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ESTIMATING FAST MEAN-REVERTING JUMPS IN ELECTRICITY

MARKET MODELS

Thomas Deschatre1, Olivier Féron2 and Marc Hoffmann3,*

Abstract. Based on empirical evidence of fast mean-reverting spikes, electricity spot prices are often
modeled X + Zβ as the sum of a continuous Itô semimartingale X and a mean-reverting compound
Poisson process Zβt =

∫ t
0

∫
R xe

−β(t−s)p(ds,dt) where p(ds, dt) is Poisson random measure with intensity
λds⊗ dt. In a first part, we investigate the estimation of (λ, β) from discrete observations and establish
asymptotic efficiency in various asymptotic settings. In a second part, we discuss the use of our inference
results for correcting the value of forward contracts on electricity markets in presence of spikes. We
implement our method on real data in the French, German and Australian market over 2015 and
2016 and show in particular the effect of spike modelling on the valuation of certain strip options.
In particular, we show that some out-of-the-money options have a significant value if we incorporate
spikes in our modelling, while having a value close to 0 otherwise.
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1. Introduction

1.1. Motivation

A striking empirical feature of electricity spot prices is the presence of spikes, that can be described by a
jump in the price process immediately followed by a fast mean reversion (see Fig. 1 showing the behaviour
of electricity spot prices in different markets over one year of historical data). These spikes are due to the
non-storability of electricity, an abrupt change in the demand or the offer (due to weather conditions, outages
and so on) having a direct impact on prices. For risk management purposes, the modelling of these extreme
events is essential. And, due to the non-storability of electricity, the modelling of forward contracts (used as
hedging products) are also needed. If (St)t≥0 denotes the electricity spot price, the forward price f(t, T ) at time
t delivering 1 megawatt hour (MWh) at time T can be defined as

f(t, T ) = E
[
ST
∣∣Ft], t ≥ 0 (1.1)
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Figure 1. Series of the spot price during the year 2016 for France, Germany and Australia.
The frequency of the data is 1 hour for France and Germany and 30 minutes for Australia.
Spot jumps are estimated using a threshold of 5σ̂∆−0.01

n where σ̂ is the multi-power variation
of order 20.

where Ft is the available information up to time t and the expectation is taken under a risk-neutral probability.
In this context, one usually faces two major issues: first and prior to data analysis, a stochastic model that
captures the main characteristics of spot prices, and especially the presence of fast mean-reverting spikes has
to be set, however simple enough to give tractable formulas for the forward prices f(t, T ). Second, the chosen
model must be calibrated with efficient statistical procedures to show its adequacy to the data, and to properly
quantify risk measures. The main difficulty is the estimation of the characteristics of the spikes.

Several models for spikes in electricity spot prices have been proposed in the litterature. Cartea and Figueroa
[9] extend the popular and tractable approach of Lucia et al. [22] by introducing jumps in the price process,
resulting in the model

logSt = ρ(t) + Yt, dYt = −βYtdt+ σ(t)dWt + log JdNt, t ≥ 0,

where ρ(t) and σ(t) are deterministic components, (Wt)t≥0 is a Wiener process, (Nt)t≥0 is a Poisson process and
J is the jump size drawn proportional to a log-normal distribution. A similar model is proposed in Geman and
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Roncoroni [15], adding up a threshold parameter that determines the sign of the jumps. In these approaches,
the mean reverting coefficient β > 0 is the same for the continuous component and for the spike component.
However, statistical evidence shows that the mean reversion of the spike component is much stronger than
the one of the Brownian component, see for instance Benth et al. [6]. The estimated β then underestimates
the mean reversion of the spike component and overestimates the one of the continuous component. A similar
model slightly more realistic is also proposed by Geman and Roncoroni [15] but this one does not provide
explicit formulas for deriving f(t, T ). Yet another approach is undertaken in Benth et al. [5, 6] with multi-factor
models:

St =

m∑
i=1

wiY
i
t , dY it = −βiY it dt+ dLit, t ≥ 0, i = 1, . . . ,m,

for some weights wi, and where (Lit)t≥0 are independent time-inhomogeneous subordinators ensuring that (St)t≥0

remains nonnegative. Benth and collaborators establish in [5, 6] that m = 2 is sufficient for modelling purposes,
each factor (Y it )t≥0 having its own mean reverting parameter, allowing for a fast mean reversion and a slower one.
However, the use of subordinators implies that the volatility of the process seems to be underestimated. In this
model, an estimation procedure for the mean-reverting parameter is proposed in [20], the pike component being
identified via extreme value theory methods. This estimator which is a modification of the Davis-McCormick
estimator, is proved to be consistent in [8]. The same method is used for spike analysis on UK electricity and gas
markets in [25]. Finally, multi-factor models with a Brownian component and a spike component are studied in
Meyer and Tankov [26], Schmidt [30] and Gonzales et al. [16]. Meyer and Tankov estimate the mean-reverting
parameters using spectral methods and the jumps are detected by filtering. In Schmidt [30], the parameters
of the model are estimated using maximum likelihood with the EM algorithm, implying an approximation of
the process with its Euler scheme. Gonzales and co-authors develop a Bayesian framework and recover the
parameters of the model by MCMC. In a more general context than electricity price modelling, Moreno et al.
[27] use a method of moments to estimate the parameters of a jump diffusion model when the log-price is the
sum of an arithmetic Brownian motion and a mean reverting compound Poisson process.

While all these models allow for a good representation of spot prices and spikes, they are not suitable for
long-term volatility modelling in the forward prices, which corresponds to the volatility of forward products with
delivery far in the future (one quarter to two years). They propose a stationnary modelling of the continuous
part of the spot price, which is a mean reverting process or the sum of severals. When time to maturity T − t
grows, volatility of E(ST |Ft) goes to zero. To encompass this issue, practitionners use multi-factors model with
one factor being non-stationnary, for instance modeled by a Brownian motion. The most used model in practice
is the two-factors model, see [31] for its spot representation and [10, 11, 21] for the equivalent forward modelling.

Most of these papers use calibration procedures to estimate the model parameters, without convergence
properties except for the notable exception of [8, 20]. In this paper we propose a theoretical framework of
estimation adapted to the models previously cited, i.e. the class of models used for risk management purposes.
More precisely, our goal is to construct an estimation procedure for the characteristics of the spike process
covering a wide and unifying range of models for the continuous part of spot price (allowing for non-stationarity,
stochastic volatility, multiplicative or arithmetic representation and so on).

1.2. Main results

We consider an extended framework that encompasses [16, 26, 30] (when only one spike process if considered).
In particular, our approach does not require that the continuous part of the price process is an Ornstein-
Uhlenbeck, a necessary condition in the aforementioned models.
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1.2.1. A semimartingale model with fast mean-reverting jumps

On a rich enough filtered probability space (Ω,F , (Ft)t≥0,P) that will accommodate all the considered random
quantities, we model the electricity spot price Xt = St or Xt = logSt by

Xt = Xc
t + Zβt , t ≥ 0, (1.2)

where (Xc
t )t≥0 is a continuous Itô semimartingale and (Zβt )t≥0 is the so-called spike process, governed by a

mean-reverting factor β > 0. More specifically, we assume that

Xc
t = Xc

0 +

∫ t

0

µsds+

∫ t

0

σsdWs, t ≥ 0 (1.3)

where (σt)t≥0 and (µt)t≥0 are two adapted càdlàg processes, (Wt)t≥0 a (Ft)-standard Brownian motion and

Zβt =

∫ t

0

∫
R
xe−β(t−s)p (ds,dx) , t ≥ 0, (1.4)

with p a random Poisson measure on [0,∞)× R independent of (Wt)t≥0, with intensity

q = λ dt⊗ ν(dx),

for some λ > 0 and a probability measure ν(dx) on R. We thus model the electricity spot price as a classical
continuous Itô semimartingale (Xc

t )t≥0 allowing for the usual financial fluctuations and usual models (factor

models, mean-reverting models and so on) to which we add a perturbation (Zβt )t≥0 of “spikes” or “jumps”,
triggered by exogenous physical hazard, at intensity λ and magnitude ν(dx), but with a relaxation period 1/β
comparable to λ that accounts for the absorption of such events by the market toward resulting in stable prices
at large scales. The term comparable is a bit vague at this stage, and will be assessed precisely in Section
2.1, enabling us to speak of fast mean-reversion. In this setting, model (1.2)–(1.3)–(1.4) is well posed and can
reproduce, at least visually, the general shape of electricity spot markets, compare historical data from Figure
1 and sample paths simulations given in Figure 2 and detailed in the simulation Section 3.2.

1.2.2. Statistical setting

We assume that we observe the process (Xt)t≥0 given by (1.2)–(1.3)–(1.4) over the time interval [0, T ] on a
regular grid

0 = t0,n < t1,n < . . . , tn,n = T, ti,n = i∆n, for 0 ≤ i ≤ n,

with mesh ∆n. Thus we have n (or rather n+ 1) observations

Xn = (X0, X∆n
, . . . , Xn∆n

= XT ). (1.5)

In the following, for a given process Y , we use the classical notations ∆n
i Y = Yti,n −Yti−1,n

and ∆Ys = Ys−Ys− .
Asymptotics are taken as n→∞. We assume that T is constant, and we take T = 1 with no loss of generality.

Equivalently, ∆n = 1/n→ 0 as n→∞. This asymptotic setting is usually referred to as the “high-frequency”
framework (for instance the classical textbook [3] by Aı̈t-Sahalia and Jacod), but this terminology is a bit
misleading: our framework certainly belongs to statistical finance, but it has no link to high-frequency finance
or microstructure modelling of any sort. In practice, we apply our methodology to three markets: the French
EPEX, the German EPEX and the Australian electricity spot in Queensland, see Section 3. We use data between
2015, Jan. 01 and 2016, Dec. 31. with hourly data (even less in the case of Australian data), so that n = 17064
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Figure 2. Simulation of the process X in the case of a model having continuous part defined
in (3.1) and with jump sizes having law 0.4 (−E (40)) + 0.6E (30) for different values of λn and
βn.

is considered to be large. Equivalently, one hour is considered to be small in front of 2 years. In our setting,
the important fact about the assumption that T is fixed is that we leave out any stationarity or ergodicity
of the underlying process. We thus make an implicit statistical robustness assumption, which we believe is of
importance when considering recent and changing energy markets over such time horizons.

The parameters of interest are λ, β > 0 that govern our correction formulas (see the application to forward
contracts prices f(t, T ) below). In particular we leave out the issue of identifying the continuous semimartingale
part (Xc

t )t≥0 i.e. the drift (µt)t≥0 and the volatility process (σt)t≥0 as well as the jump distribution ν(dx) (only
an estimation for the moments of ν is proposed).

The mean-reversion factor over the observation increment [ti−1,n, ti,n] is of size β∆n, and by requiring β∆n

to be large compared to the order of magnitude
√

∆n of ∆n
i X

c , we may hope to recover β asymptotically. We
thus introduce the asymptotic setting β = βn with the requirement

β = βn →∞ while βn
√

∆n →∞. (1.6)
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Condition (1.6) becomes

βn
√

∆nλn →∞ (1.7)

if we let λ = λn →∞. A second crucial assumption is

βn∆n . 1, (1.8)

since otherwise, the spikes caused by the jumps of p are absorbed by the Brownian fluctuations of Xc due to
the fast relaxation period 1/βn and therefore cannot be detected by Xn.

1.2.3. Statistical results

Heavily relying on classical techniques in high-frequency finance (for instance [3], Thm. 10.26, p.374), we
estimate in a first step the times and sizes of the jumps which are random quantities, taking into account the
interplay between βn, λn and ∆n dictated by the asymptotic regime (1.6)–(1.7)–(1.8), see Proposition 2.5. In a
second step, we construct an estimator of βn based on an estimator ŝn of the right-derivative or instantaneous
slope of t 7→ Zβt right after a jump is detected. The estimator ŝn is based on averaging of instantaneous slope
proxies of the form ∆XTq (1− e−βn∆n) that govern the relaxation effect after a jump of size ∆XTq has occurred
at time Tq and it enables us to consider

β̂n = − 1

∆n
log (1− ŝn)

as our estimator of βn. Since βn itself varies with n and grows to infinity, the notion of convergence has to be
considered carefully. Under suitable assumptions, we prove in Theorem 2.11 that the relative error

En =
β̂n − βn
βn

→ 0 (1.9)

in probability as n→∞. The error En has two components: a first term of order 1/(βn
√
λn∆n) due to Brownian

oscillations, and a second term of order min{λn/βn, 1/
√
βn} +

√
λn/βn that accounts for the effect of jumps

that are still present in the price process despite the relaxation effect. When βn
√

∆nλn →∞ and λn/βn . 1,
we have En converges to 0. If we assume further

√
βn/λn → 0, we obtain a central limit theorem for En with

a Gaussian limit and an explicit rate of convergence that depends on the interplay between λn, βn and ∆n.
We have an analogous result (although less demanding) for the estimation of the jump intensity λn detailed in
Proposition 2.6.

1.2.4. Application to pricing forward contracts

We show in Theorem 4.1 that in the model for the spot price (with X = S) defined by (1.2)–(1.3)–(1.4), the
price f(t, T ) of a forward contract is given by

f (t, T ) = f c (t, T ) + fβ (t, T ) ,

where

f c (t, T ) = E
[
Xc
T | Ft

]
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and

fβ (t, T ) = e−β(T−t)Zβt +
λ

β

∫
R
xν(dx)

(
1− e−β(T−t)

)
.

The term f c (t, T ) corresponds to the price of the forward contract in a continuous case framework. The compu-
tation of this value has been extensively studied for different continuous models and it is known analytically for
the most common models, see for instance [5, 6] among others. The term fβ (t, T ) is a correction that follows
from our approach. It is of order λ/β and is usually small for the applications we have in mind, see the practical
implementation Sections 3 and 4. On balance, the presence of spikes does not significantly impact the price of
forward contracts to within these order of magnitudes. This is consistent with our data, for which spikes are not
observed on forward prices. By neglecting the term fβ (t, T ), we can calibrate the process Xc

t to the observed

forward prices and the process Zβt to the observed spot prices with the estimation procedure proposed in this
paper. The results are similar for the modelling of the logarithm of the spot price (i.e when X = log(S)) by
(1.2)–(1.3)–(1.4), see Theorem 4.2. We implement the prices of the forward contracts and Call options from
a model calibrated to historical data on electricity prices in Section 4 and we show the impact of the spike

modelling on the valuation of a strip of options with payoff of the form
∑I
i=1

(
Sti,n −K

)+
for different times

ti,n. As expected, the value of this option increases if we add significant large spikes. In particular, we show that
some out-of-the-money options have a significant value if we incorporate spikes in our modelling, while having
a value close to 0 otherwise.

1.3. Organisation of the paper

Section 2 develops a rigorous mathematical framework for the stochastic model (1.2)–(1.3)–(1.4) and gives the
explicit construction of the estimators described in Section 1.2 above together with their asymptotic properties
in Propositions 2.5, 2.6 and Theorem 2.11. Section 3 establishes the numerical feasibility and consistency of our
statistical estimation results on simulated and real data, based over two years (2015 and 2016) of electricity
spot prices in three different markets (French, German and Australian). Section 4 is devoted to the application
of our model and statistical results to forward contracts. We establish in Theorem 4.1 a correction formula to
get analytical forward prices and study the valuation of a strip of European Call options. The proofs are given
in Section 5.

2. Statistical results

2.1. Model assumptions

We consider the process (Xt)t≥0 defined by (1.2)–(1.3)–(1.4) in Section 1.2. Following closely the standard
notation of Aı̈t-Sahalia and Jacod [3], if ν is a positive measure and f a ν-integrable function, we write f (x)?ν =∫
R f (x) ν (dx). Remember also that we work over a finite time horizon T = 1.

Assumption 2.1. We have E[(Xc
t )2] <∞ for every t ≥ 0. Moreover, t 7→ σt is continuous on [0, 1] and for some

deterministic σ, σ̄, c0 > 0, we have 0 < σ2 ≤ inft σ
2
t ≤ supt σ

2
t ≤ σ̄2, supt |µt| ≤ c0, ν({0}) = 0 and |x|2 ? ν <∞.

Since our asymptotic results will be given in distribution (see Thm. 2.11 below), the conditions on the drift
(µt)t≥0 and (σt)t≥0 can substantially be weakened (in order to accommodate for instance diffusion coefficients of
the form σt = Xc

t h(Xc
t ) with a bounded h or even locally integrable) by standard localisation procedures, see for

instance ([18], Sect. 4.4.1). We observe (1.5) and asymptotics are taken as n→∞ or equivalently ∆n = n−1 → 0.
We consider different asymptotic regimes for λ = λn and β = βn, compare Equations (1.6)–(1.7)–(1.8) and the
accompanying discussion in Section 1.2 above.
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Assumption 2.2. We have

lim inf
n

λn > 0, λn . βn, βn∆n . 1, and λn∆n → 0.

The condition λn . βn ensures the stability of Xt as n → ∞ since Var(Xt) = Var (Xc
t ) + Var(Zβnt ) =

Var (Xc
t ) + |x|2 ? ν λnt

2βn

(
1− e−2βn

)
→ ∞ if supn λn/βn = ∞. The condition βn∆n . 1 is necessary to iden-

tify spikes (or jumps): otherwise, a spike that occurs in the interval ((i− 1) ∆n, i∆n] will be absorbed by the
relaxation effect before we observe Xi∆n

. Finally, the condition λn∆n → 0 controls the no accumulation of
jumps within the rate of observation.

In order to estimate the times and sizes of the jumps, we need the following:

Assumption 2.3. We have either (I) or (II), where

(I) For some $ ∈ (0, 1/2):

(i) λ2
n∆n → 0, (ii) λn1{|x|>∆

1/2−$
n /(βn∆n)} ? ν → 0, and (iii) λn1{|x|<∆

1/2−$
n } ? ν → 0.

(II) For some $ ∈ (0, 1/2) and a sequence of integers kn ≥ 1:

(i) λ2
n∆nk

2
n → 0, (ii) λn1{|x|>eβn∆nkn∆

1/2−$
n } ? ν → 0, (iii) λn1{|x|<∆

1/2−$
n } ? ν → 0

and (iv) λne
−(βn∆1−$

n )2 → 0.

Assumption 2.3 (I) implies βn∆n = o (1). Condition (i) ensures that the number of jumps in an interval of
size ∆n is essentially 1. In the case where βn is bounded, (ii) is implied by (i) and we have the usual conditions
for the detection of jumps (see Mancini [23]). Condition (ii) controls the size of the mean-reversion. Condition
(iii) controls the size of the small jumps that cannot converge too fast to 0. If the jumps are bounded below by
some constant as Mancini [23] the condition is automatically satisfied.

Assumption 2.3 (II) (iv) implies that βn∆1−$
n →∞ and in particular βn∆

1/2
n →∞, implying that the mean

reversion of order βn∆n is stronger than the order of magnitude ∆
1/2
n of Brownian increments. It also allows for

the case βn∆n ≈ 1. In the setting of Assumption 2.3 (II), the mean reversion is more difficult to distinguish from
the jumps and in the case βn∆n ≈ 1, the jumps and the drift have the same size and are not distinguishable
from their size solely. Condition (i) states that there is at most one jump in an interval of size kn which is large
enough for the spike to vanish. Assumption 2.3 (II) also implies that λ2

n/βn → 0. Assumption 2.3 (II) allows
for high values of βn but the number of jumps needs then to be smaller than in case of Assumption 2.3 (I)
compared to βn.

2.2. Estimation of the jump times and λn

We first construct estimators of the sequence of the jumps and of their intensity λn. Assumption 2.3 is in
force. Let

Nt =
∑
s≤t

1{∆Xs 6=0}, t ≥ 0,

denote the number of jumps of (Xt)t≥0 up to time t and let T1 < T2 < · · · < Tq < · · · denote the random times
at which jumps occur. By construction, the sizes of jumps

(
∆XTq

)
q≥1

form a sequence of independent and
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identically distributed random variables independent of (Nt)t≥0. Let i(n, q) be the random integer such that

(i (n, q)− 1) ∆n < Tq ≤ i (n, q) ∆n.

We introduce the increasing sequence

1 ≤ In (1) < In(2) < . . . < In
(
nmax

)
≤ n

of indices i ∈ {1, . . . , n} defined by the realisation of the following successive events:

{ |∆n
i X|√
∆n

> vn

}
under Assumption 2.3 (I)

and { |∆n
i X|√
∆n

> vn, ∆n
i X∆n

i+1X < 0
}

under Assumption 2.3 (II).

with vn � ∆−$n , following the notations of Chapter 10 in [3]. The In(k) define a subset of {1, . . . , n} that define
in turn an estimator of λ via

λ̂n = Card
{
In(1), . . . , In(nmax)

}
= nmax.

Under Assumption 2.3 (II), we need the supplementary condition ∆n
i X∆n

i+1X < 0 for the following reason:
whenever a jump occurs, the mean reverting is dominant in the next observation interval and has a direction
opposite to the sign of the jump. Furthermore, it enables us to discard the increments caused by the mean
reversion that are large enough to be detected as jumps. Indeed, if we detect a false jump due to the mean
reversion effect, the next increments will follow the same dynamics and it will share the same sign with first
increment. The property that no jump lies within the next observation interval is ensured by the existence of
kn defined in Assumption 2.3 (II).

Remark 2.4. Note that λ̂n is actually defined with two different algorithms, whether Assumption 2.3 (I) or

2.3 (II) is taken under consideration. When stating the results, we refer to the same notation λ̂n that actually
corresponds to two algorithms, which we will refer to as Algorithm (I ) and Algorithm (II) in the proofs and
when processing the data, under Assumption 2.3 (I) and 2.3 (II) respectively.

Let

Ωn =
{
λ̂n = N1,∀q ∈ {1, ..., N1} : Tq ∈

(
In(q)∆n −∆n, In(q)∆n

]}
.

Proposition 2.5. Work under Assumptions 2.1, 2.2 and 2.3. We have P (Ωn)→ 1.

The proof of Proposition 2.5 relies on a result of Aı̈t-Sahalia and Jacod ([3], Thm. 10.26, p. 374). However,

the presence of a drift term −βn
∫ t

0
Zβns ds that depends on n together with the fact that λn → ∞ makes the

extension not trivial. Proposition 2.5 also provides us with an estimator λ̂n of λn. In the case λn →∞, we have
the following asymptotic property:

Proposition 2.6. Work under Assumption 2.1, 2.2 and 2.3 and assume that λn →∞. We have

√
λn
λ̂n − λn
λn

→ N (0, 1) (2.1)
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in distribution as λn →∞.

This result is straightforward: on the event Ωn, we have λ̂n = N1, i.e. λ̂n is a Poisson random variable with
parameter λn, for which (2.1) holds. We conclude thanks to P (Ωn)→ 1.

Remark 2.7. As for the optimality of the result, consider indeed the seemingly richer experiment where one
continuously observes a Poisson process (Pt)0≤t≤1 with intensity λ > 0. The variable P1 is a sufficient statistic

and the Cramer-Rao bound tells us that any unbiased estimator λ̂ necessarily satisfies E[(λ̂ − λ)2] ≥ I(λ)−1,
where I(λ) = 1 + λ−1 is the Fisher information associated to the observation of P1, i.e. a Poisson random

variable with parameter λ. Equivalently E
[(
λ̂−λ
λ

)2] ≥ (λ−1 + λ−2) ∼ λ−1 as λ → ∞ which is consistent with
the convergence (2.1) for fixed λ.

Remark 2.8. The assumption λ→∞ may be acceptable for some electricity markets revealing a lot of extreme
events, like for example in Australia. However, it can be questionable for electricity markets like in France or
Germany, although the latter is currently revealing a lot of negative prices.

A natural estimator of the jump sizes is ∆n
In(q)X for q ∈ {1, ..., λ̂n}, see ([3], Thm. 10.21, p.370). In our case,

∆n
In(q)X is equal to ∆XTqe

−βn(Tq−In(q)∆n) plus a negligible term. If βn∆n → 0, ∆n
In(q)X is then equivalent

to ∆XTq but if βn∆n � 1, the bias ∆XTq

(
1− e−βn(Tq−In(q)∆n)

)
remains and it is not possible to identify the

size of the jump. However, if λn →∞, one can infer some statistical properties of the jumps size. We have the
following result:

Proposition 2.9. Work under Assumption 2.1, 2.2, 2.3 and assume that λn →∞. Let m ≥ 1 ∈ N such that
|x|2m ? ν <∞,

mβn∆n

(1− e−mβn∆n) λ̂n

λ̂n∑
q=1

(
∆In(q)X

)m → xm ? ν

in probability as λn →∞. Furthermore, if |x|3m ? ν <∞,

√
λnmβn∆n

(
1− e−2mβn∆n

)
2(1− e−mβn∆n)2

 mβn∆n

(1− e−mβn∆n) λ̂n

λ̂n∑
q=1

(
∆In(q)X

)m − xm ? ν

→ N (0, 1)

in distribution as λn →∞.

Proof of Proposition 2.9 is immediate: it only requires the computation of
∫ 1

0
e−βn(t−b t

∆n
c∆ndt = 1−e−βn∆n

βn∆n

and the use of Theorem 3 in [28] for the central limit theorem. Also, the proof for the case m = 1 appears in
the proof of Theorem 2.11. We then omit the proof. Combining this result with our estimator of βn provided
below enables us to have an estimator for the moments of ν.

2.3. Estimation of βn

We are ready to construct an estimator of βn, based on the estimation of the right-derivative or instantaneous
slope of t 7→ Zβt right after a jump is detected. The estimator of this right-derivative, say sn, is based on averaging
of instantaneous slope proxies of the form ∆XTq (1− e−βn∆n) that govern the relaxation effect after a jump of

size ∆XTq has occurred at time Tq and it enables us to consider β̂n = − 1
∆n

log (1− ŝn) as our estimator of βn.
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More precisely, let sgn(x) = 1 if x ≥ 0 and −1 otherwise. On the event {λ̂n > 0}, define β̂n via

exp(−∆nβ̂n) = max
{

1 +

∑λ̂n
q=1 sgn(∆n

In(q)X)
(
∆n
In(q)+1X + 2∆n

∑q−1
j=1 ∆n

In(j)X
)

∑λ̂n
q=1 |∆n

In(q)X|
,∆n

}
(2.2)

and set β̂n = 0 otherwise. Our main result describes precisely the behaviour of β̂n under the different asymptotic
regimes of interest.

Remark 2.10. The same comments for β̂n as in Remark 2.4 for λ̂n hold here.

Theorem 2.11. Work under Assumptions 2.1, 2.2 and 2.3. Let βn
√
λn∆n →∞. On the set {λ̂n > 0}, we have∣∣β̂n − βn∣∣

βn
. λn∆n +

1

βn
√
λn∆n

+ min

{
1√
βn
,
λn
βn

}
in probability. More precisely,

i) On {λ̂n > 0}, we have

β̂n − βn
βn

=Mn + VnJ Tn ,

where

Mn = eβn∆n
λn
βn

(x ? ν) (sgn(x) ? ν)

|x| ? ν
(eβn∆n − 1

βn∆n
− 1
)
,

Vn = (V(i)
n )1≤i≤4 ∈ R4 is such that

V(1)
n = eβn∆n

√
λn√

3βn|x|?ν

(
(sgn(x) ? ν)2(|x|2 ? ν) + (x ? ν)2 − 2(sgn(x) ? ν)(|x|2 ? ν)

)1/2
,

V(2)
n = eβn∆n min

{( |x|2?ν
(|x|?ν)2

1
2βn

(1−e−2βn∆n )
2βn∆n

)1/2
, λnβn

}
,

V(3)
n = eβn∆n

(
βn∆n

1−e−βn∆n

) √∫ 1
0
σ2
sds

|x|?ν
√
λnβn

√
∆n
,

V(4)
n = eβn∆n

√∫ 1
0
σ2
sds
√

∆n

|x|?ν
√
λn

,

and Jn = (J (i)
n )1≤i≤4 ∈ R4 is bounded in probability as n→∞.

ii) If λn →∞, then

(J (3)
n ,J (4)

n )→ N (0, IdR2)

in distribution as n→∞.
iii) If λn →∞, |x|3 ? ν <∞ and (sgn(x) ? ν)2|x|2 ? ν + (x ? ν)2 − 2sgn(x) ? ν|x|2 ? ν 6= 0, we have

(J (1)
n ,J (3)

n ,J (4)
n )→ N (0, IdR3)
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in distribution as n→∞.
iv) If βn/λ

2
n → 0, the conditions of iii) and |x|4 ? ν <∞ hold together, we finally obtain

Jn → N (0, IdR4)

in distribution as n→∞.

Some remarks on the different error terms: (1) the term of order 1/(βn
√
λn∆n) accounts for the presence of

a Brownian motion in the term (Xc
t )t≥0. When λn is bounded, we need βn

√
∆n →∞ or equivalently

√
∆n =

o (βn∆n): the size of the slope of (Zβt )t≥0 after a jump needs to dominate the Brownian motion part which is
of order

√
∆n. In the case where λn →∞, we can average the error due to the Brownian martingale part and

then diminish the order of the error. In that case, we do not need the restriction
√

∆n = o (βn∆n) anymore

but rather
√

∆n/λn = o (βn∆n). (2) The error terms of order min{ 1√
βn
, λnβn },

√
λn
βn

and λn∆n account for the

jumps that occur before the observation increment used to estimate the slope of the process. (3) The term

2∆n

∑q−1
j=1 ∆n

In(j)X introduced in the definition of β̂n in (2.2) is a bias correction that enables us to obtain a

consistent estimator in the case λn/βn ≈ 1.

3. Practical implementation

3.1. Choice of the threshold vn

The method to detect the jumps is based on the classical use of the threshold which is proportional to ∆−$n .
As for the choice of the threshold and $, no exact method is provided in the literature. However, the threshold
is recommended to be chosen of the form vn = Cσ̂∆−$n in ([2], Sect. 5.3) and ([3], Sect. 6.2.2, p. 187) where

C is a constant and σ̂ is an estimator of the integrated volatility, defined by (
∫ 1

0
σ2
sds)1/2 (actually, the square

root of the integrated square volatility). A popular rule-of-thumb consists in picking $ close to 0. Moreover, [2]
suggests to choose C between 3 and 5.

It remains to find an estimator of the integrated volatility (
∫ 1

0
σ2
sds)1/2. A natural choice is the multipower

variation estimator defined by

σ̂ =

√√√√( Γ( 1
2 )

2
1
kΓ( 1

2 + 1
k )

)k n−k∑
i=1

|∆n
i X∆n

i+1X . . .∆n
i+kX|

2
k

with k the order of the estimator, see [4, 33] for more details. The order of the multipower variation estimator
is set to 20 in the practical applications in this paper, which is high compared to the orders typically chosen in
the literature. This choice is justified by the strong mean reversion of the spikes. As for the jumps, spikes have
large increments that need to be compensated in the multipower variation estimator and can be present during
two or three time steps. We compensate these large increments with a higher order of the multipower variation.
Some simulations on simple models show that an order of 20 looks reasonable.

3.2. Numerical illustration

In this section, we study the performances of our estimation procedures on simulated data of the process
defined by (1.2)–(1.3)–(1.4). We tested a wide range of values for (λn, βn) in order to illustrate the results of
Theorem 2.11. To be consistent with real data, the process is simulated with a step time ∆n = 10−4, which is
the order of magnitude corresponding to one year of hourly data observations. We pick

dXc
t = Xc

t

(
(2− 100 log(Xc

t ))dt+ 2dWt

)
(3.1)
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Table 1. Performance of (λ̂n, β̂n) for different values of (λn, βn) using Algorithms (I) and (II),
with continuous part defined by (3.1) and jump size distribution 0.4 (−E (15)) + 0.6E (10). The
threshold vn is chosen equal to 3σ̂∆−0.01

n with σ̂ is the multi-power variation estimator of order
20. The means and quantile intervals 5%-95% are computed with 104 Monte-Carlo simulations
and ∆n = 10−4.

(λn, βn)
Algorithm (I) Algorithm (II)

λ̂n β̂n λ̂n β̂n

Mean C. I. Mean C. I. Mean C. I. Mean C. I.

(10, 2) 27.0 [18, 36] 4.4 [−16.6, 25.8] 13.3 [8, 20] 86.5 [13.6, 179.6]
(10, 20) 21.3 [11, 35] −31.6 [−152.2, 23.7] 8.9 [5, 14] 37.1 [18.1, 66.8]
(10, 200) 95.1 [70, 117] −592.6 [−1839.0, 28.7] 9.4 [5, 15] 204.5 [186.5, 225.7]
(10, 2000) 94.1 [54, 137] −4430.1 [−5860.2,−2271.0] 9.7 [5, 15] 2003.0 [1978.9, 2026.2]
(10, 20000) 45.7 [31, 62] −727.9 [−1262.9,−77.7] 18.0 [12, 25] 19152.0 [17840.8, 19845.5]

(75, 2) 79.6 [66, 94] 2.2 [−2.3, 6.6] 42.1 [32, 53] 42.5 [−3.5, 232.1]
(75, 20) 73.0 [59, 88] 19.7 [12.4, 27.8] 49.5 [39, 60] 50.6 [24.4, 158.9]
(75, 200) 106.7 [82, 132] 147.0 [94.5, 190.7] 63.3 [52, 75] 226.2 [198.8, 289.4]
(75, 2000) 351.3 [290, 411] −2483.0 [−3471.0,−1566.8] 69.4 [56, 83] 2021.5 [1959.7, 2116.0]
(75, 20000) 229.2 [189, 271] −1158.3 [−1291.5,−1016.8] 80.4 [66, 96] 19717.3 [18745.8, 20257.2]

corresponding to the exponential of an Ornstein-Uhlenbeck process with the mean reverting parameter equal to
100 and volatility parameter equal to 2. The sizes of the jumps follow the law 0.4 (−E (15)) + 0.6E (10), with E(ρ)
denoting the exponential distribution with parameter ρ > 0. Figure 2 illustrates a sample path of the process
for different parameters λn and βn. We realize 10000 simulations. We use jump detection using Algorithm (I),
corresponding only to the use of a threshold, as well as Algorithm (II), corresponding to filtering the previous
jumps by keeping only increments that have successive opposite signs, respectively working theoretically in the
case of 2.3 (I) and 2.3 (II).

Tables 1, 2 and 3 show the different results of estimated (λ̂n, β̂n) using a threshold equal to Cσ̂∆−0.01
n ,

for C = 3, 4, 5. As expected, for large βn, the estimation on filtered jumps gives satisfactory results of β̂n,
whatever the value of λn satisfying the different assumptions, and seems to slightly underestimate λn, whereas
the estimation under Algorithm (I) gives bad results on β̂n and overestimates λn.

The results for βn = 20 highlights, as expected, the need in Assumption 2.3 (II) to have a small number of
jumps (λn = 10) to get satisfactory results. Because of the expected βn on real data, we will focus, in the next
section, on the estimation procedure on filtered jumps (i.e. using Algorithm (II). This choice is also justified

by the fact that underestimating the numbers of spikes seems to have a lower impact on the quality of β̂n
than overestimating them. One also observes that the choice of C has an impact on the estimation of λn: the
threshold to select jumps increases with C and then the estimated λn which is the number of jumps decreases.
On the contrary, it has a low impact on the estimation of βn, except in the case C = 3 for small λn where the
number of spikes is overestimated, leading to a bad estimator for βn. Finally, the impact of the order of the
multipower estimator of the volatility is illustrated in Figure 3. The impact is negligible from an order of 20,
where the estimators mean of λn and βn remain constant and give a good estimation. Before 20, it has only an
impact on the estimation of λn: the spike effect has not disappeared in the estimator and σ̂ is overestimated,
inducing less detected spikes and an underestimation for λn. This supports the choice of a high order for the
multipower estimator.
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Table 2. Performance of (λ̂n, β̂n) for different values of (λn, βn) using Algorithmes (I) and
(II), with continuous part defined by (3.1) and jump size distribution 0.4 (−E (15)) + 0.6E (10).
The threshold vn is chosen equal to 4σ̂∆−0.01

n with σ̂ is the multi-power variation estimator
of order 20. The means and quantile intervals 5%-95% are computed with 104 Monte-Carlo
simulations and ∆n = 10−4.

(λn, βn)
Algorithm (I) Algorithm (II)

λ̂n β̂n λ̂n β̂n

Mean C. I. Mean C. I. Mean C. I. Mean C. I.

(10, 2) 10.6 [6, 16] 2.0 [−9.7, 13.7] 5.8 [2, 10] 29.7 [4.6, 46.4]
(10, 20) 10.2 [5, 16] 18.4 [2.4, 32.4] 7.6 [4, 12] 29.0 [16.8, 41.3]
(10, 200) 54.8 [39, 69] −256.6 [−996.6, 114.1] 9.3 [5, 14] 203.8 [186.5, 224.9]
(10, 2000) 81.5 [47, 118] −4216.3 [−5908.7,−1902.0] 9.6 [5, 15] 2002.8 [1978.9, 2025.7]
(10, 20000) 30.9 [16, 48] −1151.6 [−1528.6,−742.1] 10.8 [5, 17] 19778.4 [19185.2, 20168.1]

(75, 2) 74.2 [61, 89] 2.0 [−2.4, 6.2] 40.2 [30, 51] 40.5 [−3.8, 221.3]
(75, 20) 72.3 [59, 87] 19.8 [12.8, 27.8] 49.2 [39, 60] 50.4 [24.4, 158.9]
(75, 200) 77.3 [61, 97] 178.8 [139.1, 212.2] 62.1 [51, 74] 225.4 [198.2, 287.8]
(75, 2000) 281.7 [231, 330] −1888.3 [−2843.5,−1004.8] 67.4 [55, 81] 2020.8 [1959.3, 2114.6]
(75, 20000) 216.7 [177, 257] −1200.1 [−1307.8,−1085.3] 76.6 [62, 91] 19760.4 [18778.1, 20302.9]

Table 3. Performance of (λ̂n, β̂n) for different values of (λn, βn) using Algorithmes (I) and
(II), with continuous part defined by (3.1) and jump size distribution 0.4 (−E (15)) + 0.6E (10).
The threshold vn is chosen equal to 5σ̂∆−0.01

n with σ̂ is the multi-power variation estimator
of order 20. The means and quantile intervals 5%-95% are computed with 104 Monte-Carlo
simulations and ∆n = 10−4.

(λn, βn)
Algorithm (I) Algorithm (II)

λ̂n β̂n λ̂n β̂n

Mean C. I. Mean C. I. Mean C. I. Mean C. I.

(10, 2) 9.95 [5, 15] 2.01 [−9.21, 12.85] 5.45 [2, 9] 19.5 [4.26, 39.4]
(10, 20) 9.9 [5, 15] 19.84 [7.6, 32.4] 7.5 [3, 12] 28.8 [16.9, 40.2]
(10, 200) 33.4 [17, 47] −76.7 [−540, 158] 9.3 [5, 14] 204 [188, 224]
(10, 2000) 72.5 [42, 105] −3968 [−5934,−1633] 9.6 [5, 15] 2002 [1979, 2023]
(10, 20000) 29.2 [15, 46] −1207 [−1508,−871] 10.2 [5, 16] 19861 [19337, 20207]

(75, 2) 73.7 [60, 88] 2 [−2.46, 6.17] 39.9 [30, 51] 39.2 [−4, 204]
(75, 20) 71.9 [59, 86] 19.8 [12.9, 27.6] 49.9 [39, 60] 49.9 [24.5, 155.6]
(75, 200) 68.7 [55, 83] 191 [157, 219] 61 [50, 73] 225 [198, 291]
(75, 2000) 234 [192, 273] −1403 [−2334,−556] 65.6 [54, 78] 2019 [1958, 2109]
(75, 20000) 207 [170, 247] −1216 [−1308,−1113] 74.2 [60, 89] 19785 [18790, 20310]

3.3. Practical implementation on real data

Electricity spot historical data do exhibit spikes with strong mean reversion, see Figure 1. We expect to
obtain relatively high values for βn, a necessary condition in order to apply our estimation procedure, especially
under Assumption 2.3 (II). The goal is then to estimate the parameters λn and βn of the process Zβn on a
time series of spot prices, assuming that the spot price is the sum of a continuous semimartingale and a spike
process. We dispose of the following data:
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Figure 3. Estimation of (λ̂n, β̂n) for different values of the order of the multipower estimator
of the volatility σ̂ using Algorithm (II), with continuous part defined by (3.1), λn = 75, βn =
20000 and jump size distribution 0.4 (−E (15)) + 0.6E (10). The threshold vn is chosen equal
to 5σ̂∆−0.01

n . The mean of the estimators is computed with 104 Monte-Carlo simulations and
∆n = 10−4.

Table 4. Estimation of (λn, βn) for different markets using a threshold of the form vn =
Cσ̂∆−0.01

n where σ̂ is the multi-power variation estimator of order 20 and C takes different
values.

Market C = 3 C = 4 C = 5

French (100, 19170) (51, 20259) (35, 21043)
German (145, 9848) (62, 13438) (34, 14531)

Australian (337, 22897) (227, 22883) (177, 22884)

1. French electricity EPEX spot prices between the first of January of 2015 (included) and the first of January
2017 (not included) with data each hour1,

2. German electricity EPEX spot prices between the first of January of 2015 (included) and the first of
January 2017 (not included) with data each hour1,

3. Australian electricity spot prices in Queensland between the first of January of 2015 (included) and the
first of January 2017 (not included) with data each 30 minutes2.

We estimate those parameters using a threshold vn = Cσ̂∆−0.01
n , with σ̂ the multi-power variation of order 20

and C a constant set to 3, 4 or 5. Results are presented in Table 4. Equivalent half-life time in hours−1, log(2)

β̂n∆n
,

and intensity λ̂n
2 in years−1 are given Table 5. Figure 1 gives the time series of these three sets of data with

jumps time estimated in the case C = 5.
As expected, the estimated λ̂n is sensitive to the value of C, the number of detected jumps decreasing with

C. The estimated β̂n is much less sensitive, although we can observe a slight increase of values with C in the
French and German markets. We will see in section 4.3 the sensitivity of these estimators to the value of a strip
of Call options.

In the previous analysis, one neglects the intraday seasonality which can be very strong and induce spikes
detection, see Figure 4. Indeed, the spot price is not an hourly process but a daily process. Spot fixing is done

1Source: https://www.epexspot.com/
2Source: https://www.aemo.com.au/

https://www.epexspot.com/
https://www.aemo.com.au/
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Table 5. Estimation of intensity λ̂n
2 in years−1 (first component) and half-life time in hours−1,

log(2)

β̂n∆n
(second component), for different markets using a threshold of the form vn = Cσ̂∆−0.01

n

where σ̂ is the multi-power variation estimator of order 20 and C takes different values.

Market C = 3 C = 4 C = 5

French (50, 0.63) (25.5, 0.60) (17.5, 0.58)
German (72.5, 1.23) (31, 0.90) (17, 0.83)

Australian (168.5, 1.06) (113.5, 1.06) (88.5, 1.06)

Figure 4. German hourly spot price between 2016-01-20 and 2016-01-25.

every day and the 24 prices for next day are settled simultaneously. However, representing this 24-dimensional
stochastic process is very difficult and more importantly not suitable for risk management. Table 6 contains the
estimation results on the different data set with data sampled daily for each hour and for the daily average spot

price using C = 4 for the threshold parameter (intensity λ̂n
2 in years−1 and half-life time in days−1, log(2)

β̂n∆n
, are

given). Our estimation procedure provides an estimation for jump times, jump sizes, and for the parameter β.
However, the number of identified spike being low, the estimation procedure can not provide a robust estimation
of λ. Figure 5 represents the spike estimation for hours 0 and 18. Some spikes, for instance during January 2016
and hour 21, are not detected: they are not a spike in our modelling because for the spot to be high, several
time steps are needed and it is not seen as a discontinuity.

4. Derivative pricing in the electricity market

4.1. Forward price formula

Due to the non-storability of electricity, the spot price is not an asset. The modelling of (and then an analytical
formula for) the forward prices (i.e. the real assets and hedging products) is essential for risk management
purposes. The question of the choice of the risk-neutral probability is addressed in the next section. Here,
we consider that the electricity spot price (St)t≥0 (respectively the logarithm of the spot price (St)t≥0) is

modelled by St = Xc
t +Zβt (respectively log(St) = Xc

t +Zβt ), according to (1.2)–(1.3)–(1.4) under a risk-neutral
probability Q.
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Table 6. Estimation of (λn, βn) on daily data for the different hours of the day (hour 0 to
23) and for daily average price (Day) using a threshold of the form vn = 4σ̂∆−0.01

n where σ̂ is

the multi-power variation estimator of order 20. Intensity λ̂n
2 in years−1 and half-life time in

days−1, log(2)

β̂n∆n
, are given. Half-life time values are missing when there are no jumps or when

the left hand part in the maximum term of (2.2) is less than 0.

Country French German Australian

Hour/Parameters λ̂n
2

log(2)

β̂n∆n

λ̂n
2

log(2)

β̂n∆n

λ̂n
2

log(2)

β̂n∆n

Day 1.0 2.07 0.5 15.5 0.46
0 1.0 1.35 8.5 1.23 5.0 1.76
1 1.5 1.67 9.5 1.23 7.5 0.55
2 0.5 2.67 8.5 0.65 4.5 0.82
3 0.5 1.94 8.5 1.02 4.0 0.55
4 1.0 3.73 5.5 0.78 4.5 0.46
5 1.5 4.39 5.0 1.06 3.0 3.65
6 0.0 2.5 0.8 11.0 0.85
7 1.0 1.5 0.85 16.0 0.86
8 1.5 0.72 0.5 7.5 0.59
9 0.0 0.0 10.5 0.94
10 1.0 2.1 0.0 13.0 0.87
11 0.5 4.2 0.0 9.5 0.59
12 1.5 4.02 2.0 0.84 14.0 1.13
13 2.0 1.15 3.0 0.8 12.5 0.62
14 1.5 1.87 4.0 0.46 14.0 0.54
15 1.5 2.29 2.5 0.43 12.5 0.86
16 1.0 2.24 2.0 0.44 9.0 1.02
17 1.5 1.85 2.5 4.46 10.5 1.55
18 3.5 1.27 2.5 1.85 12.5 3.04
19 3.5 1.36 1.0 7.14 11.0 1.14
20 1.5 1.39 1.0 0.65 10.5 2.88
21 1.5 5.08 1.5 0.55 7.0 0.30
22 2.0 0.96 2.0 0.71 5.0 1.05
23 1.0 0.52 4.0 0.87 15.0 3.11

The forward price f(t, T ) quoted at time t, delivering 1MWh at time T , is defined by:

f (t, T ) = EQ[ST | Ft].
The available contracts in the electricity markets are of the form f(t, T, θ): a contract that delivers 1MWh
continuously from T to T + θ. The delivery period θ can be one week, one month, one year and so on. For
example, the contract called “one-week-ahead” (1WAH) will deliver 1MWh continuously from the first hour
of next Monday to the last hour of the following Sunday; the contract called “one-month-ahead” (1MAH)
will deliver 1MWh continuously between the first and the last hour of next month. By classical no arbitrage
arguments [5] the price of such a product is defined by:

f (t, T, θ) =
1

θ

∫ T+θ

T

f (t, u) du.
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Figure 5. Spike detection on daily German data during year 2016 for hour 0 and hour 21
using a threshold of the form vn = 4σ̂∆−0.01

n where σ̂ is the multi-power variation estimator of
order 20.

Theorems 4.1 and 4.2 give analytic formulae for the forward price f (t, T ) respectively for the modelling of
the spot price and the modelling of the logarithm of the spot price by (1.2)–(1.3)–(1.4).

Theorem 4.1. Suppose that the spot price is modelled by St = Xc
t + Zβt , t ≥ 0, according to (1.2)–(1.3)–(1.4)

under a risk-neutral probability Q.

1. We have an explicit representation of f (t, T ) = EQ[ST ∣∣Ft] given by

f (t, T ) = f c (t, T ) + fβ (t, T ) ,

with

f c (t, T ) = EQ[Xc
T

∣∣Ft]
and

fβ (t, T ) = e−β(T−t)Zβt +
λx ? ν

β

(
1− e−β(T−t)).

2. We also have f (t, T, θ) = f c (t, T, θ) + fβ (t, T, θ), with f c (t, T, θ) = 1
θ

∫ T+θ

T
f c (t, u) du and

fβ (t, T, θ) = e−β(T−t)
(

1− e−βθ

βθ

)
Zβt +

λx ? ν

β

[
1− e−β(T−t)

(
1− e−βθ

βθ

)]
.

The proof is straightforward. Theorem 4.1 has three major consequences.

1. The proposed model (1.2)–(1.3)–(1.4) allows us to get analytical formulas for the forward prices f(t, T )
and f(t, T, θ), provided that we have analytical formulas for the continuous part f c (t, T ). This then covers
a wide range of models.
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2. We can easily write the model (1.2)–(1.3)–(1.4) in its equivalent form on forward prices by f(t, T ) =
f c (t, T ) + fβ (t, T ) with

fβ (t, T ) =

∫ t

0

∫
R
xe−β(T−t)p (ds,dx) . (4.1)

It is then easy to consider the proposed model as an extension of any classical (continuous) model written
on the forward prices, allowing to represent spikes in the spot price dynamics.

3. If λ/β is small and β is large, the impact of fβ on the forward prices is negligible and the additive spike
process has only an impact on the spot prices. This is consistent with the observations in the electricity
markets, the forward prices showing no spikes.

These consequences are of significant importance. Especially in the case where λ/β is small and β is large, this
means that the spike process can be treated independently, both in parameter estimation and in simulation.
Indeed, consider any existing (continuous) model describing (or simulating) f c(t, T ) and calibrated on forward
prices, the proposed model then consists in adding (simulations of) the spike process calibrated on spot prices
following the estimation procedure previously described.

Theorem 4.2. Suppose that the logarithm of the spot price is modelled by log(St) = Xc
t +Zβt , t ≥ 0, according

to (1.2)–(1.3)–(1.4) under a risk-neutral probability Q. Let assume that
∫
R e

uxν (dx) <∞ for all u ∈ [0, 1]. We

have an explicit representation of f (t, T ) = EQ[ST ∣∣Ft] given by

f (t, T ) = f c (t, T ) fβ (t, T ) ,

with

f c (t, T ) = EQ[eXcT ∣∣Ft]
and

fβ (t, T ) = ee
−β(T−t)Zβt e

λ
β

∫ 1
0

(
∫
R e
uxν(dx)−

∫
R e
ue−β(T−t)xν(dx))du.

The proof is straightforward and comments for the results of Theorem 4.1 can be transposed to the ones
of Theorem 4.2. In particular, if λ/β is small and β is large, the term fβ (t, T ) is close to 1 and f(t, T ) to
f c(t, T ). A similar formula is given for the forward prices in [17] in the case where Xc follows a Gaussian
Ornstein-Uhlenbeck process.

4.2. Specific model and change of measure

We address the problem of choosing the risk neutral probability which we illustrate with a specific and simple
model: in the rest of this section, we consider the model defined by

f (t, T ) =

∫ t

0

µsds+ f c (t, T ) + fβ (t, T ) ,

with fβ(t, T ) defined by (4.1) and where the continuous part f c(t, T ) follows the dynamics

df c (t, T ) = f c (t, T ) (σldW
l
t + σse

−α(T−t)dW s
t )

with (W l
t ,W

s
t )t≥0 a two-dimensional Brownian motion under the historical probability P with correlation ρ.

This dynamics corresponds to a classical two factors model for forward prices of electricity [19] or gas [34]. The
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forward price is driven by a short term factor with volatility σse
−α(T−t) and a long term factor with volatility σl.

The short term volatility σse
−α(T−t) captures the Samuelson effect: the volatility increases when T − t decreases.

The spot price is then equal to St =
∫ t

0
µsds+Xc

t + Zβt with

Xc
t = f c (0, t) exp

(
−1

2

[
σ2
l t+ σ2

s

1− e−2αt

2α
+ 2ρσlσs

1− e−αt

α

]
+ σldW

l
t + σs

∫ t

0

e−α(t−u)dW s
u

)
,

and the model then falls within the class of models (1.2)–(1.3)–(1.4).

We have seen that the forward products are not impacted by the spikes if λ/β is small and β is large. However,
it can have an important impact on options on the spot, for instance on a strip of Call options, with payoff

of the form
∑I
i=1

(
Sti,n −K

)+
for prescribed dates ti,n. If we consider an option with payoff having a single

component (St −K)
+

, the jump process will have a weak impact: the probability to have a jump at time t is
equal to 0 and even if there is a jump before, it disappears very quickly. However, the jump process may have

a significant impact on the value of options with payoff
∑I
i=1

(
Sti,n −K

)+
because the probability of having

spikes on [0, 1] is non zero. (Note that only upward spikes will have an impact on the price of these options.)
Unlike spot prices, forward contracts are tradable assets. In the following, we assume absence of arbitrage

opportunity. According to the fundamental theorem of asset pricing, there exists a probability measure Q
equivalent to the historical measure P such that f (t, T ) is a local martingale under Q3. Because of the presence
of jumps, the market is incomplete and Q is not unique. According to Theorem 2 of [29], there exists a predictable
process (γt)t≥0 and a predictable process (Y (t, x))t≥0,x∈R such that:

1) µt + γtct +
∫ t

0

∫
R xλY (t, x) e−β(T−t)ν (dx) = 0 (P⊗ dt almost-surely),

2)
∫ 1

0
γ2
scsds <∞ almost surely,

3)
∫ 1

0

∫
R |x|

2 ∧ |x|Y (t, x) e−β(T−t)λν (dx) <∞ (P⊗ dt almost -surely).

with ct equal to f c (t, T )
(
σ2
l + σ2

se
−2α(T−t) + 2ρσlσse

−α(T−t))1/2 in our case. Under the equivalent measure,
f (t, T ) is an Itô semi-martingale with drift 0, volatility ct and jump measure p∗ = Y p following

df (t, T ) = df c (t, T ) + dfβ (t, T )

with

df c (t, T ) = f c (t, T )
(
σldW

l,∗
t + σse

−α(T−t)dW s,∗
t

)
,

dfβ (t, T ) =

∫
R
xe−β(T−t) (p∗ (dt,dx)− λY (t, x) ν (dx) dt

)
for two Brownian motions (W s,∗,W l,∗) under the new measure. The volatility does not change unlike the
intensity and the law of jump sizes of the Poisson process.

In order to choose the change of martingale measure, one usually considers an optimisation criterion. One of
the most common used criterion is the local risk-minimisation introduced by Föllmer and Schweizer (see [32] for
details). The variance of the cost of the strategy is minimised locally, infinitesimally at each time. This strategy
corresponds to choose the minimal martingale measure defined in [14]. Under certain assumptions, this measure
is a true probability measure and the asset is a local martingale under this measure. Furthermore, the intensity
changes and depends on the drift µ, which is also true for most common criteria. Since we work on a finite time
framework, the drift is not identifiable and it is not possible to estimate it.
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In the following we choose the historical approach of Merton consisting in picking a change of probability
that does not affect the intensity and the jump sizes of the Poisson measure [24]. The equivalent probability
measure is defined by

dQM

dP
= exp

( ∫ 1

0

θud
σlW

l
u+σse

−β(T−u)W s
u

(σ2
l +σ2

se
−2α(T−u)+2ρσlσse−α(T−u))

1/2 −
1

2

∫ 1

0

θ2
udu

)
with θu = −(µu+e−β(T−u)

∫
R xν(dx))

fc(u,T )(σ2
l +σ2

se
−2α(T−u)+2ρσlσse−α(T−u))

1/2 . The Novikov’s condition is satisfied so it defines in turn

a genuine probability measure. Under QM , the price of the forward contract f (t, T ) follows the dynamics
df (t, T ) = df c (t, T ) + dfβ (t, T ) with

df c (t, T ) = f c (t, T )
(
σldW

l,QM
t + σse

−α(T−t)dW s,QM
t

)
and

dfβ (t, T ) =

∫
R
xe−β(T−t) (p (dt, dx)− λν (dx) dt

)
,

where W l,QM and W s,QM are two QM -Brownian motions. Merton chooses this probability considering that the
risk associated to the jumps is diversifiable. As noticed in Tankov in Section 10.1 of [12], using this strategy
leaves one exposed to the risk of the jumps. It only corrects the average effect of jumps (provided that the jump
component of the electricity price is independent of the other assets, which is the case here: we understand the
electricity spikes caused by physical exogenous events; it can in particular be caused by the production capacity
and the demand which are not assets (see the structural model of Aid et al. [1] for instance). Finally, the price

of an option with payoff H (ST ) = H (f (T, T )) at time t is given by EQM [H (ST ) | Ft
]
.

4.3. Application to call option pricing in the french market

In the following, we focus on the French market and we work on the model of Section 4.2. We dispose of the
hourly spot and daily forward prices in 2015 and 2016.

Parameters of fβ We use the parameters found in Table 4 to calibrate Zβ to the spot prices. We model the
size of the jumps by its empirical distribution, each jump being estimated with ∆n

In(q)X, knowing that a bias

(mentioned in the end of Sect. 2.2) is present.

Parameters of f c We consider the following forward products in the French market: 1 to 4 Week-ahead, 1 to
3 Month-ahead, 1 to 4 Quarter-ahead and 1 and 2 Year-ahead products. As λ̂n/β̂n is small and β̂n is large, we
can neglect the jump part on the forward prices and consider that the forward products have only a continuous
part. We use the method of Féron and Daboussi [13] to calibrate the parameters of f c to the observed forward

prices. We find for the different parameters α = 12.56 y−1, σs = 1.03 y−
1
2 , σl = 0.25 y−

1
2 and ρ = −0.11.

Forward products In Figure 6, we display a simulation of the spot price, the 1WAH and the 1MAH with
and in absence of spikes. The parameters of the spike component are the one of Table 4 with C = 5. We observe
that the difference between the trajectory of the forward products with and without spikes is very small but
significant for the spot price.

Strip of call options We consider an option of payoff
∑I
i=1

(
Sti,n −K

)+
, with I = 8760 corresponding to

possible exercises each hour of one year. This choice of payoff is motivated by the valuation of a power plant:
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Figure 6. Simulation of different products in a two factor model with and without spikes
between the 27th of February 2017 and the 31st of March 2017. We illustrate the spot, the
1WAH starting the 27th of February 2017 and the 1MAH starting the 01st of March 2017.

the produced electricity is sold on the market at S and the production cost is K. A high strike corresponds to
peaking power stations activated when other plants can not satisfy the total load. The price of such an option

is equal to EQM [∑I
i=1

(
Sti,n −K

)+ ]
.3 We give in Table 7 confidence intervals at level 95% for the option price

with the different strikes 100, 200 and 300, computed using Monte Carlo method with 10000 simulations. We
consider the case where there is no spikes and the cases with spikes using the different threshold of the form
vn = Cσ̂∆−0.01

n with C = 3, C = 4 and C = 5. Considering spikes leads to higher value for the strip options.
Furthermore, options valued at zero have now non negligible values. We notice that the choice of the threshold
have an impact on the price of the option. Indeed, a higher C leads to less jumps and a smaller λ, see Table 4,
and then to a lower price as most of the jumps are positive. However, the impact is low since we keep the larger
jumps when C is increased which are the ones impacting the price for high strikes.

3For simplicity, we consider a risk-free rate equal to zero.
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Table 7. Confidence intervals at level 95% for the price of strip options computed using Monte
Carlo method with 10000 simulations for different strikes and different models.

Model/Strike 100 200 300

Without spike [1716.22, 1806.83] [0.0089, 0.063] [0, 0]
Spikes, C = 3 [2482.57, 2576.17] [434.21, 450.26] [264.14, 274.00]
Spikes, C = 4 [2442.66, 2536.26] [412.98, 428.44] [251.72, 262.29]
Spikes, C = 5 [2417.24, 2510.79] [397.74, 412.76] [242.04, 252.41]

4.4. A word of conclusion

In conclusion, we see that our statistical methodology and estimators are feasible on simulated data, with
quite satisfactory results. For practical implementation, both for the statistical estimation of the parameters and
for option pricing, the picture is fairly good in most cases. Depending on the market structure and location, we
meet some regimes that are compatible with our assumptions and our asymptotic regimes. However, we fail to
capture in a robust way the versatility of every market. This is explained by two facts: firstly, our jump model is
too simple to apply in all situations; secondly, we rely on a high number of spikes and fast mean-reversion, and
this is not always the case in practice. One could certainly devise fine (and non-asymptotic) statistical methods
to incorporate this issue in some cases, at the risk nonetheless of loosing the robustness with respect to the
underlying continuous part of price model, which is completely nonparametric in the present case.

5. Proofs

In the following proofs, we set the drift (µt)t≥0 vanishes identically. Generalizing to the non-null drift case
is done using the usual argument based on Girsanov theorem. Also, we assume for simplicity that (σt)t≥0 is a
deterministic function, in order to simplify in particular the proofs for central limit theorems.

5.1. Proof of Proposition 2.5

The proof follows the path of ([3], Thm. 10.26, p. 374) and is also close to Mancini [23] in spirit. We will
denote by ξν a generic random variable distributed according to ν. Let

An =
{
i ∈ {1, . . . , n}, i 6= i (n, q) ∀q ≥ 1

}
be the set of indices i such that the interval ((i− 1)∆n, i∆n] contains no jump.

5.1.1. Proof of Proposition 2.5 under Assumption 2.3 (I)

We first need to show

P
(

max
i∈An

|∆n
i X|√
∆n

> vn
)
→ 0, (5.1)

P
(

min
i∈Acn

|∆n
i X|√
∆n

< vn
)
→ 0 (5.2)

and

P
(

max
1≤i≤n

∆n
i N ≥ 2

)
→ 0. (5.3)
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We have

∆n
i X√
∆n

=
−βn

∫ ti,n
ti−1,n

Zβs ds
√

∆n

+
∆n
i X
′

√
∆n

,

with

X ′t =

∫ t

0

µsds+

∫ t

0

σsdWs +

∫ t

0

∫
R
xp (ds,dx) .

By equation (10.71), p.374 of [3] we have P
(

sup
i∈An

|∆n
i X
′|√

∆n
> vn

)
→ 0, Therefore, in order to prove (5.1), we need

to show that

P
(

sup
i∈An

|βn
∫ ti,n
ti−1,n

Zβs ds|
√

∆n
> vn

)
→ 0. (5.4)

Since |βn
∫ ti,n
ti−1,n

Zβs ds| =
(
1− e−βn∆n

)
|Zβti−1,n

| for i ∈ An, we have

P
(

max
i∈An

|βn
∫ ti,n
ti−1,n

Zβs ds|
√

∆n

> vn
)
≤ P

(
βn
√

∆n sup
t∈[0,1]

∣∣Zβt ∣∣ > vn
)

≤ P
(

sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds,dx) >

vn

βn
√

∆n

)
≤ 2λnP

(
|ξν | >

vn

βn
√

∆n

)
by Markov’s inequality and equation (10) of [7] on the expectation of the crossings of shot noise processes. This
last term converges to 0 by Assumption 2.3 (ii) and (5.4) follows which completes the proof of (5.1).

We next turn to (5.3). The left hand side of (5.3) is equal to P (∪ni=1∆n
i N ≥ 2) . λ2

n∆n which converges to 0
if λn

√
∆n → 0. With no loss of generality we may (and will) work on the set { max

1≤i≤n
∆n
i N ≤ 1}. In the interval

((i (n, q)− 1) ∆n, i (n, q) ∆n], there is only one jump and we have

∆n
i(n,q)Z

β = −
(
1− e−βn∆n

)
Zti(n,q)−1,n

+ e−βn(i(n,q)∆n−Tq)∆XTq

for all q ≥ 1, therefore

|∆n
i(n,q)X|√

∆n

≥
e−βn∆n |∆XTq |√

∆n

−
|∆n

i(n,q)X
c|

√
∆n

−
|
(
1− e−βn∆n

)
Zβti(n,q)−1,n

|
√

∆n

≥ min
1≤q≤N1

e−βn∆n |∆XTq |√
∆n

− max
i∈Acn

|∆n
i X

c|√
∆n

− max
1≤i≤n

βn∆n|Zβti,n |√
∆n

.

It follows that P
(

min
i∈Acn

|∆n
i X|√
∆n
≤ vn

)
is dominated by the sum of the three following terms:

P
(

min
1≤q≤N1

|∆XTq |e−βn∆n ≤ 3vn
√

∆n

)
, (5.5)
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P
(

min
1≤q≤N1

|∆XTq |e−βn∆n ≤ 3max
i∈Acn
|∆n

i X
c|
)

(5.6)

and

P
(

min
1≤q≤N1

|∆XTq |e−βn∆n ≤ 3 max
1≤i≤n

βn∆n|Zβti,n |
)
. (5.7)

The term (5.5) equals

E
[
1−

(
P
(
|ξν | > 3vn

√
∆ne

βn∆n
))N1

]
= 1− exp

(
− λnP(|ξν | ≤ 3vn

√
∆ne

βn∆n)
)

and converges to 0 under the assumption λnP
(
|ξν | ≤ ∆

1
2−$
n

)
→ 0. The term (5.6) is dominated by

P
(

min
1≤q≤N1

|∆XTq |e−βn∆n ≤ 3vn
√

∆n

)
+ P

(
vn
√

∆n ≤ max
i∈Acn
|∆n

i X
c|
)
. (5.8)

The left hand side of (5.8) is equal to (5.5) and converges to 0. According to Corollary 3.3 of [23], for i ∈ {1, ..., n},

P
(
∆n
i X

c > vn
√

∆n

)
≤ 2e−v

2
n/2σ̄

2

.

The right hand side of (5.8) is dominated by

E
[ N1∑
q=1

P
(
|∆n

i X
c| ≥ vn

√
∆n

)]
≤ E [N1] 2e−v

2
n/2σ̄

2

= 2λne
−v2

n/2σ̄
2

→ 0.

The term (5.7) is dominated by

P
(

min
1≤q≤N1

|∆XTq |e−βn∆n ≤ 3vn
√

∆n

)
+ P

(
vn
√

∆n ≤ max
1≤i≤n

βn∆n|Zβti,n |
)
. (5.9)

The left hand side of (5.8) is equal to (5.5) and converges to 0. The right hand side of (5.8) also converges to 0
with the same argument as for (5.4).

5.1.2. Proof of Proposition 2.5 under Assumption 2.3 (II)

Since

P
(

max
0≤i≤n−kn

|N(i+kn)∆n
−Ni∆n

| ≥ 2
)
. λ2

n∆nk
2
n → 0,

therefore, we only need to prove the result on the set Bn = { max
0≤i≤n−kn

|N(i+kn)∆n
− Ni∆n | ≤ 1}. We need to

show:

P
(
∃i ∈ An,

|∆n
i X|√
∆n

> vn and ∆n
i X∆n

i+1X < 0 ∩ Bn
)
→ 0 (5.10)

and

P
(
∃i ∈ Acn,

|∆n
i X|√
∆n

< vn or ∆n
i X∆n

i+1X > 0 ∩ Bn
)
→ 0. (5.11)
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We bound (5.10) above by the sum of

P
(
∃i ∈ An,

|∆n
i X

c|√
∆n

>
vn
2

and ∆n
i X∆n

i+1X < 0 ∩ Bn
)

and

P
(
∃i ∈ An,

|∆n
i Z

β |√
∆n

>
vn
2

and ∆n
i X∆n

i+1X < 0 ∩ Bn
)
.

The first term is bounded by

P
(

max
1≤i≤n

|∆n
i X

c| > vn
√

∆n

2

)
≤ 2ne−v

2
n/8σ̄

2

and converges to 0. For the second term, we consider two cases: a jump occurs before i∆n or no such jump
occurs, which leads us to further consider

P
(
∃i ∈ An,

|∆n
i Z

β |√
∆n

>
vn
2

, ∆n
i X∆n

i+1X < 0 and ∃q ∈ {1,min{kn − 2, i− 1}}, i− q ∈ Acn} ∩ Bn
)

(5.12)

and

P
(
∃i ∈ An,

|∆n
i Z

β |√
∆n

>
vn
2

, ∆n
i X∆n

i+1X < 0 and ∀q ∈ {1,min{kn − 2, i− 1}}, i− q ∈ An} ∩ Bn
)
. (5.13)

For (5.12) since we work on Bn, we have i+ 1 ∈ An hence ∆n
i+1Z

β = −(1− e−βn∆n)Zβti,n = e−βn∆n∆n
i Z

β and
(5.12) is dominated by the probability of the event

{∃i ∈ An,−|∆n
i X

c||∆n
i+1X

c| − |∆n
i X

c||∆n
i Z

β |e−βn∆n − |∆n
i+1X

c||∆n
i Z

β |+ vn
√

∆n

2 |∆n
i Z

β |e−βn∆n < 0

and
|∆n

i Z
β |√

∆n

>
vn
2
}

equal to

P
(
∃i ∈ An, vn

√
∆n

2 |∆n
i Z

β |e−βn∆n < 2 max
1≤j≤n

|∆n
jX

c||∆n
i Z

β |+ ( max
1≤j≤n

|∆n
jX

c|)2 and
|∆n

i Z
β |√

∆n

>
vn
2

)
and dominated by

P
(
2 max

1≤j≤n
|∆n

jX
c| > vn

√
∆n

4

)
+ P

(
( max
1≤j≤n

|∆n
jX

c|)2 >
1

2
( vn
√

∆n

2 )2
)
→ 0.

Concerning (5.13), we have, if kn ≤ i+ 1, we have that |∆n
i Z

β | is equal to

(
1− e−βn∆n

)
e−βn∆n(kn−2)|Zβ(i−kn+1)∆n

| ≤ βn∆n sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds,dx) e−βn∆n(kn−2).
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The inequality remains true if i+ 1 < kn as ∆n
i Z

β is equal to 0 in this case. Thus, (5.13) is dominated by

P
(

sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds,dx) > eβn∆n(kn−2) vn

βn
√

∆n

)
≤ λnP

(
|ξν | > eβn∆n(kn−1) vn

βn
√

∆n

)
→ 0

using the same argument as for (5.4) and the convergence (5.10) follows.

We now turn to (5.11). It suffices to show that both terms

P
(
∃i ∈ Acn,

|∆n
i X|√
∆n

≥ vn ∩ Bn
)
, and P

(
∃i ∈ Acn,∆n

i X∆n
i+1X ≥ 0 ∩ Bn

)
converge to 0. The proof for the first term is similar to the one of (5.2), the only difference being ∆n

i(n,q)Z is equal

to (1 − e−βn∆n)e−βn∆n(kn−2)Zti(n,q)−kn+1,n
+ e−βn(ti(n,q),n−Tq)∆XTq if kn ≤ i + 1 and e−βn(ti(n,q),n−Tq)∆XTq

otherwise and that the term P(vn
√

∆n ≤ 3 max1≤i≤n βn∆n|Zβti,n |) needs to be replaced by

P
(
vn
√

∆n ≤ 3 max
1≤i≤n

βn∆ne
−βn∆nkn |Zβti,n |

)
≤ λnP

(
|ξν | > eβn∆n(kn−2) vn

√
∆n

βn∆n

)
→ 0.

For the second term, it is sufficient to prove that ∆n
i(n,q)X has the same sign as ∆XTq and that ∆n

i(n,q)+1X has
the opposite sign with probability one. We are thus led to show that

P
(

min
1≤q≤N1

∆n
i(n,q)X∆XTq < 0

)
→ 0 (5.14)

and

P
(

max
1≤q≤N1

∆n
i(n,q)+1X∆XTq > 0

)
→ 0. (5.15)

We have that ∆n
i(n,q)X∆XTq dominates

− max
1≤q≤N1

|∆n
i(n,q)X

c||∆XTq | − (1− e−βn∆n)e−βn∆nkn sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds,dx) |∆XTq |

+ e−βn∆n |∆XTq | min
1≤q≤N1

|∆XTq |.

We thus have that (5.14) is dominated by the probability of the event{
e−βn∆n inf

1≤q≤N1

|∆XTq | < sup
1≤q≤N1

|∆n
i(n,q)X

c|

+
(
1− e−βn∆n

)
e−βn∆nkn sup

t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds,dx)

}
that converges to 0 if we use a similar proof than the one of (5.2). The proof of (5.15) is similar since no jump
occurs in the interval (i (n, q) , i (n, q) + 1] and

∆n
i(n,q)+1Z

β = −
(
1− e−βn∆n

)
Zβi(n,q)∆n

.
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The term (5.15) is then dominated by the probability of the event

{
e−βn∆n(1− e−βn∆n) min

1≤q≤N1

|∆XTq | < max
1≤q≤N1

|∆n
i(n,q)X

c|

+ (1− e−βn∆n)e−βn∆n(kn+1) sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds,dx)

}
.

The convergence to 0 is obtained in the same way, except for the extra control of the terms

P
(

max
1≤q≤N1

|∆n
i(n,q)X

c| > vn
√

∆n(1− e−βn∆n)
)
≤ λne−v

2
n(1−e−βn∆n )2/2σ̄2

and

P
(

sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds,dx) > eβn∆n(kn+1)vn

√
∆n

)
≤ λnP

(
|ξν | > eβn∆nkn∆

1
2−$
n

)

that both converge to 0. The proof of Proposition 2.5 is complete.

5.2. Proof of Theorem 2.11

5.2.1. Preparation for the proof

In order to prove Theorem 2.11, we start by giving an oracle estimator of βn when the jump times and their
sizes are known.

Proposition 5.1. Work under Assumption 2.1 and 2.2. Let βn
√
λn∆n →∞. Define β̂oracle

n via

exp
(
−∆nβ̂

oracle
n

)
= max

{
1 +

∑
q∈En sgn(∆XTq )

(
∆n
i(n,q)+1X + 2∆n

∑q−1
j=1 ∆XTj

)∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

1{N1>0},∆n

}
,

with En =
{
q ∈ {1, .., N1}, i (n, q) + 1 ∈ An and i (n, q) < i (n, q + 1)

}
.

i) The following expansion holds on the set {N1 > 0}:

β̂oracle
n − βn

βn
=Moracle

n + VnJ Tn ,

with

Moracle
n = eβn∆n

λn
βn

(x ? ν) (sgn (x) ? ν)

|x| ? ν
(eβn∆n − 1

βn∆n
− βn∆n

1− e−βn∆n

)
,
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and Vn = (V(i)
n )1≤i≤4 ∈ R4 defined by



V(1)
n = eβn∆n

√
λn√

3βn|x|?ν

(
(sgn (x) ? ν)

2
(|x|2 ? ν) + (x ? ν)

2 − 2(sgn (x) ? ν)(|x|2 ? ν)
)1/2

,

V(2)
n = eβn∆n min

{( |x|2?ν
(|x|?ν)2

1
2βn

(1−e−2βn∆n)
2βn∆n

)1/2
, λnβn

}
,

V(3)
n = eβn∆n

(
βn∆n

1−e−βn∆n

) √∫ 1
0
σ2
sds

|x|?ν
√
λnβn

√
∆n
,

V(4)
n = eβn∆n

√∫ 1
0
σ2
sds
√

∆n

|x|?ν
√
λn

,

and Jn = (J (i)
n )1≤i≤4 ∈ R4 is bounded in probability as n→∞.

ii) If λn →∞, then

(J (3)
n ,J (4)

n )→ N (0, IdR2)

in distribution as n→∞.
iii) If λn →∞, |x|3 ? ν <∞ and (sgn(x) ? ν)2|x|2 ? ν + (x ? ν)

2 − 2sgn (x) ? ν|x|2 ? ν 6= 0, we have

(J (1)
n ,J (3)

n , J (4)
n )→ N (0, IdR3)

in distribution as n→∞.
iv) If βn/λ

2
n → 0, the conditions of iii) and |x|4 ? ν <∞ hold together, we finally obtain

Jn → N (0, IdR4)

in distribution as n→∞.

Proposition 5.1 is the core of Theorem 2.11.

5.2.2. Proof of Proposition 5.1

Step 1). We first need three approximation results.

Lemma 5.2. We have ∣∣ ∑
q/∈En

sgn
(
∆XTq

)
∆n
i(n,q)X

∣∣ . λ2
n∆n

in probability.

Proof. We plan to use the decomposition

∑
q/∈En

sgn
(
∆XTq

)
∆n
i(n,q)X =

N1∑
q=1

sgn
(
∆XTq

)
∆n
i(n,q)X1{Tq+1−Tq<ti(n,q),n−Tq+∆n} = I + II,

with

I =

N1∑
q=1

sgn
(
∆XTq

)
∆n
i(n,q)X

c1{Tq+1−Tq<ti(n,q),n−Tq+∆n} and
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II =

N1∑
q=1

sgn
(
∆XTq

)
∆n
i(n,q)Z

β1{Tq+1−Tq<ti(n,q),n−Tq+∆n}.

The term I is centred and as |I| ≤
∑N1

q=1 |∆n
i(n,q)X

c|1{Tq+1−Tq<ti(n,q),n−Tq+∆n}, we have

E[I2] ≤ E
[
(

N1∑
q=1

|∆n
i(n,q)X

c|1{Tq+1−Tq<ti(n,q),n−Tq+∆n})
2
]

≤ E
[
(

n∑
i=1

|∆n
i X

c|∆n
i N1{∆n

i N≥2 or ∆n
i+1N≥1})

2
]

=

n∑
i=1

E
[
(∆n

i X
c)2
]
E
[
(∆n

i N)21{∆n
i N≥2 or ∆n

i+1N≥1

]
with the convention ∆n

n+1N = 0. Since E[(∆n
i X

c)2] ≤ σ̄2∆n and E[(∆n
i N)2(1{∆n

i N≥2} + 1{∆n
i+1N≥1})] . λ2

n∆2
n

we obtain

E[I2] . (λn∆n)2.

In turn I is of order λn∆n hence negligible. For the term II, we have

|II| ≤
N1∑
q=1

|∆n
i(n,q)Z

β |1{Tq+1−Tq<ti(n,q),n−Tq+∆n},

and

|∆n
i(n,q)Z

β | = | −
(
1− e−βn∆n

)
Zβti(n,q)−1,n

+

∆n
i(n,q)N∑
j=1

∆j
i(n,q)Xe

−βn(ti(n,q),n−T ji(n,q))|

≤ βn∆n|Zβti(n,q)−1,n
|+

∆n
i(n,q)N∑
j=1

|∆Xj
i(n,q)|,

where ∆Xj
i denotes the jth jump in the interval ((i− 1) ∆n, i∆n] that occurs at time T ji . First, we have that

the term
∑N1

q=1 |Z
β
ti(n,q)−1,n

|1{Tq+1−Tq<ti(n,q),n−Tq+∆n} is dominated by

n∑
i=1

∫ ti−1,n

0

|x|e−βn(ti−1,n−t)p (dt,dx) ∆n
i N
(
1{∆n

i N≥2} + 1{∆n
i+1N≥1}

)
.

Because of the independence of ∆n
i N and ∆n

i+1N conditional on Fti−1,n,n, we derive that its expectation is less
than

n∑
i=1

E
[ ∫ ti−1,n

0

|x|e−βn(ti−1,n−t)p(dt,dx)
]
E
[
∆n
i N(1{∆n

i N≥2} + 1{∆n
i+1N≥1})

]
.
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Second, since E[
∫ ti−1,n

0
|x|e−βn(ti−1,n−t)p(dt, dx)] . λn/βn and also E[∆n

i N(1{∆n
i N≥2} + 1{∆n

i+1N≥1})] . λ2
n∆2

n

we derive

N1∑
q=1

|Zβti(n,q)−1,n
|1{Tq+1−Tq<ti(n,q),n−Tq+∆n} .

λ3
n∆n

βn
(5.16)

in probability. In the same way, it is not difficult to see that

N1∑
q=1

∆n
i(n,q)N∑
j=1

|∆Xj
i(n,q)|1{Tq+1−Tq<2∆n} ≤

n∑
i=1

∆n
i N

∆n
i N∑
j=1

|∆Xj
i |(1{∆n

i N≥2} + 1{∆n
i+1N≥1})

is of order λ2
n∆n. The result of the lemma follows.

Lemma 5.3. We have

∣∣ N1∑
q=1

sgn(∆XTq )∆
n
i(n,q)X −

∫ 1

0

∫
R
|x|e−βn((bt∆−1

n c+1)∆n−t)p (dt, dx)
∣∣ . λ2

n∆n +
√
λn∆n

in probability.

Proof. We plan to use the decomposition
∑N1

q=1 sgn(∆XTq )∆i(n,q)X = I + II, with

I =

N1∑
q=1

sgn
(
∆XTq

)
∆n
i(n,q)X

c, and II =

N1∑
q=1

sgn
(
∆XTq

)
∆n
i(n,q)Z

β .

With the notation of Lemma 5.2, we write

I =

n∑
i=1

∆n
i N∑
j=1

sgn(∆Xj
i )∆n

i X
c1{∆n

i N≥1}

and in the same way as for the proof of Lemma 5.2, using the independence between Xc and N , it is not difficult
to see that I is centred with variance of order λn∆n. For the second term, we write II = III + IV , with

III =

N1∑
q=1

sgn(∆XTq )

∆n
i(n,q)N∑
j=1

∆Xj
i(n,q)e

−βn((bTq∆−1
n c+1)∆n−T ji(n,q)),

IV = −(1− e−βn∆n)

N1∑
q=1

sgn(∆XTq )Z
β
ti(n,q)−1,n

.

In the same way as in Lemma 5.2, the term III is equal to

N1∑
q=1

sgn(∆XTq )
(
∆XTqe

−βn((bTq∆−1
n c+1)∆n−Tq) +

∆n
i(n,q)N∑
j=1,

T j
i(n,q)

6=Tq

∆Xi
qe
−βn((bTq∆−1

n c+1)∆n−T ji(n,q))1{∆n
i(n,q)

N≥2}
)
,
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which is nothing but
∫ 1

0

∫
R |x|e

−βn((bt∆−1
n c+1)∆n−t)p (dt, dx) plus a remainder term of order λ2

n∆n in probability.
Finally

|IV | ≤ βn∆n

N1∑
q=1

∫ ti(n,q)−1,n

0

e−βn(ti(n,q)−1,n−t)|x|p(dt,dx)

≤ βn∆ne
βn∆n

N1∑
q=1

∫ T−q

0

e−βn(T−q −t)|x|p(dt,dx)

= βn∆ne
βn∆n

∫ 1

0

∫ t

0

|y|e−βn(t−s)p(ds, dy)p(dt, dx),

and this term has expectation of order βn∆nλ
2
n/βn . λ2

n∆n.

Lemma 5.4. We have∣∣∣ ∑
q∈En sgn(∆XTq )∆

n
i(n,q)X∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p (dt,dx)
− 1
∣∣∣ . λn∆n +

√
∆n/λn

in probability.

Proof. If supn λn < ∞, then
( ∫ 1

0

∫
R |x|e

−βn((bt∆−1
n c+1)∆n−t)p(dt,dx)

)−1
is bounded in probability. Otherwise,

using
∫ 1

0
e−βn((bt∆−1

n +1)∆n−t)dt = 1−e−βn∆n

βn∆n
, we have

∫ 1

0

∫
R |x|e

−βn((bt∆−1
n c+1)∆n−t)p(dt,dx)

λn|x| ? ν( 1−e−βn∆n

βn∆n
)

→ 1

as n→∞ and the result follows by applying Lemma 5.2 and Lemma 5.3.

Step 2). We are ready to prove Proposition 5.1. Define the oracle slope

ŝoracle
n = −

∑
q∈En sgn(∆XTq )

(
∆n
i(n,q)+1X + 2∆n

∑q−1
j=1 ∆XTj

)∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

1{N1>0}.

Using the canonical decomposition X = Xc + Zβ and the fact that for i ∈ An, we have

−∆n
i Z

β = (1− e−βn∆n)Zβti−1,n,n = (1− e−βn∆n)(∆n
i−1Z

β + Zβti−2,n),

and we write

ŝoracle
n = I + II + III,

with

I = −
∑
q∈En sgn(∆XTq )∆

n
i(n,q)+1X

c∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

1{N1>0},

II = (1− e−βn∆n)

∑
q∈En sgn(∆XTq )∆

n
i(n,q)Z

β∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

1{N1>0},
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III = (1− e−βn∆n)

∑
q∈En sgn(∆XTq )

(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

∑q−1
j=1 ∆XTj

)∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

1{N1>0}.

We study the convergence of each term separately.

Step 3). The term I. From the proof of Lemma 5.2, we readily have

∣∣ ∑
q/∈En

sgn(∆XTq )∆
n
i(n,q)+1X

c
∣∣ . λn∆n

in probability, so we shall replace the sum in q over En by the sum in q over {1, . . . , N1} in the following. By
Lemma 5.4, we derive

I = IV (1 + (λn∆n +
√

∆n/λn)R(1)
n ) + ∆nR(2)

n , (5.17)

with

IV = −
∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)+1X

c∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt,dx)

and where both R(1)
n and R(2)

n are bounded in probability. Next, denoting by ∆Xj
i the j-th jump in [(i −

1)∆n, i∆n], we have

N1∑
q=1

sgn(∆XTq )∆
n
i(n,q)+1X

c =

n∑
i=2

sgn(∆X1
i−1)∆n

i X
c1{∆n

i−1N=1} +

n∑
i=2

∆n
i−1N∑
j=2

sgn(∆Xj
i )∆n

i X
c1{∆n

i N≥2}

=

n∑
i=2

sgn(∆X1
i−1)∆n

i X
c1{∆n

i−1N=1} + λn∆nR(3)
n ,

where R(3)
n is bounded in probability, using the same argument as in Lemma 5.3. It is not difficult to

see that
∑n
i=2 sgn(∆X1

i−1)∆n
i X

c1{∆n
i−1N≥1} is centred with variance λn∆n

∫ 1

∆n
σ2
sds up to an error of order

(λn∆n)2. Therefore, when supn λn < ∞, we have that IV is of order
√

∆n and of order
√

∆n/λn otherwise,

using that
∫ 1

0

∫
R |x|e

−βn((bt∆−1
n c+1)∆n−t)p (dt,dx) is equivalent to λn∆n|x| ? ν

(
1−e−βn∆n

βn∆n

)
. We thus obtain the

decomposition

I =
(

βn∆n

1−e−βn∆n

) √
∆n

∫ 1
0
σ2
sds√

λn|x|?ν
J (n)

3

= e−βn∆nβn∆nV(n)
3 J

(n)
3 , (5.18)

where J (n)
3 is bounded in probability and V(n)

3 is defined in the statement of Proposition 5.1. We investigate

further the convergence of J (n)
3 . Define

V 2
n =

n∑
i=2

E
[
(∆n

i X
c)21{∆n

i−1N=1} |FWti−1,n

]
.
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Clearly,
∑n
i=2 sgn(∆X1

i−1)∆n
i X

c1{∆n
i−1N=1} is centred and we claim that for every η > 0:

n∑
i=2

E
[
V −2
n (∆n

i X
c)21{∆n

i−1N=1}1{V −1
n |∆n

i X
c|≥η}1{N1≥1}

]
→ 0 (5.19)

as n→∞. Indeed, applying successively Cauchy-Schwarz’s, Markov’s and Burckolder-Davis-Gundy’s inequality,
we obtain

E
[
(∆n

i X
c)21{V −1

n |∆n
i X

c|≥η} |F
N
1

]
≤ E

[
(∆n

i X
c)4
]1/2P[|∆n

i X
c| ≥ ηVn |FN1

]1/2
≤ E

[
(∆n

i X
c)4
]1/2E[(∆n

i X
c)2]1/2

ηVn
. η−1V −1

n ∆3/2
n .

Next V 2
n =

∑n
i=2 1{∆n

i−1N=1}
∫ ti,n
ti−1,n

σ2
sds ≥ σ2∆n

∑n
i=2 1{∆n

i−1N=1} = σ2∆nV
2
n say. Summing up and taking

expectation, it follows that

n∑
i=2

E
[
V −2
n (∆n

i X
c)21{∆n

i−1N=1}1{V −1
n |∆n

i X
c|≥η}

]
. η−1∆3/2

n

n∑
i=2

E
[
V −3
n 1{∆n

i−1N=1}1{N1≥1}
]

. E
[
V −1
n 1{N1≥1}

]
≤ E

[
(V 2

n)−11{N1≥1}
]1/2

by Jensen’s inequality. Since V 2
n has a Binomial distribution with parameters (n − 1, λn∆ne

−λn∆n), we have
that V 2

n → ∞ in probability since λn → ∞ and is bounded below on {N1 ≥ 1} which has probability that
converges to one, the Lindeberg condition (5.19) follows by dominated convergence and we further infer

1

Vn

n∑
i=2

∆n
i X

csgn(∆1
jX)1{∆n

i−1N=1} → N (0, 1)

in distribution as n→∞. Observing that
V 2
n

λn∆n
→
∫ 1

0
σ2
sds in probability, in view of (5.17), we conclude

1√
λn∆n

∫ 1

0
σ2
sds

N1∑
q=1

sgn(∆XTq )∆
n
i(n,q)+1X

c → N (0, 1)

in distribution as n→∞ and likewise for J (n)
3 in view of (5.18).

Step 4). The term II. We write, using the proof of Lemma 5.2 and Lemma 5.4,

(1− e−βn∆n)−1II

= 1−
∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

c∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

= 1−
∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

c∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p (dt, dx)

(
1 + max{λn∆n,

√
λn/∆n}R(1)

n

)
= 1− (

∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

c∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p (dt,dx)
+ ∆nR(2)

n )
(
1 + max{λn∆n,

√
λn/∆n}R(1)

n

)
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where R(1)
n and R(2)

n are bounded in probability. By Step 2), we know that

∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

c∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p (dt,dx)
=

(
βn∆n

1− e−βn∆n

) √
∆n

∫ 1
0
σ2
sds√

λn|x|?ν
U (n)

= e−βn∆n

(
βn∆n

1− e−βn∆n

)
V(n)

4 ,

where U (n) is bounded in probability and asymptotically normal if λn →∞ and V(n)
4 is defined in the statement

of Proposition 5.1. Finally, we have proved

II = (1− e−βn∆n)
(
1 + e−βn∆n

(
βn∆n

1− e−βn∆n

)
V(n)

4 J
(n)
4

)
where J (n)

4 is bounded in probability and asymptotically normal if λn →∞.

Step 4’). It is easily shown that
∑n
i=2 E

[
(∆n

i X
c)21{∆i−1N=1}1{∆n

i N=1}1{N1≥1} |Fti−1,n

]
→ 0 if λn → ∞ as

n→∞, so we actually have from Step 3) and Step 4) the joint convergence (J (3)
n ,J (4)

n )→ N (0, IdR2) in distri-
bution as λn →∞.

Step 5). The term III. By the proof of Lemma 5.2 and Lemma 5.4, we have

(1− e−βn∆n)−1III

=

∑
q∈En sgn(∆XTq )

(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

∑q−1
j=1 ∆XTj

)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt, dx)

(
1 + max{λn∆n,

√
∆n/λn}R(1)

n

)
=
(∑N1

q=1 sgn(∆XTq )
(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

∑q−1
j=1 ∆XTj

)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt, dx)
+

λ2
n

βn
∆nR(2)

n

)(
1 + max{λn∆n,

√
∆n/λn}R(1)

n

)
where R(1)

n and R(2)
n are bounded in probability. Indeed, in the same way as for Lemma 5.2, we have

∣∣ ∑
q/∈En

sgn(∆XTq )
(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

q−1∑
j=1

∆XTj

)∣∣
≤
∑
q/∈En

(
|Zβti(n,q)−1,n

|+ 2∆n

1−e−βn∆n

q−1∑
j=1

|∆XTj |
)
1{Tq+1−Tq<2∆n} .

λ3
n∆n

βn

in probability, as follows from (5.16) and the computations of Lemma 5.2. When exactly one jump occurs in

(i (n, q)− 1, i (n, q)], we have Zβti(n,q)−1,n
= e−βn(ti(n,q)−1,n−Tq)ZβTq−

and

N1∑
q=1

sgn(∆XTq )
(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

q−1∑
j=1

∆XTj

)
=

∫
0≤s<t≤1

∫
R2

y sgn(x)(e−βn(t−s)e−βn(bt∆−1
n c∆n−t) − 2∆n

1−e−βn∆n
)p(ds, dy)p(dt,dx) +

λ3
n∆n

βn
R(3)
n ,
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where the remainder term R(3)
n is bounded in probability and accounts for the case where more than one jump

occurs in the intervals (i (n, q)− 1, i (n, q)]. By Fubini’s theorem, the main term splits intoM(1)
n +M(2)

n +M(3)
n ,

with

M(1)
n = λ2

n(x ? ν) (sgn(x) ? ν)

∫
0≤s<t≤1

(
e−βn(t−s)e−βn(bt∆−1

n c∆n−t) − 2∆n

1−e−βn∆n

)
dtds

=
λ2
n

βn
(x ? ν) (sgn (x) ? ν)

(
eβn∆n−1
βn∆n

−∆n
1−e−βn

1−e−βn∆n
− βn∆n

1−e−βn∆n

)
,

M(2)
n = λn

∫ 1

0

∫
R
g(1)
n (t, x)(p− λnq)(dt,dx),

M(3)
n =

∫
[0,1]2×R2

g(2)
n (t, x, s, y)

(
p− λnq

)
(ds, dy)

(
p− λnq

)
(dt, dx) ,

with

g(1)
n (t, x) = x (sgn(y) ? ν)

∫
0≤s<t≤1

(e−βn(s−t)e−βn(bs∆−1
n c∆n−s) − 2∆n

1−e−βn∆n
)ds

+ (y ? ν) sgn(x)

∫
0≤s<t≤1

(e−βn(t−s)e−βn(bt∆−1
n c∆n−t) − 2∆n

1−e−βn∆n
)ds

and

g(2)
n (t, x, s, y) = y sgn(x)1{t>s}

(
e−βn(t−s)e−βn(bt∆−1

n c∆n−t) − 2∆n

1−e−βn∆n

)
.

By standard yet tedious computations, evaluating centred terms and their variances in terms of asymptotics in
n, we can infer from the previous representation that∑N1

q=1 sgn(∆XTq )
(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

∑q−1
j=1 ∆XTj

)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt,dx)

=
M(1)

n

λn(|x| ? ν) 1−e−βn∆n

βn∆n

+
λn
∫ 1

0

∫
R g

(3)
n (t, x)(p− λnq)(dt,dx)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt, dx)

+ βn∆n

1−e−βn∆n
min

{√
x2?ν

2(|x|?ν)2βn

1− e−2βn∆n

2βn∆n
, λnβ

−1
n

}
J (2)
n ,

where J (2)
n is bounded in probability and g

(3)
n (t, x) = −λ−2

n
M(1)

n

|y|?ν
(

1−e−βn∆n
βn∆n

) |x|e−βn((bt∆−1
n c+1)∆n−t) + g

(1)
n (t, x).

It is not difficult to check that

λn
∫ 1

0
g

(3)
n (t, x)(p− λnq)(dt,dx)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt, dx)
= e−βn∆nV(1)

n J (1)
n

where V(1)
n is defined in the statement of Proposition 5.1 and J (1)

n is bounded in probability. It follows that

1− e−βn∆n

βn∆n

∑N1

q=1 sgn(∆XTq )
(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

∑q−1
j=1 ∆XTj

)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt,dx)
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=
M(1)

n

λn(|x| ? ν)
+ e−βn∆nV(1)

n J (1)
n + min

{√
x2?ν

2(|x|?ν)2βn

1− e−2βn∆n

2βn∆n
, λnβ

−1
n

}
J (2)
n .

We eventually obtain the decomposition

III = βn∆nMn + βn∆ne
−βn∆nV(1)

n J (1)
n + βn∆ne

−βn∆nV(2)
n J (2)

n

withMn = λn
βn

(x?ν) (sgn(x)?ν)
|x|?ν

(
eβn∆n−1
βn∆n

−∆n
1−e−βn

1−e−βn∆n
− βn∆n

1−e−βn∆n

)
and V(2)

n defined in the statement of Propo-

sition 5.1.

Step 5’). Using classical results of Theorem 3 in [28], one can further investigate the asymptotic distribution

of (J (1)
n ,J (2)

n ) under the additional assumption |x|3 ? ν < ∞ assuring the existence of
∫ 1

0

∫
R g

3
n (t, x) ν (dx) dt

and the condition

(sgn (x) ? ν)
2

(|x|2 ? ν) + (x ? ν)
2 − 2(sgn (x) ? ν)(|x|2 ? ν) 6= 0,

otherwise the term V(1)
n becomes negligible. We then have that J (1)

n is asymptotically normal, and under

the stronger assumption |x|4 ? ν < ∞, we even have the convergence of (J (1)
n ,J (2)

n ) towards a standard two-
dimensional Gaussian distribution. We omit the details.

Step 6). Combining Step 2) and the results of Steps 3), 4) and 5), we obtain

ŝoracle
n =

(
1− e−βn∆n

)
+ βn∆nMn + βn∆ne

−βn∆nVTn Jn

with the notation introduced in the statement of Proposition 5.1. Now, let β̂oracle
n = − 1

∆n
log(max{1 −

ŝoracle
n ,∆n}). For n large enough, a first-order Taylor’s expansion entails

β̂oracle
n = βn + βne

βn∆n
(
Mn + e−βn∆nVTn J n

)
where the random vector J n has the same asymptotic properties as Jn. Setting Moracle

n = eβn∆nMn, and
checking that all the terms have the right order, we obtained the desired result and Proposition 5.1 is proved.

5.2.3. Completion of proof of Theorem 2.11

We start by a simple approximation result.

Lemma 5.5. We have

P
(
sgn(∆XTq ) = sgn(∆n

i(n,q)X) for every 1 ≤ q ≤ N1

)
→ 1.

Proof. Note first that P(Ωn ∩ {sup|t−s|<2∆n
|Nt −Ns| = 1)→ 1 if λ2

n∆n → 0. We first work under Assumption
2.3 (I). In this case, we have βn∆n → 0 and we claim that

P
(

min
1≤q≤N1

∆n
i(n,q)X

∆XTq
≤ 0
)
→ 0 (5.20)

from which Lemma 5.5 readily follows. For all q ≥ 1, we have

∆n
i(n,q)X

∆XTq
= 1 +

∆n
i(n,q)X

c

∆XTq
− (1−e−βn∆n)Zβi(n,q)−1

∆XTq
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≥ 1− |∆
n
i(n,q)X

c|
|∆XTq |

−
βn∆n|Zβi(n,q)−1

|
|∆XTq |

≥ 1−
maxi∈Acn |∆

n
i X

c|
min1≤i≤N1

|∆XTi |
−
βn∆n max1≤i≤n |Zβti,n |

min1≤i≤n |∆XTi |
.

Thus,

P
(

min
1≤q≤N1

∆n
i(n,q)X

∆XTq
≤ 0
)
≤ P

(
max
i∈Acn

|∆n
i X

c|+ β∆n max
1≤i≤n

|Zβti,n | ≥ min
1≤i≤N1

|∆XTi |
)

and this term converges to 0 in the same way as the terms (5.6) and (5.7). The convergence (5.20) follows and
Lemma 5.5 is proved. The case where Assumption 2.3 (II) is fulfilled corresponds to showing the convergence
(5.14) and the proof follows likewise.

We are ready to prove Theorem 2.11.

Step 1). We prove the result on Ωn∩
{

sgn
(
∆XTq

)
= sgn(∆n

i(n,q)X) for every 1 ≤ q ≤ N1

}
∩{sup|t−s|<2∆n

|Nt−
Ns| = 1

}
thanks to Lemma 5.5. On this event, the quantity

ŝn = −
∑λ̂n
q=1 sgn(∆n

In(q)X)
(
∆n
In(q)+1X + 2∆n

∑q−1
j=1 ∆n

In(j)X
)

∑λ̂n
q=1 sgn(∆n

In(q)X)∆n
In(q)X

is equal to

−
∑N1

q=1 sgn(∆n
i(n,q)X)

(
∆n
i(n,q)+1X + 2∆n

∑q−1
j=1 ∆n

i(n,j)X
)∑N1

q=1 sgn(∆n
i(n,q)X)∆n

i(n,q)X

and

ŝoracle
n = −

∑N1

q=1 sgn(∆XTq )
(
∆n
i(n,q)+1X + 2∆n

∑q−1
j=1 ∆XTj

)∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

.

It follows that ŝn = ŝoracle
n +R(1)

n , with

R(1)
n = 2∆n

∑N1

q=1 sgn(∆XTq )
∑q−1
j=1(∆XTj −∆n

i(n,j)X)∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

= I + II,

with

I = 2∆n

∑N1

q=1 sgn(∆XTq )
∑q−1
j=1 ∆n

i(n,j)

∫ t
0
(1− e−βn(t−s))xp(dt, dx)∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

and

II = −2∆n

∑N1

q=1 sgn(∆XTq )
∑q−1
j=1 ∆n

i(n,j)X
c∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

.
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say.

Step 2). We quickly study each term separately. The term I further splits into I = III + IV , with

III = 2∆n

∑N1

q=1 sgn(∆XTq )
∑q−1
j=1 ∆XTj (1− e−βn(ti(n,j),n−Tj))∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

,

IV = 2∆n

∑N1

q=1 sgn(∆XTq )
∑q−1
j=1 Zti(n,j)−1,n

(
1− e−βn∆n

)∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

.

With the same kind of arguments as developed in the proof of Proposition 5.1, it is not difficult to see that
|IV | . ∆2

nλ
2
n in probability. For the term III, we use the same kind of arguments and obtain

III = M̃n + βn∆n

(√
λn∆n +

√
∆nβ

−1
n

)
R(2)
n ,

with

M̃n =
2∆nλnsgn(x) ? ν (x ? ν)

(
1
2 −

1−e−βn∆n

2βn∆n
+ 1+e−βn∆n

2βn
− 1−e−βn∆n

β2
n∆n

)
(|x| ? ν) 1−e−βn∆n

βn∆n

and R(2)
n is bounded in probability. We also have |II| . ∆

3/2
n in probability. We omit the details.

Step 3). Finally we obtain the decomposition

ŝn = ŝoracle
n + M̃n + βn∆n

(√
λn∆n +

√
∆nβ

−1
n

)
R(2)
n

and we conclude by applying Proposition 5.1, replacing ŝn by ŝoracle
n and studying the order of each term

carefully.
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[7] H. Biermé and A. Desolneux, A Fourier approach for the level crossings of shot noise processes with jumps. J. Appl. Probab.
49 (2012) 100–113.

[8] P.J. Brockwell, R.A. Davis and Y. Yang, Estimation for nonnegative lévy-driven Ornstein-Uhlenbeck processes. J. Appl.
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