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Based on the space–time duality of light, we numerically demonstrate that temporal dispersion grating couplers
can generate from a single pulse an array of replicas of equal amplitude. The phase‐only profile of the temporal
grating is optimized by a genetic algorithm that takes into account the optoelectronic bandwidth limitations of
the setup.
1. Introduction

The wave nature of light offers a very broad range of exciting pos-
sibilities to tailor its properties using simple transmissive elements.
One well‐known example, which is found in any basic optics course
textbook, is the use of a periodically structured component, namely
a diffraction grating, to produce several spatial replicas of an incoming
light beam (Hecht, 2002; Jenkins and White, 1976). In the paraxial
approximation, those copies, also called orders of diffraction, are
equally spaced but present variations of intensities between replicas.
That said, it is possible to achieve quasi‐equal energy repartition
between the spots of diffraction using more advanced design tools.
This results into a very interesting component, known as a diffractive
coupler, and that has now become widespread (Golub, 2004; O'Shea
et al., 2004).

If this concept of beam splitting has been fully developed in the
field of spatial optics with, for instance, the kinoforms (Bengtsson,
1997), it is also of interest to explore this idea in the temporal domain.
Indeed, a very strong mathematical connection known as space‐time
duality exists between optical diffraction and the temporal evolution
of light in presence of group velocity dispersion (Salem et al., 2013;
Torres‐Company et al., 2011; van Howe and Xu, 2006). This concept
has simulated both fundamental research regarding, for example, the
Arago spot (Finot and Rigneault, 2019), two waves interferometers
(Chaussard et al., 2017), and temporal Fresnel diffraction in fiber
optics (Sheveleva and Finot, 2020), but also successful applications
such as theory of temporal imaging (Kolner, 1994), dispersive Fourier
transform (Goda and Jalali, 2013; Jannson, 1983), high‐repetition rate
sources, and related applications of the Talbot effect (Romero Cortés
et al., 2019), and so many others.
In the present contribution, we first recall the basis of the analogy
between the temporal and spatial aspects that constitute the frame-
work for understanding the concept of dispersion grating (Finot and
Rigneault, 2017) induced by simple temporal modulation schemes.
Then, significant improvements can be achieved when the properties
of the grating modulation are conveniently tailored. We compare for
this purpose three different algorithms and show that the genetic algo-
rithm appears the best‐suited to achieve sequences ranging from three
to nine identical and equally spaced pulses, or more complex patterns.
Finally, we discuss the practical implementation of the concept pro-
posed here, including the impact of the finite bandwidth of the optical
phase modulator.
2. Principle of the approach

2.1. Space-time analogy: Concept of temporal gratings

Let us first start by recalling the basis of the space–time analogy
and of the temporal gratings. Let us consider the simple case where
a beam having a 1D transverse field distribution of arbitrary shape
u0(x) passes through the diffraction grating G(x), characterized by a
spatial period Λ. The intensity distribution I observed on a screen
placed at distance L is:

I x; Lð Þ / F:T:�1 F:T: u0 xð ÞG xð Þð Þ exp �i
λ

4π
L k2x

� �� �����
����
2

ð1Þ

where λ is the wavelength of the monochromatic light and kx is the
transverse wavenumber. F.T. and F.T.‐1 stand for the direct and recipro-
cal Fourier transforms, respectively. In the far‐field approximation, Eq.
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(1) can be further simplified as (Hecht, 2002) (note: the tilde stands for
the F.T. of said variable):

I x; Lð Þ / u
∼
0 � G

∼h i 2π
λL

x
� �����

����
2

ð2Þ

Thus the spatial distribution of the intensity in the Fraunhoffer
regime becomes a scaled replica of the spectrum of the input beam
convolved by the grating. An example obtained for a sinusoidal phase
modulation is provided in Fig. 1: the initial beam is split into an array
of well‐defined and equally spaced beamlets. In the most general case,
G(x) is a complex function which modifies both phase and amplitude
of the input field. Depending on the profile of the diffraction grating,
the output will therefore be a set of beams with an energy distribution
that could be tailored. The main challenge in the design of diffractive
couplers is therefore to find a periodic sequence leading to a spatial
spectrum in line with the target. To reach this aim, different optimiza-
tion processes were successfully proposed (Romero and Dickey, 2010).

We would like to apply a similar concept in the temporal domain
and find the pattern G(t) of period Tm that can split an incoming ultra-
short pulse into a given number of replicas with identical peak inten-
sities. We therefore consider an input field u0 tð Þ that propagates in a
purely dispersive medium. Due to their ability to fully preserve the
transverse spatial profile over very large distances, single‐mode fiber
components are very well suited. Moreover dispersion‐compensating
fibers and fiber Bragg gratings offer a large value of the second‐
order dispersion β2. The longitudinal evolution of the temporal inten-
sity profile can be predicted by (Agrawal, 2006):

I t; Lð Þ / F:T:�1 F:T: u0 tð ÞG tð Þð Þ exp i
β2
2
Lω2

� �� �����
����
2

ð3Þ

with ω the angular frequency. Eq. (3) is therefore the temporal counter-
part to Eq. (1). For short propagation distances, the temporal pattern
leads to Talbot‐carpet like patterns (Romero Cortés et al., 2019). How-
ever, as the accumulated dispersion, hence propagation length,
Fig. 1. Schematic of the diffraction on a phase plate.

2

becomes more significant (Torres‐Company et al., 2011), well‐
separated temporal replicas emerge from this dispersive grating
(Finot and Rigneault, 2017). Eventually the temporal intensity profile
becomes a scaled copy of the optical spectrum, a process now well‐
known as the dispersive Fourier transform (Goda and Jalali, 2013;
Jannson, 1983):

I t; Lð Þ / u
∼
0 � G

∼h i �t
β2L

� �����
����
2

ð4Þ

These features have been experimentally validated in (Finot and
Rigneault, 2017) where different transmission patterns typical of the
telecom signals (Return‐to‐Zero modulation, Carrier‐Suppressed
Return‐to‐Zero modulation or sinusoidal phase modulation) have been
tested, demonstrating the strong impact of the temporal pattern that is
used to imprint the dispersive grating.

2.2. Temporal gratings based on a sinusoidal phase modulation

Despite ideal rectangular optical spectrum can be obtained using
intensity modulators (Soto et al., 2013), we exclusively focus in the
present contribution on dispersion grating induced by a continuous
phase‐only periodic modulation. In that context, the simplest phase
profile that can be imprinted is of sinusoidal shape
ϕ tð Þ ¼ Amcos ωm tð Þ, where Am is the modulation depth and ωm is the
angular frequency of the modulation (the modulation period is defined
as Tm = 2π/ωm). Consequently, the field after modulation by the phase
grating is:

u tð Þ ¼ u0 tð Þ G tð Þ ¼ u0 tð Þ exp i Am cos ωmtð Þð Þ ð5Þ
which can be further rewritten by making a Jacobi‐Anger expansion
into (Abramowitz and Stegun, 1964; Hammani et al., 2019):

u tð Þ ¼ u0 tð Þ ∑
1

l ¼�1
ilJl Amð Þexp i lωm tð Þ ð6Þ

where Jl Amð Þ are the Bessel functions of the first kind of order l taken at
the given value of the modulation depth. Such a sinusoidal phase mod-
ulation, followed by a subsequent propagation in a dispersive fiber has
already been the key component of several ultrafast all‐optical process-
ing technics directly inspired by the space‐time analogy. We can cite as
examples the energy‐efficient generation of trains of ultrashort struc-
tures at very high‐repetition rates formed from continuous wave input
beam (Kobayashi et al., 1988; Komukai et al., 2005; Torres‐Company
et al., 2006), the optical sampling based on the temporal analogue of
the lenticular lenses (Nuno et al., 2017), or various other regeneration
schemes for optical transmissions (Jiang et al., 2003; Romagnoli et al.,
1999). In contrast, our primary focus is the temporal intensity profile in
the far‐field when the modulation period is shorter than the duration of
the pulse illuminating the grating. To obtain a solution for Eq. (4), one
must Fourier transform Eq. (6), which will give the following optical
spectrum:

I ωð Þ ¼ u
∼
ωð Þ

��� ���2 / u
∼
0 ωð Þ � ∑

1

l ¼�1
ilJl Amð Þδ ω� l ωmð Þ

����
����
2

ð7Þ

The optical spectrum is a convolution of the optical spectrum of the
input field by a frequency comb spaced by ωm and with amplitudes
directly defined as the squared modulus of the Bessel function of the
respective order. Eq. (7) can be further simplified if we assume that

the spectral extend of the incoming pulse u
∼
0 ωð Þ

��� ���2is narrow compared

to ωm, i.e. replicas do not overlap spectrally:

I ωð Þ / ∑
1

l ¼�1
J2l Amð Þ u

∼
0 ω� l ωmð Þ

��� ���2 ð8Þ

As a consequence, the resulting temporal profile at a distance L will
be made of a series of replicas of the input pulse spectrum equally‐
spaced by the quantity τ0= β2ωmLj j:



A. Sheveleva et al. Results in Optics 3 (2021) 100059
I t; Lð Þ / ∑
1

l ¼�1
J2l Amð Þ u

∼
0

l τ0 � t
β2L

� �����
����
2

ð9Þ

Fig. 2 illustrates the dispersive reshaping experienced by an input
Gaussian pulse u0 tð Þ ¼ ffiffiffiffiffi

P0
p

exp �t2=2σ2ð Þ, where P0 is the peak power
and σ ¼ τ=2

ffiffiffiffiffiffiffi
ln2

p
, τ being the full‐width at half maximum (FWHM) ‐

and equals here to 5 Tm (Fig. 2(a1)). The dispersive grating is com-
posed of a sinusoidal phase profile with a depth of Am = 1 rad
(Fig. 2(a1) top). Based on Eq. (3), we simulated the evolution of the
pulse over a length of 3LD with LD = Tm

2/|β2| being a dispersive
length. The fan‐out behavior of the element can be observed in panel
(a2): after an initial stage of propagation where Talbot‐like carpet may
exist, the different pulses emerge after LD, and have a good degree of
separation at 2.5 LD. Details of the intensity profile obtained after 3 LD
are given in panel (a3): the output structure is composed of three peaks
with amplitudes defined by Jl Amð Þj j2.

A simple sinusoidal phase profile can already result in some nicely
tailored waveforms: a triplet (Fig. 2(b1), Am = 1.43 rad) or a pair of
pulse doublets (Fig. 2(b2), Am = 2.63 rad). However, these waveforms
are impaired by a non‐negligible level of spurious sidelobes. For exam-
ple, for N = 3 equalized peaks, the sidelobes contain 9.82% of the
total energy and ± 2 orders reach a peak power of 0.044 P0. For the
Fig. 2. (a1) Input pulse with a width of 5 Tm which is modulated with a sinusoida
Longitudinal evolution of the temporal intensity profile in the dispersive fiber a
Waveforms after propagation in the same fiber of pulses modulated with sinuso
respectively).

3

pair of doublets, 14.5% of the total energy is not comprised inside
the main peaks.

2.3. Optimization of the phase profile

If the simple sinusoidal phase modulation can already generate
some nice temporal patterns, the possibility is however highly con-
strained by the values of the Bessel function of the first kind. More
advanced periodic patterns G(t) are therefore required. A brute‐force
approach would be to imprint a large sinusoidal phase modulation
Am in order to generate an electro‐optic frequency comb (Parriaux
et al., 2020; Torres‐Company and Weiner, 2014) that is further tai-
lored using a programmable spectral shaper that adjusts line‐by‐line
the amplitude of each spectral component (Jiang et al., 2006). Such
an approach would however require the use of a phase‐modulator with
extremely large modulation capacity, which is rare and costly at high
modulation frequencies. Another solution implies a pair of phase mod-
ulators driven by two phase‐shifted sinusoidal modulations
(Yamamoto et al., 2009). Alternatives exist and, as it has been demon-
strated in (Romero and Dickey, 2010; Albero et al., 2012; Albero and
Moreno, 2012), a phase‐only grating G tð Þ ¼ exp iφ tð Þð Þ can be
sufficient to tailor the output intensity profile and to obtain an array
l phase profile at the modulation depth of Am = 1 rad (displayed on top). (a2)
nd (a3) resulting output profile and the corresponding temporal phase. (b)
idal phase at the modulation depths of 1.43 and 2.63 rad (panels 1 and 2,
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of pulses with equalized amplitudes. As it has been shown in the pre-
vious section the relative amplitude of the peaks is defined by a F.T. of
the imprinted profile G(t). Let us consider a phase‐only mask of an
arbitrary temporal shape, which F.T. reads:

exp iφ tð Þð Þ ¼ ∑
1

l¼�1
al exp i l ωmtð Þ ð10Þ

where al are defined as:

al ¼ 1
2π

Z π

�π

exp iφ tð Þð Þexp �i l ωmtð Þ dt ð11Þ

Therefore, we want to find the φ (t) function which will give us a
desired energy distribution among the |al|2. In practice, we solve the
problem backwards: first we search for the desired relation between
the amplitudes |al|2 by looking for coefficients μl and αl that will lead
to it (Romero and Dickey, 2010). Then, the phase profile can be restored
using the formula:

exp iφ tð Þð Þ ¼ ∑n
l¼�nμlexp iαlð Þexp i l ωm tð Þ

∑1
l¼�1μlexp iαlð Þexp i l ωm tð Þ�� �� ð12Þ

where N = 2n + 1 is the number of diffraction orders considered for
the optimization.

The figure of merit attributed to a given solution directly depends
on the optimization strategy which is used. The first target here is to
generate N‐peaks with equal amplitudes, distributed symmetrically
on both sides of the input pulse, and that are lying on a zero back-
ground. Therefore, we have defined our fitness score function ε as:

ɛ ¼ ∑n
l¼�n a0j j2 � alj j2�� ��þ∑ lj j>n alj j2

∑1
l¼�1 alj j2 ð13Þ

Here the score function is simply the normalized quadratic error
with respect to the target (i.e. a0 amplitude for the N central peaks,
and zeros everywhere else). Another interesting problem could target
a generation of a ‘zero/one sequence’ within N‐diffraction orders,
meaning that peaks with maximum and minimum amplitudes are
alternated in the desired order. In this case the fitness score is defined
as:

ɛ ¼
∑l∈P aij j2 � alj j2�� ��þ∑ lj j>n alj j2 �∑l∈M aij j2 � aj

�� ��2��� ���
∑1

l¼�1 alj j2 ð14Þ

where P and M are selections of ‘ones’ and ‘zeros’, respectively (P,
M ∈ [– n : n]), and i is the order chosen to be the reference amplitude
(hence i ∈ P, but imay differ from 0). In this variation of the score func-
tion, we decided to deviate from a pure metrics score (hence definite
positive) by adding a third (negative) term in order to favor the realiza-
tion of the zeros for l ∈ M compared to the other background zeros |l|
>n.

In order to solve this optimization problem in multidimensional
space, we tested three different algorithms. Similarly to (Albero
et al., 2012) a generalized reduced gradient algorithm has been used.
This is the fastest method, but that suffers from poor results in case of
complex score landscape, which exhibits in particular local minima. In
this case the solution that is found strongly depends on the initial start-
ing point. We also implemented a Nelder‐Mead method (Barton and
Ivey, 1996) which is still fast and less prone to fall in local minima,
but may output solutions that are not fully optimized (in brief the
shrinkage procedure in the algorithm can make its final convergence
very slow). In a sense, reduced gradient and Nelder‐Mead algorithms
are a bit complementary. Since the problem is defined by 2 N param-
eters, it could be also important to investigate the largest proportion of
the parameters space. Therefore, we used as the third optimization
algorithm under test the genetic algorithm (GA) (Johnson et al.,
1993). In our home‐made GA each gene is composed of μl and αl for
l= [– n:n]. To increase the reproduction efficiency we have used three
parents to produce each offspring (Kita et al., 1999). Finally, to avoid
4

condensation of the population into the same clone, we have been
deliberately destroying a part of the population in case genetic diver-
sity decreases too much: this prevents all the individuals to converge
towards the same solution and hence forces a wider exploration of
the parameters space.
3. Examples of pulse sequences achieved by the temporal
dispersive coupler

3.1. 1 to 3 dispersive coupler

In order to verify the method discussed above, we first conducted
numerical simulations to compute optimized phase profiles targeting
the one to three coupling. The three tested algorithms converged to
a same solution displayed in Fig. 3 that have a score of 0.079: the ini-
tial single pulse is efficiently converted into three identical Gaussian
waveforms having equal peak powers. The optimum phase‐only profile
differs only slightly from the sinusoidal profile with a saturation affect-
ing the extremum of the modulation. This small change is, however,
sufficient to improve the result. Indeed, comparing results for sinu-
soidal (Fig. 2(b1)) and arbitrary (Fig. 3(c)) phase profiles we report
a reduction of energy contained in the spurious replicas by 1.32 times
and a drop of amplitude of ± 2 order by 2.44 times (the respective val-
ues for the tailored phase profile are 7.45% and 0.018 P0). The effi-
ciency of the setup, defined as the fraction of energy stored in the
desired peaks over the whole space, is as high as 92.55%. Results
are here illustrated with an input Gaussian pulse, but the strength of
the temporal coupler is that the ratio between the different generated
replicas does not depend on the input waveform. However, note that,
except for the case of the Gaussian waveform which F.T. is also Gaus-
sian, one may observe a change in the output pulse shape compared to
the initial profile and some spurious low‐amplitude ripples may for
example appear in the case of super‐Gaussian temporal waveforms.
3.2. More advanced output sequences

We then investigated the output sequences containing more output
pulses (the properties of the input pulses and dispersive medium being
kept identical). Examples of the results obtained for N = 7 pulses are
reported in Fig. 4. We observe that the results obtained using either the
genetic algorithm, the Nelder‐Mead algorithm, or the least‐square des-
cent optimization differ. Indeed, when the number of peaks increases,
the landscape of the score function has an increased complexity and
the least‐square methods may become trapped in one of the local min-
ima. Due to its poorer convergence, the Nelder‐Mead also failed to pin-
point the right position of the global minimum (so that even
subsequent optimization using a gradient descent does not improve
much the final result). As a consequence, the final solution is strongly
influenced by the initial guess and the number of explored solutions is
limited to a small fraction of the whole parameters space. On the con-
trary, the GA does not have such a limitation and therefore results in
improved performance. It is able to find solutions that the Nelder‐
Mead and gradient descent may have missed. Indeed, the optimization
score can be significantly reduced (0.033) compared to some local
solutions obtained by the two other algorithms (0.24 and 0.07, for
the Nelder‐Mead and gradient descent, respectively). The resulting
pulse sequence combining high uniformity of the peak powers and a
low level of ghost pulses is fully satisfactory.

In the rest of this paper, due to its higher robustness, we used exclu-
sively the genetic algorithm for our search of the best combination.
Note however that if the GA gives out better results, the number of
tested solutions (hence the number of generations times the
population size) is much greater than for a single pass of either the
Nelder‐Mead or the gradient descent; so the question of the ‘best’ algo-
rithm still remains open in the case where real‐time operation is



Fig. 3. Results of numerical simulations targeting to achieve a set of 3 peaks. Panel (a) compares an optimized temporal phase profile (black line) to a sinusoidal
modulation with a depth of 1.43 rad (red dashed line). Panel (b) displays the evolution of the pulse in the dispersive optical fiber over 3 normalized propagation
distances L/LD. Panel (c) displays the output waveform (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 4. Comparison of optimized phase profiles made with (a) genetic algorithm, (b) Nelder-Mead algorithm, (c) least-square descent method. Panels 1 and 2
display phase and output intensity profiles, respectively.
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Fig. 5. Results of numerical simulations targeting to achieve a set of 9 peaks
with equal amplitudes and a ‘zero/one’ sequence with 7 peaks (panels (a) and
(b), respectively). Panels 1 show a temporal phase profile imprinted on a
Gaussian pulse of a width 5Tm. Panels 2 display evolution of the pulse in the
dispersive optical fiber over 3 normalized propagation distances L/LD. Panels
3 display output waveforms.

Fig. 6. Comparison between the output waveforms (panels 2) modulated with
ideal phase profiles and BW-limited ones depicted in panels 1 (red and black
lines, respectively) for N = 3, 7 and 9 peaks (panels (a), (b) and (c),
respectively). BW limitation assumed to be of a super-Gaussian of order 4 with
a width of 4 fm. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

A. Sheveleva et al. Results in Optics 3 (2021) 100059
needed. Fig. 5 summarizes two other intensity profiles that can be gen-
erated: a set of 9 peaks with equal amplitudes and a set of ‘zero/ones’
with total number of 7 diffracted orders, where amplitudes of ± 1
orders are minimized (1101011 sequence). The phase grating profiles
are depicted in panels 1 of Fig. 5. In both cases, the longitudinal evo-
lutions of the intensity (based on Eq. (3), see panels 2) show the tem-
poral fan‐out behavior of the element where the initial pulse reshapes
upon linear propagation into a set of well‐separated peaks. The output
solutions are displayed in panels 3 of Fig. 5 and have the fitness scores
of 0.059 and−0.220, respectively. The last result has a negative score,
meaning the remaining energy in the ‘zeros’ (l ∈ M) is much smaller
than the natural level of the sidelobes (|l|>n). Both examples exhibit
a high diffraction efficiency characterized by an uniform power distri-
bution between the copies.

4. Influence of the bandwidth limitations on the output pulse
sequence

In the spatial domain, a designer has to include a fabrication toler-
ancing analysis in his discussion (Kress andMeyrueis, 2000). In the tem-
poral domain, the limitations are rather different. If a sinusoidal
temporal phase modulation can eventually be synthetized at extremely
high frequencies thanks to the cross‐phase modulation induced by a
beating of two optical wavelengths (Varlot et al., 2013), using tailored
shape of the phase profile is restricted in practice by the bandwidth of
the optoelectronics components such as the phase modulators or the
6

arbitrarywaveformgenerators. In order to take realistic parameters into
account, we consider here an initial modulation at a frequency fm=20-
GHz. State‐of‐the‐artmodern equipment can currently handle frequency
up to the 80 GHz. Therefore, it is important to know how such a limita-
tion can influence the phase profile, hence the resulting waveforms. To
study the influence of the BW‐limitation, we took the solutions from the
previous sections and then limited the RF spectra by a super‐Gaussian
profile of order 4 with a width of 4 fm. Then, we considered propagation
in ahighly dispersivefiber element. It can be typically a normally disper-
sive fiber with a length L of 58 km and a dispersion β2 of 0.13 ps2/m
(Ramachandran, 2007); or a lumped element such as a commercially
available chirped fiber‐Bragg grating (Wang and Yao, 2013).

The results for the BW‐limited profiles are presented in Fig. 6
(black lines). The resulting scores have increased up to 0.175, ‐
0.090, 0.598 for N = 3, 7 and 9 peaks (by factors 2.33, 2.44 and
10.14 in comparison to the ideal profiles, respectively). If the BW‐
limitation does not dramatically impair the first simplest two cases,
we observed that the generation of a large number of equalized peaks
is in turn much more impacted. Indeed the shape of the phase profile is
more complex, so it becomes more BW‐demanding.

However, as one of advantages of the GA is a flexibility in defini-
tion of the fitness score function, it is possible to include the BW‐
limitation directly into the simulation. Thus, we expect the simulation
to adapt to realistic experimental constraints and look for suitable
solutions. To demonstrate this approach, we have chosen to target a
set of 7 peaks with equal amplitudes. First, we have obtained an ideal
phase profile that delivered a score of 0.033 (refer to Fig. 4(a) that dis-
plays phase and amplitude profiles in panels 1 and 2, respectively).
Then we have applied a BW‐limitation of a super‐Gaussian shape with



Fig. 7. Comparison of phase profiles and the resulting waveforms (panels (a)
and (b), respectively) of the BW-limited solution (red lines) to the BW-limited
optimized solution (black lines). The limitation profile is a super-Gaussian of
order 4 with a width of 4 fm. To have a look on the ideal profile refer to Fig. 4
(a). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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a width of 4 fm and obtained a solution with a score of 0.966 (Fig. 7,
red lines) which clearly fails the target of equalized intensity peaks.
To restore the performance, we have included a BW‐limitation into
the GA and obtained an optimized solution which is depicted in black
lines in Fig. 7. This optimized solution has achieved a score of 0.163
which reflects an improvement by 6.1 times in comparison to the ideal
profile experiencing the BW‐limitation.
5. Conclusions

Based on the space–time duality of light, we have numerically
demonstrated that a single optical pulse can be reshaped by the trans-
mission in a temporal phase‐only grating, into a series of pulses of
equal amplitude. The optimization of the phase‐only grating is
achieved thanks to a genetic algorithm that can also handle the detri-
mental optoelectronic limitations of the setup such as the finite band-
width of the arbitrary waveform generator or of the phase modulator.
Similarly to the versatility brought by the spatial light modulators
(Albero and Moreno, 2012), thanks to the programmable arbitrary
waveform generators, the temporal grating is fully reconfigurable
and the sequence of pulses can be changed at will and the power ratio
of the pulses in the sequence does not depend on the details of the
incoming pulse. The system is also fully suitable for multiwavelength
operation. Therefore, our proposed concept presents an interesting
alternate to a set of classical beam splitting cubes and multiple
delay‐lines that could be very tricky to adjust in terms of delay and
amplitude. It can be one of the building blocks of photonic setups tar-
geting temporal super resolution (Shateri et al., 2020) or temporal
holography. One may also easily extend our concept to generate pulse
sequence with different amplitudes that could be further used, through
cross‐phase modulation, to generate multi‐focal imaging.
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