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Introduction

Sampling is a fundamental component for a variety of computational tasks. Given a fixed number of samples, the goal is to best represent a given sample domain Ω and its corresponding feature range Γ. Though the notion of "best representation" is application dependent, it often consists of two main components: spatial domain blue noise and range feature preservation. Here, blue noise refers to sample distributions that are uniform and yet random, resulting in reduced noise and aliasing [START_REF] Cook | Stochastic sampling in computer graphics[END_REF][START_REF] Ulichney | Digital halftoning[END_REF]. For example, in image stippling [START_REF] Ando | Preserving fluid sheets with adaptively sampled anisotropic particles[END_REF]Li et al. 2010;[START_REF] Fattal | Blue-noise point sampling using kernel density model[END_REF]], the domain Ω is a 2D pixel grid, the range Γ is the pixel color, and the goal is to distribute the stipples as spatial blue noise and yet depicts the image colors well. As another example, in geometry sampling [START_REF] Öztireli | Spectral sampling of manifolds[END_REF][START_REF] Chen | Bilateral blue noise sampling[END_REF]], the domain is a 3D point cloud, the range is the surface normal, and the goal is to sub-sample the points so that the output can reproduce smooth and sharp regions of the underlying surface.

Due to the fact that different applications have different range features, it is usually difficult to preserve both domain blue noise and range feature, since they conflict with each other in many cases. Although researchers have carried extensive research on preserving either of them, no existing techniques can handle both well as far as we know. Without considering range features, the results will lose interesting details as the left column in Figure 1 shows. 1Recently, [START_REF] Chen | Bilateral blue noise sampling[END_REF]] presented a general bilateral blue-noise sampling method, whose sampling results preserve both domain blue noise and range features. Their basic idea is a sample-distance measure that incorporates both sample positions and features preserving; and can be readily combined with prior blue noise sample analysis and synthesis algorithms.

In this technical report, we apply the bilateral dart throwing algorithm [START_REF] Chen | Bilateral blue noise sampling[END_REF] for additional applications, including image stippling, dynamic stippling, and nonlinear filtering. Furthermore, we propose and demonstrate bilateral Lloyd relaxation method which can work comparably to the kernel based relaxation shown in [START_REF] Chen | Bilateral blue noise sampling[END_REF]]. 

Previous Work

Blue noise sampling Blue noise sampling generates random samples with uniform distribution. It is known for its uniformity in the spatial domain, low noise/aliasing in the spectrum domain, and its robustness in numerous applications:

• rendering: [START_REF] Cook | Stochastic sampling in computer graphics[END_REF][START_REF] Pharr | Physically Based Rendering: From Theory to Implementation[END_REF]Schlömer et al. 2011;[START_REF] Sun | Line segment sampling with blue-noise properties[END_REF] • geometry: [START_REF] Turk | Re-tiling polygonal surfaces[END_REF][START_REF] Alliez | Interactive geometry remeshing[END_REF][START_REF] Öztireli | Spectral sampling of manifolds[END_REF][START_REF] Bowers | Parallel Poisson disk sampling with spectrum analysis on surfaces[END_REF][START_REF] Chen | Bilateral blue noise sampling[END_REF] • image,visualization: [START_REF] Ando | Preserving fluid sheets with adaptively sampled anisotropic particles[END_REF][START_REF] Wei | Multi-class blue noise sampling[END_REF]Li et al. 2010;[START_REF] Fattal | Blue-noise point sampling using kernel density model[END_REF][START_REF] Ebeida | Efficient maximal Poisson-disk sampling[END_REF][START_REF] De Goes | Blue noise through optimal transport[END_REF] • animation: [START_REF] Schechter | Ghost SPH for animating water[END_REF] Importance adaptive sampling Non-uniform blue noise allows samples to be distributed conforming to some user defined density which is usually proportional to the importance of the domain regions. However a pure density-map-guided blue noise sampling may suffer from following problems: For one, a precise comput-ing of such density map is usually not trivial. For two, importance sampling is likely to miss sharp or thin features with near zero area, even if some high importance value is assigned. Besides, if the importance changes dramatically as it often does in images and geometry models, samples in less importance areas may squeeze out nearby samples over sharp features.

Bilateral sampling Feature-aware sampling methods have been designed for various applications, such as stippling [START_REF] Kim | Feature-guided image stippling[END_REF][START_REF] Li | Structure-preserving stippling by priority-based error diffusion[END_REF], half-toning [START_REF] Li | Contrast-aware halftoning[END_REF], and meshing [Lévy and Liu 2010]. However, they usually do not preserve blue noise properties, which are desired by the corresponding applications. The spectral sampling in [ Öztireli et al. 2010] is a notable work, in which it also attempts to keep blue noise properties as a by-product of feature-preservation.

Bilateral blue noise sampling introduced in [START_REF] Chen | Bilateral blue noise sampling[END_REF]] aims at preserving both blue noise properties and features. The basic idea behind bilateral blue noise sampling is to define a bilateral difference ξ(si, sj) between pairs of samples si and sj as a combination of the positional difference d(pi, pj) = pi-pj in Euclidean space Ω; and a (dis)similarity measure f (vi, vj) of non-spatial sample attributes(feature) vi and vj in range Γ:

ξ(si, sj) = d(pi, pj) • f (vi, vj), (1) 
where • denotes a generic operator. [START_REF] Chen | Bilateral blue noise sampling[END_REF] presented two bilateral distance metrics: augmentative form and multiplicative form. In the rest of this technical report, we will focus on the augmentative bilateral distance and its related applications.

Augmentative bilateral distance

The augmentative bilateral distance was proposed in the form:

ξ(si, sj) = d(pi, pj) σp , d(vi, vj) σv , (2) 
with following metric (L2 norm):

ξ(si, sj) 2 = d 2 p (s, s ) + d 2 v (s, s ) = p(s) -p(s ) σp 2 + v(s) -v(s ) σv 2 (3) 
, in which p denotes sample's position vector, v denotes sample's feature vector, and σp and σv are the weights for position and feature, respectively. dp is the spatial sample distance in traditional blue noise sampling, either Euclidean (e.g. image sampling, point cloud subsampling, or photon mapping) or Geodesic (e.g. surface sampling). dv is the application-specific feature distance. For example, in geometry sampling, v can be set to be point cloud normal [START_REF] Chen | Bilateral blue noise sampling[END_REF]. In image cases (Section 5), we have v = c, which is the pixel color (grayscale or RGB).

The combination of σp and σv provides a balance between the blue noise properties and feature preservation. When σv → ∞, the bilateral blue noise sampling method is reduced to traditional blue noise sampling; and when σv gets smaller, more emphasis will be put onto features rather than blue noise.

Higher dimensional space interpretation If we regard ξ(si, sj) in Equation 2 as a new vector in a higher-dimensional space Ψ formed by p and v. Equation 3 basically calculates the distance between two samples in space Ψ. So that bilateral sampling with augmentative distance generates random samples over an embedded manifold M in Ψ, and the result is their projections to a lower-dimensional space, as Figure 2 shows. the only source of non-uniformity, we are essentially performing a uniform sampling of M for synthesis, and gauging the distribution uniformity over M during analysis.

Synthesis

The bilateral blue noise sampling can be applied to prior sampling methods by simply replacing the traditional position-only distance with augmentative distance Equation 3. Below we provide the bilateral Lloyd relaxation algorithm followed by a brief introduction of the bilateral dart throwing method in [START_REF] Chen | Bilateral blue noise sampling[END_REF]].

Dart Throwing

Dart throwing [Dippé and Wold 1985;[START_REF] Cook | Stochastic sampling in computer graphics[END_REF]] produces individual samples stochastically subject to the constraint that no two samples s and s can be closer to each other than a pre-determined distance threshold r(s, s ). All we need to do is to plug in the bilateral distance d from Equation 3 in lieu of the spatial-only distance in traditional dart throwing. By using different r(s, s ) representations, bilateral blue noise sampling can be orthogonally applied for various sampling scenarios, including uniform (r is a constant), isotropic (r(s, s ) depends on the distance between s and s but not their relative direction), and anisotropic (an accurate directional function r(s, s ) or the Jacobian approximation in [Li et al. 2010]).

Relaxation

Lloyd relaxation [START_REF] Lloyd | An optimization approach to relaxation labeling algorithms[END_REF]] is another classical method that has been applied to generating blue noise samples. Unlike dart throwing which generates samples from scratch, relaxation starts from a given sample distribution and gradually improves its uniformity. Let S be a set of samples (or "sites" in the jargon of [START_REF] Ando | Preserving fluid sheets with adaptively sampled anisotropic particles[END_REF]) whose distribution we wish to optimize for. The uniformity of S can be measured by the following energy function:

E(S, V) = i s ∈V i d 2 (s , si)ds (4) 
, where V is the Voronoi tessellation generated from S, Vi the Voronoi region corresponding to site si ∈ S, s a point in the domain Ω. The major difference here is that we are using the bilateral distance d(s , si) 2 = ξ(s , si) 2 in Equation 3 instead of a pure spatial domain distance. Lloyd relaxation minimizes this energy by iterating between the following two steps, Voronoi and centroid, until sufficient convergence:

Voronoi For each point s ∈ Ω, find the site s(s ) that is the closest to s among all sites in S:

s(s ) = arg min s∈S d 2 (s , s) (5) 
. The augmentative bilateral distance can be directly plugged in here to substitute for d without changing the remaining search algorithm.

Centroid Move each site si ∈ S to the centroid mi of the corresponding Voronoi region Vi ∈ V to minimize the corresponding energy term:

s ∈V i d 2 (s , si)ds (6) 
. This can be achieved via the Jacobian approximation [START_REF] Du | Anisotropic centroidal Voronoi tessellations and their applications[END_REF] or [Li et al. 2010] as follows:

mi = V i J T J(s )ds -1 V i J T J(s )s ds (7)
, where J is the Jacobian:

p = p σp , v = v σv (8) J = Jp(p) Jp(v) (9) 
, where Jp(p) and Jp(v) indicate the Jacobian of p relative to p, and Jacobian of v relative to p, respectively. Note that Jp(p) = 1 σp I (with I indicating the identity matrix) only if the domain Ω is (spatially) Euclidean.

Note that even though above centroid step is only approximate, it works well when the sampling density is sufficiently high (relative to domain variations), as discussed in [Li et al. 2010].

Analysis

Sample distributions can be analyzed through a variety of criteria, including both qualitative visual comparisons as well as quantitative measures, including spatial uniformity ρ [Lagae and Dutré 2008] and differential-domain spectrums (DDA) [START_REF] Wei | Differential domain analysis for non-uniform sampling[END_REF] for blue noise.

Approximation in Ω We can avoid directly dealing with higher dimensional manifolds M and keep all analysis computations in the original domain Ω using the anisotropic analysis method in [START_REF] Wei | Differential domain analysis for non-uniform sampling[END_REF] with the Jacobian approximation described in Equation 9. However, the Jacobian in Equation 9 above might not be square due to the presence of v. This can cause issues for analysis methods that require square Jacobians such as [START_REF] Wei | Differential domain analysis for non-uniform sampling[END_REF] which needs to preserve the dimension of d after χ. This can be addressed following the approach described in the extended version of [START_REF] Wei | Differential domain analysis for non-uniform sampling[END_REF] based on the simple observation: since the distance measure in [Li et al. 2010] depends on only J T J, not J itself, all we need is to derive a square J so that

J T J = J T J (10) 
. This can be achieved by the standard matrix square root method:

J T J = V T DV (11)
, where V is an orthonormal matrix and D a diagonal matrix. Note that since J T J is positive definite, D will contain only non-negative diagonal elements. Thus, we have

J = V T √ DV (12) 
. Following Equation 15of [START_REF] Wei | Differential domain analysis for non-uniform sampling[END_REF] for anisotropic sampling, we have d = s -s , and

χ(d) = 1 E (λ) J -1 (s) + J -1 (s ) 2 -1 (s -s ) T (13) 
, where E (λ) is the mean of the eigenvalues of J (.) over Ω. Notice the use of J instead of J allows us to compute different domain spectrum with the same dimensionality as the sample space Ω.

Results

In this section, we present our results in three applications: image stippling, dynamic stippling, and nonlinear filtering.

Image Stippling

Stippling refers to techniques that use small primitives (e.g. dots) to illustrate images [START_REF] Secord | Weighted Voronoi stippling[END_REF][START_REF] Ando | Preserving fluid sheets with adaptively sampled anisotropic particles[END_REF]Li et al. 2010;[START_REF] Fattal | Blue-noise point sampling using kernel density model[END_REF]]. The primitives are usually of the same color (e.g. black) or from a small palette of colors [START_REF] Wei | Multi-class blue noise sampling[END_REF]]. Since human visual systems tend to blend multiple dots in local spatial regions, stippling with limited colors can still faithfully reproduce continuous image tones. Such trick for trading off spatial for color resolutions has also been taken advantage of in image halftoning where samples lie on discrete regular pixel grids [START_REF] Pang | Structure-aware halftoning[END_REF][START_REF] Chang | Structure-aware error diffusion[END_REF][START_REF] Li | Structure-preserving stippling by priority-based error diffusion[END_REF].

For both stippling (continuous domain sample location) and halftoning (discrete domain sample location) applications, it is well known that sample sets with blue noise properties are more visually pleasing. In addition to blue noise, it could also be desirable to maintain image structures or features [START_REF] Pang | Structure-aware halftoning[END_REF][START_REF] Chang | Structure-aware error diffusion[END_REF][START_REF] Li | Structure-preserving stippling by priority-based error diffusion[END_REF].

However, to our best knowledge, prior methods have certain limitations. They may sacrifice blue noise properties to preserve features (e.g. contrast aware halftoning [START_REF] Li | Contrast-aware halftoning[END_REF][START_REF] Li | Structure-preserving stippling by priority-based error diffusion[END_REF]); and they might not offer enough flexibility in controlling the relative weights between the blue noise and feature preservation (e.g. [START_REF] Chang | Structure-aware error diffusion[END_REF][START_REF] Li | Structure-preserving stippling by priority-based error diffusion[END_REF]); besides, most of them operate in discrete grids (e.g. [START_REF] Pang | Structure-aware halftoning[END_REF][START_REF] Chang | Structure-aware error diffusion[END_REF]) and might not be appropriate for continuous domain applications such as stippling. [START_REF] Li | Structure-preserving stippling by priority-based error diffusion[END_REF]] demonstrated impressive stippling results via error diffusion; however, sufficiently large neighborhoods have to be used. See [START_REF] Wei | Multi-class blue noise sampling[END_REF] for relevant discussions about other potential issues for producing continuous domain effects via discrete domain sampling.)

Bilateral blue noise sampling (dart throwing and relaxation) can be applied for such feature-aware image stippling or halftoning by simply using gray-scale image color c as features v in Equation 3.

It is applicable to both discrete and continuous domains, and easy to combine with prior blue noise stippling algorithms [START_REF] Ando | Preserving fluid sheets with adaptively sampled anisotropic particles[END_REF]Li et al. 2010;[START_REF] Fattal | Blue-noise point sampling using kernel density model[END_REF]] by simply plugging the distance measure in Equation 3. As shown in Figure 3, the bilateral method preserves features and blue-noise-properties better than prior techniques. 

Metric comparison

Dynamic Stippling

Bilateral blue noise sampling can be applied to numerous dynamic effects, such as sprite-based animation [START_REF] Yu | Scalable real-time animation of rivers[END_REF]], video stippling [START_REF] Chen | Variational blue noise sampling[END_REF], and hybrid point distribution [START_REF] Vanderhaeghe | Dynamic point distribution for stroke-based rendering[END_REF]]. The key, as stated in [START_REF] Vanderhaeghe | Dynamic point distribution for stroke-based rendering[END_REF], is to maintain the balance between 2D spatial blue noise, 1D temporal coherence, and 2D (video) or 3D (object) motion depiction. This is a challenging problem due to both spatial and temporal constraints.

Here, we describe two particular applications: cross-dimensional sampling for 2D stylization of dynamic 3D objects and spatialtemporal sampling for video stylization. Both are described in [START_REF] Vanderhaeghe | Dynamic point distribution for stroke-based rendering[END_REF]]. The basic idea is to perform bilateral blue noise sampling for the first frame, advect the samples according to the scene motions (e.g. 3D object motions or 2D video optical flows), and maintain blue noise properties by removing/adding samples from/to crowded/sparse regions, meanwhile maintains the feature preserving. (Please refer to the accompany video of Figure 5 & 6 for animation effects.)

Feature v For video stylization, we simply use colors c as v.

For cross sampling (2D stylization of 3D objects), we define the v(s) for each 2D screen space sample s as a combination of the 2D screen space shading c(s) and the 3D object space normal n(s ):

s = raycast(s), v(s) = αc(s), n(s ) (14) 
, where α is the relative weight between c and n, s the 3D object surface point corresponding to s (obtained through ray casting from the eye point), and n is the 3D object normal in the eye coordinate system. (If raycast(s) does not hit the object surface, we set n(s ) to 0.) This choice allows us to emphasize both shading and projected geometry features better than considering only 3D geometry or 2D image features. Some examples include interior and exterior silhouettes (e.g. the genus 3 model in Figure 6) and shallow ridges stylization of 3D objects. Here we compare our cross dimensional bilateral blue noise sampling to the non-bilateral method in [START_REF] Vanderhaeghe | Dynamic point distribution for stroke-based rendering[END_REF]]. As shown, our method preserves features better in object silhouettes, geometry ridges, and shading variations, while retains the benefits of the original method, such as temporal coherence and screen-space blue noise. Each case of genus3/claw contains ∼ 4500/8000 visible samples. The input models are shown on the left.

that might not be very prominent on the original 3D geometry but can be enhanced due to projection and shading (e.g. the claw model in Figure 6).

Video stylization

Figure 5 demonstrates our spatial-temporal sampling application for video stylization2 . This can be considered as a generalization of stippling static images to dynamic videos with the need to consider motion depiction and temporal coherence similar to the cross sampling application. Here, the motions are computed through video optical flow, and the feature v is the underlying RGB video pixel color c. As shown in Figure 5, our method preserves features better than non-bilateral blue noise [START_REF] Vanderhaeghe | Dynamic point distribution for stroke-based rendering[END_REF]] while maintains its other advantages including motion depiction, temporal coherence, and screen space blue noise.

Cross-dimensional sampling

Figure 6 provides examples for applying our method for cross dimensional sampling, i.e. placing stipples on a 2D plane to render dynamic 3D objects. There, we compare our bilateral cross sampling method against the original cross dimensional (non-bilateral) blue noise sampling in [START_REF] Vanderhaeghe | Dynamic point distribution for stroke-based rendering[END_REF]]. As shown, our method provides better quality in describing features. For tone reproduction, we set the local adaptive-sampling radius r(s) according to the shading value.

Nonlinear Filtering

Nonlinear filtering, such as bilateral and medial filtering, has a variety of important applications. However, it tends to be relatively slow compared to linear filtering. Various acceleration methods have been proposed (see e.g. [START_REF] Weiss | Fast median and bilateral filtering[END_REF][START_REF] Chen | Real-time edgeaware image processing with the bilateral grid[END_REF][START_REF] Adams | Gaussian KD-trees for fast high-dimensional filtering[END_REF][START_REF] Gastal | Adaptive manifolds for real-time high-dimensional filtering[END_REF]).

Among these accelerations, sub-sampling has shown to be a viable approach for filters that can function well with a sub-set of taps, such as bilateral filtering [START_REF] Banterle | A low-memory, straightforward and fast bilateral filter through subsampling in spatial domain[END_REF]]. [START_REF] Banterle | A low-memory, straightforward and fast bilateral filter through subsampling in spatial domain[END_REF] further demonstrated that, among various sub-sampling schemes, blue noise offers unique advantages such as reduced noise and absence of aliasing. However, their method uses a global constant sampling rate for each image. This content-oblivious approach might not adapt well to the underlying image content, where complex areas may require more samples whereas simple areas may suffice with less. This naturally leads to a content-aware subsampling method, whose sampling rate varies according to the underlying image region complexity. Here, all samples lie on a discrete grid and are colored through the underlying pixels.

Our approach offers a potential content-aware sub-sampling method for nonlinear filtering. In a nutshell, we perform bilateral blue noise sampling based on the underlying image content, by treating image color c as the feature v in Equation 3, and use these samples for filtering. We propose two flavors of our method to meet different speed/memory considerations: local, in which sample pattern within a filter kernel is generated independently for each output pixel (as originally proposed by [START_REF] Banterle | A low-memory, straightforward and fast bilateral filter through subsampling in spatial domain[END_REF]); and global, in which sample pattern of the entire output image is produced as a pre-process (Figure 7), from which samples falling within individual output kernels are used during filtering.

In the following, we compare uniform/bilateral × local/global sampling methods for bilateral filtering via quality (Figure 8 & Figure 9) and performance (Table 1). Based on these, we have found that the bilateral + global method offers the best tradeoff.

Quality Bilateral sampling tends to produce better quality than uniform sampling, especially under sparse sample distributions. This is illustrated in Figure 8 for perceptual image quality, and Figure 9 for numerical error measurements under a variety of images and parameter settings3 . As a rule of thumb, bilateral sampling can achieve similar quality to uniform sampling with fewer samples, usually 75/60% for local/global sampling.

Global sampling tends to be less noisy than local sampling, both visually and numerically. This is because in a global method, two adjacent output pixels can have overlaps in their filter tap/sample sets, providing extra coherence than the case where the filter sets are produced independently. We have observed that such sample set coherence may cause bias in a very sparse sampling setting (e.g. large missing chunks in Figure 8e), but in most cases, it outperforms a local sampling method without such coherence.

Performance Table 1 shows the timing information of various methods under equal quality settings, with major steps separated for clarity, such as sampling, filtering, and Voronoi cell area computation which is needed for unbiased filtering under bilateral sampling.

Compared to uniform sampling, bilateral sampling tends to take more time in sampling and less time in filtering. Global sampling tends to be faster than local sampling due to amortized sampling workload among output pixels. Note that global-bilateral sampling is faster than uniform sampling (both local and global), even assuming zero sampling time for the latter (e.g. using pre-computed tiles as in [START_REF] Banterle | A low-memory, straightforward and fast bilateral filter through subsampling in spatial domain[END_REF]). So far, we did all of our measurements on a single CPU (Intel Core i7 machine with 4GB memory).

Due to the parallel nature of blue noise sampling [START_REF] Wei | Parallel Poisson disk sampling[END_REF]] and filtering, we believe the entire process can be further accelerated for multi-/many-core CPUs/GPUs. will give optimal outcomes in both visual and accuracy evaluation, across different kernel sizes K and different sample counts Ns. For the global bilateral method, our experiments suggest to use σv σp = 3.0 • |Ω| -1 2 ∼ 10.0 • |Ω| -1 2 . Among this range, we further suggest a lower σv σp for a smaller kernel size (e.g. K < 40) and a relatively higher σv σp for a larger kernel size. 

Parameters

Limitations and Future Work

We have not yet attempted to combine bilateral sample distance with a maximal sampling method such as [START_REF] Cline | Dart throwing on surfaces[END_REF][START_REF] Gamito | Accurate multidimensional Poisson-disk sampling[END_REF][START_REF] Ebeida | Efficient maximal Poisson-disk sampling[END_REF][START_REF] Kalantari | Efficient computation of blue noise point sets through importance sampling[END_REF]. Such combination should be doable, and could preserve features even better.

Our current implementation adopted prior acceleration methods based on spatial measures only, such as grids for dart throwing [START_REF] Wei | Parallel Poisson disk sampling[END_REF]]. Further refinements in acceleration methods will help the performance of bilateral sampling.

In our current dynamic stippling application, to keep a better tem-poral coherence and speed up the process, we avoid to use any relaxation process in our current framework. It would be an interesting future work to improve the temporal coherence with Lloyd relaxation or kernel based relaxation in [START_REF] Chen | Bilateral blue noise sampling[END_REF]].

Finally, we would like to extend our idea to other sampling patterns [START_REF] Zhou | Point sampling with general noise spectrum[END_REF][START_REF] Öztireli | Analysis and synthesis of point distributions based on pair correlation[END_REF] and applications such as rendering [START_REF] Spencer | Into the blue: Better caustics through photon relaxation[END_REF] and fluids [START_REF] Ando | Preserving fluid sheets with adaptively sampled anisotropic particles[END_REF][START_REF] Schechter | Ghost SPH for animating water[END_REF].

Figure 1 :

 1 Figure 1: Prior blue noise sampling versus bilateral blue noise sampling. (a) and (b) show the video stippling result of traditional adaptive blue noise sampling [Wei 2010] and bilateral blue noise sampling, respectively (Section 5.2) ; (c) and (d) show a comparison between the nonlinear filtering results with uniform blue noise sampling [Banterle et al. 2012] and bilateral blue noise sampling (Section 5.3). As shown, prior sampling methods may smooth out small yet important features (a) or miss them entirely (c).

Figure 3 :

 3 Figure 3: Image stippling results with bilateral Lloyd relaxation. We compare bilateral Lloyd relaxation method (our method) against traditional adaptive Lloyd relaxation and [Li and Mould 2011], a state of art stippling method that considers structure, blue noise, and tone reproduction. As shown, our method outperforms adaptive Lloyd relaxation in feature preservation, and [Li and Mould 2011] in tones, structures (e.g. better boundary between the chin and background in the lower left corner of old man face) and blue noise properties (e.g. a more uniform sample distribution).

Figure 4 :

 4 Figure 4: Distance metric comparison. Here, we compare our bilateral distance metric with alternative measures including (b) mean conflict[START_REF] Wei | Parallel Poisson disk sampling[END_REF]] and (c) min conflict[START_REF] Kalantari | Efficient computation of blue noise point sets through importance sampling[END_REF]. Each case contains about 35K samples produced by dart throwing. Notice that mean conflict metric can produce noticeable knock-out effects (e.g. lower-middle of the second right column) and a max conflict metric can produce even worse results (not shown here but see[START_REF] Kalantari | Efficient computation of blue noise point sets through importance sampling[END_REF]] Figure8). Minconflict metric produces less knock-out effects, with the cost of a less uniform distribution in non-feature area.

Figure 5 :

 5 Figure 5: Spatial-temporal sampling for video stylization. Notice the better feature preservation of our method, such as the gecko mouth and eye, and the doll face and clothing. Each frame of gecko/Alma contains ∼ 2200/19000 samples.

Figure 6 :

 6 Figure 6: Cross-dimensional dynamic sampling for 2D

Figure 7 :

 7 Figure 7: Filter sample distributions around the upper-left corner of the music sheet in Figure 8. Notice the better preservation of features for the bilateral method.Here, all samples lie on a discrete grid and are colored through the underlying pixels.

  For the kernel size K and per-kernel sample count Ns, we recommand to use K Ns = 0.5 ∼ 2.0 in general by considering both quality and speed. For fair comparison between local and global methods, we use following rule to compute the total sample count for the global method: Ms = |Ω| K 2 • Ns, where |Ω| is the domain size and K the filter kernel size. We set σv σp differently for local and global methods. For the localbilateral method, our experiments indicate that σv σp = 2.0•|Ω| -1 2 ∼ 8.0 • |Ω| -1 2

  input (h) full (i) uniform+local (j) bilateral+local (k) uniform+global (l) bilateral+global

Figure 8 :Figure 9 :

 89 Figure 8: Subsampling-accelerated bilateral filtering. Here we compare uniform/bilateral × local/global subsampling schemes with full bilateral filtering.With each case are the full image (top) and the zoom-in (bottom). Notice the better quality of bilateral sampling for both the local and global settings, i.e. less noise for the former and less bias (in the form of large missing chunks) in the latter. In the music-sheet/city-bay case, the sub-sampling results are generated with kernel size K=15/30 pixels and average samples-per-kernel Ns = 0.5K.

Table 1 :

 1 Timing information for sub-sampling accelerated bilateral filtering. Here we show the timing information of various methods, with kernel size K = 10, 20, and 40 pixels, and various sample counts under equalquality settings (75/60% of samples-per-kernel for bilateral local/global sampling relative to uniform sampling as described in the main text). The measurement units is 10 -3 sec/Kpixel. For uniform sampling, the local and global methods differ only in sampling time and share very similar filtering time.

		Ns = 1K	Ns = 2K	Ns = 3K
	sampling *	0.83/1.52/2.26	1.15/2.56/4.93	1.74/2.96/7.89
	sampling †	0.94/0.30/0.07	2.00/0.67/0.26	4.37/1.19/0.41
	filtering	3.96/8.33/16.45	8.37/16.00/33.20	12.18/25.26/49.54
	total *	4.79/9.85/18.71	9.52/18.56 /38.13	13.93/28.23/57.43
	total †	4.90/8.63/16.52	10.37/16.67 /33.46	16.55/26.45/49.95
			local bilateral	
		Ns = 0.75K	Ns = 1.5K	Ns = 2.25K
	sampling	4.59/8.59 /14.11	8.82/19.49/36.94	13.56/34.68/61.99
	Voronoi	5.19/11.55/23.86	11.10/23.00/46.91	15.22/34.24 /71.70
	filtering	3.11/6.48/12.78	6.22/12.41/24.00	9.59/18.37/36.43
	total	12.90/26.62/50.74	26.14/54.90/107.8	38.37/87.30/170.1
		global bilateral	
		Ns = 0.6K	Ns = 1.2K	Ns = 1.8K
	sampling	0.30 /0.15/0.04	0.93/0.33/0.11	1.74 /0.59/0.19
	Voronoi	0.22/0.15/0.04	0.44/0.26/0.10	0.74/0.37/0.18
	filtering	2.74/5.30/9.48	5.26/9.85/19.34	7.74/14.96/28.53
	total	3.26/5.60/9.56	6.63/10.44/19.55	10.23/15.93/28.90

kernel size K = 10/20/40 pixels uniform (local * and global † )

Figure 1a and 1b are generated based on short film Alma; and Figure 1c and 1d are generated based on photo in National Geographic.

The original Alma video clip comes from the short movie Alma in: http://almashortfilm.com; the original Gecko video clip comes from Blender.org.

The input music sheet picture comes from http://s729. photobucket.com/user/coryodonnell/library/; and the city bay picture comes from National Geographic.
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