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Before they even speak, infants become attuned to the sounds of the
language(s) they hear, processing native phonetic contrasts more
easily than non-native ones (1–3). For example, between 6-8 months
and 10-12 months, infants learning American English get better at
distinguishing English [ô] and [l], as in ‘rock’ vs ‘lock’, relative to
infants learning Japanese (4). Influential accounts of this early
phonetic learning phenomenon initially proposed that infants group
sounds into native vowel- and consonant-like phonetic categories—
like [ô] and [l] in English—through a statistical clustering mechanism
dubbed ‘distributional learning’ (5–8). The feasibility of this mech-
anism for learning phonetic categories has been challenged, how-
ever (9–16). Here we demonstrate that a distributional learning al-
gorithm operating on naturalistic speech can predict early phonetic
learning as observed in Japanese and American English infants, sug-
gesting that infants might learn through distributional learning after
all. We further show, however, that contrary to the original distri-
butional learning proposal, our model learns units too brief and too
fine-grained acoustically to correspond to phonetic categories. This
challenges the influential idea that what infants learn are phonetic
categories. More broadly, our work introduces a novel mechanism-
driven approach to the study of early phonetic learning, together with
a quantitative modeling framework that can handle realistic input.
This allows, for the first time, accounts of early phonetic learning
to be linked to concrete, systematic predictions regarding infants’
attunement.
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Adults have di�culties perceiving consonants and vowels1

of foreign languages accurately (17). For example, native2

Japanese listeners often confuse American English [ô] and [l]3

(as in ‘rock’ vs ‘lock’) (18, 19) and native American English4

listeners often confuse French [u] and [y] (as in ‘roue’, wheel,5

versus ‘rue’, street) (20). This phenomenon is pervasive (21)6

and persistent: even extensive, dedicated training can fail to7

eradicate these di�culties (22–24). The main proposed expla-8

nations for this e�ect revolve around the idea that adult speech9

perception involves a ‘native filter’: an automatic, involuntary10

and not very plastic mapping of each incoming sound, foreign11

or not, onto native phonetic categories, i.e. the vowels and con-12

sonants of the native language (25–29). American English [ô]13

and [l], for example, would be confused by Japanese listeners14

because their productions can be seen as possible realizations15

of the same Japanese consonant, giving rise to similar percepts16

after passing through the ‘native Japanese filter’.17

Surprisingly, these patterns of perceptual confusion arise18

very early during language acquisition. Infants learning Amer-19

ican English distinguish [ô] and [l] more easily than infants20

learning Japanese before they even utter their first word (4). 21

Dozens of other instances of such early phonetic learning have 22

been documented, whereby cross-linguistic confusion patterns 23

matching those of adults emerge during the first year of life 24

(2, 3, 30). These observations naturally led to the assump- 25

tion that the same mechanism thought to be responsible for 26

adults’ perception might be at work in infants, i.e. foreign 27

sounds are being mapped onto native phonetic categories. This 28

assumption—which we will refer to as the phonetic category 29

hypothesis—is at the core of the most influential theoretical 30

accounts of early phonetic learning (5–7, 25, 31). 31

The notion of phonetic category plays an important role 32

throughout the paper, so requires further definition. It has 33

been used in the literature exclusively to refer to vowel- or 34

consonant-like units. What that means varies to some extent 35

between authors, but there are at least two constant, defin- 36

ing characteristics (32). First, phonetic categories have the 37

characteristic size/duration of a vowel or consonant, i.e. the 38

size of a phoneme, the ‘smallest distinctive unit within the 39

structure of a given language’ (17, 33). This can be contrasted 40

with larger units like syllables or words and smaller units like 41

speech segments corresponding to a single period of vocal fold 42

vibration in a vowel. Second, phonetic categories—although 43
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they may be less abstract than phonemes�—retain a degree of44

abstractness and never refer to a single acoustic exemplar. For45

example, we would expect a given vowel or consonant in the46

middle of a word repeated multiple times by the same speaker47

to be consistently realized as the same phonetic category, de-48

spite some acoustic variation across repetitions. Finally, an49

added characteristic in the context of early phonetic learning50

is that phonetic categories are defined relative to a language.51

What might count as exemplars from separate phonetic cate-52

gories for one language, might belong to the same category in53

another.54

The phonetic category hypothesis—that infants learn to55

process speech in terms of the phonetic categories of their56

native language—raises a question. How can infants learn57

about these phonetic categories so early? The most influential58

proposal in the literature has been that infants form phonetic59

categories by grouping the sounds they hear on the basis60

of how they are distributed in a universal (i.e. language-61

independent) perceptual space, a statistical clustering process62

dubbed ‘distributional learning’ (8, 10, 34, 35).63

Serious concerns have been raised regarding the feasibility64

of this proposal, however (12, 36). Existing phonetic category65

accounts of early phonetic learning assume that speech is being66

represented phonetic segment by phonetic segment—i.e. for67

each vowel and consonant separately—along a set of language-68

independent phonetic dimensions (6, 7, 25).† Whether it is69

possible for infants to form such a representation in a way that70

would enable distributional learning of phonetic categories71

is questionable, for at least two reasons. First, there is a72

lack of acoustic-phonetic invariance (37–39): there is not a73

simple mapping from speech in an arbitrary language to an74

underlying set of universal phonetic dimensions that could75

act as reliable cues to phonetic categories. Second, phonetic76

category segmentation—finding reliable language-independent77

cues to boundaries between phonetic segments (i.e. individual78

vowels and consonants)—is a hard problem (37). It is clear79

that finding a solution to these problems for a given language80

is ultimately feasible, as literate adults readily solve them for81

their native language. Assuming that infants are able to solve82

them from birth in a language-universal fashion is a much83

stronger hypothesis, however, with little empirical support.84

Evidence from modeling studies reinforces these concerns.85

Initial modeling work investigating the feasibility of learning86

phonetic categories through distributional learning sidestepped87

the lack of invariance and phonetic category segmentation prob-88

lems by focusing on drastically simplified learning conditions89

(40–45), but subsequent studies considering more realistic90

variability have failed to learn phonetic categories accurately91

(9, 12, 14, 15, 46, 47) (see Supplementary Discussion 1).92

These results have largely been interpreted as a challenge93

to the idea that distributional learning is how infants learn94

phonetic categories. Additional learning mechanisms tapping95

into other sources of information plausibly available to infants96

have been proposed (9–12, 14, 15, 36, 46, 47), but existing97

feasibility results for such complementary mechanisms still98

assume that the phonetic category segmentation problem has99

somehow been solved and do not consider the full variability of100

�For example, the same phoneme might be realized as different phonetic categories depending on
the preceding and following sounds or on characteristics of the speaker.

† In some accounts, the phonetic dimensions are assumed to be ‘acoustic’ (25)—e.g. formant
frequencies—in other they are ‘articulatory’ (6)—e.g. the degree of vocal tract opening at a
constriction—and some accounts remain noncommittal (7).

natural speech (9, 12, 14, 15, 43, 46–48). Attempts to extend 101

them to more realistic learning conditions have failed (13, 16) 102

(see Supplementary Discussion 1). 103

Here, we propose a di�erent interpretation for the observed 104

di�culty in forming phonetic categories through distributional 105

learning: it might indicate that what infants learn are not 106

phonetic categories. We are not aware of empirical results 107

establishing that infants learn phonetic categories, and indeed, 108

the phonetic category hypothesis is not universally accepted. 109

Some of the earliest accounts of early phonetic learning were 110

based on syllable-level categories and/or on continuous rep- 111

resentations without any explicit category representations‡
112

(49–52). Although they appear to have largely fallen out of 113

favor, we know of no empirical findings refuting them. 114

We present evidence in favor of this alternative interpreta- 115

tion, first by showing that a distributional learning mechanism 116

applied to raw, unsegmented, unlabeled continuous speech 117

signal predicts early phonetic learning as observed in Ameri- 118

can English- and Japanese-learning infants—thereby providing 119

the first realistic proof of feasibility for any account of early 120

phonetic learning. We then show that the speech units learned 121

through this mechanism are too brief and too acoustically 122

variable to correspond to phonetic categories. 123

We rely on two key innovations. First, whereas previous 124

studies followed an outcome-driven approach to the study 125

of early phonetic learning—starting from assumptions about 126

what was learned, before seeking plausible mechanisms to 127

learn it—we adopt a mechanism-driven approach—focusing 128

first on the question of how infants might plausibly learn 129

from realistic input, and seeking to characterize what was 130

learned only a posteriori. Second, we introduce a quantitative 131

modeling framework suitable to implement this approach at 132

scale using realistic input. This involves explicitly simulating 133

both the ecological learning process taking place at home and 134

the assessment of infants’ discrimination abilities in the lab. 135

Beyond the immediate results, the framework we introduce 136

is the first to provide a feasible way of linking accounts of 137

early phonetic learning to systematic predictions regarding the 138

empirical phenomenon they seek to explain, i.e. the observed 139

cross-linguistic di�erences in infants’ phonetic discrimination. 140

Approach 141

We start from a possible learning mechanism. We simulate 142

the learning process in infants by implementing this mecha- 143

nism computationally and training it on naturalistic speech 144

recordings in a target language—either Japanese or American 145

English. This yields a candidate model for the early phonetic 146

knowledge of, say, a Japanese infant. Next, we assess the 147

model’s ability to discriminate phonetic contrasts of Amer- 148

ican English and Japanese—for example American English 149

[ô] vs [l]—by simulating a discrimination task using speech 150

stimuli corresponding to this contrast. We test whether the 151

predicted discrimination patterns agree with the available em- 152

pirical record on cross-linguistic di�erences between American 153

‡Note that the claims in all the relevant theoretical accounts are for the formation of explicit represen-
tations, in the sense that they are assumed to be available for manipulation by downstream cogni-
tive processes at later developmental stages (see e.g. (7)). Thus, even if one might be tempted to
say that phonetic categories are implicitly present in some sense in a representation—for example
in a continuous representation exhibiting sharp increases in discriminability across phonetic cate-
gory boundaries (49)—unless a plausible mechanism by which downstream cognitive processes
could explicitly read out phonetic categories from that representation is provided, together with ev-
idence that infants actually use this mechanism, this would not be sufficient to support the early
phonetic category acquisition hypothesis.
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Fig. 1. Gaussian mixture model training and representation extraction, illustrated for a model with three Gaussian components. In practice the number of Gaussian components
is learned from the data and much higher. (a) Model training: the learning algorithm extracts moderate-dimensional (d=39) descriptors of the local shape of the signal
spectrum at time points regularly sampled every 10ms (speech frames). These descriptors are then considered as having been generated by a mixture of Gaussian probability
distributions, and parameters for this mixture that assign high probability to the observed descriptors are learned. (b) Model test: the sequence of spectral-shape descriptors for
a test stimulus (possibly in a language different from the training language) are extracted and the model representation for that stimulus is obtained as the sequence of posterior
probability vectors resulting from mapping each descriptor to its probability of having been generated by each of the Gaussian components in the learned mixture.

English- and Japanese-learning infants. Finally, we investigate154

whether what has been learned by the model corresponds to155

the phonetic categories of the model’s ‘native’ language (i.e.156

its training language).157

To identify a promising learning mechanism, we build on158

recent advances in the field of machine learning, and more159

specifically in unsupervised representation learning for speech160

technology, which have established that, given only raw, un-161

transcribed, unsegmented speech recordings, it is possible to162

learn representations that accurately discriminate the phonetic163

categories of a language (53–70). The learning algorithms con-164

sidered have been argued to be particularly relevant for model-165

ing how infants learn in general, and learn language in partic-166

ular (71). Among available learning algorithms, we select the167

one at the core of the winning entries in the Zerospeech 2015168

and 2017 international competitions in unsupervised speech169

representation learning (58, 59, 69). Remarkably, it is based170

on a Gaussian mixture clustering mechanism—illustrated in171

Figure 1 (a)—that can straightforwardly be interpreted as a172

form of distributional learning (8, 10). A di�erent input repre-173

sentation to the Gaussian mixture is used than in previously174

proposed implementations of distributional learning, however175

(9, 12, 14, 40, 42, 44, 45). Simple descriptors of the shape176

of the speech signal’s short-term auditory spectrum sampled177

at regular points in time (every 10ms) (72) are used instead178

of traditional phonetic measurements obtained separately for179

each vowel and consonant, such as formant frequencies or180

harmonic amplitudes.§ This type of input representation only181

assumes basic auditory abilities from infants, which are known182

to be fully operational shortly after birth (75), and has been183

proposed previously as a potential way to get around both184

the lack of invariance and the phonetic category segmentation185

problems in the context of adult word recognition (37). A186

second di�erence from previous implementations of distribu-187

tional learning is in the output representation. Test stimuli188

are represented as sequences of posterior probability vectors189

(posteriorgrams) over K Gaussian components in the mixture190

(Figure 1 (b)), rather than simply being assigned to the most191

§There was a previous attempt to model infant phonetic learning from such spectrogram-like audi-
tory representations of continuous speech (73, 74), but we are the first to combine this modeling
approach with a suitable evaluation methodology.

Table 1. Language, speech register, duration and number of speak-
ers of training and test sets for our four corpora of speech recordings

Corpus Language Reg. Duration No. speakers

Train Test Train Test
R-Eng (84) Am. English Read 19h30 9h39 96 47
R-Jap (85) Japanese Read 19h33 9h40 96 47
Sp-Eng (86) Am. English Spont. 9h13 9h01 20 20
Sp-Jap (87) Japanese Spont. 9h11 8h57 20 20

likely Gaussian component. These continuous representations 192

have been shown to support accurate discrimination of native 193

phonetic categories in the Zerospeech challenges. 194

To simulate the infants’ learning process, we expose the 195

selected learning algorithm to a realistic model of the linguistic 196

input to the child, in the form of raw, unsegmented, untran- 197

scribed, multi-speaker continuous speech signal in a target 198

language (either Japanese or American English). We select 199

recordings of adult speech made with near field, high quality 200

microphones in two speech registers which cover the range of 201

articulatory clarity that infants may encounter. On one end of 202

the range, we use spontaneous adult directed speech, and on 203

the other, we use read speech; these two speaking registers are 204

crossed with the language factor (English, Japanese), resulting 205

in four corpora, each split into a training set and a test set 206

(Table 1). We would have liked to use recordings made in 207

infant’s naturalistic environments, but no such dataset of suf- 208

ficient audio quality was available for this study. It is unclear 209

whether or how using infant-directed speech would impact re- 210

sults: the issue of whether infant directed speech is beneficial 211

for phonetic learning has been debated, with arguments in 212

both directions (76–83). We train a separate model for each 213

of the four training sets, allowing us to check that our results 214

hold across di�erent speech registers and recording conditions. 215

We also train separate models on 10 subsets of each training 216

set for several choices of subset sizes, allowing us to assess the 217

e�ects of varying the amount of input data and the variability 218

due to the choice of training data for a given input size. 219

We next evaluate whether the trained ‘Japanese native’ and 220

‘American-English native’ models correctly predict early pho- 221

netic learning as observed in Japanese-learning and American 222

Schatz et al. PNAS | August 7, 2020 | vol. XXX | no. XX | 3
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English-learning infants, respectively, and whether they make223

novel predictions regarding the di�erences in speech discrimi-224

nation abilities between these two populations. Because we do225

not assume that the outcome of infants’ learning is adult-like226

knowledge, we can only rely on infant data for evaluation. The227

absence of specific assumptions a priori about what is going228

to be learned, and the sparsity of empirical data on infant229

discrimination, makes this challenging. The algorithm we230

consider outputs complex, high-dimensional representations231

(Figure 1 (b)) that are not easy to link to concrete predic-232

tions regarding infant discrimination abilities. Traditional233

signal detection theory models of discrimination tasks (88)234

cannot handle high-dimensional perceptual representations,235

while more elaborate (Bayesian) probabilistic models (89) have236

too many free parameters given the scarcity of available data237

from infant experiments. We rely instead on the machine ABX238

approach that we previously developed (90, 91). It consists239

of a simple model of a discrimination task, which can handle240

any representation format provided the user can provide a241

reasonable measure of (dis)similarity between representations242

(90, 91). This is not a detailed model of infant’s performance243

in a specific experiment, but rather a simple and e�ectively244

parameterless way to systematically link the complex speech245

representations produced by our models to predicted discrim-246

ination patterns. For each trained model and each phonetic247

contrast of interest, we obtain an ‘ABX error rate’ such that 0%248

and 50% error indicate perfect and chance-level discrimination,249

respectively. This allows us to evaluate the qualitative match250

between the model’s discrimination abilities and the available251

empirical record in infants (see Supplementary Discussion 3252

for an extended discussion of our approach to interpreting the253

simulated discrimination errors and relating them to empirical254

observations, including why it would not be meaningful to255

seek a quantitative match at this point).256

Finally, we investigate whether the learned Gaussian com-257

ponents correspond to phonetic categories. We first compare258

the number of Gaussians in a learned mixture to the num-259

ber of phonemes in the training language (category number260

test): although a phonetic category can be more concrete than261

a phoneme, the number of phonetic categories documented262

in typical linguistic analyses remains on the same order of263

magnitude as the number of phonemes. We then administer264

two diagnostic tests based on the two defining characteris-265

tics identified above that any representation corresponding to266

phonetic categories should pass.¶ The first characteristic is267

size/duration: a phonetic category is a phoneme-sized unit268

(i.e. the size of a vowel or a consonant). Our duration test269

probes this by measuring the average duration of activation of270

the learned Gaussian components (a component is taken to be271

‘active’ when its posterior probability is higher than all other272

components), and comparing this to the average duration of273

activation of units in a baseline system trained to recognize274

phonemes with explicit supervision. The second characteris-275

tic is abstractness: although phonetic categories can depend276

on phonetic context� and on non-linguistic properties of the277

speech signal—e.g. the speaker’s gender—at a minimum, the278

¶This provides necessary but not sufficient conditions for ‘phonetic categoriness’, but since we will
see that the representations learned in our simulations already fail these tests, more fine-grained
assessments will not be required.

�For example, in the American English word ‘top’ the phoneme /t/ is realized as an aspirated con-
sonant [th ] (i.e. there is a slight delay before the vocal folds start to vibrate after the consonant),
whereas in the word ‘stop’ it is realized as a regular voiceless consonant [t], which might be con-
sidered to correspond to a different phonetic category than [th ].

central phone in the same word repeated several times by the 279

same speaker is expected to be consistently realized as the 280

same phonetic category. Our acoustic (in)variance test probes 281

this by counting the number of distinct representations needed 282

by our model to represent ten occurrences of the central frame 283

of the central phone of the same word either repeated by the 284

same speaker (within speaker condition) or by di�erent speak- 285

ers (across speaker condition). We use a generous correction 286

to handle possible misalignment (see Materials and Methods). 287

The last two tests can be related to the phonetic category 288

segmentation and lack of invariance problems: solving the 289

phonetic category segmentation problem involves finding units 290

that would pass the duration test, while solving the lack of 291

invariance problem involves finding units that would pass the 292

acoustic (in)variance test. Given the laxity in the use of the 293

concept of phonetic category in the literature, some might be 294

tempted to challenge that even these diagnostic tests can be 295

relied on. If they cannot, however, it is not clear to us how 296

phonetic category accounts of early phonetic learning should 297

be understood as scientifically refutable claims. 298

Results 299

Overall discrimination. After having trained a separate model 300

for each of the four possible combinations of language and 301

register, we test whether the models’ overall discrimination 302

abilities, like those of infants (2, 3, 30), are specific to their 303

‘native’ (i.e. training) language. Specifically, for each corpus, 304

we look at overall discrimination errors averaged over all conso- 305

nant and vowel contrasts available in a held-out test set from 306

that corpus (See Table 1). We tested each of the two American 307

English-trained and each of the two Japanese-trained models 308

on each of four test sets, yielding a total of 4◊4 discrimination 309

errors. We tabulated the average errors in terms of 4 conditions 310

depending on the relation between the test set and the training 311

background of the model: native versus non-native contrasts 312

and same versus di�erent register. The results are reported in 313

Figure 2 (see also Figures S1, S4 for non-tabulated results). 314

Panel (a) shows that discrimination performance is higher 315

on average in matched-language conditions (in blue) than in 316

mismatched-language conditions (in red). In contrast, register 317

mismatch has no discernible impact on discrimination perfor- 318

mance. A comparison with a supervised phoneme recognizer 319

baseline (Figure S3) shows a similar pattern of results, but 320

with a larger absolute cross-linguistic di�erence. If we interpret 321

this supervised baseline as a proxy to the adult state, then our 322

model suggests that infant’s phonetic representations, while al- 323

ready language-specific, remain ‘immature’.�� Panel (b) shows 324

the robustness of these results, with 81.7% of the 1295 distinct 325

phonetic contrasts tested proving easier to discriminate on the 326

basis of representations from a model trained on the matching 327

language. Taken together, these results suggest that, similar to 328

infants, our models acquire language-specific representations, 329

and that these representations generalize across register. 330

American English [ô]-[l] discrimination. Next, we focus on the 331

specific case of American English [ô]-[l] discrimination, for 332

which Japanese adults show a well-documented deficit (18, 19) 333

and which has been studied empirically in American English 334

and Japanese infants (4). While 6- to 8-month-old infants 335

��This is compatible with empirical evidence that phonetic learning continues into childhood well
beyond the first year (see 92–94, for example).

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Schatz et al.
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Fig. 2. (a) Average ABX error rates over all consonant and vowel contrasts obtained
with our models as a function of the match between the training set and test set
language and register. Error bars correspond to plus and minus one standard deviation
of the errors across resampling of the test stimuli speakers. The ‘Native’ (blue)
conditions, with training and test in the same language, show fewer discrimination
errors than the ‘Non-native’ (red) conditions, whereas there is little difference in
error rate within the ‘Native’ and within the ‘Non-native’ conditions. This shows
that the models learned native-language specific representations that generalize
across register. (b) Letter-value representation (95) of the distribution of ‘native’
advantages across all tested phonetic contrasts (pooled over both languages). The
native language advantage is the increase in discrimination error for a contrast of
language L1 between a ‘L1-native’ model and a model trained on the other language,
for the same training register. The ‘native register’ advantage is the increase in error
for a contrast of register R1 between a ‘R1-native’ model and a model trained on
the other register, for the same training language. A native language advantage is
observed across contrasts (positive advantage for 81.7% of all contrasts) and there
is a weaker native register advantage (positive advantage for 60.1% of all contrasts).

from American English and Japanese language backgrounds336

performed similarly in discriminating this contrast, 10- to337

12-month-old American English infants outperformed their338

Japanese peers. We compare the discrimination errors ob-339

tained with each of our four models for American English340

[ô]-[l] and for two controls: the American English [w]-[j] con-341

trast (as in ‘wet’ versus ‘yet’), for which we do not expect a342

gap in performance between American English and Japanese343

natives (96), and the average error over all the other conso-344

nant contrasts of American English. For each contrast and345

for each of the four models, we average discrimination errors346

obtained on each of the two American English held-out test347

sets, yielding 3◊4 discrimination errors. We further average348

over models with the same ‘native’ language to obtain 3◊2349

discrimination errors. The results are shown in Figure 3 (see350

also Figures S2 and S6 for untabulated results and a test351

confirming our results with the synthetic stimuli used in the352

original infant experiment, respectively). In panel (a), we see353

that, similar to 10- to 12-month old infants, American English354

‘native’ models (in blue) greatly outperform Japanese ‘na-355

tive’ models (in red) in discriminating American English [ô]-[l].356

Here again, a supervised phoneme recognizer baseline yields357

a similar pattern of results, but with larger cross-linguistic358

di�erences (see Figure S5), again suggesting that the repre-359

sentations learned by the unsupervised models—like those of360

infants—remain somewhat ‘immature’. In panel (b), we see re-361

sults obtained by training ten di�erent models on ten di�erent362

subsets of the training set of each corpus, varying the sizes of363

the subsets (see Materials and Methods for more details). It364

reveals that one hour of input is su�cient for the divergence365

between the Japanese and English models to emerge robustly,366

and that this divergence increases with exposure to the native367

language. While it is di�cult to interpret this trajectory rel- 368

ative to absolute quantities of data or discrimination scores, 369

the fact that the cross-linguistic di�erence increases with more 370

data mirrors the empirical findings from infants (see also an 371

extended discussion of our approach to interpreting the sim- 372

ulated discrimination errors and relating them to empirical 373

data in Supplementary Discussion 3). 374

Nature of the learned representations. Finally, we consider the 375

nature of the learned representations and test whether what 376

has been learned can be understood in terms of phonetic cat- 377

egories. Results are reported in Figure 4 (see also Figure S7 378

for comparisons with a di�erent supervised baseline). First, 379

looking at the category number criterion in Figure 4 (a), we 380

see that our models learned more than ten times as many 381

categories as the number of phonemes in the corresponding 382

languages. Even allowing for notions of phonetic categories 383

more granular than phonemes, we are not aware of any pho- 384

netic analysis ever reporting that many allophones in these 385

languages. Second, looking at the duration criterion in Fig- 386

ure 4 (b), the learned Gaussian units appear to be activated 387

on average for about a quarter the duration of a phoneme. 388

This is shorter than any linguistically identified unit. It shows 389

that the phonetic category segmentation problem has not been 390

solved. Next, looking at the acoustic (in)variance criterion in 391

Figure 4 (c) and (d)—for the within and across speakers condi- 392

tions, respectively—we see that our models require on average 393

around two distinct representations to represent ten tokens of 394

the same phonetic category without speaker variability, and 395

three distinct representations across di�erent speakers. The 396

supervised phoneme recognizer baseline establishes that our 397

results cannot be explained by defective test stimuli. Instead, 398

this result shows that the learned units are finer-grained than 399

phonetic categories along the spectral axis, and that the lack of 400

invariance problem has not been solved. Based on these tests, 401

we can conclude that the learned units do not correspond to 402

phonetic categories in any meaningful sense of the term. 403

Discussion 404

Through explicit simulation of the learning process under re- 405

alistic learning conditions, we showed that several aspects of 406

early phonetic learning as observed in American English and 407

Japanese infants can be correctly predicted through a distribu- 408

tional learning (i.e. clustering) mechanism applied to simple 409

spectrogram-like auditory features sampled at regular time 410

intervals. This is the first time that a potential mechanism for 411

early phonetic learning is shown to be feasible under realistic 412

learning conditions. We further showed that the learned speech 413

units are too brief and too acoustically variable to correspond 414

to the vowel- and consonant-like ‘phonetic categories’ posited 415

in earlier accounts of early phonetic learning. 416

Distributional learning has been an influential hypothesis 417

in language acquisition for over a decade (8, 10, 35). Previous 418

modeling results questioning the feasibility of learning phonetic 419

categories through distributional learning have traditionally 420

been interpreted as challenging the learning mechanism (9– 421

12, 14, 15, 36, 46, 47), but we have instead suggested that 422

such results may be better interpreted as challenging the 423

idea that phonetic categories are the outcome of early pho- 424

netic learning. Supporting this view, we showed that when 425

the requirement to learn phonetic categories is abandoned, 426
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Fig. 3. (a) ABX error rates for the American English [ô]-[l] contrast and two controls: American English [w]-[j] and average over all American English consonant contrasts (C-C).
Error rates are reported for two conditions: average over models trained on American English and average over models trained on Japanese. Error bars correspond to plus and
minus one standard deviation of the errors across resampling of the test stimuli speakers. Similar to infants, the Japanese ‘native’ models exhibit a specific deficit for American
English [ô]-[l] discrimination compared to the ‘American English’ models. (b) The robustness of the effect observed in panel (a) to changes in the training stimuli and their
dependence on the amount of input are assessed by training separate models on independent subsets of the training data of each corpus of varying duration (see Materials
and Methods). For each selected duration (except when using the full training set), ten independent subsets are selected and ten independent models are trained. We report
mean discrimination errors for American English [ô]-[l] and [w]-[j] as a function the amount of input data, with error bands indicating plus or minus one standard deviation. The
results show that a deficit in American English [ô]-[l] discrimination for ‘Japanese-native’ models robustly emerges with as little as 1h of training data.

distributional learning on its own can be very e�ective, lead-427

ing to the first realistic demonstration of feasibility—using428

unsegmented, untranscribed speech signal as input—for any429

mechanism for early phonetic learning. Our results are still430

compatible with the idea that mechanisms tapping into other431

relevant sources of information might complement distribu-432

tional learning—an idea supported by evidence that infants433

learn from some of these sources in the lab (97–103)—but434

they suggest that those other sources of information may not435

play a role as crucial as previously thought (10). Our findings436

also join recent accounts of ‘word segmentation’ (104) and437

the ‘language familiarity e�ect’ (105) in questioning whether438

we might have been over-attributing linguistic knowledge to439

pre-verbal infants across the board.440

A new account of early phonetic learning. Our results suggest441

an account of phonetic learning that substantially di�ers from442

existing ones. Whereas previous proposals have been primarily443

motivated through an outcome-driven perspective—starting444

from assumptions about what it is about language that is445

learned—the motivation for the proposed account comes from446

a mechanism-driven perspective—starting from assumptions447

about how learning might proceed from the infant’s input.448

This contrast is readily apparent in the choice of the initial449

speech representation upon which the early phonetic learning450

process operates (the input representation). Previous accounts451

assumed speech to be represented innately through a set of452

universal (i.e. language-independent) phonetic feature detec-453

tors (5–7, 25, 31, 49–52). The influential phonetic category454

accounts furthermore assumed these features to be available455

phonetic segment by phonetic segment (i.e. for each vowel and 456

consonant separately) (5–7, 25, 31). While these assumptions 457

are attractive from an outcome-driven perspective—they con- 458

nect transparently to phonological theories in linguistics and 459

theories of adult speech perception that assume a decomposi- 460

tion of speech into phoneme-sized segments defined in terms 461

of abstract phonological features—from a mechanism-driven 462

perspective, both assumptions are di�cult to reconcile with 463

the continuous speech signal that infants hear. The lack of 464

acoustic-phonetic invariance problem challenges the idea of 465

phonetic feature detectors, and the phonetic category segmen- 466

tation problem challenges the idea that the relevant features 467

are segment-based (37–39). The proposed account does not 468

assume either problem to be solved by infants at birth. In- 469

stead, it relies on basic auditory abilities that are available to 470

neonates (75), using simple auditory descriptors of the speech 471

spectrum obtained regularly along the time axis. This type 472

of spectrogram-like representation is e�ective in speech tech- 473

nology applications (72) and can be seen as the output of 474

a simple model of the peripheral auditory system (91, chap. 475

3), which is fully operational shortly after birth (75). Such 476

representations have also been proposed before as an e�ective 477

way to get around both the lack of invariance and the phonetic 478

category segmentation problems in the context of adult word 479

recognition (37) and can outperform representations based on 480

traditional phonetic measurements (like formant frequencies) 481

as predictors of adult speech perception (106–110). 482

While the input representation is di�erent, the learning 483

mechanism in the proposed account—distributional learning— 484

is similar to what had originally been proposed in phonetic 485
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Fig. 4. Diagnostic test results for our four unsupervised Gaussian mixture models (in beige) and phoneme recogniser baselines trained with explicit supervision (in pink). Top
row: American English ‘native’ models. Bottom row: Japanese ‘native’ models. Models are tested on read speech in their ‘native’ language. (a) Number of units learned by the
models. Gaussian mixtures discover ten to twenty times more categories than there are phonemes in the training language, exceeding any reasonable count for phonetic
categories. (b) Average duration of activation of the learned units. The average duration of activation of each unit is computed and the average and standard deviation of the
resulting distribution over units are shown. Learned Gaussian units get activated on average for about the quarter of the duration of a phoneme. They are thus much too ‘short’
to correspond to phonetic categories. (c) Average number of distinct representations for the central frame of the central phone for ten repetitions of a same word by the same
speaker, corrected for possible misalignment. The number of distinct representations is computed for each word type with sufficient repetitions in the test set and the average
and standard deviation of the resulting distribution over word types are shown. The phoneme recogniser baseline reliably identifies the ten tokens as exemplars from a common
phonetic category, whereas our Gaussian mixture models typically maintain on the order of two distinct representations, indicating representations too fine-grained to be
phonetic categories. (d) As in (c) but with repetitions of a same word by ten speakers, showing that the learned Gaussian units are not speaker-independent.

category accounts. Infants’ abilities, both in the lab (8, 35)486

and in ecological conditions (34), are consistent with such a487

learning mechanism. Moreover, when applied to the input488

representation considered in this paper, distributional learning489

is adaptive in that it yields speech representations that can490

support remarkably accurate discrimination of the phonetic491

categories of the training language, outperforming a number of492

alternatives that have been proposed for unsupervised speech493

representation learning (58, 59, 69).494

As a consequence of our mechanism-driven approach, what495

has been learned needs to be determined a posteriori based496

on the outcomes of learning simulations. The speech units497

learned under the proposed account accurately model infants’498

discrimination, but are too brief and acoustically variable499

to correspond to phonetic categories, failing in particular to500

provide a solution to the lack of invariance and phonetic501

category segmentation problems (37). Such brief units do502

not correspond to any previously identified linguistic unit (32)503

(see Supplementary Discussion 4 for a discussion of possible504

reasons why the language acquisition process might involve505

the learning by infants of a representation with no established506

linguistic interpretation, and a discussion of the biological507

and psychological plausibility of the learned representation),508

and it will be interesting to try to further understand their509

nature. However, since there is no guarantee that a simple510

characterization exists, we leave this issue for future work.511

Phonetic categories are often assumed as precursors in ac-512

counts of phenomena occurring later in the course of language513

acquisition. Our account does not necessarily conflict with514

this view, as phonetic categories may be learned later in de-515

velopment, before phonological acquisition. Alternatively, the516

influential PRIMIR account of early language acquisition (7)517

proposes that infants learn in parallel about the phonetics,518

word-forms, and phonology of their native language, but do519

not develop abstract phonemic representations until well into 520

their second year of life. Although PRIMIR explicitly assumes 521

phonetic learning to be phonetic category learning, other as- 522

pects of their proposed framework do not depend on that 523

assumption, and our framework may be able to stand in for 524

the phonetic learning process they assume. 525

To sum up, we introduced and motivated a new account of 526

early phonetic learning and showed that it is feasible under 527

realistic learning conditions, which cannot be said of any other 528

account at this time. Importantly, this does not constitute 529

decisive evidence for our account over alternatives. Our pri- 530

mary focus has been on modeling cross-linguistic di�erences 531

in the perception of one contrast, [ô]-[l]; further work is neces- 532

sary to determine to what extent our results extend to other 533

contrasts and languages (111). Furthermore, an absence of 534

feasibility proof does not amount to a proof of infeasibility. 535

While we have preliminary evidence that simply forcing the 536

model to learn fewer categories is unlikely to be su�cient (Fig- 537

ures S9 and S10), recently proposed partial solutions to the 538

phonetic category segmentation problem (e.g. (112–114)) and 539

to the lack of invariance problem (115) (see also Supplemen- 540

tary Discussion 2 regarding the choice of model initialization) 541

might yet lead to a feasible phonetic category-based account, 542

for example. In addition, a number of other representation 543

learning algorithms proposed in the context of unsupervised 544

speech technologies and building on recent developments in the 545

field of machine learning have yet to be investigated (53–70). 546

They might provide concrete implementations of previously 547

proposed accounts of early phonetic learning or suggest new 548

ones altogether. This leaves us with a large space of appeal- 549

ing theoretical possibilities, making it premature to commit 550

to a particular account. Candidate accounts should instead 551

be evaluated on their ability to predict empirical data on 552

early phonetic learning, which brings us to the second main 553
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contribution of this article.554

Toward predictive theories of early phonetic learning. Almost555

since the original empirical observation of early phonetic556

learning (1), a number of theoretical accounts of the phe-557

nomenon have co-existed (6, 25, 49, 50). This theoretical558

under-determination has typically been thought to result from559

the scarcity of empirical data from infant experiments. We ar-560

gue instead that the main limiting factor on our understanding561

of early phonetic learning might have been the lack—on the562

theory side—of a practical method to link proposed accounts563

of phonetic learning with concrete, systematic predictions re-564

garding the empirical discrimination data they seek to explain.565

Establishing such a systematic link has been challenging due566

to the necessity of dealing with the actual speech signal, with567

all its associated complexity. The modeling framework we568

introduce provides, for the first time, a practical and scalable569

way to overcome these challenges and obtain the desired link570

for phonetic learning theories—a major methodological ad-571

vance, given the fundamental epistemological importance of572

linking explanandum and explanans in scientific theories (116).573

Our mechanism-driven approach to obtaining predictions—574

which can be applied to any phonetic learning model imple-575

mented in our framework—consists first of explicitly simulating576

the early phonetic learning process as it happens outside of577

the lab, which results in a trained model capable of mapping578

any speech input to a model representation for that input.579

The measurement of infants’ perceptual abilities in labora-580

tory settings—including their discrimination of any phonetic581

contrast—can then be simulated on the basis of the model’s582

representations of the relevant experimental stimuli. Finally,583

phonetic contrasts for which a significant cross-linguistic di�er-584

ence is robustly predicted can be identified through a careful585

statistical analysis of the simulated discrimination judgments586

(see Supplementary Materials and Methods 4). As an illus-587

tration of how such predictions can be generated, we report588

specific predictions made by our distributional learning model589

in Table S1 (see also Supplementary Discussion 5).590

Although explicit simulations of the phonetic learning pro-591

cess have been carried out before (9, 12, 14, 15, 40–49, 73, 74),592

those have typically been evaluated based on whether they593

learned phonetic categories, and have not been directly used594

to make predictions regarding infants’ discrimination abilities.595

An outcome-driven approach to making predictions regarding596

discrimination has typically been adopted instead, starting597

from the assumption that phonetic categories are the outcome598

of learning. To the best of our knowledge this has never re-599

sulted in the kind of systematic predictions we report here,600

however (see Supplementary Discussion 6 for a discussion of601

the limits of previous approaches and of the key innovations602

underlying the success of our framework).603

Our framework readily generates novel, empirically testable,604

predictions regarding infants’ discrimination, yet further com-605

putational modeling is called for before we return to experi-606

ments. Indeed, existing data—collected over more than three607

decades of research (2, 3, 21, 30)—might already su�ce to dis-608

tinguish between di�erent learning mechanisms. To make that609

determination, and to decide which contrasts would be most610

useful to test next in case more data are needed, many more611

learning mechanisms and training/test language pairs will612

need to be studied. Even for a specified learning mechanism613

and training/test datasets, multiple implementations should614

ideally be compared (e.g. testing di�erent parameter settings 615

for the input representations or the clustering algorithm), as 616

implementational choices that weren’t initially considered to 617

be important might nevertheless have an e�ect on the result- 618

ing predictions and thus need to be included in our theories. 619

Conversely, features of the model that may seem important a 620

priori (e.g. the type of clustering algorithm used) might turn 621

out to have little e�ect on the learning outcomes in practice. 622

Cognitive science has not traditionally made use of such 623

large-scale modeling, but recent advances in computing power, 624

large datasets, and machine learning algorithms make this 625

approach more feasible than ever before (71). Together with 626

ongoing e�orts in the field to collect empirical data on a 627

large scale—such as large-scale recordings of infants’ learning 628

environment at home (117) and large-scale assessment of in- 629

fants’ learning outcomes (118, 119)—our modeling approach 630

opens the path towards a much deeper understanding of early 631

language acquisition. 632

Materials and Methods 633

634

Datasets. We used speech recordings from four corpora: two corpora 635

of read news articles—a subset of the Wall Street Journal corpus 636

of American English (84) (WSJ) and the Globalphone corpus of 637

Japanese (85) (GPJ)—and two corpora of spontaneous speech—the 638

Buckeye corpus of American English (86) (BUC) and a subset of 639

the corpus of spontaneous Japanese (87) (CSJ). As we are primarily 640

interested in the e�ect of training language on discrimination abili- 641

ties, we sought to remove possibly confounding di�erences between 642

the two read corpora and between the two spontaneous corpora. 643

Specifically, we randomly sampled sub-corpora while matching total 644

duration, number and gender of speakers and amount of speech per 645

speaker. We made no e�ort to match corpora within a language, 646

as the di�erences (for example in the total duration and number 647

of speakers) only serve to reinforce the generality of any result 648

holding true for both registers. Each of the sampled subsets was 649

further randomly divided into a training and a test set (see Table 650

1), satisfying three conditions: the test set lasts approximately ten 651

hours; no speaker is present in both the training and test set; the 652

training and test sets for the two read corpora, and separately for 653

the two spontaneous corpora, remain matched on overall duration, 654

number of speakers of each gender and distribution of duration per 655

speaker of each gender. To carry out analyses taking into account 656

the e�ect of input size and of the choice of input data, we further 657

divided each training set in ten with each 1/10th subset containing 658

an equal proportion of the speech samples from each speaker in the 659

original training set. We then divided each of the 1/10th subset in 660

ten again following the same procedure and select the first subset 661

to obtain ten 1/100th subsets. Finally, we iterated the procedure 662

one more time to obtain ten 1/1000th subsets. See Supplementary 663

Materials and Methods 1 for additional information. 664

Signal processing, models and inference. The raw speech signal is 665

decomposed into a sequence of overlapping 25ms-long frames sam- 666

pled every 10ms and moderate-dimensional (d=39) descriptors of 667

the spectral shape of each frame are then extracted, describing how 668

energy in the signal spreads across di�erent frequency channels. 669

The descriptors are comprised of 13 mel-frequency cepstral coe�- 670

cients (MFCC) with their first and second time derivatives. These 671

coe�cients correspond approximately to the principal components 672

of spectral slices in a log-spectrogram of the signal, where the spec- 673

trogram frequency channels are selected on a mel frequency scale 674

(linear for lower frequency and logarithmic for higher frequencies, 675

matching the frequency selectivity of the human ear). 676

For each corpus, the set of all spectral-shape descriptors for 677

the corpus’ training set is modeled as a large i.i.d. sample from a 678

probabilistic generative model. The generative model is a Gaussian 679

mixture model with no restrictions on the form of covariance ma- 680

trices and with a Dirichlet process prior over its parameters with 681
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Xi

zifi

µk

�k–

µ0, ⁄

�0, ‹

n Œ

Fig. 5. Generative Gaussian mixture model with Dirichlet process prior with normal-
inverse-Wishart base measure, represented as a graphical model in plate notation
based on the stick-breaking construction of Dirichlet processes.

Normal-inverse-Wishart base measure. The generative model is682

depicted as a graphical model in plate notation in Figure 5, where n683

is the number of input descriptors, (X1, X2, ..., Xn) are the random684

variables from which the observed descriptors are assumed to be685

sampled and the other elements are latent variables and hyper-686

parameters. The depicted variables have the following conditional687

distributions:688

Xi | zi, (µ1, µ2, ...), (�1, �2, ...) ≥ N (µzi , �≠1
zi

)
µk | �k, µ0, ⁄ ≥ N (µ0, (⁄�k)≠1)
�k | �0, ‹ ≥ W(�0, ‹)
zi | fi ≥ Multi(fi)
fi | – ≥ SB(–)

689

for any 1 Æ i Æ n, for any k œ {1, 2, ...}, with N the multivari-690

ate Gaussian distribution, W the Wishart distribution, Multi the691

generalisation of the usual multinomial probability distribution to692

an infinite discrete support and SB, the mixing weights generating693

distribution from the stick-breaking representation of Dirichlet pro-694

cesses (120). Mixture parameters with high posterior probability695

given the observed input features vectors and the prior are found696

using an e�cient parallel Markov chain Monte Carlo sampler (121).697

Following previous work (61, 66), model initialization is performed698

by partitioning training points uniformly at random into ten clus-699

ters and the hyperparameters are set as follows: – to 1, µ0 to the700

average of all input features vectors, ⁄ to 1, ⁄0 to the inverse of the701

covariance of all input feature vectors and ‹ to 42 (i.e. the spectral702

shape descriptors dimension plus three). We additionally train a703

model on each of the ten 1/10th, 1/100th and 1/1000th training704

subsets of each of the four corpora, following the same procedure.705

Given a trained Gaussian mixture with K components, mix-706

ing weights (fi1, fi2, ..., fiK), means (µ1, µ2, ..., µK) and covariance707

matrices (�1, �2, ..., �K), we extract a test stimulus representa-708

tion from the sequence (x1, x2, ..., xm) of spectral-shape descrip-709

tors for that stimulus, as the sequence of posterior probabil-710

ity vectors (p1, p2, ..., pm) where for any frame i, 1 Æ i Æ m,711

pi = (pi1, pi2, ..., piK), with, for any 1 Æ k Æ K:712

pik =
fikN (xi|µk, �k)qK

j=1 fijN (xi|µj , �j)
.713

As a baseline, we also train a phoneme recognizer on the train-714

ing set of each corpus, with explicit supervision (i.e. phonemic715

transcriptions of the training stimuli). We extract frame-level pos-716

terior probabilities at two granularity levels: actual phonemes—the717

phoneme recognizer baseline—and individual states of the contex-718

tual hidden Markov models—the ASR phone state baseline. See719

Supplementary Materials and Methods 2 for additional information.720

Discrimination tests. Discriminability between model representa-721

tions for phonetic contrasts of interest is assessed using machine722

ABX discrimination errors (90, 91). Discrimination is assessed in723

context, defined as the preceding and following sound and the iden-724

tity of the speaker. For example, discrimination of American English725

[u] versus [i] is assessed in each available context independently,726

yielding—for instance—a separate discrimination error rate for test727

stimuli in [b]_[t] phonetic context, as in ‘boot’ versus ‘beet’, as728

spoken by a specified speaker. Other possible factors of variability,729

such as word boundaries or syllable position are not controlled. For730

each model, each test corpus and each phonemic contrast in that731

test corpus (as specified by the corpus’ phonemic transcriptions),732

we obtain a discrimination error for each context in which the con-733

trasted phonemes occur at least twice in the test corpus’ test set.734

To avoid combinatorial explosion in the number of ABX triplets 735

to be considered, a randomly selected subset of five occurrences is 736

used to compute discrimination errors when a phoneme occurs more 737

than five times in a given context. An aggregated ABX error rate is 738

obtained for each combination of model, test corpus and phonemic 739

contrast, by averaging the context-specific error rates over speakers 740

and phonetic contexts, in that order. 741

Model representations are extracted for the whole test sets,
and the part corresponding to a specific occurrence of a phonetic
category is then obtained by selecting representation frames centered
on time points located between the start and end times for that
occurrence, as specified by the test set’s forced aligned phonemic
transcriptions. Given model representations � = (”1, ”2, ..., ”n” )
and � = (›1, ›2, ..., ›n› ) for n” tokens of phonetic category ” and
n› tokens of phonetic category ›, the non-symmetrized Machine
ABX discrimination error between ” and › is then estimated as
the proportion of representation triplets a, b, x, with a and x taken
from � and b taken from �, such that x is closer to b than to a, i.e.:

ê(�, �) :=
1

n”(n” ≠ 1)n›

n”ÿ

a=1

n›ÿ

b=1

n”ÿ

x=1
x”=a

#
1d(›b,”x)<d(”a,”x)

+
1
2
1d(›b,”x)=d(”a,”x)

È
,

where 1 is the indicator function returning 1 when its predicate 742

is true and 0 otherwise and d is a dissimilarity function taking a 743

pair of model representations as input and returning a real number 744

(with higher values indicating more dissimilar representations). The 745

(symmetric) Machine ABX discrimination error between ” and › 746

is then obtained as: 747

‘̂(�, �) = ‘̂(�, �) :=
1
2

[ê(�, �) + ê(�, �)]. 748

As realizations of phonetic categories vary in duration, we need 749

a dissimilarity function d that can handle model representations 750

with variable length. This is done, following established practice 751

(28, 29, 56, 58, 69), by measuring the average dissimilarity along a 752

time-alignment of the two representations obtained through dynamic 753

time warping (122), where the dissimilarity between model repre- 754

sentations for individual frames is measured with the symmetrized 755

Kullback-Leibler divergence for posterior probability vectors and 756

with the angular distance for spectral shape descriptors. 757

Analysis of learned representations. Learned units are taken to be 758

the Gaussian components for the Gaussian mixture models, the 759

phoneme models for the phoneme recognizer baseline, and the phone 760

state models for the ASR phone state baseline. Since experimental 761

studies of phonetic categories are typically performed with citation 762

form stimuli, we study how each model represents stimuli from the 763

matched-language read speech corpus’ test set. 764

To study average durations of activation we exclude any 765

utterance-initial or utterance-final silence from the analysis, as well 766

as any utterance for which utterance-medial silence was detected 767

during the forced alignment. The average duration of activation for 768

a given unit is computed by averaging over all episodes in the test 769

utterances during which that unit becomes dominant, i.e. has the 770

highest posterior probability among all units. Each of these episodes 771

is defined as a continuous sequence of speech frames during which 772

the unit remains dominant without interruptions, with duration 773

equal to that number of speech frames times 10ms. 774

The acoustic (in)variance of the learned units is probed by 775

looking at multiple repetitions of a single word and testing whether 776

the dominant unit at the central frame of the central phone of the 777

word remains the same for all repetitions. Specifically, we count 778

the number of distinct dominant units occurring at the central 779

frame of the central phone for ten repetitions of the same word. To 780

compensate for possible misalignment of the central phones’ central 781

frames (e.g. due to slightly di�erent time courses in the acoustic 782

realization of the phonetic segment and/or small errors in the forced 783

alignment), we allow the dominant unit at the central frame to 784

be replaced by any unit that was dominant at some point within 785

the previous or following 46ms (thus covering a 92ms slice of time 786
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corresponding to the average duration of a phoneme in our read787

speech test sets), provided it can bring down the overall count of788

distinct dominant units for the ten occurrences (see Supplementary789

Materials and Methods 3 for more information). We consider790

two conditions: in the within-speaker condition, the test stimuli791

are uttered by the same speaker ten times; in the across-speaker792

condition, they are uttered by ten di�erent speakers one time. See793

Supplementary Materials and Methods 3 for more information on794

the stimulus selection procedure.795

Data and code availability. The datasets analysed in this study are796

publicly available from the commercial vendors and research insti-797

tutions holding their copyrights (84–87). Datasets generated during798

the course of the study are available from the corresponding author799

upon reasonable request. Code to reproduce the results will be800

made available in a public GitHub repository upon publication.801
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Supporting Information Text13

Supplementary Materials and Methods.14

1. Datasets. The BUC and GPJ corpora annotations present a number of inconsistencies and were curated in-house. In particular,15

readers for the GPJ corpus often need several takes before they read an utterance correctly and the failed takes are included in16

the original corpus. We only keep the final take for each sentence. For the two spontaneous speech corpora, we keep disfluencies17

typical of spontaneous speech (such as hesitations, word fragments, pronunciation errors, fillers, etc.), but remove parts that18

were not phonetically transcribed or that include other kinds of noise or silence (96.11% and 80.38% of all utterances are kept19

for the BUC and CSJ corpora, respectively).20

Phonetic transcriptions for the two read speech corpora are obtained by combining the read text with a phonetic dictionary.21

For the two spontaneous speech corpora, a manual phonetic transcription of the recordings is used. Word units, which are not22

directly apparent in the Japanese writing system, are obtained from the phonetic transcriptions by a Japanese morphological23

parser for the read Japanese corpus. For the spontaneous Japanese corpus, we use the provided ‘Long Word Units’ as words.24

We exclude phonemes occurring with frequency less than 1 in 10,000 by removing any utterance in which they occur and we25

harmonize the transcriptions in order to have the same phonemic inventory for the read and spontaneous corpora for each26

language. No phonemes are excluded for the American English corpora. For the Japanese corpora, a few geminate consonants27

are excluded (/b:/, /z:/, /h:/, /d:/, /˝:/, /g:/, /F:/ for both corpora and /µ:/ for the GPJ corpus only). The retained phonemic28

inventory for American English consists of 24 consonants (/p/, /t/, /k/, /b/, /d/, /g/, /f/, /v/, /T/, /D/, /s/, /z/, /S/, /Z/,29

/Ù/, /Ã/, /m/, /n/, /N/, /h/, /ô/, /l/ /w/, /j/) and 15 vowels (/I/, /i:/, /E/, /2/, /Ç/, /ae/, /A:/, /O:/, /U/, /u:/, /eI/, /aI/,30

/aU/, /OI/, /oU/). The retained phonemic inventory for Japanese consists of 27 consonants (/p/, /t/, /k/, /p:/, /t:/, /k:/, /b/,31

/d/, /g/, /s/, /C/, /s:/, /C:/, /z/, /˝/, /µ/, /µ:/, /tC/, /tC:/, /m/, /n/, //, /h/, /F/, /r/, /w/, /j/) and 10 vowels (/ä/, /e/,32

/i/, /o/, /W/, /ä:/, /e:/, /i:/, /o:/, /W:/). For each corpus, timestamps are obtained for the phonetic transcriptions through33

forced alignment with an automatic speech recognition (ASR) system (same architecture for the acoustic model as for the34

phoneme recognizer baseline described in Section 2 below, trained on the full corpus).35

2. Phoneme recognizer baselines. As a baseline, we also train a phoneme recognizer on the training set of each corpus, with36

explicit supervision (i.e. providing the phonemic transcriptions of the training stimuli along with the waveforms). Specifically,37

we use the Kaldi toolkit (1) for automatic speech recognition (ASR) to train a hidden Markov model Gaussian mixture model38

(HMM-GMM) acoustic model and a phoneme-level bigram language model for each training set. The same training recipe39

(adapted from the Wall Street Journal corpus recipe), with the same parameters is used to train a separate model on each of40

the four corpora. The acoustic model takes the form of a probabilistic generative model with each phoneme modeled as a set of41

contextual variants that are allowed to depend on word-position and preceding and following phonemes. Each variant is itself42

modeled as a tri-state hidden Markov model with diagonal covariance Gaussian mixture emission probabilities. The models are43

adapted to speakers both during training and test through feature-space maximum likelihood linear regression (fMLLR). See44

the Kaldi toolkit documentation for more detail (http://kaldi-asr.org/doc/).45

The trained acoustic and language models are combined (with kaldi acoustic scale parameter set to 0.1) to obtain46

representations of test stimuli (possibly in a ‘foreign’ language) under the form of a sequence of frame-level Viterbi-smoothed47

posterior probability vectors. We extract frame-level posterior probabilities at two granularity levels: actual phonemes—to48

which we refer as the phoneme recognizer baseline—and individual states of the contextual hidden Markov models—to which49

we refer as the ASR phone state baseline.50

3. Analysis of learned representations.51

Correction for possible misalignment in the acoustic (in)variance test. We compensate for possible misalignment52

of the central phones’ central frames by allowing the dominant unit at the central frame to be replaced by any unit that was53

dominant at some point within the previous or following 46ms, provided this brings down the overall count of distinct dominant54

units for the ten occurrences. Finding the optimal way to assign dominant units under this constraint corresponds to solving an55

instance of the NP-complete minimal hitting set size problem (2). We are able to solve the problem exactly in most cases, due56

to the small size of the considered instances. In the few cases where we are not able to solve the problem exactly, our solver57

provides a lower bound on the number of representations and we use a greedy search to obtain an upper bound. Although the58

e�ect on the results is very small, we report lower bounds for the Gaussian mixture models and upper bounds for the phoneme59

recognizer and ASR phone state baselines, in order to be maximally conservative.60

Stimulus selection for the acoustic (in)variance test. To avoid potentially mispronounced short function words and61

possible co-articulation e�ect across word boundaries, for the acoustic (in)variance test, we select only words of at least five62

phonemes and study their central phoneme(s).� We sample uniformly at random a subset of ten occurrences (by a single63

speaker or by at least ten distinct speakers, depending on the condition) for each such word with enough repetitions in the test64

set. We report results averaged over ten independent runs of this stimulus sampling procedure. The results are also averaged65

over the two possible ‘central phone’ positions for words of even length and—in the within-speaker condition—over all available66

speakers for a given word type. This yields one average number of distinct dominant units per tested word type. The number67

�This stimulus selection procedure was only applied for the acoustic (in)variance test and has the effect of making the test more conservative—i.e. the learned representations would look even more
variable without this restriction. Other analyses were not restricted to such words, and all model training was carried out with unfiltered continuous speech that contained words of all different lengths in
unsegmented whole sentences.
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of available word types matching the specified conditions is 13 (within speaker) and 476 (across speaker) for the American68

English test stimuli and 83 (within speaker) and 408 (across speaker) for the Japanese test stimuli. As an example, here are the69

word types selected for the within-speaker American English condition: unquote, billion, dollars, hundred, company, market,70

million, mister, nineteen, percent, seven, seventy, thousand. For the within-speaker condition, we additionally listened to each71

test stimulus to identify potential mispronounced, noisy or misaligned stimuli and we checked that excluding these stimuli from72

the analysis (0/83 word types, 4/1048 word tokens excluded for American English; 14/168 word types, 204/2217 word tokens73

excluded for Japanese) did not a�ect the overall pattern of results (Figure S8).74

4. Deriving systematic model predictions. We systematically seek phonetic contrasts of American English and of Japanese for75

which the learning mechanism under study robustly predicts a significant cross-linguistic di�erence in discrimination between76

Japanese- and American English-learning infants. By robust we mean that (a) a significant di�erence in discrimination errors77

between models trained on American English and Japanese is consistently found across possible choices for the training and78

test registers, and (b) that the magnitude of this di�erence does not decrease when the amount of training input is increased.79

The former criterion allows us to rule out e�ects that would reflect peculiarities of the training and/or test stimuli rather than80

an intrinsic property of the language pair under study. The latter criterion allows us to rule out transient e�ects that might81

reflect peculiarities of the model initialization and/or be unlikely to be observed empirically.82

We define the predicted cross-linguistic e�ect for a phonetic contrast as the expected di�erence in average ABX discrimination83

error between an ‘American English-native’ and a ‘Japanese-native’ model on that contrast, where the expectation is taken84

over the choice of American English model, Japanese model, test speaker, phonetic context, and choice of the a, b, and x85

acoustic tokens given the contrast, speaker and phonetic context. For each contrast, we perform statistical significance tests86

separately for each of the 8 possible combinations of training register for the American English model, training register for the87

Japanese model, and test register. We use the models trained on the 1/10th training sets of each corpus for these significance88

tests, which allows us to take into account variance due to the model training procedure (including the choice of input data) in89

addition to that due to the choice of test stimuli. We estimate the predicted cross-linguistic e�ect and its variance and use90

those estimates to conduct asymptotic bilateral z-tests of the hypothesis that the cross-linguistic e�ect is di�erent from 0. We91

also estimate the e�ects (but not the variances) using the full training sets, which allows us to test whether the observed e�ects92

increase (in absolute value) with the amount of input data. We report a robust predicted cross-linguistic e�ect for a contrast if93

each of the estimated e�ects for that contrast (for each of the 8 possible combination of training and test registers) is in the94

same direction and significantly di�erent from 0 in our asymptotic bilateral z-test, with Benjamini-Yekutieli (3) correction for95

multiple correlated comparisons at level – = 0.05; and if the estimated e�ect for models trained on the full training sets are in96

the same direction and larger in absolute value than the corresponding e�ects estimated for models trained on the 1/10th
97

subsets.98

In what follows, we first formally define the predicted cross-linguistic e�ect for a phonetic contrast P1, P2. We then discuss99

how to estimate the e�ect in practice from finite samples of models trained on Japanese and trained on American English,100

and finite samples of test acoustic tokens from phonetic categories P1 and P2. Finally, we explain in detail how the statistical101

significance of the estimated e�ects can be assessed.102

E�ect of interest. We are interested in the predicted cross-linguistic e�ect for a phonetic contrast P1, P2, i.e. the expected103

di�erence in average ABX discrimination error between a model trained on language L1 and a model trained on language104

L2, which we denote as ”(P1, P2, L1, L2) and define formally below.† Let us consider a model M trained on input language105

L, input register RI and input amount AI , and tested on phonetic category P from test language LT in phonetic context C106

(preceding and following phonetic category) from test speaker S with test register RT . Let us note107

pP,L,RI ,AI ,LT ,RT (R | M, S, C),108

the probability distribution over model representations R, where we treat the trained model M , test speaker S and test context
C as conditioning random variables and assume fixed values for the other parameters. Then, the predicted cross-linguistic
e�ect for phonetic contrast P1, P2 and training languages L1, L2 is defined as

”(P1, P2, L1, L2) := EM1,M2,S,C [‘(P1, P2, M1, S, C) ≠ ‘(P1, P2, M2, S, C)],

where109

• Mx for x in {1, 2} is a randomly sampled trained model for input language Lx, training register RI,x and input amount110

AI,x;111

• S is a randomly chosen test speaker and C is a context chosen uniformly at random among available test phonetic112

contexts, for test language LT , test register RT and test phonetic contrast(P1, P2);113

• ‘(P1, P2, Mx, S, C) is the symmetric ABX discrimination error, defined as

‘(P1, P2, Mx, S, C) := 1
2 [e(P1, P2, Mx, S, C) + e(P2, P1, Mx, S, C)],

†This is for a given choice of input registers RI,1 and RI,2 and input amounts AI,1 and AI,2 for each model, and of test language LT and test register RT (which we constrain to be the same for
the two tested phonetic categories in our experiments). To avoid clutter, we do not indicate these dependencies explicitly in the notation.
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with
e(P1, P2, Mx, S, C) := p[d(A, X) < d(B, X)] + 1

2p[d(A, X) = d(B, X)],

for A, X drawn independently from pP1,L(R | Mx, S, C) and B drawn from pP2,L(R | Mx, S, C).114

This is the quantity we seek to estimate, given our trained models in English and Japanese, and the particular acoustic tokens115

in our corpora from the phonetic categories we would like to test.116

Estimation of the e�ect. In order to obtain a sample of model representations SP,M,LT ,RT ,S,C for each relevant combination117

of the index variables, we extract a representation of each test acoustic token for each model M .‡ For each combination of test118

language LT , test register RT , test speaker S and test phonetic context C, we obtain a sample of up to 5 acoustic realizations119

of each phonetic category from the test corpus. For each combination of training language L, training register RI , we obtain120

one model trained on the full training set and 10 models that are each trained on 1/10th of it.121

Given these samples from the distributions of model representations of test stimuli, we define the following estimator of122

”(P1, P2, L1, L2),123

”̂(S, M1, M2) := 1
|S|

ÿ

SœS

1
|C(S)|

ÿ

CœC(S)

A
1

|M1|

ÿ

M1œM1

‘̂(SP1,M1,S,C , SP2,M1,S,C) ≠
1

|M2|

ÿ

M2œM2

‘̂(SP1,M2,S,C , SP2,M2,S,C)

B
,124

where S is the set of sampled test speakers, C(S) is the set of contexts available for the target contrast from test speaker125

S, M1 and M2 are the sampled models for training language L1 and L2 respectively and ‘̂ is the estimator for the ABX126

discrimination error defined in the Material and Methods section of the main text.127

Provided there is no systematic bias in how phonetic contexts are missing from the sample of any particular test speaker,128

”̂(S, M1, M2) can be shown to be an unbiased estimator of ”(P1, P2, L1, L2).129

Significance testing. We want to assess the contrasts for which a significant cross-linguistic di�erence in discriminability130

is observed. In order to do assess significance, we need a test statistic with a known distribution. For given P1, P2, L1, L2, we131

define132

D̂(S, M1, M2) := 1
|C(S)|

ÿ

CœC(S)

[‘̂(SP1,M1,S,C , SP2,M1,S,C) ≠ ‘̂(SP1,M2,S,C , SP2,M2,S,C).]133

It is straightforward to check that134

”̂(S, M1, M2) = 1
|S||M1||M2|

ÿ

SœS
M1œM1
M2œM2

D̂(S, M1, M2).135

”̂(S, M1, M2) can thus be interpreted as a (generalized) U-statistic with kernel D̂ of order 3 and degree (1, 1, 1) (4), applied to136

mutually independent i.i.d. samples S, M1 and M2 (where an element S of S is e�ectively a sample of up to five acoustic137

tokens for each phonetic context available from speaker S for the target phonetic contrast).138

Assuming this U-statistic is not degenerate, we can apply the central limit theorem for U-statistics (4) to obtain that139

”̂(S, M1, M2)
Var[”̂(S, M1, M2)]

140

has an asymptotic normal distribution with mean ”(P1, P2, L1, L2) and variance 1. Provided we can estimate the variance141

of the estimator Var[”̂(S, M1, M2)], this result allows us to perform asymptotic z-tests of H0 : ”(P1, P2, L1, L2) = 0 versus142

H1 : ”(P1, P2, L1, L2) ”= 0. We provide the required estimator V̂ (S, M1, M2) of Var[”̂(S, M1, M2)] in the next section.143

Estimation of the variance of ”̂. The previous section showed that given an estimate V̂ (S, M1, M2) of the variance144

Var[”̂(S, M1, M2)], we can compute statistical significance of the estimated di�erences in discrimination error between145

languages. In this section we derive such an estimator.146

We first find an expression for Var[”̂(S, M1, M2)], then derive an estimator from it. We use n1 to denote the number of test
speakers, |S|, n2 to denote the number of models trained on language L1, |M1|, and n3 to denote the number of models trained
on language L2, |M2|. We can express the variance using the standard decomposition for the variance of a U statistic (4),

Var[”̂(S, M1, M2)] = 1
n1n2n3

[(n1 ≠ 1)(n2 ≠ 1)‡2
001 + (n1 ≠ 1)(n3 ≠ 1)‡2

010 + (n2 ≠ 1)(n3 ≠ 1)‡2
100

+ (n1 ≠ 1)‡2
011 + (n2 ≠ 1)‡2

101 + (n3 ≠ 1)‡2
110

+ ‡2
111]

where ‡2
xyz denotes the covariance between D̂(s1, a1, j1) and D̂(s2, a2, j2) for two triplets (s1, a1, j1), (s2, a2, j2) formed of a

randomly sampled combination of a test speaker, an American English model, and a Japanese model, with the subscripts x, y,
‡Possibly with some missing data, as not all possible phonetic contexts occur for each speaker and each phonetic category in any given test set.

4 of 24 Thomas Schatz, Naomi H. Feldman, Sharon Goldwater, Xuan-Nga Cao and Emmanuel Dupoux



and z indicating whether the two test speakers, American English models and Japanese models, respectively, are constrained to
be identical (subscript 0) or not (subscript 1). For example,

‡2
000 = Es1,s2,a1,a2,j1,j2 [D̂(s1, a1, j1)D̂(s2, a2, j2)] ≠ (Es,a,j [D̂(s, a, j])2 = 0;

‡2
111 = Es,a,j [D̂(s, a, j)2] ≠ (Es,a,j [D̂(s, a, j])2;

‡2
001 = Es1,s2,a1,a2,j [D̂(s1, a1, j)D̂(s2, a2, j)] ≠ (Es,a,j [D̂(s, a, j])2.

We now use the above variance decomposition to derive an estimator. Let us define the order 3, degree (2, 2, 2) kernel
Âk1k2k3 for some strictly positive integers k1, k2, k3, as follows

Âk1k2k3 (s1, s2, a1, a2, j1, j2) := 1
k1k2k3

[(k1 ≠ 1)(k2 ≠ 1)(D̂(s1, a1, j1)D̂(s2, a2, j1) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(k1 ≠ 1)(k3 ≠ 1)(D̂(s1, a1, j1)D̂(s2, a1, j2) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(k2 ≠ 1)(k3 ≠ 1)(D̂(s1, a1, j1)D̂(s1, a2, j2) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(k1 ≠ 1)(D̂(s1, a1, j1)D̂(s2, a1, j1) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(k2 ≠ 1)(D̂(s1, a1, j1)D̂(s1, a2, j1) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(k3 ≠ 1)(D̂(s1, a1, j1)D̂(s1, a1, j2) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))

+(D̂(s1, a1, j1)D̂(s1, a1, j1) ≠ D̂(s1, a1, j1)D̂(s2, a2, j2))]

Let us consider some arbitrary orderings (s1, s2, ..., sn1 ), (a1, a2, ..., an2 ) and (j1, j2, ..., jn3 ) of S, M1, and M2, respectively.147

Let us also note (n k), for any integers n and k, the set of all integer k-tuples (i1, i2, ..., ik) such that 1 Æ i1 < i2 < ... < ik Æ n.148

It is straightforward to show that Ân1n2n3 is an unbiased estimator for Var[”̂(S, M1, M2)], leading to the following
symmetric unbiased estimator based on all of the available data

V̂ (S, M1, M2) := 1!
n1
2

"!
n2
2

"!
n3
2

"
ÿ

i1,i2œ(n1 2)
j1,j2œ(n2 2)
k1,k2œ(n3 2)

ÂS
n1n2n3 (si1 , si2 , aj1 , aj2 , jk1 , jk2 ),

where ÂS
n1n2n3 is the symmetrized version of Ân1n2n3

ÂS
n1n2n3 (s1, s2, a1, a2, j1, j2) := 1

(2!)3

ÿ

i1,i2œS2
j1,j2œS2
k1,k2œS2

Ân1n2n3 (si1 , si2 , aj1 , aj2 , jk1 , jk2 ),

with S2 = {(1, 2), (2, 1)} the set of all permutations of {1, 2}.149

With this estimator for the variance of ”̂(S, M1, M2), we can now conduct a z-test over the test statistic defined in the150

previous section to compute statistical significance of cross-linguistic discrimination di�erences.151

Supplementary Discussion.152

1. Input idealization in computational modeling of early phonetic learning. Modeling studies investigating the feasibility of potential153

learning mechanisms for early phonetic learning have typically relied on input idealizations that sidestep the lack of invariance154

problem and the phonetic segmentation problem, and cannot therefore alleviate the feasibility concerns related to these155

problems. In initial modeling work investigating the feasibility of learning phonetic categories through distributional learning156

(5–9), the phonetic category segmentation problem was either simply assumed to have been solved (7–9), or the input speech157

was assumed to consist of exemplars from a restricted number of pre-segmented or isolated syllable types, that were furthermore158

chosen such that automatic segmentation of the vowel nucleus based on voicing cues would be easy (5, 6). The impact of the159

lack of invariance problem was minimized by artificially limiting the variability of the input. Specifically, the input speech160

signal was: chosen from a restricted set of phonemes (5–9); occurring in a restricted set of phonetic contexts (5–7); uttered161

by a (very) restricted set of speakers (5, 9); available to the learner in a manually encoded (7–9) and/or restricted (5–9)162

phonetic feature space; drawn from synthetic parametric sound distributions fitted to corpus data rather than using corpus data163

directly (7, 8). Subsequent studies considered slightly more realistic variability and found that distributional learning was not164

su�cient anymore to learn phonetic categories accurately (10–16) and proposed additional learning mechanisms tapping into165

other sources of information plausibly available to infants to complement distributional learning. However, demonstrations of166

feasibility for the proposed mechanisms still assumed the phonetic category segmentation problem to be solved (10–12, 14–16)167

and/or did not fully address the lack of invariance problem by not considering the full variability of natural speech (10–16).168

Specifically, input speech signal was: chosen from a restricted set of phonemes (10–12, 14–16); occurring in a restricted set of169

phonetic contexts (12, 14, 16); uttered by a very restricted set of speakers (10, 11, 13, 15, 16); available to the learner in a170

manually encoded (9, 10, 12, 14–16) and/or restricted (10–12, 14–16) phonetic feature space; drawn from synthetic parametric171

sound distributions fitted to corpus data rather than using corpus data directly (11–14). Existing attempts to extend some172
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of these results to more realistic learning conditions have failed (17, 18). The few studies that attempted to model infant173

phonetic learning from naturalistic, unsegmented speech input remained inconclusive for lack of a suitable evaluation method174

(19, 20). Finally, we know of only one demonstration of feasibility for an account of early phonetic learning in which the175

outcome of learning is not phonetic categories (21). It also assumes the phonetic category segmentation problem to be solved176

and minimizes the impact of the lack of invariance problem by artificially limiting the variability of the input speech.177

Modeling assumptions are necessary in any model—for example, our approach ignores the visual component of speech and178

uses adult-directed rather than child-directed speech—but they should be critically examined to assess their suitability relative179

to the research objectives. For example, whereas the assumptions typically made in previous studies were all geared toward180

making the learning problem easier—by sidestepping the lack of invariance and phonetic segmentation problems—we focus, as181

much as possible, on modeling assumptions that make it harder. This means that in our framework, positive feasibility results182

constitute much stronger evidence. Our framework is not devoid of modeling assumptions that make the learning problem183

easier; for example, we consider speech input consisting of speech from a single speaker at a time, captured by a close-range184

microphone, and with no overlap with environmental sounds. However, we make many fewer such simplifying assumptions than185

previous models and we are careful not to sidestep the phonetic category segmentation and the lack of invariance problems in186

particular. This ensures that our simulations are suitable to address feasibility concerns related to these problems.187

2. Model initialization, learning procedure and convergence. Following Chen et al. (22), the parameters of our Gaussian mixture188

models are learned through the exact Markov chain Monte-Carlo (MCMC) sampling algorithm proposed in Chang & Fisher189

(23). This algorithm combines, in a principled way, Gibbs sampling of the parameters of instantiated mixture components (i.e.190

the clusters with non-empty membership at any given point in the algorithm execution) with sampling of split and merge191

moves that increase or reduce the number of instantiated mixture components. It is designed to combine good statistical192

convergence properties with computational e�ciency, and in particular to allow the parallelization of the computations to193

accommodate large training datasets.194

We also follow Chen et al. (22) for model initialization. They used the default initialization procedure in the implementation195

proposed by Chang & Fisher (23), which consists of assigning each data point in the training set uniformly at random to one of196

ten initial clusters. The mean vector and covariance matrix for each of these ten initial clusters is then taken as the mean197

and covariance of the points assigned to that cluster. The weights of each of the cluster in the initial mixture is obtained by198

drawing from a Dirichlet distribution with ten categories and concentration parameter whose i-th component, for 1 Æ i Æ 10, is199

the number of points that were initially assigned to the i-th cluster.200

In theory, the initial state should not influence the learning outcomes when using this algorithm. The sampling algorithm201

we use comes with the usual guarantees (for sampling algorithms) of global convergence to the true posterior in the limit (23),202

so that in principle, the initialization procedure should not matter if we run the sampling procedure for long enough. The main203

issue in practice is that there is usually no definitive way to determine when it has been ‘long enough’. In our case, we look at204

the number of learned categories as a function of the number of sampling iterations (Figure S11). We see that this number205

is largely stabilized after about 600 iterations for all the models we train. This suggests that training the models for 1500206

sampling iterations (per parameter), as we do—again following the example of (22)—is su�cient for model convergence. We207

also see that cross-linguistic di�erences emerge quite robustly on independent runs for models trained on one to two hours of208

speech input (Figure 3(b)). Thus, we are reasonably confident that the models have converged.209

Still, we cannot completely rule out the possibility that running the algorithm for longer might ultimately lead to a di�erent210

outcome (e.g. to units corresponding to phonetic categories), and that a di�erent setting of the initial state might lead to that211

outcome faster. This leads us to consider the biological and psychological plausibility of the initialization procedure we used.212

A prominent proposal in the literature (see 24, for example)—motivated by observations of a certain ‘language-readiness’ of213

the human brain at birth and even before (25)—is that infants start with an innately specified, ‘universal’ mapping from an214

auditory space to a phonetic space, which is then progressively altered as they gain experience with their native language.215

However, there have not yet been proposals for a concrete implementation of such a mapping (although see 26, for a possible216

technical solution).217

This view is not universally shared. An alternative hypothesis has been argued to be fully compatible with the empirical218

record (e.g. 27, 28), according to which the observation of ‘universal’ phonetic discrimination abilities in newborns would219

correspond to an initial mode of perception of a purely auditory nature, in the absence of any mapping to phonetic space.220

Under this view, phonetic representations would be initiated through some form of random mapping, and subsequently refined221

through experience-dependent plasticity. One benefit of this latter view is that it assumes less in terms of what needs to be222

genetically specified than an innate universal mapping between acoustic and phonetic space.223

As discussed in the main text, MFCC input features can be interpreted as the output of a (very) simple model of the224

peripheral auditory system, and our approach to initialization can thus be understood as an implementation of this latter225

view. We are not aware of many empirical constraints on what would constitute a plausible random initialization of the226

phonetic clusters within this auditory space, and our initialization procedure represents one possible, albeit admittedly arbitrary,227

solution.228

3. Interpretation of simulated discrimination errors and relation to empirical observations. To evaluate our trained models, we expose229

them to appropriate test stimuli (e.g. exemplars of [ô] and [l]) and simulate discrimination tasks using the models’ representation230

of these stimuli. Here, we discuss our criteria to decide if the models successfully account for early phonetic learning on the basis231

of the resulting discrimination errors. For the purpose of this article, we deem our models successful if they can account for the232
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cross-linguistic di�erences in discrimination abilities observed in infants in the first year of life for the Japanese/American233

English language pair we study.234

The results to be accounted for come from a 2006 study by Kuhl and colleagues (29), since we are not aware of other studies235

directly comparing the phonetic discrimination abilities of Japanese and American English infants in the first year. Using236

a conditioned head turning paradigm, they found no significant di�erence between American English and Japanese infants’237

ability to discriminate a synthetic [ôa] stimulus from a synthetic [la] stimulus at 6-8 months. Both groups answered correctly on238

about 65% of test trials. In contrast, at 10-12 months, American English infants were found to to be significantly more accurate239

than Japanese infants in the same task. American English infants answered correctly on about 75% of trials while Japanese240

infants answered correctly on about 60% of trials. All four groups discriminated the stimuli significantly above chance. When241

comparing across ages, American English 10-12 month olds were found to be significantly better at discriminating the stimuli242

than their 6-8 month old counterparts, whereas Japanese 10-12 month olds were not found to be significantly worse than their243

6-8 month old counterparts (but see 30). We adopt the standard interpretation that these results reflect infants’ discrimination244

of the [ô]-[l] contrast, and not just of the two specific stimuli tested in the experiment. We therefore test our models both on245

those specific stimuli (Figure S6), and on other instances of [ô] and [l] (Figure 3). However, we do not assume these observations246

of early phonetic learning in infants to mean that 10-12 month old infants have formed adult-like representations; while this is247

a common view in the literature, it is premised on the phonetic category hypothesis we are contesting. In particular, we do not248

take the results from Kuhl et al. (29) to necessarily indicate that Japanese 10-12 month olds have become nearly deaf to the249

[ô]-[l] distinction, or that American English 10-12 month olds learned to discriminate it perfectly.§250

Given our current state of knowledge about infant cognition, there are some quantitative aspects of these results that251

we cannot hope to model, even in principle. First, we cannot hope to model the quantitative values of the error rates or d’252

measurements characterizing infant discrimination in these experiments, as these values depend strongly on the specifics of253

the experiments in ways that are not well understood (33). This uncertainty might potentially be accounted for through free254

parameters in the model, but fitting those parameters would not be feasible due to the limited number of datapoints available255

to constrain them.¶ Second, we do not know the precise correspondence between an infant of a particular age and a model256

presented with a particular amount and quality of data. The quality and quantity of data in infants’ environments does not257

directly translate into their intake (34), the data they use for learning. In addition, some of the di�erences in infants’ behavior258

at di�erent ages might also stem from developmental factors not directly related to perception, and these are not included in259

our model. Moreover, we do not know whether infants rely solely on learned representations for discrimination, even when those260

representations are just starting to be formed and might be unreliable, or whether they initially rely on language-universal261

input features for discrimination, and then smoothly transition to relying on the learned language-specific representations as262

the amount of training data increases. This prevents us from interpreting the change in discrimination errors as a function of263

the amount of training input given to the model on Figure 3(b) directly as a developmental trajectory for example.264

Because we cannot hope to get a quantitative match in either the absolute discrimination scores or the absolute quantity of265

training data, we focus on modeling qualitative aspects of the empirical results. This means showing that American English266

models discriminate [ô] and [l] better than Japanese models do. We find this qualitative e�ect both with the original stimuli267

from Kuhl et al. (29), and with a broader set of speech stimuli drawn from American English speech corpora. Figure S6 shows268

that with small amounts of training data, the dissimilarity between the two original stimuli is roughly similar for all models.269

As the amount of training data increases, the two stimuli become more dissimilar for the American English models, while270

their dissimilarity stays roughly the same for the Japanese models. When tested on a broader set of [ô] and [l] stimuli, all271

models get better at discriminating this contrast as the amount of training data increases, but a clear cross-linguistic di�erence272

nevertheless emerges (Figure 3(b)). As noted above, there are a number of reasons why the direction of change in absolute273

error rates might not be reliable; but in both simulations, the increasing separation between English and Japanese models with274

increasing training data qualitatively matches the empirical pattern.275

A limitation of this study is that it focuses on one language pair, limiting the relevant empirical record to mostly one study276

(29). Mugitani and colleagues (35) suggested that vowel length perception at 10 months could be similar in American English277

and Japanese listeners; our models appear broadly consistent with this hypothesis, as we find no systematic di�erence in278

Japanese vowel length discrimination between the Japanese and American English models (see Supplementary Discussion 5).279

However, we do not focus on this result, as Mugitani and colleagues (35) did not directly test American English 10 month olds,280

and recent evidence suggests that the development of vowel length perception, for Japanese listeners at least, might be more281

complicated than once thought (36). As argued in the main discussion, in the longer term our modeling framework will allow282

evaluating the proposed learning mechanism against the empirical record on further language pairs, comparing it with other283

possible learning mechanisms, and designing empirical tests of their predictions.284

We are not aiming to model adult data, nor are we able to interpret absolute error rates relative to infant data. Thus, the285

absolute levels of the discrimination errors we obtain have little bearing on our main conclusions. However, it is still interesting286

to get a sense of how those absolute error rates might be interpreted. To this end, we added a supervised phoneme recognizer287

baseline as a possible approximation of an adult-like state,� In general, the supervised baselines show larger cross-linguistic288

di�erences than our (unsupervised) models do. For the [ô]-[l] contrast, for example, the absolute di�erence in discrimination289

errors between ‘native’ and ‘non-native’ models is about four times as large for the supervised phoneme recognizers as for the290

§This view is supported by empirical evidence that American English infants’ perception of [ô]-[l] develops well beyond the first year of life (31). See also Feldman et al. (32).
¶One potential solution might be to pool infant data across many experiments to try and calibrate task models. However, it is unclear whether this strategy could be successful, because of the heterogeneity

in the way infant experiments are carried out in practice.
�This is different from its role in Figures 4, S7, S9 and S10, where it is used as a possible embodiment of the linguistic notion of phonetic category.
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unsupervised models. These larger crosslinguistic di�erences are driven by decreased performance of the supervised baselines291

on the ‘non-native’ language and increased performance on the ‘native’ language (Figures S3, S5), though improvement on292

the ‘native’ language does not appear robust to a register change (Figure S3). These results show that the proposed learning293

mechanisms for early phonetic learning is compatible with the view that one-year-olds have not yet formed mature, adult-like294

speech representations (32).��
295

We additionally included an unlearned ‘auditory’ input features baseline (with distances computed directly between sequence296

of MFCC input vectors) in Figures S3, S5, as a possible approximation of discrimination on the basis of a language-universal297

auditory representation. This baseline performs surprisingly well relative to both the supervised baseline and the unsupervised298

models in discriminating some phonetic contrasts. On average, the ‘native’ models do better than the baseline, and the299

‘non-native’ models do worse, as expected (Figure S3). However, this is not true for every contrast, as can be seen for [ô]-[l]300

and [w]-[j] on Figure S5. There are a number of possible ways to interpret this result.†† This might reflect a shortcoming301

common to both the unsupervised models and supervised baselines for these contrasts. It might also be that, in order to302

catch up with the input features baseline, our models require larger amount of training input (Figure 3(b)) or input that is303

more similar to what infants hear (39). Finally, another possibility is that high level language-specific representation might304

need to be combined with information-rich auditory representation (40) to enable accurate phonetic discrimination of certain305

contrasts—as appears to be the case in humans (41).306

4. Interpretation and plausibility of the learned representations. It might seem surprising for infants to be learning—as part of the307

language acquisition process—units such as those we find, with no established linguistic interpretation. Given the relative308

evolutionary recency of the language faculty in humans (42), however, early phonetic learning might be grounded in domain-309

general perceptual learning mechanisms (43, 44), the outcome of which might not conform to a purely linguistic interpretation.310

Supporting this view are observations of early perceptual attunement in other modalities than speech perception—for example311

in face (45), voice (46), pitch (47, 48), music (49) and linguistic sign (50) perception—and in other animals than humans—for312

example for conspecific vocalizations in rats (51), for music in mice (52) and for faces in macaques (53). Furthermore, there313

is evidence that the physiological mechanisms governing the onset and o�set of perceptual attunement might be similar in314

these di�erent modalities and conserved from mouse to man (54–56). Furthermore, from a more adaptive/functional point315

of view, phonetic categories embody sophisticated linguistic knowledge and inferring them from scratch might simply be316

too di�cult. The learned representations under the proposed account support remarkably accurate discrimination of native317

language word-forms (22, 57–59)—a criterion for which early phonetic representations have been proposed to be optimized318

(60–62). They could thus serve as a more robust intermediate point in a bootstrapping process (63) ultimately leading to319

language proficiency.320

Another question that arises is whether the learned representations are biologically and psychologically plausible given321

their relatively high dimensionality—between 444 and 899 learned categories, with posterior probability vectors of matching322

dimension. It is questionable whether infants—or even adults—would be able to explicitly access and manipulate such detailed323

representations of the phonetics of very short stretches of speech. We believe, however, that the learned units are plausible324

at least as lower-level perceptual representations. Such high-capacity intermediate representations are commonly postulated325

in other domains of adult and infant cognition—for example, as part of the ‘core’ object recognition and the ‘core’ spatial326

navigation systems (64), with correspoding computational models typically featuring representations in even higher dimensions327

than the ones we consider here (65–68). Computation over such high-capacity representations is likely to be costly and might328

be limited to a restricted set of operations—including the formation of integrated similarity or familiarity judgments, for329

example. Such representations are typically seen as supporting the operation of largely subconscious cognitive processes and330

allowing the formation of higher-level, lower-capacity, representations over which computations can be carried out more flexibly331

(see 69, for example).332

5. Systematic model predictions. We provide a concrete demonstration of our framework’s ability to link accounts of early phonetic333

learning to systematic predictions regarding the empirical phenomenon they seek to explain by reporting in Table S1 phonetic334

contrasts of Japanese and American English for which the distributional learning mechanism we study robustly predicts a335

significant di�erence in discrimination abilities between learners of those languages. Note that nothing in our method—which336

we present in detail in Supplementary Materials and Methods 4—is specific to the particular distributional learning mechanism337

studied in this article. It applies directly to any learning mechanism taking actual speech signal as input, as long as a reasonable338

way to measure the (dis)similarity between the learned representations of relevant test stimuli can be provided.339

Reassuringly, we find that American English [ô]-[l] is among the contrasts robustly predicted to be significantly harder to340

discriminate for Japanese-learning infants. Only two other contrasts of American English are predicted to be robustly harder to341

discriminate for Japanese-learning infants, both involving the rhotacized vowel [Ç]. We are not aware of empirical comparisons342

of Japanese- and American English-learning infants (and even adults) having been carried out so far for these contrasts. No343

contrast of Japanese is predicted to be robustly harder for American-English-learning infants.344

6. Advantages of our approach over traditional approaches to making predictions. Our approach to linking a learning mechanism to345

systematic predictions regarding infant phonetic discrimination relies on explicit simulations of the learning process. Such346

simulations have been carried out before (5–16, 19–21, 70), however this never resulted in concrete predictions regarding347

��This view is supported among other things by evidence of continued phonetic learning well after the first year (see e.g. 31, 37, 38).
††We do not attempt to decide between these possible interpretations here, as this is not directly relevant to our main conclusions.
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infants’ discrimination abilities. One reason is that previous simulation studies were conducted in the context of outcome-348

driven approaches and therefore focused on testing whether phonetic categories could be learned, rather than on predicting349

discrimination patterns observed in infants. There are also methodological limitations that would have have severely limited350

the possibility of obtaining systematic predictions in these studies. One of them is the drastically simplified input used in351

most studies. Influences of the phonetic context on cross-linguistic di�erences in discrimination abilities (71) might fail to be352

captured when the training data is restricted to just a few contexts, for example. Or meaningful predictions might be impossible353

for non-native contrasts falling into part of the phonetic space that is not represented in the input when it contains only a354

subset of the phonetic categories of the training language (e.g. if the input consists exclusively of vowels represented in terms355

of their formant frequencies). Even for the studies that did attempt to model infant phonetic learning from realistic speech356

input (19, 20), the lack of a suitable evaluation method to handle the complex speech representations typically produced by357

algorithms learning from raw speech without supervision would have prevented the derivation of systematic predictions. Indeed,358

as we already noted, traditional signal detection theory models of discrimination tasks (72) cannot handle high-dimensional359

input representations, while more elaborate Bayesian probabilistic models (73) typically have too many free parameters to be360

practical. Moreover, traditional evaluation methods for representation learning algorithms from the machine learning literature361

typically assess performance on downstream tasks such as supervised classification, or against known cluster labels, rather than362

on the discrimination abilities measured in infants. Finally, the procurement of appropriate test stimuli for all the phonetic363

contrasts for which predictions are to be obtained, and the need for a sound statistical methodology to separate signal from364

noise in the large number of resulting predictions, would have presented two additional challenges.365

In principle, an alternative to our mechanism-driven approach would be to obtain predictions by relying on pre-specified366

notions of the outcome of learning. In phonetic category accounts, for example, predictions could be made based on how the367

phonetic categories from the test language map onto the phonetic categories of the native language. This has been the standard368

approach in the field until now, but to the best of our knowledge, has never resulted in the kind of systematic predictions369

we report here. Its scalability is limited by two central di�culties related to the intrinsic complexity of the speech signal.370

First, given that detailed aspects of the speech signal can strongly a�ect discrimination abilities (71, 74), making systematic371

predictions would require extraordinarily detailed phonetic descriptions of the whole phonetic space in all of the relevant372

languages. Such descriptions are not available at the required scale at present, and conducting detailed phonetic analyses to373

obtain them would represent a colossal undertaking. Second, even on a small scale, how to carry out the required phonetic374

analyses is not clear. Arbitrary decisions would have to be made, for example, regarding which phonetic dimensions to include,375

how to characterize these dimensions acoustically, how to characterize discrete categories in the presence of gradient e�ects,376

and how to concretely relate the observed cross-linguistic phonetic di�erences to predicted discrimination abilities. Some of this377

methodological uncertainty has been sidestepped in practice by relying on empirical assimilation patterns—adults’ judgments378

regarding what sound from their native language is most similar to a non-native stimulus—to guide the derivation of predictions379

in an ad hoc fashion. This is not a scalable solution, however, given the costs associated with human experimentation. It also380

fails to explain how the observed assimilation patterns arise in the first place.381

Our modeling framework provides the first practical, scalable way to link accounts of early phonetic learning to systematic382

predictions regardings infant phonetic discrimination. Key innovations underlying the success of our framework relative to383

previous approaches include a focus on mechanisms rather than outcomes, and on mechanisms capable of learning from384

naturalistic speech in particular, resulting in models capable of making systematic predictions. The testing of these models385

at scale relies on further important innovations. One of them is the use of large forced-aligned databases of transcribed386

continuous speech recordings to procure relevant test stimuli. Another is the use of the machine ABX test to link model387

representation of test stimuli to concrete, systematic predictions regarding infants’ discrimination abilities. The machine388

ABX test is an automatized, parameterless measure of discriminability that is computationally tractable, statistically e�cient,389

and can handle representations in essentially any format, as long as a reasonable way to measure the similarity between the390

speech representations to be evaluated can be provided, making it easy to compare the predictions from di�erent models391

(75). The rationale for such an evaluation method, with a focus on simplicity of use and scalability—rather than seeking to392

provide a detailed model of infants’ behavior in a particular experimental paradigm—is the idea that di�erent discrimination393

tasks all index a common perceptual process and should result in qualitatively similar discrimination patterns—an idea that394

has received empirical support from the signal detection literature (72). Finally, another important innovation is the careful395

statistical analysis—taking into account noise sources in both model training and evaluation (see Supplementary Materials and396

Methods 4)—which allows us to tease out reliable e�ects in the large number of generated predictions.397
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Table S1. Phonetic contrasts for which a significant difference in discriminability between American English- and Japanese-learning infants

is robustly predicted by the proposed distributional learning mechanism. That is, for each possible choice of training and test register,

these contrasts show a significant difference in discrimination errors between models trained on American English and Japanese, and the

magnitude of this difference does not decrease as the training data size is increased. See Supplementary Materials and Methods 4 for

justification of these criteria and details of the method.

Language Contrast
Easier for Average difference in

learners of discrimination error

Am. English [Ç] - [I] Am. English 5.4%
Am. English [Ç] - [2] Am. English 4.8%
Am. English [ô] - [l] Am. English 3.7%

10 of 24 Thomas Schatz, Naomi H. Feldman, Sharon Goldwater, Xuan-Nga Cao and Emmanuel Dupoux



American English models
Japanese models

Read training Spont. training��
��
���������

A
BX

er
ro
rr
at
e
(in

%
)

Read American English test

Read training Spont. training

Read Japanese test

Read training Spont. training
Training register

��
��
���������

A
BX

er
ro
rr
at
e
(in

%
)

Spont. American English test

Read training Spont. training
Training register

Spont. Japanese test

Fig. S1. Average ABX error rates over all consonant and vowel contrasts obtained with each of our four Gaussian mixture models on each of the four test sets. Error bars
correspond to plus and minus one standard deviation of the errors across resampling of the test stimuli speakers. On all four test sets, ‘native’ models make fewer discrimination
errors than ‘non-native’ models, illustrating the robustness of the observed native advantage.

Thomas Schatz, Naomi H. Feldman, Sharon Goldwater, Xuan-Nga Cao and Emmanuel Dupoux 11 of 24



American English models
Japanese models

Read training Spont. training���
������������

A
BX

er
ro
rr

at
e
(in

%
)

[ɹ]-[l]
Read test stimuli

Read training Spont. training

[ɹ]-[l]
Spont. test stimuli

Read training Spont. training���
������������

A
BX

er
ro
rr

at
e
(in

%
)

[w]-[j]
Read test stimuli

Read training Spont. training

[w]-[j]
Spont. test stimuli

Read training Spont. training
Training register

���
������������

A
BX

er
ro
rr

at
e
(in

%
)

C-C
Read test stimuli

Read training Spont. training
Training register

C-C
Spont. test stimuli

Fig. S2. ABX error rates for the American English [ô]-[l] contrast and two controls: American English [w]-[j] and average over all American English consonant contrasts.
Error-rates are reported for each of the four trained Gaussian mixture models and each of the two American English test sets. Error bars correspond to plus and minus one
standard deviation of the errors across resampling of the test stimuli speakers. Results show that the specific deficit for American English [ô]-[l] discrimination for ‘Japanese’
models compared to ‘American English’ models is robustly observed across all training and test conditions.
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Fig. S3. Average ABX error rates over all consonant and vowel contrasts obtained with unsupervised Gaussian mixture models (GMM), with a supervised phoneme recogniser
baseline (HMM) and with an input features (MFCC) baseline, as a function of the match between the training set and test set language and register. Error bars correspond to
plus and minus one standard deviation of the errors across resampling of the test stimuli speakers. For both Gaussian mixture models and the phoneme recogniser baseline,
the ‘Native’ (blue) conditions, with training and test in the same language, show fewer discrimination errors than the ‘Non-native’ (red) conditions. Also, in both cases the
‘Native’ conditions show fewer errors than the input features baseline, while ‘non-native’ conditions show more errors. However, the native language effect (difference between
‘native’ and ‘non-native’ models) is bigger for the supervised than the unsupervised models. Also, whereas the unsupervised models generalise very well across registers, the
supervised models appear to overfit the training register.
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Fig. S4. Letter-value plots(76) of the distribution of ‘native’ advantages across all tested phonetic contrasts (pooled over both languages) for the unsupervised Gaussian mixture
models (GMM) and the supervised phoneme recogniser baseline (HMM). The native language advantage is the increase in discrimination error for a contrast of language L1
between a ‘L1-native’ model and a model trained on the other language, keeping the training register constant. The ‘native register’ advantage is the increase in error for a
contrast of register R1 between a ‘R1-native’ model and a model trained on the other register, keeping the training language constant. For both types of models and in all tested
cases, the reduction in the average discrimination error between ‘native language’ and ‘non-native language’ conditions is not driven by just a few contrasts. The ‘native register’
only seems to play a role for the supervised models. In particular supervised models trained on read speech appear to have trouble discriminating spontaneous speech stimuli,
while supervised models trained on spontaneous speech do not have problem discriminating read speech stimuli.
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Fig. S5. ABX error rates for the American English [ô]-[l] contrast and two controls: American English [w]-[j] and average over all American English consonant contrasts (C-C).
Error rates averaged over the two American English test sets and across model’s training registers are reported for the unsupervised Gaussian mixture models (GMM),
the supervised phoneme recogniser baseline (HMM) and the input features baseline. Error bars correspond to plus and minus one standard deviation of the errors across
resampling of the test stimuli speakers. The specific deficit for American English [ô]-[l] discrimination for ‘Japanese’ models compared to ‘American English’ models is observed
with both the unsupervised Gaussian mixtures and the supervised phoneme recognisers. The size of the deficit is larger for the supervised baseline, though, which we can
interpret as the unsupervised GMM models producing somewhat immature representations of speech, like those of human infants (37), while the supervised HMM models
produce more adult-like representations. Another interesting result is that the supervised American English models (‘native’ condition, in blue) do not outperform the input
features baseline in the supervised case and underperform it in the unsupervised case. This suggests that some of the detailed information relevant to discrimination that
was present in the input features was not preserved through the learning of a different representation of the speech signal in terms of discrete Gaussian components (see
Supplementary Discussion 3 for further discussion).
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Fig. S6. Dissimilarity between the trained models’ representation of a synthetized /ra/ stimulus and a synthetized /la/ stimulus as a function of the amount of input. These
stimuli are those used in the empirical study which showed the emergence of a cross-linguistic difference in discriminability of these stimuli between Japanese- and American
English-learning infants (29). For each selected duration (except when using the full training set), ten independent subsets are selected and ten independent models are
trained. Solid lines indicate the average dissimilarity, with error bands indicating plus or minus one standard deviation. The dissimilarity corresponds to the average of the
Kullback-Leibler divergence between posteriorgram representations of the stimuli along the dynamic time warping alignment path, expressed in bits (see Material and Methods).
As the amount of input data increases, there does not appear to be much of a change in the dissimilarity of the two stimuli for the Japanese models, whereas there is sharp
increase in dissimilarity for the American English models, especially between the 1-2h and 10-20h of training input. This is remarkably consistent with the empirically observed
behavior of infants tested with these stimuli: no significant change was observed in the ability of Japanese-learning infants to discriminate these stimuli between 6-8 and 10-12
months of age, whereas American English infants became better at it (29). The predicted cross-linguistic difference between American English and Japanese learners appears
to require more input to be observed reliably when testing the models with synthetic stimuli than with natural stimuli (cf. Figure 3).
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Fig. S7. As in Figure 4, with an additional ASR phone-state baseline (cf. Supplementary Materials and Methods 2). The Gaussian units in the learned (unsupervised) Gaussian
mixtures are more similar to the phone-state units than to the phoneme units in the supervised baseline, although some differences remain. Even though the phone states
are more numerous than the Gaussian components (a), they remain activated slightly longer on average (b) and they are better aligned with phonetic categories in terms of
linguistic content, both within-speakers (c) and across speakers (d).
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Fig. S8. Supporting evidence for Supplementary Materials and Methods 3. On the left hand side (‘Original analysis’ panel): acoustic (in)variance analysis for within speaker
stimuli as in Figure S7. On the right hand side (‘With flawed stimuli removed’ panel): same analysis with potentially mispronounced, noisy or misaligned stimuli (as identified
through a listening test, see Supplementary Materials and Methods 3) removed. Differences are barely visible and the overall pattern of results remains unchanged.
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Fig. S9. As in Figure 4, with results for models trained on 1/10th subsets of the full training sets added in baby blue (these models already show a reliable cross-linguistic
difference in [ô]-[l] discriminability between ‘American English’ and ‘Japanese’ models, see Figure 3(b)). For the duration and acoustic (in)variance analyses (panels b, c, d),
results are averaged over the ten such models trained for each training corpus before standard deviations are estimated. For the number of learned units analysis (panel a),
error bars show the standard deviations across the ten trained models. Models trained on 1/10th subsets learn much fewer categories (about one fourth as many). This
is closer to the typical number of phonemes or of phonetic categories one would expect in a language. Yet, these learned units remain qualitatively different from phonetic
categories as shown by the duration and acoustic (in)variance analyses (panels b, c, d). Although their average duration of activation are a few millisecond longer than for
models trained on the full training sets, this is still about one fourth of the average duration of speech segments corresponding to phonetic category units. The units learned
by the models trained on 1/10th subsets also appear slightly more acoustically invariant, with number of distinct units in the acoustic (in)variance tests about 80% that of
the models trained on the full training sets (panels c, d). This remains much more variable than the phoneme recognizer baseline, however. Furthermore, for the acoustic
(in)variance analysis we have applied a very generous correction for possible misalignment (see Supplementary Materials and Methods 3). This likely causes an overestimation
of the acoustic invariance for all the unsupervised models, as indicated by the results on Figure S10. Overall these analyses suggest that the failure of our models to learn
phonetic categories cannot be attributed solely to their learning of too many categories.
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Fig. S10. As in Figure S9 (c, d), but without applying a correction for possible misalignments of the forced-aligned phone centers (Supplementary Materials and Methods 3).
For the phoneme recognizer baseline, we see that the average number of distinct units for ten repetitions of a same word shows a small increase compared to the condition with
correction for misalignment, with up to about 33% more distinct units (which remains less than what was found for the unsupervised models, with correction). In contrast the
average number of distinct units more than doubles for our unsupervised models in all cases. This indicates that misalignment of the phone centers is not a very common
issue—as the phoneme recognizer baseline manages to find largely invariant units without any correction—suggesting that our main acoustic (in)variance analyses overestimate
the acoustic invariance of the units learned by our unsupervised models by a sizable margin.
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Fig. S11. As a convergence check, we plot the number of learned units (i.e. Gaussian components in the sampled mixture) as a function of the number of sampling iterations.
Confidence bands indicate mean +/- one standard deviation in number of learned units for models trained on independent subsets. For models trained on the full corpus no
confidence band is available. The number of learned units remains stable after about 600 iterations for all models we trained, suggesting 1500 iterations was enough for our
models to converge. For models trained on subsets of the full training set, we also see through the confidence bands that the number of learned categories does not depend a
lot on the particular subset selected. Finally, we see evidence that for models trained on small amounts of data, the size of the training set appears to predict the number of
learned units well, while for models trained on larger amounts of data, the precise nature of the training set appears to have a stronger effect. Models trained on similar amounts
of input (full training sets are about 20 hours long for models trained on read speech and about 10 hours long for model trained on spontaneous speech) learn similar number
of categories initially (for 1/1000th and 1/100th training subsets), but as the size of the training sets gets larger (starting with 1/10th training subsets), models trained
on Japanese result in larger number of learned categories than models trained on similar amount of American English. This suggests that the number of learned units for
the models trained on larger amounts—the models showing cross-linguistic differences in discrimination—does not simply reflect the amount of training input, but also the
qualitative characteristics of the training sets.
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