body wave function into all possible single-particle wave
functions, was shown to provide a good description of
Coulomb blockade in CNTs (Mehrez et al., 2001). Fur-
ther, Bellucci and co-workers (Bellucci et al., 2005) stud-
ied the crossover from a Luttinger liquid to the
Coulomb-blockade regime in CNTs. They extended the
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LL description by incorporating the effects of a single-
particle spectrum and found that the intermediate re-
gime is characterized by a power-law conductance, with
power exponent oscillating with applied gate voltage.
This scheme tends to support similar experimental mea-
surements obtained in MWNTs (Kanda et al., 2005).

F. Superconducting and charge-density-wave instabilities

The field of superconductivity (SC) in nanotubes
started experimentally in 1998 with the discovery of a
strong proximity-induced SC in isolated or bundled
SWNTs connected to superconducting leads (Kasumov
et al., 1998; Mopurgo et al., 1998). In these experiments,
the NTs were considered to be in the normal (N) state
but with a phase coherence length L, and a thermal
length L4 larger than the superconducting coherence
length, allowing for the SNS junction to sustain a very
high supercurrent below the lead transition temperature.
Three years later, however, intrinsic SC in nanotubes
was discovered in bundles of large-diameter SWNTs
(Kociak et al., 2001; Kasumov et al., 2003) and in zeolite-
inserted SWNTs of small (~4 A) diameter (Tang et al.,
2001). While in the first case a T-=0.55 K was observed
on the basis of resistivity measurements, the small-
diameter SWNT samples led to T~ 15 K, as evidenced
from the Meissner effect. These early observations were
confirmed with the observation of a SC transition with
Tcup to 12 K in MWNTs encapsulated in large pores of
zeolite (Takesue et al., 2006).

Before continuing, it is important to comment on the
low-energy excitation phase diagram of 1D systems in
general, complementing our discussion of the Luttinger
liquid (Sec. IV.E.3) by switching on the electron-phonon
interaction. Upon coupling of both electrons and
phonons, the superconducting phase in 1D systems en-
ters into competition with another type of quantum or-
der, the charge-density-wave (CDW) phase, which mani-
fests itself through a modulation of the charge density
with a wave vector g=2kp, where kj is the Fermi wave
vector (not necessarily commensurate with the nano-
tube). The well-known case of the Peierls transition in
monatomic chains at half-filling, accompanied by a
dimerization and a band-gap opening, is a specific ex-
ample of such an instability related to the more general
Kohn anomaly (Kohn, 1959). While the SC transition
induces the creation or destruction of electron (Cooper)
pairs, the CDW is induced by the spontaneous forma-
tion of electron-hole excitations. The CDW instability is
very specific to 1D systems while the SC one occurs ir-
respective of the dimension. An important point related
to the CDW and SC instabilities is that they are in gen-
eral incompatible, meaning that the occurrence of one
usually destroys the other. As a result, the discussion of
SC in nanotubes needs to be associated with that of the
CDW (or Peierls) transition.

Further, even if the SC prevails over the CDW insta-
bility, its manifestation in nanotubes should be very pe-
culiar as, in 1D systems, the existence of a phase-
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coherent order over macroscopic distances is strongly
suppressed by both thermal (Mermin and Wagner, 1966)
and quantum fluctuations. By 1D systems, we mean sys-
tems for which the largest transverse direction is signifi-
cantly smaller than the longitudinal superconducting co-
herence length & The physics of quantum fluctuations
stems from the phenomenon of phase slip (Langer and
Ambegaokar, 1967; Tinkham, 1996) which manifests it-
self by the appearance of an intrinsic resistive character
below the bulk 7 value in a narrow superconducting
wire. In particular, the resistance of the wire, instead of
dropping abruptly to zero below T, smoothly decays
with nonzero values down to 0 K. The manifestation of
phase slips was also provided in the case of ultrathin
superconducting wires (Bezryadin et al., 2000).

After giving many good reasons for not observing a
SC order in nanotubes, the fact remains that it has been
clearly seen evidenced experimentally, with a rather
large T in the a priori most disfavorable case of isolated
(that is, more 1D-like) nanotubes synthesized in pores of
zeolites. This explains the large interest generated in the
theory community with several attempts to refine the
description of the electron-electron and electron-
phonon interactions at low energy (that is, for energies
around that of relevant phonons). In particular, and as
the electronic states around Ep were already well
known, two important questions mainly arose: (i) which
phonons are responsible for the EPC and (ii) what is the
influence of putting nanotubes in a bundle geometry,
both on the screening of the Coulomb interactions and
on the possibility for Cooper pairs to tunnel (Josephson
coupling) from one tube to another. The relevance of
this last point is clearly to question the effective dimen-
sionality of the tubes in order to circumvent the above-
mentioned difficulty of survival of SC order in 1D sys-
tems.

As in the case of fullerenes, the weakness of intertube
interactions leads to the conclusion that on-tube
phonons are responsible for the main EPC channels. As
such, early studies of the electron-phonon interaction fo-
cused on isolated tubes and in particular on the possible
occurrence of a Peierls instability. Such an instability is
always expected to occur in 1D systems, and the rel-
evant question is to know the transition temperature
Tcpw (as the instability is quenched at sufficiently high
temperature). This was the idea behind the title “Are
fullerene tubules metallic?” of one of the first theoreti-
cal studies of nanotubes (Mintmire et al., 1992). By com-
parison with the case of polyacethylene, Mintmire and
co-workers concluded that the mean-field Peierls transi-
tion temperature in nanotubes, with respect to coupling
to g=2kr phonons, should be extremely small, below
1K.

The Peierls (or CDW) instability in nanotubes was
subsequently studied in several papers (Saito et al., 1992;
Harigaya and Fujita, 1993; Huang et al., 1996; Tanaka et
al., 1997; Sédéki et al., 2000), where specific deformation
modes (in-plane, out-of-plane, etc.) and parametrized
model interactions were considered, leading to a variety
of results with, in particular, 7cpw ranging from ~9.1 K
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FIG. 56. Schematic representation of a Peierls instability in a
(5,0) nanotube (left) compared to the perfectly cylindrical (5,0)
nanotube (right). This instability opens spontaneously a band

gap (0.2 eV) in the electronic structure of the perfect (Ds,
symmetry) tube. Adapted from Connétable et al., 2005.
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(Huang et al., 1996) to 15 K (Sédéki et al., 2000) for a
(5,5) tube. Such temperatures are clearly larger than, or
equivalent to, the experimental 7' for the SC instability.
Following our discussion of electron-phonon coupling
(Sec. IV.E.1), the coupling to long-wavelength acoustic
modes such as twistons or radial breathing modes (de-
rived from the transverse acoustic modes of graphite)
was also studied as a means to induce a CDW instability
(Figge et al., 2001; De Martino and Egger, 2003). The
related Peierls transition temperature was estimated by
Figge et al. to be around 10 K for an (8,8) tube, which is
again larger than or equivalent to the experimental 7.
The softening of phonons by electron-phonon interac-
tions and the Peierls transition was carefully studied in
the specific case of small 4-A tubes using DFT calcula-
tions (Bohnen et al., 2004; Connétable et al., 2005). The
increase of the coupling with radius (Sec. IV.E.1) was
shown to lead to a Peierls distortion at several hundred
Kelvin mediated by 2k phonons in the (3,3) armchair
case (Bohnen et al., 2004; Connétable et al., 2005). Fur-
ther, in the case of the (5,0) tube, the other possible
candidate for a SC transition, a long-wavelength
“squashing mode” was found by Connétable and co-
workers (2005) to induce a band gap opening mechanical
instability at room temperature (Fig. 56). Such results
seem incompatible with the observed SC transition at
~15 K (Tang et al., 2001). However, the same (5,0) tube
was studied within a self-consistent tight-binding ap-
proach (Barnett et al., 2005), yielding results compatible
with the experimental observation, namely, that the
CDW instability can be made weaker than the SC one,
provided that Coulomb interactions are treated beyond
the mean field. This last point raises the important ques-
tion of the validity of mean-field techniques, such as the
DFT, to describe low-energy excitations in nanotubes.
The possible failure of single-particle theories paves
the way to many-body techniques such as those based on
bozonization and the renormalization group (RG). Such
approaches have been used to study electron-electron
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interactions in the Luttinger-liquid phase and can be
generalized to address the CNT quantum phase diagram
upon switching of the electron-phonon interactions. The
true many-body functional form of the Hamiltonian is
preserved but several approximations are performed,
such as the linearization of bands around the Fermi
level. Further, the strengths of the electron-electron and
electron-phonon interactions (the g; constants of Sec.
IV.E.3 and the deformation potentials of Sec. IV.E.1) are
taken as adjustable parameters, so that the results are
often presented as a phase diagram in parameter space
with areas dominated by CDW or SC instabilities, and it
is not easy to decide which parameters should be taken
for realistic systems.

Using such RG techniques, Kamide ez al. (2003) con-
cluded that a SC order may dominate in the (5,0) tube
provided that the electron-phonon interaction is strong
enough. This conclusion contradicts previous studies
based on RG analysis which concluded, on the contrary,
that, in isolated nanotubes, Coulomb repulsion should
easily overcome the attractive interaction mediated by
phonons (Gonzalez, 2002; Sédéki et al., 2002; Alvarez
and Gonzalez, 2003; De Martino and Egger, 2004). This
conclusion led these authors to determine that SC fluc-
tuations are expected to occur in bundles containing a
large number of (metallic) tubes, as confirmed by the
evolution of T with the number of estimated tubes in
various SWNT bundles (Kasumov et al., 2003). Both the
better screening in nanotube bundles, which allows one
to reduce long-range Coulomb repulsion, and the possi-
bility for Cooper pairs to tunnel from one tube to an-
other, thus reducing the 1D character of the supercon-
ducting sample, are strong arguments in favor of the
important role of tube-tube interactions. Upon inclusion
of quantum phase slip effects, the experimental
temperature-dependent profile of the resistance below
T, for nanotube bundles (Kasumov et al., 2003) could
be reproduced on the basis of theory (De Martino and
Egger, 2004). In the case of zeolite-inserted small-radius
tubes, the screening by the zeolite, by contacting elec-
trodes, and by other tubes, has also been invoked as an
important factor that may decide the strongest relevant
instability (Gonzalez and Perfetto, 2005), even though a
possible dominant triplet-state superconducting instabil-
ity was suggested to arise from the specific three-band
topology at the Fermi level of isolated C(5,0) tubes
(Carpentier and Orignac, 2006).

The physics of superconductivity in nanotubes re-
mains a challenging subject. The difficulties in estimat-
ing the transition temperatures can be related to our
discussion of the EPC deformation potential strength in
Sec. IV.EE.1. In the normal state, the relevant quantities,
such as the inelastic mean free path, depend quadrati-
cally on the deformation potential through the Fermi
golden rule. In the case of the superconducting transi-
tion temperature, the dependence is exponential as illus-
trated in the McMillan formula
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FIG. 57. (Color online) Symbolic energy diagram for cold
cathodes Left: The shaded area represents the Fermi-Dirac
distribution of occupied states. Inclusion of the image charge
potential reduces the triangular barrier V(z) (thin line) to the
rounded one (thick line). Right: Illustration of the resonant
tunneling process involving tip states. The work function ¢ of
CNTs, which is radius dependent, is of the order of 4.5-5.0 eV.
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where o, is some average phonon frequency, \ is the
e-ph coupling constant (proportional to an average over
the Fermi surface of the EPC matrix elements squared),
and u” is the screened and retarded Coulomb repulsion
parameter. The validity of such a formula for CNTs is
certainly questionable but Eq. (69) illustrates qualita-
tively that the difficulty in obtaining accurate electron-
electron and electron-phonon interaction parameters
prevents the emergence of a clear and conclusive under-
standing of the experimental situation.

G. Field emission from nanotubes

Field emission (FE) from nanotubes (Chernozatonskii
et al., 1995; De Heer et al., 1995; Rinzler et al., 1995), that
is, the use of CNTs as a source of electrons under ap-
plied electric field, is one of the most promising fields of
application and several prototypes have been demon-
strated, including flat panel displays, lighting elements,
high-brightness electron microscopy sources, rf amplifi-
ers, portable x-ray systems, and ionization vacuum
gauges (see Purcell et al., 2006, for detailed references).
Several extensive articles have been written in the field
(Lovall et al., 2000; Bonard et al., 2001; de Jonge and
Bonnard, 2004), and we provide below just a summary
of the underlying physical ideas and research issues. A
general review of field emission can be found in Gadzuk
and Plummer (1973).

The basic FE principles are illustrated in Fig. 57(b).
Electrons at the Fermi level in solids need to overcome
a potential barrier ¢ to be emitted through the surface
into the vacuum. ¢ is the work function specific to the
material and surface crystallographic direction. This bar-
rier can be overcome by providing thermal energy to the
carriers. This is the thermoionic effect used in standard
cathodic tubes. However, under application of an elec-
tric field, the potential barrier V(z) seen by electrons can
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be reduced dramatically by a quantity —eFz, z being the
distance to the surface and F the magnitude of the elec-
tric field. The thinning of the potential barrier allows for
electrons to tunnel out of the solid even at zero tem-
perature. This is the principle of field emission used in
cold cathodes.

The probability of emission P(E) increases with the
electron energy E. However, the temperature-
dependent Fermi-Dirac distribution f7p (E) dramati-
cally reduces the number of electrons above the Fermi
level available for tunneling. The current density J(E)
results from a trade-off between the evolution of P(E)
and f7 g (E):

3

‘@m>

J(E) =26f freE)P(E)v (70)
k

with k the momentum of the electronic states and v,
=hk,/m the electron velocity in the direction of emis-
sion within the free-electron model. This tunneling cur-
rent can be calculated analytically by assuming a semi-
infinite jellium of electrons and a tunnel probability
P(E) given by the semiclassical Wentzel-Kramers-
Brillouin (WKB) approximation, namely,

om 172 rzy
Pywkp = €xp —2<?> f dz\V(z) - E, |, (71)

71
with E Z:ﬁzkﬁ/ 2m the kinetic energy in the direction of
emission. The integral limits (z;,z,) are the classical
turning points defined by V(z;)=E,. Assuming a triangu-
lar potential barrier V(z)=E,,.—eF, and solving (E,,.

—E_)*? to first order in E;—E_, one obtains

4¢3/2 2m 1/2
Pwkg = exp{— ( ) }
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om l/22¢1/2
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Equation (72) relies on several severe approximations,
including neglect of the image charge potential (interac-
tion of the electron with the hole left behind), but it is
known to work qualitatively well for metallic surfaces.
Equation (72) can then be used to obtain the Fowler-
Nordheim equation for the emission current density
which, at zero temperature, reads

4 \% 2 }

73
3feF (73)

¢ 2
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While the use of such a formula in the case of a thin
metallic object such as a CNT is certainly subject to criti-
cisms (Fransen et al., 1999; Lovall et al., 2000; Bonard et
al., 2004), it clearly illustrates that the emitted current
density J depends exponentially on the material work
function and the value of the electrostatic field F at the
CNT cap. The great advantage of nanotubes in this re-
spect is the well-known field enhancement effect at
sharp metallic tips resulting from self-consistent rear-
rangement of charges upon applied external field. The
local electric field F(tip) is much larger than the applied
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field with a proportionality factor y which is a purely
geometrical factor; namely, F(tip)=yF=vyV/d, with V
the drop in potential between two planar electrodes
separated by a distance d. This amplification of the field
was already exploited in the so-called Spindt cathodes
made of sharp conical metallic emitters. The values of vy
can be shown to be proportional to A/r for a vertically
aligned model metallic cylinder of length /4 terminated
by an hemisphere of radius r (h<<r) (Bonard et al., 1998;
Edgcombe and Valdré, 2001). This scaling is the crucial
difficulty for theoretical approaches as it requires one to
study prohibitively long tubes, a difficulty that is often
bypassed by studying short tubes with a very large exter-
nal applied field (Adessi and Devel, 2002; Han et al.,
2002; Buldum and Lu, 2003; Zheng et al., 2004; Khazaei
et al., 2005).

A high vy value related to this qualitative /4/r behavior
applies to isolated tubes. Upon gathering of tubes in
mats or bundles, the y factor collapses dramatically as
the electric field at the tip of a given CNT is strongly
screened by neighboring tubes. It has been estimated
that tubes must be separated by a distance /=2 in or-
der to recover the isolated tube vy value (Nilsson et al.,
2000). To maximize the emitted current per surface area,
a trade-off must be found between the emitter surface
density and the amplification factor.

An interesting issue concerning the physics of CNT
emission is the role of tip states. The analysis of the
emission patterns, that is, the shape of the bright spots
observed on electrosensitive screens facing an emitting
isolated CNT, was interpreted in several works as pro-
viding a direct signature of the atomic structure and re-
lated local electronic structure of tube tips (Carroll et al.,
1997, Saito, Hata, and Murata, 2000). This interpretation
hinges on the physics of resonant tunneling as illustrated
in Fig. 57. The tunneling probability is related to the
decay of the electronic wave functions into the vacuum
across the potential barrier. As such, it is expected to be
related to the electronic states at the tube tip. However,
electrons which will tunnel can only be carried from the
anode to the emitting tip by extended Bloch states cor-
responding to the tube body. Such propagating wave
packets will first tunnel into the tip states before being
emitted. One may thus expect that the energy and spa-
tial decomposition of the current carry information on
the CNT caps.

The interest in FE from CNTs does not reside only in
its technological applications. Field emission is also a
powerful characterization tool. The analysis of the cur-
rent density [Eq. (70)] shows that valuable information
on the work function, CNT bulk and apex density of
states, tip temperature, etc., can be extracted from the
1/'V characteristics and the energy-resolved decomposi-
tion of the emitted current. It can also be used to ob-
serve directly the mechanical vibration resonances of
CNTs from which elastic moduli can be inferred (Purcell
et al., 2002b). Further, the analysis of the temperature at
the tube apex and knowledge of the emitted current pro-
vide quantitative information on the tube electrical re-
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sistivity, even though it is not a trivial task to separate
the contribution from heat radiation and Joule heating
(Purcell et al., 2002a; Vincent et al., 2002). Finally, FE
from growing CNTs has been used to provide some es-
timate of the tube growth rates in a CVD reactor
(Bonard and Croci, 2002).

V. CONCLUSION

The field of nanotubes is still rapidly growing. As em-
phasized, many questions are still unanswered. The dy-
namics of hot electrons (and electron-hole pairs) in op-
tical experiments, the nature of the contact resistance at
metallic electrode interfaces, the effect of an out-of-
equilibrium phonon distribution on inelastic scattering,
and the domain of existence of the Luttinger-liquid,
charge-density-wave, and superconducting phases are
still subjects which require a considerable amount of
work and understanding. Further, and beyond the intrin-
sic properties of nanotubes, the physics of functional-
ized, chemisorbed, doped, or excited CNTs is driven by
potential applications in molecular electronics, optoelec-
tronics, and sensors. Such themes are still largely unex-
plored areas for theorists: while early theoretical papers
preceded experiments on the discussion of the basic
electronic properties of pristine tubes, such complex sys-
tems and applications have now been demonstrated ex-
perimentally and theory is lagging behind.

The field of nanotubes has fostered much interest in
related systems such as graphene or semiconducting
nanowires. The actual synthesis of isolated graphene
sheets or few-layer graphite materials (Novoselov et al.,
2004) and the sudden interest generated by such a syn-
thesis come nearly 15 years after the development of
nanotubes. This is an amazing twist of history as the
properties of nanotubes are usually derived, as in Sec.
III, from those of graphene. Charge carriers around the
charge-neutrality point in graphene show a very high
mobility with a Dirac-like behavior, namely, an energy-
independent velocity (Novoselov et al., 2005, 2006;
Zhang et al., 2005; Berger et al., 2006; Ohta et al., 2006,
Zhou et al., 2006). In the case of graphene nanoribbons,
confinement effects induce a width- and orientation-
dependent band-gap opening (Son et al., 2006a) and one
is back to the size and helicity selection that complicates
the use of nanotubes in applications. Other interesting
properties, such as a half-metalic behavior, where
spin-up and spin-down electrons display a different me-
tallicity, have been proposed (Son et al., 2006b).

Semiconducting nanowires (Si, GaN, etc.) also offer
an interesting alternative to nanotubes as they do not
exhibit the problem of the variation of the band gap
with chirality. Through confinement, an effect well de-
scribed within simple effective mass or more sophisti-
cated quasiparticle approaches (Niquet et al., 2006), the
band gap depends only on the wire radius. Further,
while the band gap of nanotubes lies in the infrared,
with difficulties in obtaining a strong PL signal, II1I-V or
II-VI nanowires and their related heterostructures are
well adapted to optoelectronic applications in the visible
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range (Duan et al., 2001; Bjork et al., 2002). Topics such
as integration in FETs (Duan et al., 2001; Huang et al.,
2001; Martensson et al., 2004; Wang et al., 2006) and
functionalization for chemical sensing (Cui et al., 2001)
are also being developed and discussed in the field of
nanowires. It is interesting to note that, while the chan-
nel of existing standard Si-based transistors is now rou-
tinely reaching the few tens of nanometer range, semi-
conducting nanowires are regarded as new objects with
strong technological potential. The difficulty in obtain-
ing structurally perfect wires with controlled radius, sur-
face roughness, and dopant density is certainly as large a
challenge as controlling the radius and helicity of tubes
during synthesis.
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