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Abstract

The generic Heun operator of Lie type is identified as a certain BC-Gaudin magnet Hamiltonian in
a magnetic field. By using the modified algebraic Bethe ansatz introduced to diagonalize such Gaudin
models, we obtain the spectrum of the generic Heun operator of Lie type in terms of the Bethe roots of
inhomogeneous Bethe equations. We show also that these Bethe roots are intimately associated to the
roots of polynomial solutions of the differential Heun equation. We illustrate the use of this approach in
two contexts: the representation theory of O(3) and the computation of the entanglement entropy for
free Fermions on the Krawtchouk chain.

1 Introduction

In the spirit of [5] where the diagonalization of the Heun–Askey–Wilson operator has been performed
by using the modified algebraic Bethe ansatz, we indicate in the present paper how the Heun operator of
Lie type can be diagonalized by a similar method. We show that the particular Heun operator introduced
in [19] can be identified with the BC-Gaudin magnet Hamiltonian in an external magnetic field with
one site in a spin s representation of su(2). By a slight generalization of the modified algebraic Bethe
ansatz used in [13], we succeed in diagonalizing the generic Heun operator of Lie type. We then look at
two mathematical and physical problems where the Heun operator of Lie type appears and the results
apply.
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The algebraic Heun operators are generalizations, introduced in [21], of the differential Heun operator
which is the standardized form of the Fuchsian second order differential equation with four regular
singularities. These operators are the most general bilinear combination of the bispectral pair associated
to the orthogonal polynomials of the Askey scheme and they share the name of these polynomials. The
differential Heun operator is recovered in this framework when we consider the dual pair associated
to the Jacobi polynomials [22]. The Heun–Askey–Wilson operator has been studied in [6] whereas
the Heun–Racah, the Heun–Bannai–Ito and the Heun–Hahn operators have been examined in [9, 30].
These operators have found applications in different contexts. For example, they give a nice algebraic
interpretation of the time-band limiting problem [21] and provide the commuting tridiagonal operator
[20] that allows to compute the entanglement entropy for free Fermion models [16, 17]. This paper
focuses on the simplest algebraic Heun operators which are those of Lie type studied in [19]. In [5], the
Heun–Askey–Wilson operator has been identified in the transfer matrix of the XXZ spin chain which
allows to use the methods of quantum integrable models to diagonalize this operator. We prove here
a similar result: the algebraic Heun operator of Lie type is associated to the BC-Gaudin model in
an external magnetic field. In the spin s representation of su(2), this identification allows to use the
algebraic Bethe ansatz to diagonalize this Heun operator.

The usual algebraic Bethe ansatz (or quantum inverse scattering method) has been developed in [27]
to diagonalize integrable model with periodic boundary conditions. Its generalization to open boundary
conditions has been introduced in [26]. The problem of how to apply this method for generic open
boundary has remained unsolved for 30 years. In [7], the modified algebraic Bethe ansatz was finally
introduced to compute the eigenvectors of the XXX spin chain with generic boundaries associated to
the eigenvalues found in [10]. This modified method has also been used to diagonalize the totally
asymmetric exclusion process [12] and the XXZ spin chain [8, 2] and it provides the spectrum in terms
of inhomogeneous Bethe equations. In this paper, we generalize the result of [13] where the BC-Gaudin
model is diagonalized by the modified algebraic Bethe ansatz. An extension is required to take into
account the external magnetic field.

The Bethe equations consist in N algebraic relations between N unknowns that need to be solved
in order to obtain the eigenvalues and the eigenvectors. These equations usually have multiple solutions
and one must demonstrate that all the eigenvalues are obtained in this manner to prove that the ansatz
provides the complete spectrum. One way to tackle the problem is to show that obtaining the solutions of
Bethe equations is equivalent to finding the polynomial solutions of a differential (or difference) equation.
For a second order differential equation, this problem is referred to the Heine–Stieljes problem and is
well-studied. This program has already been used with success in [31, 23] for various quantum integrable
models. We show in this fashion that the spectrum obtained by the modified algebraic Bethe ansatz
of the algebraic Heun operator is complete. The associated differential equation is an inhomogeneous
differential Fuchsian equation with 4 regular singularities (i.e. an inhomogeneous differential Heun
operator). We show moreover, by using the Bargmann realization of the Lie algebra su(2), that the
eigenvalues problem is also associated to a homogeneous differential Fuchsian equation with 5 regular
singularities.

The plan of the paper is as follows. Section 2 offers a review of the Heun operators of Lie type [19]
and of the algebraic framework needed to study the BC-Gaudin magnet. Section 3 provides the main
steps of the modified algebraic Bethe ansatz for the Gaudin model. In Section 4, we study in more
details the inhomogeneous Bethe equations and associate their solutions, the Bethe roots, to the roots of
a polynomial solution of the differential Heun equation with an inhomogeneous term. Section 5 focuses
on a particular case where the parameters of the algebraic Heun operator satisfy some constraints. It
is seen in this case that there exists an alternative to compute the spectrum that leads to homogeneous
Bethe equations. The last two sections discuss the use of the Heun operator of Lie type in two different
contexts: first, in the representation theory of O(3) (see Section 6) and second, in the computation of
the entanglement entropy for free Fermions on a Krawtchouk chain (see Section 7). We conclude with
an outlook in Section 8. Useful formulas are gathered in Appendix A.
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2 Heun operators and the Gaudin magnet

2.1 Algebraic Heun operator of Lie type

The Lie algebra su(2) is generated by J1, J2 and J3 subject to the following defining relations

[J1, J2] = iJ3, [J2, J3] = iJ1, [J3, J1] = iJ2. (2.1)

We set
X = αJ1 + βJ2, and Y = J1. (2.2)

The Heun operator of Lie type is the following element of the universal enveloping algebra U(su(2))

W = r1[X,Y ] + r2{X,Y }+ r3X + r4Y + r5, (2.3)

where ri are free parameters and {X,Y } = XY + Y X is the anti-commutator. This Heun operator can
be rewritten as follows in terms of the Lie generators (up to a renormalization)

W = ρ1J1 + ρ2J2 + ρ3J3 + {J1, J2}+ ρ4J
2
1 + ρ5 (2.4)

where ρi (1 ≤ i ≤ 5) are free real parameters. The normalization of W is chosen so that the coefficient
in front of the anti-commutator {J1, J2} be one. The parameters ρi have been taken real to ensure that
W is Hermitian if Ji are represented by Hermitian matrices. The generators X and W satisfy the Heun
algebra of Lie type studied in [19].

2.2 BC-Gaudin magnet in magnetic field

Let us introduce the r-matrix

r12(u, v) =
1

(u− v)(uv − 1)




u(1− v2) 0 0 −2(u− v)
0 −u(1− v2) −2v(uv − 1) 0
0 −2u(uv − 1) −u(1− v2) 0

−2uv(u− v) 0 0 u(1− v2)


 (2.5)

solution of the non-standard classical Yang-Baxter equation

[ r13(u1, u3) , r23(u2, u3) ] = [ r21(u2, u1) , r13(u1, u3) ] + [ r23(u2, u3) , r12(u1, u2) ] , (2.6)

where we denote r12(u) = r(u)⊗ II , r23(u) = II ⊗ r(u) and so on. This r-matrix has been used to give
the FRT presentations of the Onsager algebra [3] and of the classical Askey–Wilson algebra [4]. Let us
recall that the parameters u and v are usually referred to as spectral parameters. This r-matrix can be
obtained from the one of the 6-vertex model under a twist by a matrix solution of the classical reflection
equation (see [3]).

Let us now define the K-matrix containing as follows the generators of su(2)

K(u) =
2

(1 − au)(u− a)

(
u(a2 − 1)J3 (a2u− 2a+ u)J1 − iu(a2 − 1)J2

−u(a2 − 2au+ 1)J1 + iu(a2 − 1)J2 −u(a2 − 1)J3

)
,

(2.7)
where a is a free parameter called the inhomogeneity parameter. The K-matrix satisfies the classical
reflection equation

[ K1(u) , K2(v) ] = [ r21(v, u) , K1(u) ] + [ K2(v) , r12(u, v) ]. (2.8)

In fact, this classical reflection equation is equivalent to the defining relations (2.1) of su(2).
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We introduce also a scalar matrix

c(u) =

(
2iu(a2 − 1)ρ1
a(u2 − 1)

+
2(au− 1)(a− u)ρ2

a(u2 − 1)

)
j1 + 2iρ2j2 + 2iρ3j3 + ρ311, (2.9)

where ji are the 2 by 2 matrices representing Ji given explicitly by j1 = 1
2

(
0 1
1 0

)
, j2 = 1

2

(
0 −i
i 0

)

and j3 = 1
2

(
1 0
0 −1

)
, and ρi are the parameters entering in the definition (2.4) of the Heun operator.

This matrix c(x) is solution of

0 = [ r21(v, u) , c1(u) ] + [ c2(v) , r12(u, v) ]. (2.10)

Such a scalar solution has been used to study the Gaudin model in a magnetic field (see [28]). It is easy
to see that Ǩ(x) = K(u) + c(u) satisfies also (2.8).

We introduce at this point the transfer matrix

t(u) = tr(Ǩ(u)2). (2.11)

The important feature of the transfer matrix is its commutativity property for different spectral param-
eters:

[t(u), t(v)] = 0. (2.12)

We are now in a position to give the first result of this paper: amongst the conserved quantities of
the Gaudin model (with one site) in a magnetic field, there is the Heun operator of Lie type (2.4). More
explicitly

a

8i(1− a2)u
t(u)

∣∣∣
u=0

=W, (2.13)

with ρ4 = 2i(a2+1)
a2−1 and ρ5 = ρ1ρ2

2 +
iρ2

2
(1+a2)

2(1−a2) . Since ρ4 is a real parameter, a must be a pure phase. The

parameter ρ5 is given in terms of the other parameters but we can add the identity operator to recover
the generic Heun operator.

The second result of this paper is the diagonalization of the Heun operator of Lie type W with the
Bethe ansatz.

3 Modified algebraic Bethe ansatz

In this section, we recall the results of reference [13] and use them to diagonalize the operator W by the
algebraic Bethe ansatz.

Gauge transformations. Let us introduce the following matrix

M(u) =

(
1/2 1/u
−u/2 1

)
. (3.1)

It allows to transform the r-matrix (2.5), the K-matrix (2.7) and the matrix c(x) as follows

r̃(u, v) =M1(u)
−1M2(v)

−1r(u, v)M1(u)M2(v) (3.2)

=
1

(uv − 1)((u− v)




−v(u2 − 1) 0 2(uv−1)((u−v)
u 0

0 v(u2 − 1) −2v(v2 − 1) − 2(uv−1)((u−v)
u

−u(uv−1)((u−v)
2 − 2u2(v2−1)

v v(u2 − 1) 0

0 u(uv−1)((u−v)
2 0 −v(u2 − 1)


 , (3.3)
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and

K̃(u) =M(u)−1K(u)M(u), c̃(u) =M(u)−1c(u)M(u). (3.4)

It is easy to show that the matrices with tilde satisfy relations similar to those obeyed by r(u, v), K(u)
and c(u). Namely, one gets

[ K̃1(u) , K̃2(v) ] = [ r̃21(v, u) , K̃1(u) ] + [ K̃2(v) , r̃12(u, v) ]. (3.5)

Moreover the gauge transformation does not modify the transfer matrix

t(u) = tr((K̃(u) + c̃(u))2). (3.6)

We introduce the new su(2) generators: J̃1 = − (a2−1)(a2−4)
8a2 J1+i

(a2+1(a2−4)
8a2 J2+

a2+4
4a J3, J̃2 = i (a

2−1)(a2+4)
8a2 J1+

(a2+1)(a2+4)
8a2 J2 − ia

2−4
4a J3 and J̃3 = −a2−1

2a J1 + ia
2−1
2a J2 so that

K̃(u) =

(
2a(u2−1)

(au−1)(a−u) J̃3
4
u J̃3 +

2(a2−1)a
(au−1)(a−u) J̃−

−uJ̃3 +
2u2(a2−1)

a(au−1)(a−u) J̃+ − 2a(u2−1)
(au−1)(a−u) J̃3

)
, (3.7)

where J̃+ = J̃1 + iJ̃2 and J̃− = J̃1 − iJ̃2. We thus recover a particular case of the K-matrix used in [13]
(see relations (4.1) and (4.2) in [13] for L→ 1, x→ u, v1 → a, α→ 1, β → 0 and γ → 0).

Commutation relations. As is familiar in the context of algebraic Bethe ansatz, we define the
operators Ã(u), B̃(u), C̃(u) and D̃(u) as follows

K̃(u) + c̃(u) =

(
Ã(u) B̃(u)

C̃(u) D̃(u)

)
. (3.8)

Only the special case D̃(u) = −Ã(u) has been treated in [13]. It does not occur here because of the
additional term c̃(u). We must therefore slightly generalizes the results of [13]. The commutation
relations of these operators are computed from relation (3.5) and are given by

[Ã(u), Ã(v)] = [D̃(u), D̃(v)] = [Ã(u), D̃(v)] = 0, (3.9)

B(u, n)B(v, n+ 1) = B(v, n)B(u, n+ 1), C(u, n)C(v, n− 1) = C(v, n)C(u, n− 1), (3.10)

[Ã(u), B(v, n)] = −[D̃(u), B(v, n)] =
2(u2 − 1)

(u− v)(vu − 1)
(vB(v, n) − uB(u, n)), (3.11)

[Ã(u), C(v, n)] = −[D̃(u), C(v, n)] =
2(u2 − 1)v2

(u − v)(vu − 1)

(
1

u
C(u, n)−

1

v
C(v, n)

)
, (3.12)

C(u, n)B(v, n) = B(v, n+ 1)C(u, n+ 1) + 8n
u

v

+
2u

(u − v)(uv − 1)v

(
v(u2 − 1)(Ã(u)− D̃(u))− u(v2 − 1)(Ã(v)− D̃(v))

)
, (3.13)

where B(u, n) = B̃(u)− 2(2n−1)
u and C(u, n) = C̃(u) + (2n−1)u

2 .

Shifted transfer matrix. Following [13], we define the shifted transfer matrix

t(u, n) = Ã(u)2 +B(u, n+ 1)C(u, n+ 1) + C(u, n)B(u, n) + D̃(u)2 + 2. (3.14)

We can see that t(u, 0) = t(u) is the transfer matrix we are interested in. This shifted transfer matrix
has the following commutation relation with B(v, n):

t(u, n− 1)B(v, n)−B(v, n)t(u, n) = 4B(v, n)

(
v(u2 − 1)

(u − v)(uv − 1)

(
Ã(u)− D̃(u) + 4

u2 + 1

u2 − 1

)
− 2

)

− 4
u

v
B(u, n)

(
u(v2 − 1)

(u − v)(uv − 1)

(
Ã(v)− D̃(v) + 4

v2 + 1

v2 − 1

)
− 4(n− 1)

)
. (3.15)
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Representation of su(2). Denote by ωs (with s ∈ N/2) the highest weight vector of the spin s
representation of su(2) which satisfies

J̃3 ωs = s ωs, J̃+ ωs = 0. (3.16)

From the explicit form of the operators, one deduces that

Ã(u)ωs = α(u)ωs =

(
ρ3 +

2as(u2 − 1)

(au− 1)(a− u)
−
i(a2 − 1)(u2 + 1)ρ1

2a(u2 − 1)
−

(a− u)2 + (au− 1)2

2a(u2 − 1)
ρ2

)
ωs,(3.17)

D̃(u)ωs = δ(u)ωs =

(
ρ3 −

2as(u2 − 1)

(au− 1)(a− u)
+
i(a2 − 1)(u2 + 1)ρ1

2a(u2 − 1)
+

(a− u)2 + (au− 1)2

2a(u2 − 1)
ρ2

)
ωs, (3.18)

C(u, n)ωs = uγn ωs = u

(
−s+ n−

1

2
−
i(a2 − 1)ρ1

4a
−

(a2 + 1)ρ2
4a

+
iρ3
2

)
ωs. (3.19)

Bethe vectors. We construct as follows the Bethe vectors that depend on the parameters z =
{z1, z2, . . . zM}:

V(z) = B(z1, 1)B(z2, 2) . . . B(zM ,M)ωs. (3.20)

Due to relation (3.10), the entries of the vector V(z) do not depend on the order of the parameters
zi. After some algebraic manipulations, we can express the action of the transfer matrix on the Bethe
vector as follows

t(u)V(z) = 2uγM+1B(z1, 1)B(z2, 2) . . . B(zM ,M)B(u,M + 1)ωs

+W(u, z)V(z)

−

M∑

k=1

16u2(z2k − 1)

(u− zk)(uzk − 1)zk
Uk(z)V(zk, u) (3.21)

where V(zk, u) = B(z1, 1) . . . B(zk−1, k − 1)B(u, k)B(zk+1, k + 1) . . . B(zM ,M)ωs and

W(u, z) = λ(u) +
M∑

k=1

16zk(u
2 − 1)

(u− zk)(uzk − 1)



α(u)− δ(u)

4
+
u2 + 1

u2 − 1
+

M∑

p=1

p 6=k

(u2 − 1)zkzp
u(zk − zp)(zkzp − 1)


, (3.22)

λ(u) = α2(u) + δ2(u) + 2 + 2u(α′(u)− δ′(u)) + 2
u2 + 1

u2 − 1
(α(u)− δ(u)), (3.23)

Uk(z) =
α(zk)− δ(zk)

4
+
z2k + 1

z2k − 1
+

M∑

p=1

p 6=k

zp(z
2
k − 1)

(zk − zp)(zkzp − 1)
. (3.24)

The prime in α′(u) and δ′(u) stands for the derivative with respect to u. In the usual algebraic Bethe
ansatz, the first line in (3.21) is not present.

Modified algebraic Bethe ansatz and inhomogeneous Bethe equations. For generic
values of the parameters, one gets γM+1 6= 0 for any M ( the particular case where there exists a M such
that γM = 0 is the object of Section 5). One must compute B(z1, 1)B(z2, 2) . . . B(zM ,M)B(u,M+1)ωs.
For a generic M there is no simple formula but for M = 2s, one gets (see [13] for a proof of this result):

2uB(z1, 1)B(z2, 2) . . . B(z2s, 2s)B(u, 2s+ 1)ωs = W(u, z)V(z)−

2s∑

k=1

16u2(z2k − 1)

(u− zk)(uzk − 1)zk
Uk(z)V(zk, u)

(3.25)
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where

W(u, z) = −8γ∗2s+1

2s∏

p=1

(u− a)(au− 1)zp
a(u− zp)(uzp − 1)

, (3.26)

Uk(z) = −
γ∗2s+1

2(z2k − 1)

2s∏

p=1

p 6=k

(zk − a)(azk − 1)zp
a(zk − zp)(zkzp − 1)

, (3.27)

and ∗ is the complex conjugate. Then, the eigenvalues of the transfer matrix are

W(u, z) + γ2s+1W(u, z), (3.28)

where W(u, z) is given by (3.22) with M = 2s and W(u, z) is given by (3.26) if z satisfies the inhomo-
geneous Bethe equations

α(zk)− δ(zk)

4
+
z2k + 1

z2k − 1
+

2s∑

p=1

p 6=k

zp(z
2
k − 1)

(zk − zp)(zkzp − 1)
=

|γ2s+1|
2

2(z2k − 1)

2s∏

p=1

p 6=k

zp(zk − a)(azk − 1)

a(zk − zp)(zkzp − 1)
. (3.29)

4 Bethe roots and Heun operator

4.1 Inhomogeneous Heun differential equation

In this section, we study in more details the inhomogeneous Bethe equations obtained above.
Finding the Bethe roots of the inhomogeneous Bethe equations given by (3.29) is equivalent to

computing the roots of the monic polynomial solution of degree 2s of the following differential Heun
equation with an inhomogeneous term

y′′(X) +

(
a0
X

+
a1

X − 1
+

a2
X −A

)
y′(X) +

a3(X − µ)

X(X − 1)(X −A)
y(X) = |γ2s+1|

2 (X −A)2s

X(X − 1)
, (4.1)

where

A = −
(a− 1)2

4a
, a0 = 1−

i(a2 − 1)ρ1
4a

−
(a− 1)2ρ2

4a
, a1 = 1−

i(a2 − 1)ρ1
4a

−
(a+ 1)2ρ2

4a
,

a2 = −2s, a3 = |γ2s+1|
2 − 2s(2s− 1 + a0 + a1 + a2) . (4.2)

The roots Zi of the polynomials y(X) and the Bethe roots zi are linked by Zi =
1
4 (2 − zi − 1/zi). The

parameter µ in the previous relation must be chosen so that there exists a polynomial solution. We
come back to this point below.

The proof of this statement is quite standard since it is a generalization of the Heine–Stieljes problem.
Let us recall the main steps here. Suppose that for a given µ there exists a polynomial solution y(x)
of degree 2s and denote by Zi the 2s roots of this polynomial. The Heun differential equation (5.3) at
X = Zi simplifies to

y′′(Zi) +

(
a0
Zi

+
a1

Zi − 1
+

a2
Zi −A

)
y′(Zi) = |γ2s+1|

2 (Zi −A)2s

Zi(Zi − 1)
. (4.3)

Defining zi through Zi = 1
4 (2 − zi − 1/zi), one can show that (4.3) implies that zi satisfy the Bethe

equations.
The inverse is also true. For a given solution zi of the Bethe equations (3.29), we define the following

monic polynomial of degree 2s:

y(X) =
2s∏

i=1

(X −
1

4
(2− zi − 1/zi)). (4.4)
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One can prove that (4.3) holds for this polynomial and one deduces that the following polynomial

X(X−1)(X−A)y′′(X)+((X − 1)(X −A)a0 + a1X(X −A) + a2X(X − 1)) y′(X)−|γ2s+1|
2(X−A)2s+1

(4.5)
of degree 2s + 1 vanishes for X = Zi =

1
4 (2 − zi − 1/zi) which are the roots of y(X). Therefore it is

equal to p(X)y(X) for some polynomial p(x) of degree 1. By looking now at the term of degree 2s+ 1
in equation (4.5), we conclude that p(x) is of the form p(x) = a3(X − µ) (with a3 given by (4.2)) and
that y(X) satisfies the inhomogeneous differential Heun equation (4.1).

The goal is hence to find µ such that (4.1) has a monic polynomial solution of degree 2s. To arrive
at that, we start by putting the polynomial solution

y(X) = X2s +

2s−1∑

n=0

cnX
n (4.6)

in the Heun equation (4.1). We obtain the following constraints for the coefficients cn, for 0 ≤ n ≤ 2s+1,

A(n+ 1)(n+ a0)cn+1 − n((1 +A)(a0 + n− 1) + a1A+ a2)cn + |γn|
2cn−1

= µa3cn + |γ2s+1|
2

(
2s+ 1
n

)
(−A)2s+1−n , (4.7)

with the conventions c2s = 1 and c−1 = c2s+1 = c2s+2 = 0. The previous relation is directly satisfied
for n = 2s + 1 given the explicit value of a3. Relation (4.7) for n = 2s gives c2s−1 as a polynomial of
degree 1 with respect to µ. Then, by recurrence, relation (4.7) for n = 2s − p (p = 1, . . . 2s− 1) gives
c2s−p−1 as a polynomial of degree p+ 1 with respect to µ. Finally, relation (4.7) for n = 0 implies that
the resulting polynomial P2s+1(µ) of degree 2s+ 1 in µ must vanish.

The previous discussion allows to conclude that for each solution µ of the following relation

P2s+1(µ) = 0, (4.8)

there exists a polynomial yµ(X) solution of the Heun equation (4.1) of degree 2s. The 2s roots of the
polynomial yµ(X) provide a solution of the Bethe equations (3.29). As P2s+1(µ) is of degree 2s + 1,
there are 2s+ 1 different µ and we obtain 2s+1 different solutions of the Bethe equations. This proves
that the spectrum obtained from the modified algebraic Bethe ansatz is complete.

Let us remark that in the discussion above, we have assumed that P2s+1(µ) has simple roots. We
can expect this to be true for generic parameters. As far as we know, there is no closed formula for
P2s+1(µ) but it is easy to compute this polynomial from the relations (4.7).

4.2 Eigenvalues of the algebraic Heun operator

Using the identification (2.13) between the Gaudin model Hamiltonian and the algebraic Heun operator,
we can conclude that the eigenvalues of the algebraic Heun W are given by

w =
2is|γ2s|

2(a− 1)

a+ 1
−

4ai|γ2s|
2

1− a2

2s∑

j=1

Zj+
ρ1ρ2
2

+
s(a2 + 1)ρ1 − is(a2 − 1)ρ2

2a
+
i(a2 + 1)(4s2 − ρ22)

2(a2 − 1)
(4.9)

where {Zi} are the roots of a polynomial solution of the inhomogeneous differential Heun equation (4.1)
or equivalently Zi =

1
4 (2− zi − 1/zi) with {zi} the Bethe roots of (3.29).

In addition, remarking that −
∑2s

i=1 Zi is equal to the coefficient c2s−1 in (4.6), we can express this
sum in terms of µ. Indeed, as explained before, relation (4.7) for n = 2s gives c2s−1 as a polynomial in
µ of degree 1. Therefore, we can conclude that

w =
4aia3µ

1− a2
+ ρ1(

ρ2
2

− s)−
i(a2 + 1)(ρ22 − 2s(s+ 1))

2(a2 − 1)
+
i(a− 1)(ρ2 − |γ2s+1|

2)

(a+ 1)
+

2is(s− 1)a

a2 − 1
. (4.10)
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This relation allows to view w, the eigenvalues of the algebraic Heun operator, as the parameters in
the differential inhomogeneous Heun operator (4.1) such that this equation has a polynomial solution.
Similar results can be obtained directly from the Bargmann representation of su(2) as explained in the
following subsection.

4.3 Bargmann realization of the algebraic Heun operator of Lie type

It is well-known that the spin s representation of su(2) can be realized in terms of differential operators
acting on the space of univariate polynomials of order less or equal to 2s:

J1 =
1− z2

2

d

dz
+ sz, J2 =

1 + z2

2i

d

dz
−
sz

i
, J3 = s− z

d

dz
. (4.11)

Indeed, the actions on the monomials

|s,m〉 =
zs−m

√
(s−m)!(s+m)!

, for − s ≤ m ≤ s, (4.12)

are given by

J±|s,m〉 = (J1 ± iJ2) |s,m〉 =
√
(s∓m)(s±m+ 1)|s,m± 1〉, J3|s,m〉 = m|s,m〉, (4.13)

which is the standard spin s representation of su(2).
The algebraic Heun operator W in this realization becomes:

W =
i(z2 − 1)(z2a2 − 1)

(a2 − 1)

d2

dz2
+

(
1− 2s

2
(z3 (ρ4 + 2i)− ρ4z)− z2

ρ1 + iρ2
2

− zρ3 +
ρ1 − iρ2

2

)
d

dz

+ z2
(
s2ρ4 + 2is2 −

sρ4
2

− is
)
+ sz(ρ1 + iρ2) + sρ3 +

sρ4
2

+ ρ5 (4.14)

with ρ4 = 2i(a2+1)
a2−1 and ρ5 = ρ1ρ2

2 +
iρ2

2
(1+a2)

2(1−a2) . Then, the eigenvalues w of the algebraic Heun operator

W can be seen as the eigenvalues of this differential operator

Wφ(z) = wφ(z). (4.15)

Thus, w is obtained by asking that there is a polynomial solution φ(z) of degree less or equal to 2s of
this differential equation. This operator W leads to a Fuchsian second order differential equation with
five regular singularities {1,−1, 1/a,−1/a,∞}, but in the special case where ρ1 = ρ2 = 0, it reduces to
the differential Heun operator. Indeed, let us perform the change of variable

y = a2z2 and ψ(y) = φ(a2z2). (4.16)

In this new variable when ρ1 = ρ2 = 0, (4.15) becomes the Heun differential equation

d2ψ

dy2
+

(
1

2y
+

1− 2s− iρ3
2(y − 1)

+
1− 2s+ iρ3
2(y − a2)

)
dψ

dy

+
2(2s− 1)sy + isρ3(1− a2) + s(a2 + 1)

4y(y − 1)(y − a2)
ψ =

iw(1− a2)

4y(y − 1)(y − a2)
ψ. (4.17)

Comparing this differential Heun operator obtained from the Bargmann realisation and the one in (4.1)
obtained from the Bethe ansatz, we see that one singularity of the former is located at a2 whereas for

the latter one singularity is at A = − (a−1)2

4a .
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5 Homogeneous case

In the previous sections, we have explained how the modified algebraic Bethe ansatz can be used to
diagonalize the transfer matrix of the Gaudin model and the Heun operator, that leads to inhomogeneous
Bethe equations. However, for particular values of the parameters, there exist homogeneous Bethe
equations which diagonalize also this model. Indeed, let us suppose that s, a, ρ1, ρ2 and ρ3 are such
that there is an integer 0 ≤ M ≤ 2s− 1 satisfying γM+1 = 0 i.e.





M = s−

1

2
+
i(a2 − 1)ρ1

4a
+

(a2 + 1)ρ2
4a

ρ3 = 0
, (5.1)

where the real parameter ρ3 is set to zero to ensure that the imaginary part of the relation γM+1 = 0 is
verified. In this case, some eigenvalues of the transfer matrix are given by W(u, z) (relation (3.22) for
M = M), if z satisfies the Bethe equations Uk(z) = 0 i.e.

1

4
(α(zk)− δ(zk)) +

z2k + 1

z2k − 1
+

M∑

p=1

p 6=k

zp(z
2
k − 1)

(zk − zp)(zkzp − 1)
= 0. (5.2)

In this case, the Bethe equations are called homogeneous. As before, finding the Bethe roots zk, solutions
of the Bethe equations (5.2) is the same as finding polynomial solutions of a differential equation. More
precisely, it amounts to finding polynomial solutions of degree M of the homogeneous Heun differential
equation

y′′(X) +

(
a0
X

+
a1

X − 1
+

a2
X −A

)
y′(X) +M2 (X − µ)

X(X − 1)(X −A)
y(X) = 0, (5.3)

for a suitable µ, where

A = −
(a− 1)2

4a
, a0 = s+

1

2
−M+

ρ2
2
, a1 = s+

1

2
−M−

ρ2
2
, a2 = −2s. (5.4)

If {Zi} are the M roots of a polynomial solution of the Heun differential equation, then, for each Zi,
take zi as one solution of Zi =

1
4 (2 − zi − 1/zi), then these {zi} are solutions of the Bethe equations

(5.2).
The parameter µ must be chosen such that (5.3) has a polynomial solution of degree M. If we take

the polynomial solution of the form

y(X) = XM +

M−1∑

n=0

cnX
n (5.5)

upon inserting this expression in the Heun equation (5.3), we obtain the following constraints for the
coefficients cn, for 0 ≤ n ≤ M+ 1,

A(n+ 1)(n+ a0)cn+1 − n((1 +A)(a0 + n− 1) + a1A+ a2)cn + (M+ 1− n)2cn−1 = µM2cn, (5.6)

with the conventions cM = 1 and c−1 = cM+1 = cM+2 = 0. Again, these equations are consistent only
if µ is a root of the polynomial PM+1(µ) of degree M+ 1 in µ.

When the constraints (5.1) are satisfied, the eigenvalues of the algebraic Heun operator W (2.4) can
also be deduced from those of the Gaudin transfer matrix thanks to formula (2.13), they are given by

w =
i

a2 − 1

(
s(a2 + 1)− 2Ma− aρ2

)
+ 4

ia

a2 − 1

M∑

i=1

Zi , (5.7)

where {Zi} are the roots of a polynomial solution of the differential Heun equation (5.3) or equivalently
Zi =

1
4 (2 − zi − 1/zi) with {zi} the Bethe roots of (5.2).
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Since −
∑M

i=1 Zi is equal to the coefficient cM−1 in (4.6), we can express this sum in terms of µ as
follows

i

M∑

i=1

Zi = −icM−1 = −i(µM2 +M((1 +A)(a0 +M− 1) + a1A+ a2)) . (5.8)

Then, the eigenvalues of the algebraic Heun operator W (2.4) become

w =
4iaµM2

1− a2
+

i

1− a2
(
((a2 + 1)s+ aρ2)(2M + 1)−M2(a− 1)2

)
, (5.9)

where µ are the roots of the polynomials PM+1(µ).
The previous construction provides M+ 1 eigenvalues. They belong to the spin range {s−M, s−

M+1, . . . , s}. We remark that this spin domain is stabilized by the algebraic Heun operator since (when
relations (5.1) hold)

WM+1,M+2WM+2,M+1 = 0. (5.10)

To obtain the second part of the spectrum, we must start from the Bethe vectors V(z) constructed
from the lowest weight of su(2). We give the definition and the useful formulas in Appendix A. We note
that for M = 2s− 1 −M, one gets β−M = 0 and relation (A.7) simplifies since the first line vanishes.
Therefore, the usual Bethe ansatz works and one finds that W(u, z) (see (A.8)) for M = 2s− 1−M is
an eigenvalue if z satisfies the Bethe equations,

δ(zk)− α(zk)

4
+
z2k + 1

z2k − 1
+

2s−1−M∑

p=1

p 6=k

zp(z
2
k − 1)

(zk − zp)(zkzp − 1)
= 0, (5.11)

for 1 ≤ k ≤ 2s − 1 − M. Once more, finding the Bethe roots z is equivalent to finding a polynomial
solution of a differential Heun equation. In this way, we prove that we obtain 2s−M solutions for spins
running from −s to s−M− 1 in unit steps.

From the Bethe vectors V(z) and V(z), we obtain the complete spectrum of the Gaudin model or of
the algebraic Heun operators when relations (5.1) hold.

6 Representations of the rotation group O(3) and Heun operator

A special and important case of the Heun operator of Lie type arises when ρ1 = ρ2 = ρ3 = 0:

W |ρ1=ρ2=ρ3=0 = {J1, J2}+
2i(a2 + 1)

a2 − 1
J2
1 . (6.1)

It corresponds to the situation where there is no external magnetic field for the Gaudin magnet (i.e. the
scalar matrix c(u) given in (2.9) vanishes). Consider the following rotation of the generators of su(2)

J1 = cos(θ)J̄1 − sin(θ)J̄2, and J2 = sin(θ)J̄1 + cos(θ)J̄2, (6.2)

with a = e2iθ. In terms of the generators J̄1 and J̄2, the algebraic Heun operator reads

E :=
4i(1− a)

1 + a
W |ρ1=ρ2=ρ3=0 = 4(J̄1

2
+ rJ̄2

2
), r =

(
1− a

1 + a

)2

. (6.3)

The operator E occurs in many physical and mathematical contexts. It is seen to be equivalent (up
to an affine transformation) to the Hamiltonian of the quantum Euler top [29]. It also appears in the
representation theory of the group O(3) and its universal covering group SU(2) as follows. As is very
familiar, the standard representation basis is defined by the joint eigenvectors of the Casimir element
C = J2

1 + J2
2 + J2

3 and of the generator J3. It is said to be of subgroup type since it corresponds to
the group reduction O(3) ⊃ O(2) with one subgroup generator, J3, diagonalized. Close to 50 years
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ago, Patera and Winternitz stressed [25] the existence of a second interesting basis stemming from
the classification of second order polynomials in the generators. This second basis is provided by the
eigenfunctions of C and E = 4(J2

1 + rJ2
2 ) (and of the discrete operators X and PZ, where X and Z

correspond to reflections in the yz and xy planes and P is the parity operator). It is not of subgroup type
as E is not the generator of any subgroup of O(3). Ways to obtain the eigenvalues of E are described in
[25] but none are providing a closed formula. Our construction via the Bethe ansatz strikingly advances
the characterization of the eigenvalues ǫ of E. Indeed, by specializing formulas (3.29) and (4.9), one gets
that the eigenvalues of E are given by

ǫ =
2s(4s2 + 1)(a2 + 1)

(a+ 1)2
−

4a(s− 1
2 )

2

(a+ 1)2

2s∑

p=1

(zp + z−1
p ), (6.4)

with the Bethe roots satisfying

as(z2k − 1)

(azk − 1)(a− zk)
+
z2k + 1

z2k − 1
+

2s∑

p=1

p 6=k

zp(z
2
k − 1)

(zk − zp)(zkzp − 1)
=

(2s+ 1)2

8(z2k − 1)

2s∏

p=1

p 6=k

zp(zk − a)(azk − 1)

a(zk − zp)(zkzp − 1)
. (6.5)

Let us also remark that if s is a half-integer, the result of Section 5 can also be used to characterize the
spectrum of E. In this case the eigenvalues read

ǫ =
4s(a2 + 1)

(a+ 1)2
−

4a

(a+ 1)2

s− 1

2∑

p=1

(zp + z−1
p ), (6.6)

with the Bethe roots satisfying

as(z2k − 1)

(azk − 1)(a− zk)
+
z2k + 1

z2k − 1
+

s−1/2∑

p=1

p 6=k

zp(z
2
k − 1)

(zk − zp)(zkzp − 1)
= 0. (6.7)

The specialization used here of relation (4.17) for the Bargmann realization of the Heun operator repro-
duces the result of [25]. We should point out that the supplementary condition 0 < r < 1 is imposed in

[25] which implies that a = 1−√
r

1+
√
r
. In the construction above we have required that a be a pure phase

but the results can easily be generalized and the relations (6.4)-(6.7) are still valid for any a.

7 Entanglement entropy for the Krawtchouk chain and Heun

operator

In this section, we present another interesting problem to which the results of this paper can be applied,
namely the determination of the entanglement entropy for free Fermions on Krawtchouk chains. These
chains are interesting in many respects. They emerge from the projection of spin systems defined on
hypercubes [11] and they are known to allow for perfect state transfer [1]. They are usually introduced in
the following way. Let us consider the free Fermion inhomogeneous Hamiltonian with nearest neighbor
interactions and local magnetic fields defined by:

Ĥ =
β

2

2s−1∑

n=0

√
(n+ 1)(2s− n)(c†ncn+1 + c†n+1cn)− α

2s∑

n=0

(n− s)c†ncn, (7.1)

where {c†m, cn} = δmn and where α and β are free parameters. We can choose the normalization of
H such that α2 + β2 = 1 and take α = cos (2θ) and β = sin (2θ). In what follows, it will be more
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convenient to rewrite (7.1) in terms of the matrices J1 and J3 from an irreducible representation of su(2)
of dimension 2s+ 1. Indeed, we have that

Ĥ =
(
c†0 . . . c†2s

)
Ĥ



c0
...
c2s


 , (7.2)

where

Ĥ = cos (2θ)J3 + sin (2θ)J1. (7.3)

We easily find an orthonormal basis {|ωk〉}k∈{0,...,2s} of C2s+1 such that Ĥ |ωk〉 = ωk |ωk〉. The eigen-
values are given by ωk = k − s and the diagonalized Hamiltonian is

Ĥ =

2s∑

k=0

ωkc̃
†
k c̃k,

where the c̃k =
∑2s

n=0 〈n|ωk〉 cn also respect {c̃j, c̃k
†} = δjk. The overlap coefficients are given in terms

of Krawtchouk polynomials [24]:

〈n|ωk〉 =

√(
2s

n

)(
2s

2s− k

)
(sin θ)2s | cot θ|k−nKn(2s− k; sin2 θ, 2s). (7.4)

The ground state |Ψ0〉〉 is defined by filling up the Fermi sea. If |0〉〉 represents the vacuum state
which is annihilated by all the c̃k, we have

|Ψ0〉〉 = c̃†K c̃
†
K−1 . . . c̃

†
1c̃

†
0 |0〉〉. (7.5)

K is taken to be the largest integer k such that states associated to a negative energy ωk are filled. A
natural question to ask about such chain is the following: if we split it in two, what is the entanglement
between the two parts? This information is contained in the entanglement entropy:

S = tr(ρ ln (ρ)), (7.6)

where ρ is the reduced density matrix associated to one of the two parts. Here, we take the subsystem
to be the first l + 1 sites of the chain. In particular, the projection operator πℓ over the subsystem is
taken to be

πℓ =

ℓ∑

n=0

|n〉 〈n| . (7.7)

For a Krawtchouk chain in its ground state |Ψ0〉〉, it is known that the value of S can also be extracted
from the eigenvalues of the chopped correlation matrix [17]. This matrix is obtained by first considering
the complete correlation matrix, which is the (2s+ 1)× (2s+ 1) matrix having for entries:

Ĉmn = 〈〈Ψ0|c
†
mcn|Ψ0〉〉. (7.8)

It is useful to note that Ĉ can be expressed as:

Ĉ =

K∑

k=0

|ωk〉 〈ωk| . (7.9)
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Then, the chopped correlation matrix associated to the first ℓ + 1 sites in the chain is obtained by
considering the submatrix of Ĉ defined as:

C = πℓ Ĉ πℓ = |Ĉmn|0≤m,n≤ℓ. (7.10)

Given (7.4), we see that

Cmn =

K∑

k=0

√(
2s

n

)(
2s

m

)(
2s

k

)
(sin2 θ)2s| cot θ|2k−n+mKm(2s− k)Kn(2s− k), (7.11)

where the last two parameters of the Krawtchouk polynomials are kept implicit.
In general, we see that the submatrices of (7.9) have a rather complicated expression and do not

prove easy to diagonalize. However, considerations of bispectrality in the context of the time and band
limiting problem have shown how to identify a tridiagonal operator T , in fact an algebraic Heun operator
[21, 17], that has the property of commuting with the chopped correlation matrix. It is expressed as

T = {Ĥ, J3}+ µJ3 + νĤ, (7.12)

where µ = −2K − 1 + 2s and ν = 2ℓ + 1 − 2s [16]. Thus, one could instead diagonalize T and use the
results to extract the spectrum of C. This is where the modified algebraic Bethe ansatz comes into play.
If we make the identification

− sin (2θ)J1 + cos (2θ)J3 → J̃1, cos (2θ)J1 + sin (2θ)J3 → J̃2 (7.13)

for the generators and

ρ1 = cot (2θ)µ+
ν

sin (2θ)
, ρ2 = µ, ρ3 = 0,

ρ4 = 2 cot 2θ and ρ5 =
µν

2 sin 2θ

(7.14)

for the parameters, we see that

T = sin 2θ(W − ρ5), (7.15)

where W is defined in (2.3). We thus see that the spectrum of T is given, up to an affine transformation,
by the one of W .

Moreover, it is observed that this W belongs to the homogeneous case (discussed in Section 5).
Indeed, one can check that we here have M = ℓ when considering the Bethe vector constructed with
the lowest weight. Therefore, the ℓ+ 1 eigenvalues tz̄ of T will be given by:

tz̄ = s cos (2θ) +
µ

2
−

1

2

ℓ∑

i=1

(z̄i +
1

z̄i
), (7.16)

where the z̄ are solutions to the Bethe equations given by (5.11):

e2iθs(z̄2k − 1)

(e2iθ z̄k − 1)(e2iθ − z̄k)
+

(z̄2k + 1)(1 − ν
2 )− µz̄k

(z̄2k − 1)
+

l∑

p=1

p 6=k

z̄p(z̄
2
k − 1)

(z̄k − z̄p)(z̄kz̄p − 1)
= 0. (7.17)

At this point, it is possible to recover the spectrum of C. Usually, this is done by acting with C on the
eigenvectors of T , i.e. the Bethe vectors for W [14]. Since these are also eigenvectors of the chopped
correlation matrix, we can read the eigenvalues of C from the results. We here want to present an
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alternative way of obtaining the spectrum. It amounts to constructing a polynomial P of order ℓ such
that

C = P (T ) =

ℓ∑

j=0

ajT
j. (7.18)

If we have P , then it is easy to see that P (tz) gives the eigenvalue of C associated to z. To prove
the existence of P , it is sufficient to know that [C, T ] = 0 is verified and to notice that, since T is
tridiagonal, the first ℓ + 1 powers of T are linearly independent. The fact that T is tridiagonal also
allows to determine P . Indeed, since we have that

〈0|T r |m〉 = 0 if r < m, (7.19)

we are led to

aℓ = 〈0|C |ℓ〉 / 〈0|T ℓ |ℓ〉 (7.20)

and to the recurrence relation:

aℓ−j =

[
〈0|C |ℓ− j〉 −

∑j−1
r=0 aℓ−r 〈0|T

ℓ−r |ℓ− j〉
]

〈0|T ℓ−j |ℓ− j〉
. (7.21)

Given this relation, constructing P is straightforward and obtaining the eigenvalues of C and the entan-
glement entropy follows.

8 Conclusion and outlook

This paper has woven threads between the algebraic Heun operator of Lie type, the differential Heun
operator, a Fuchsian second order differential equation with five regular singularities, the inhomogeneous
Bethe equation and the Gaudin magnet. It showed in particular that there exist two equivalent ways to
compute the eigenvalues of the algebraic Heun operator of Lie type by studying the polynomial solution
of two differential equations, one inhomogeneous with four singularities and the other homogeneous
with five singularities. This type of equivalence has already been noticed in a different context [15] and
certainly deserves further investigation.

We have examined the Gaudin model with only one site. It is well-known however that the model
with N sites remains integrable; the Bethe equations are also given in [13]. In the framework of the
Bargmann realization, a differential equation with N variables is obtained in that case. A natural
question is to compare this differential equation with the one obtained from the Bethe equations. This
would provide a generalization to N variables of the results of this paper.

We showed that the tools of quantum integrable systems and the algebraic Heun operators of Lie type
are relevant to the representation theory of su(2). We expect that other quantum integrable systems
and algebraic Heun operators of different types will find their way in the representation theory of higher
rank Lie algebras. For example, algebraic Heun–Hahn or Racah–Hahn operators appear in [18] in the
study of the diagonal centralizer of two su(3).

Finally, we demonstrated the usefulness of the Bethe ansatz to compute the entanglement entropy of
free Fermion chain with couplings given by the recurrence coefficients of the Krawtchouk polynomials.
It would be interesting to use this approach for other chains. Algebraic Heun operators of different type
which commute with the chopped correlation matrix associated to different inhomogeneous free Fermion
chains have been introduced in [16, 17]. The computation of their spectra with the Bethe ansatz could
be used to determine the entanglement entropy at least in the thermodynamical limit. We plan on
returning to some of these questions.
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A Bethe ansatz from the lowest weight

The commutation relation of the shifted transfer matrix with C(v, n) is given by

t(u, n)C(v, n)− C(v, n)t(u, n− 1) = 4C(v, n)

(
v(u2 − 1)

(u− v)(uv − 1)

(
D̃(u)− Ã(u) + 4

u2 + 1

u2 − 1

)
− 2

)
(A.1)

−4
v

u
C(u, n)

(
u(v2 − 1)

(u− v)(uv − 1)

(
D̃(v)− Ã(v) + 4

v2 + 1

v2 − 1

)
+ 4n

)
.

Let ωs (with s ∈ N/2) denote the lowest weight vector of the spin s representation of su(2) which satisfies

J̃3ωs = −sωs, J̃−ωs = 0. (A.2)

From the explicit form of the operators, one deduces that

Ã(u)ωs = α(u)ωs =
(
ρ3 −

2as(u2 − 1)

(au− 1)(a− u)
−
i(a2 − 1)(u2 + 1)ρ1

2a(u2 − 1)
−

(a− u)2 + (au− 1)2

2a(u2 − 1)
ρ2

)
ωs, (A.3)

D̃(u)ωs = δ(u)ωs =
(
ρ3 +

2as(u2 − 1)

(au− 1)(a− u)
+
i(a2 − 1)(u2 + 1)ρ1

2a(u2 − 1)
+

(a− u)2 + (au− 1)2

2a(u2 − 1)
ρ2

)
ωs, (A.4)

B(u, n)ωs =
1

u
βnωs =

4

u

(
−s− n+

1

2
+
i(a2 − 1)ρ1

4a
+

(a2 + 1)ρ2
4a

+
iρ3
2

)
ωs. (A.5)

We construct as follows the Bethe vectors, that depend on the parameters z = {z1, z2, . . . , zM},

V(z) = C(z1, 0)C(z2,−1) . . . C(zM ,−M + 1)ωs. (A.6)

Due to relation (3.10), the entries of the vector V(z) do not depend on the order of the parameters zi.
The action of the transfer matrix on the Bethe vector V(z) is given by

t(u)V(z) =
2

u
β−MC(z1, 0)C(z2,−1) . . .C(zM ,−M + 1)C(u,−M)ωs

+W(u, z)V(z)

−

M∑

k=1

16zk(z
2
k − 1)

(u− zk)(uzk − 1)
Uk(z)V(zk, u) (A.7)

where V(zk, u) = C(z1, 0) . . . C(zk−1,−k + 2)C(u,−k + 1)C(zk+1,−k) . . . C(zM ,−M + 1)ωs and

W(u, z) = λ(u) +

M∑

k=1

16zk(u
2 − 1)

(u− zk)(uzk − 1)



δ(u)− α(u)

4
+
u2 + 1

u2 − 1
+

M∑

p=1

p 6=k

(u2 − 1)zkzp
u(zk − zp)(zkzp − 1)


, (A.8)

λ(u) = α2(u) + δ
2
(u) + 2− 2u(α′(u)− δ

′
(u))− 2

u2 + 1

u2 − 1
(α(u)− δ(u)), (A.9)

Uk(z) =
δ(zk)− α(zk)

4
+
z2k + 1

z2k − 1
+

M∑

p=1

p 6=k

zp(z
2
k − 1)

(zk − zp)(zkzp − 1)
. (A.10)
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