Asymptotics of $\mathrm {SL}(2,{{\mathbb {C}}})$ coherent invariant tensors - Archive ouverte HAL
Article Dans Une Revue Commun.Math.Phys. Année : 2022

Asymptotics of $\mathrm {SL}(2,{{\mathbb {C}}})$ coherent invariant tensors

Pietro Dona
  • Fonction : Auteur
  • PersonId : 1285806
  • IdHAL : pietrodona
Marco Fanizza
  • Fonction : Auteur
Simone Speziale

Résumé

We study the semiclassical limit of a class of invariant tensors for infinite-dimensional unitary representations of SL(2,C) of the principal series, corresponding to generalized Clebsch–Gordan coefficients with $n\ge 3$ legs. We find critical configurations of the quantum labels with a power-law decay of the invariants. They describe 3d polygons that can be deformed into one another via a Lorentz transformation. This is defined viewing the edge vectors of the polygons are the electric part of bivectors satisfying a (frame-dependent) relation between their electric and magnetic parts known as $\gamma $-simplicity in the loop quantum gravity literature. The frame depends on the SU(2) spin labelling the basis elements of the invariants. We compute a saddle point approximation using the critical points and provide a leading-order approximation of the invariants. The power-law is universal if the SU(2) spins have their lowest value, and n-dependent otherwise. As a side result, we provide a compact formula for $\gamma $-simplicity in arbitrary frames. The results have applications to the current EPRL model, but also to future research aiming at going beyond the use of fixed time gauge in spin foam models.

Dates et versions

hal-03070617 , version 1 (15-12-2020)

Identifiants

Citer

Pietro Dona, Marco Fanizza, Pierre Martin-Dussaud, Simone Speziale. Asymptotics of $\mathrm {SL}(2,{{\mathbb {C}}})$ coherent invariant tensors. Commun.Math.Phys., 2022, 389 (1), pp.399-437. ⟨10.1007/s00220-021-04154-3⟩. ⟨hal-03070617⟩
85 Consultations
0 Téléchargements

Altmetric

Partager

More