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Before they even speak, infants become attuned to the sounds of the language(s) they hear, processing native phonetic contrasts more easily than non-native ones (1-3). For example, between 6-8 months and 10-12 months, infants learning American English get better at distinguishing English [ô] and [l], as in 'rock' vs 'lock', relative to infants learning Japanese (4). Influential accounts of this early phonetic learning phenomenon initially proposed that infants group sounds into native vowel-and consonant-like phonetic categorieslike [ô] and [l] in English-through a statistical clustering mechanism dubbed 'distributional learning' (5-8). The feasibility of this mechanism for learning phonetic categories has been challenged, however (9-16). Here we demonstrate that a distributional learning algorithm operating on naturalistic speech can predict early phonetic learning as observed in Japanese and American English infants, suggesting that infants might learn through distributional learning after all. We further show, however, that contrary to the original distributional learning proposal, our model learns units too brief and too fine-grained acoustically to correspond to phonetic categories. This challenges the influential idea that what infants learn are phonetic categories. More broadly, our work introduces a novel mechanismdriven approach to the study of early phonetic learning, together with a quantitative modeling framework that can handle realistic input. This allows, for the first time, accounts of early phonetic learning to be linked to concrete, systematic predictions regarding infants' attunement.

eradicate these di culties [START_REF] Chen | Parallel inference of dirichlet process gaussian mixture models for unsupervised acoustic modeling: A feasibility study in[END_REF][START_REF] Chang | Parallel sampling of dp mixture models using sub-cluster splits in[END_REF][START_REF] Pk Kuhl | Phonetic learning as a pathway to language: new data and native language magnet theory expanded (nlm-e)[END_REF]. The main proposed explanations for this e ect revolve around the idea that adult speech perception involves a 'native filter': an automatic, involuntary and not very plastic mapping of each incoming sound, foreign or not, onto native phonetic categories, i.e. the vowels and consonants of the native language [START_REF] Dehaene-Lambertz | The human infant brain: A neural architecture able to learn language[END_REF][START_REF] Hermann | Multilingual bottleneck features for subword modeling in zero-resource languages[END_REF](27)(28)(29). American English [ô] and [l], for example, would be confused by Japanese listeners because their productions can be seen as possible realizations of the same Japanese consonant, giving rise to similar percepts after passing through the 'native Japanese filter'. Surprisingly, these patterns of perceptual confusion arise very early during language acquisition. Infants learning American English distinguish [ô] and [l] more easily than infants learning Japanese before they even utter their first word [START_REF] Lee | U-statistics: Theory and Practice[END_REF]. [START_REF] Guenther | The perceptual magnet e ect as an emergent property of neural map formation[END_REF] Dozens of other instances of such early phonetic learning have 22 been documented, whereby cross-linguistic confusion patterns 23 matching those of adults emerge during the first year of life 24 [START_REF] Flum | Parameterized Complexity Theory[END_REF][START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]30). These observations naturally led to the assump-25 tion that the same mechanism thought to be responsible for 26 adults' perception might be at work in infants, i.e. foreign 27 sounds are being mapped onto native phonetic categories. This 28 assumption-which we will refer to as the phonetic category 29 hypothesis-is at the core of the most influential theoretical 30 accounts of early phonetic learning (5-7, 25, 31).

31

The notion of phonetic category plays an important role 32 throughout the paper, so requires further definition. It has 33 been used in the literature exclusively to refer to vowel-or 34 consonant-like units. What that means varies to some extent 35 between authors, but there are at least two constant, defin-36 ing characteristics (32). First, phonetic categories have the 37 characteristic size/duration of a vowel or consonant, i.e. the 38 size of a phoneme, the 'smallest distinctive unit within the 39 structure of a given language' [START_REF] Rah Bion | Learning phonemic vowel length from naturalistic recordings of Japanese infant-directed speech[END_REF]33). This can be contrasted 40 with larger units like syllables or words and smaller units like 

Significance Statement

Infants become attuned to the sounds of their native language(s) before they even speak. Hypotheses about what is being learned by infants have traditionally driven researchers' attempts to understand this surprising phenomenon. Here, we propose to start instead from hypotheses about how infants might learn. To implement this mechanism-driven approach, we introduce a quantitative modeling framework based on largescale simulation of the learning process on realistic input. It allows, for the first time, learning mechanisms to be systematically linked to testable predictions regarding infants' attunement to their native language(s). Through this framework, we obtain evidence for an account of infants' attunement that challenges established theories about what infants are learning.
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they may be less abstract than phonemes -retain a degree of abstractness and never refer to a single acoustic exemplar. For example, we would expect a given vowel or consonant in the middle of a word repeated multiple times by the same speaker to be consistently realized as the same phonetic category, despite some acoustic variation across repetitions. Finally, an added characteristic in the context of early phonetic learning is that phonetic categories are defined relative to a language.

What might count as exemplars from separate phonetic categories for one language, might belong to the same category in another.

The phonetic category hypothesis-that infants learn to process speech in terms of the phonetic categories of their native language-raises a question. How can infants learn about these phonetic categories so early? The most influential proposal in the literature has been that infants form phonetic categories by grouping the sounds they hear on the basis of how they are distributed in a universal (i.e. languageindependent) perceptual space, a statistical clustering process dubbed 'distributional learning' [START_REF] Mcmurray | Statistical learning of phonetic categories: insights from a computational approach[END_REF][START_REF] Adriaans | Distributional learning of vowel categories is supported by prosody in infant-directed speech in[END_REF]34,35).

Serious concerns have been raised regarding the feasibility of this proposal, however [START_REF] Nh Feldman | A role for the developing lexicon in phonetic category acquisition[END_REF]36). Existing phonetic category accounts of early phonetic learning assume that speech is being represented phonetic segment by phonetic segment-i.e. for each vowel and consonant separately-along a set of languageindependent phonetic dimensions [START_REF] Mh Coen | Self-supervised acquisition of vowels in american english[END_REF][START_REF] Vallabha | Unsupervised learning of vowel categories from infant-directed speech[END_REF][START_REF] Dehaene-Lambertz | The human infant brain: A neural architecture able to learn language[END_REF]). † Whether it is possible for infants to form such a representation in a way that would enable distributional learning of phonetic categories is questionable, for at least two reasons. First, there is a lack of acoustic-phonetic invariance (37)(38)(39): there is not a simple mapping from speech in an arbitrary language to an underlying set of universal phonetic dimensions that could act as reliable cues to phonetic categories. Second, phonetic category segmentation-finding reliable language-independent cues to boundaries between phonetic segments (i.e. individual vowels and consonants)-is a hard problem (37). It is clear that finding a solution to these problems for a given language is ultimately feasible, as literate adults readily solve them for their native language. Assuming that infants are able to solve them from birth in a language-universal fashion is a much stronger hypothesis, however, with little empirical support.

Evidence from modeling studies reinforces these concerns. Initial modeling work investigating the feasibility of learning phonetic categories through distributional learning sidestepped the lack of invariance and phonetic category segmentation problems by focusing on drastically simplified learning conditions (40)(41)(42)(43)(44)(45), but subsequent studies considering more realistic variability have failed to learn phonetic categories accurately [START_REF] Jones | Learning vowel categories from maternal speech in gurindji kriol[END_REF][START_REF] Nh Feldman | A role for the developing lexicon in phonetic category acquisition[END_REF][START_REF] Frank | Weak semantic context helps phonetic learning in a model of infant language acquisition in Proc. ACL[END_REF][START_REF] Adriaans | Prosodic exaggeration within infant-directed speech: Consequences for vowel learnability[END_REF]46,47) (see Supplementary Discussion 1). These results have largely been interpreted as a challenge to the idea that distributional learning is how infants learn phonetic categories. Additional learning mechanisms tapping into other sources of information plausibly available to infants have been proposed (9-12, 14, 15, 36, 46, 47), but existing feasibility results for such complementary mechanisms still assume that the phonetic category segmentation problem has somehow been solved and do not consider the full variability of For example, the same phoneme might be realized as different phonetic categories depending on the preceding and following sounds or on characteristics of the speaker. † In some accounts, the phonetic dimensions are assumed to be 'acoustic' [START_REF] Dehaene-Lambertz | The human infant brain: A neural architecture able to learn language[END_REF]-e.g. formant frequencies-in other they are 'articulatory' (6)-e.g. the degree of vocal tract opening at a constriction-and some accounts remain noncommittal [START_REF] Vallabha | Unsupervised learning of vowel categories from infant-directed speech[END_REF].

natural speech [START_REF] Jones | Learning vowel categories from maternal speech in gurindji kriol[END_REF][START_REF] Nh Feldman | A role for the developing lexicon in phonetic category acquisition[END_REF][START_REF] Frank | Weak semantic context helps phonetic learning in a model of infant language acquisition in Proc. ACL[END_REF][START_REF] Adriaans | Prosodic exaggeration within infant-directed speech: Consequences for vowel learnability[END_REF]43,(46)(47)(48). Attempts to extend 101 them to more realistic learning conditions have failed [START_REF] Rasilo | Feedback and imitation by a caregiver guides a virtual infant to learn native phonemes and the skill of speech inversion[END_REF][START_REF] Adriaans | E ects of consonantal context on the learnability of vowel categories from infant-directed speech[END_REF] 102 (see Supplementary Discussion 1).

103

Here, we propose a di erent interpretation for the observed 104 di culty in forming phonetic categories through distributional 105 learning: it might indicate that what infants learn are not 106 phonetic categories. We are not aware of empirical results 107 establishing that infants learn phonetic categories, and indeed, 108 the phonetic category hypothesis is not universally accepted. 109 Some of the earliest accounts of early phonetic learning were 110 based on syllable-level categories and/or on continuous rep-111 resentations without any explicit category representations ‡ 112 (49)(50)(51)(52). Although they appear to have largely fallen out of 113 favor, we know of no empirical findings refuting them.

114

We present evidence in favor of this alternative interpreta-115 tion, first by showing that a distributional learning mechanism 116 applied to raw, unsegmented, unlabeled continuous speech 117 signal predicts early phonetic learning as observed in Ameri-118 can English-and Japanese-learning infants-thereby providing 119 the first realistic proof of feasibility for any account of early 120 phonetic learning. We then show that the speech units learned 121 through this mechanism are too brief and too acoustically 122 variable to correspond to phonetic categories.

123

We rely on two key innovations. First, whereas previous 124 studies followed an outcome-driven approach to the study 125 of early phonetic learning-starting from assumptions about 126 what was learned, before seeking plausible mechanisms to 127 learn it-we adopt a mechanism-driven approach-focusing 128 first on the question of how infants might plausibly learn 129 from realistic input, and seeking to characterize what was 130 learned only a posteriori. Second, we introduce a quantitative 131 modeling framework suitable to implement this approach at 132 scale using realistic input. This involves explicitly simulating 133 both the ecological learning process taking place at home and 134 the assessment of infants' discrimination abilities in the lab.

135

Beyond the immediate results, the framework we introduce 136 is the first to provide a feasible way of linking accounts of 137 early phonetic learning to systematic predictions regarding the 138 empirical phenomenon they seek to explain, i.e. the observed 139 cross-linguistic di erences in infants' phonetic discrimination. 140

Approach 141

We start from a possible learning mechanism. We simulate 142 the learning process in infants by implementing this mecha-143 nism computationally and training it on naturalistic speech 144 recordings in a target language-either Japanese or American 145 English. This yields a candidate model for the early phonetic 146 knowledge of, say, a Japanese infant. Next, we assess the 147 model's ability to discriminate phonetic contrasts of Amer-148 ican English and Japanese-for example American English 149 [ô] vs [l]-by simulating a discrimination task using speech 150 stimuli corresponding to this contrast. We test whether the 151 predicted discrimination patterns agree with the available em-152 pirical record on cross-linguistic di erences between American 153 ‡ Note that the claims in all the relevant theoretical accounts are for the formation of explicit representations, in the sense that they are assumed to be available for manipulation by downstream cognitive processes at later developmental stages (see e.g. ( 7)). Thus, even if one might be tempted to say that phonetic categories are implicitly present in some sense in a representation-for example in a continuous representation exhibiting sharp increases in discriminability across phonetic category boundaries (49)-unless a plausible mechanism by which downstream cognitive processes could explicitly read out phonetic categories from that representation is provided, together with evidence that infants actually use this mechanism, this would not be sufficient to support the early phonetic category acquisition hypothesis. English-and Japanese-learning infants. Finally, we investigate whether what has been learned by the model corresponds to the phonetic categories of the model's 'native' language (i.e.
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its training language).

To identify a promising learning mechanism, we build on recent advances in the field of machine learning, and more specifically in unsupervised representation learning for speech technology, which have established that, given only raw, untranscribed, unsegmented speech recordings, it is possible to learn representations that accurately discriminate the phonetic categories of a language (53)(54)(55)(56)(57)(58)(59)(60)(61)(62)(63)(64)(65)(66)(67)[START_REF] Jc Whittington | The tolman-eichenbaum machine: Unifying space and relational memory through generalisation in the hippocampal formation[END_REF][START_REF] Frith | Making up the mind: How the brain creates our mental world[END_REF](70). The learning algorithms considered have been argued to be particularly relevant for modeling how infants learn in general, and learn language in particular (71). Among available learning algorithms, we select the one at the core of the winning entries in the Zerospeech 2015 and 2017 international competitions in unsupervised speech representation learning (58,59,[START_REF] Frith | Making up the mind: How the brain creates our mental world[END_REF]. Remarkably, it is based on a Gaussian mixture clustering mechanism-illustrated in Figure 1 (a)-that can straightforwardly be interpreted as a form of distributional learning [START_REF] Mcmurray | Statistical learning of phonetic categories: insights from a computational approach[END_REF][START_REF] Adriaans | Distributional learning of vowel categories is supported by prosody in infant-directed speech in[END_REF]. A di erent input representation to the Gaussian mixture is used than in previously proposed implementations of distributional learning, however [START_REF] Jones | Learning vowel categories from maternal speech in gurindji kriol[END_REF][START_REF] Nh Feldman | A role for the developing lexicon in phonetic category acquisition[END_REF][START_REF] Frank | Weak semantic context helps phonetic learning in a model of infant language acquisition in Proc. ACL[END_REF]40,42,44,45). Simple descriptors of the shape of the speech signal's short-term auditory spectrum sampled at regular points in time (every 10ms) (72) , rather than simply being assigned to the most § There was a previous attempt to model infant phonetic learning from such spectrogram-like auditory representations of continuous speech [START_REF] Miyazawa | Unsupervised learning of vowels from continuous speech based on self-organized phoneme acquisition model[END_REF]74), but we are the first to combine this modeling approach with a suitable evaluation methodology. To simulate the infants' learning process, we expose the 195 selected learning algorithm to a realistic model of the linguistic 196 input to the child, in the form of raw, unsegmented, untran-197 scribed, multi-speaker continuous speech signal in a target 198 language (either Japanese or American English). We select 199 recordings of adult speech made with near field, high quality 200 microphones in two speech registers which cover the range of 201 articulatory clarity that infants may encounter. On one end of 202 the range, we use spontaneous adult directed speech, and on 203 the other, we use read speech; these two speaking registers are 204 crossed with the language factor (English, Japanese), resulting 205 in four corpora, each split into a training set and a test set 206 (Table 1). We would have liked to use recordings made in 207 infant's naturalistic environments, but no such dataset of suf-208 ficient audio quality was available for this study. It is unclear 209 whether or how using infant-directed speech would impact re-210 sults: the issue of whether infant directed speech is beneficial 211 for phonetic learning has been debated, with arguments in 212 both directions (76)[START_REF] Fernald | Speech to infants as hyperspeech: Knowledge-driven processes in early word recognition[END_REF][START_REF] Mcmurray | Infant directed speech and the development of speech perception: Enhancing development or an unintended consequence?[END_REF][START_REF] Cristia | The hyperarticulation hypothesis of infant-directed speech[END_REF][START_REF] Martin | Mothers speak less clearly to infants than to adults: A comprehensive test of the hyperarticulation hypothesis[END_REF][START_REF] Ludusan | Motif discovery in infant-and adult-directed speech in[END_REF][START_REF] Eaves | Infant-directed speech is consistent with teaching[END_REF][START_REF] Guevara-Rukoz | Are words easier to learn from infant-than adult-directed speech? a quantitative corpus-based investigation[END_REF]. We train a separate model for each 213 of the four training sets, allowing us to check that our results 214 hold across di erent speech registers and recording conditions. 215 We also train separate models on 10 subsets of each training 216 set for several choices of subset sizes, allowing us to assess the 217 e ects of varying the amount of input data and the variability 218 due to the choice of training data for a given input size.
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English-learning infants, respectively, and whether they make see that the representations learned in our simulations already fail these tests, more fine-grained assessments will not be required.

For example, in the American English word 'top' the phoneme /t/ is realized as an aspirated consonant [t h ] (i.e. there is a slight delay before the vocal folds start to vibrate after the consonant), whereas in the word 'stop' it is realized as a regular voiceless consonant [t], which might be considered to correspond to a different phonetic category than [t h ].

central phone in the same word repeated several times by the same speaker is expected to be consistently realized as the same phonetic category. Our acoustic (in)variance test probes this by counting the number of distinct representations needed by our model to represent ten occurrences of the central frame of the central phone of the same word either repeated by the same speaker (within speaker condition) or by di erent speakers (across speaker condition). We use a generous correction to handle possible misalignment (see Materials and Methods). The last two tests can be related to the phonetic category segmentation and lack of invariance problems: solving the phonetic category segmentation problem involves finding units that would pass the duration test, while solving the lack of invariance problem involves finding units that would pass the acoustic (in)variance test. Given the laxity in the use of the concept of phonetic category in the literature, some might be tempted to challenge that even these diagnostic tests can be relied on. If they cannot, however, it is not clear to us how phonetic category accounts of early phonetic learning should be understood as scientifically refutable claims.

Results

Overall discrimination. After having trained a separate model for each of the four possible combinations of language and register, we test whether the models' overall discrimination abilities, like those of infants [START_REF] Flum | Parameterized Complexity Theory[END_REF][START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]30), are specific to their 'native' (i.e. training) language. Specifically, for each corpus, we look at overall discrimination errors averaged over all consonant and vowel contrasts available in a held-out test set from that corpus (See Table 1). We tested each of the two American English-trained and each of the two Japanese-trained models on each of four test sets, yielding a total of 4◊4 discrimination errors. We tabulated the average errors in terms of 4 conditions depending on the relation between the test set and the training background of the model: native versus non-native contrasts and same versus di erent register. The results are reported in Figure 2 (see also Figures S1,S4 for non-tabulated results). Panel (a) shows that discrimination performance is higher on average in matched-language conditions (in blue) than in mismatched-language conditions (in red). In contrast, register mismatch has no discernible impact on discrimination performance. A comparison with a supervised phoneme recognizer baseline (Figure S3) shows a similar pattern of results, but with a larger absolute cross-linguistic di erence. If we interpret this supervised baseline as a proxy to the adult state, then our model suggests that infant's phonetic representations, while already language-specific, remain 'immature'. Panel (b) shows the robustness of these results, with 81.7% of the 1295 distinct phonetic contrasts tested proving easier to discriminate on the basis of representations from a model trained on the matching language. Taken together, these results suggest that, similar to infants, our models acquire language-specific representations, and that these representations generalize across register.

American English [ô]-[l] discrimination. Next, we focus on the specific case of American English [ô]-[l] discrimination, for which Japanese adults show a well-documented deficit [START_REF] Antetomaso | Modeling phonetic category learning from natural acoustic data[END_REF][START_REF] Miyazawa | Unsupervised learning of vowels from continuous speech based on self-organized phoneme acquisition model[END_REF] and which has been studied empirically in American English and Japanese infants (4). While 6-to 8-month-old infants This is compatible with empirical evidence that phonetic learning continues into childhood well beyond the first year (see [START_REF] Burnham | Developmental loss of speech perception: Exposure to and experience with a first language[END_REF] and that this divergence increases with exposure to the native 367 language. While it is di cult to interpret this trajectory relative to absolute quantities of data or discrimination scores, the fact that the cross-linguistic di erence increases with more data mirrors the empirical findings from infants (see also an extended discussion of our approach to interpreting the simulated discrimination errors and relating them to empirical data in Supplementary Discussion 3).

Nature of the learned representations. Finally, we consider the nature of the learned representations and test whether what has been learned can be understood in terms of phonetic categories. Results are reported in Figure 4 (see also Figure S7 for comparisons with a di erent supervised baseline). First, looking at the category number criterion in Figure 4 (a), we see that our models learned more than ten times as many categories as the number of phonemes in the corresponding languages. Even allowing for notions of phonetic categories more granular than phonemes, we are not aware of any phonetic analysis ever reporting that many allophones in these languages. Second, looking at the duration criterion in Figure 4 (b), the learned Gaussian units appear to be activated on average for about a quarter the duration of a phoneme. This is shorter than any linguistically identified unit. It shows that the phonetic category segmentation problem has not been solved. Next, looking at the acoustic (in)variance criterion in Figure 4 (c) and (d)-for the within and across speakers conditions, respectively-we see that our models require on average around two distinct representations to represent ten tokens of the same phonetic category without speaker variability, and three distinct representations across di erent speakers. The supervised phoneme recognizer baseline establishes that our results cannot be explained by defective test stimuli. Instead, this result shows that the learned units are finer-grained than phonetic categories along the spectral axis, and that the lack of invariance problem has not been solved. Based on these tests, we can conclude that the learned units do not correspond to phonetic categories in any meaningful sense of the term.

Discussion

Through explicit simulation of the learning process under realistic learning conditions, we showed that several aspects of early phonetic learning as observed in American English and Japanese infants can be correctly predicted through a distributional learning (i.e. clustering) mechanism applied to simple spectrogram-like auditory features sampled at regular time intervals. This is the first time that a potential mechanism for early phonetic learning is shown to be feasible under realistic learning conditions. We further showed that the learned speech units are too brief and too acoustically variable to correspond to the vowel-and consonant-like 'phonetic categories' posited in earlier accounts of early phonetic learning.

Distributional learning has been an influential hypothesis in language acquisition for over a decade [START_REF] Mcmurray | Statistical learning of phonetic categories: insights from a computational approach[END_REF][START_REF] Adriaans | Distributional learning of vowel categories is supported by prosody in infant-directed speech in[END_REF]35). Previous modeling results questioning the feasibility of learning phonetic categories through distributional learning have traditionally been interpreted as challenging the learning mechanism (9-12, 14, 15, 36, 46, 47), but we have instead suggested that such results may be better interpreted as challenging the idea that phonetic categories are the outcome of early phonetic learning. Supporting this view, we showed that when the requirement to learn phonetic categories is abandoned,
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Read speech models Spontaneous speech models American English models Japanese models

ABX error rate (in %) [ɹ]-[l] [w]-[j] C-C ABX error rate (in %) Read test stimuli American English [ɹ]-[l] Read test stimuli American English [w]-[j] 1min 10min 1h 10h
Training set size ABX error rate (in %) Error rates are reported for two conditions: average over models trained on American English and average over models trained on Japanese. Error bars correspond to plus and minus one standard deviation of the errors across resampling of the test stimuli speakers. Similar to infants, the Japanese 'native' models exhibit a specific deficit for American English [ô]-[l] discrimination compared to the 'American English' models. (b) The robustness of the effect observed in panel (a) to changes in the training stimuli and their dependence on the amount of input are assessed by training separate models on independent subsets of the training data of each corpus of varying duration (see Materials and Methods). For each selected duration (except when using the full training set), ten independent subsets are selected and ten independent models are trained. We report mean discrimination errors for American English accounts furthermore assumed these features to be available 455 phonetic segment by phonetic segment (i.e. for each vowel and consonant separately) (5-7, 25, 31). While these assumptions are attractive from an outcome-driven perspective-they connect transparently to phonological theories in linguistics and theories of adult speech perception that assume a decomposition of speech into phoneme-sized segments defined in terms of abstract phonological features-from a mechanism-driven perspective, both assumptions are di cult to reconcile with the continuous speech signal that infants hear. The lack of acoustic-phonetic invariance problem challenges the idea of phonetic feature detectors, and the phonetic category segmentation problem challenges the idea that the relevant features are segment-based (37)(38)(39). The proposed account does not assume either problem to be solved by infants at birth. Instead, it relies on basic auditory abilities that are available to neonates (75), using simple auditory descriptors of the speech spectrum obtained regularly along the time axis. This type of spectrogram-like representation is e ective in speech technology applications (72) and can be seen as the output of a simple model of the peripheral auditory system (91, chap.

Spont. test stimuli American English [ɹ]-[l]
3), which is fully operational shortly after birth (75). Such representations have also been proposed before as an e ective way to get around both the lack of invariance and the phonetic category segmentation problems in the context of adult word recognition (37) and can outperform representations based on traditional phonetic measurements (like formant frequencies) as predictors of adult speech perception (106-110).

While the input representation is di erent, the learning mechanism in the proposed account-distributional learningis similar to what had originally been proposed in phonetic proposes that infants learn in parallel about the phonetics, 518 word-forms, and phonology of their native language, but do 519 not develop abstract phonemic representations until well into their second year of life. Although PRIMIR explicitly assumes phonetic learning to be phonetic category learning, other aspects of their proposed framework do not depend on that assumption, and our framework may be able to stand in for the phonetic learning process they assume.

To sum up, we introduced and motivated a new account of early phonetic learning and showed that it is feasible under realistic learning conditions, which cannot be said of any other account at this time. Importantly, this does not constitute decisive evidence for our account over alternatives. Our primary focus has been on modeling cross-linguistic di erences in the perception of one contrast, [ô]-[l]; further work is necessary to determine to what extent our results extend to other contrasts and languages (111). Furthermore, an absence of feasibility proof does not amount to a proof of infeasibility. While we have preliminary evidence that simply forcing the model to learn fewer categories is unlikely to be su cient (Figures S9 and S10), recently proposed partial solutions to the phonetic category segmentation problem (e.g. (112-114)) and to the lack of invariance problem (115) (see also Supplementary Discussion 2 regarding the choice of model initialization) might yet lead to a feasible phonetic category-based account, for example. In addition, a number of other representation learning algorithms proposed in the context of unsupervised speech technologies and building on recent developments in the field of machine learning have yet to be investigated (53)(54)(55)(56)(57)(58)(59)(60)(61)(62)(63)(64)(65)(66)(67)[START_REF] Jc Whittington | The tolman-eichenbaum machine: Unifying space and relational memory through generalisation in the hippocampal formation[END_REF][START_REF] Frith | Making up the mind: How the brain creates our mental world[END_REF](70). They might provide concrete implementations of previously proposed accounts of early phonetic learning or suggest new ones altogether. This leaves us with a large space of appealing theoretical possibilities, making it premature to commit to a particular account. Candidate accounts should instead be evaluated on their ability to predict empirical data on early phonetic learning, which brings us to the second main S1 (see also Supplementary Discussion 5). ideally be compared (e.g. testing di erent parameter settings for the input representations or the clustering algorithm), as implementational choices that weren't initially considered to be important might nevertheless have an e ect on the resulting predictions and thus need to be included in our theories. Conversely, features of the model that may seem important a priori (e.g. the type of clustering algorithm used) might turn out to have little e ect on the learning outcomes in practice.

Cognitive science has not traditionally made use of such large-scale modeling, but recent advances in computing power, large datasets, and machine learning algorithms make this approach more feasible than ever before (71). Together with ongoing e orts in the field to collect empirical data on a large scale-such as large-scale recordings of infants' learning environment at home (117) and large-scale assessment of infants' learning outcomes (118, 119)-our modeling approach opens the path towards a much deeper understanding of early language acquisition.

Materials and Methods

Datasets. We used speech recordings from four corpora: two corpora of read news articles-a subset of the Wall Street Journal corpus of American English (84) (WSJ) and the Globalphone corpus of Japanese (85) (GPJ)-and two corpora of spontaneous speech-the Buckeye corpus of American English (86) (BUC) and a subset of the corpus of spontaneous Japanese (87) (CSJ). As we are primarily interested in the e ect of training language on discrimination abilities, we sought to remove possibly confounding di erences between the two read corpora and between the two spontaneous corpora. Specifically, we randomly sampled sub-corpora while matching total duration, number and gender of speakers and amount of speech per speaker. We made no e ort to match corpora within a language, as the di erences (for example in the total duration and number of speakers) only serve to reinforce the generality of any result holding true for both registers. Each of the sampled subsets was further randomly divided into a training and a test set (see Table 1), satisfying three conditions: the test set lasts approximately ten hours; no speaker is present in both the training and test set; the training and test sets for the two read corpora, and separately for the two spontaneous corpora, remain matched on overall duration, number of speakers of each gender and distribution of duration per speaker of each gender. To carry out analyses taking into account the e ect of input size and of the choice of input data, we further divided each training set in ten with each 1/10 th subset containing an equal proportion of the speech samples from each speaker in the original training set. We then divided each of the 1/10 th subset in ten again following the same procedure and select the first subset to obtain ten 1/100 th subsets. Finally, we iterated the procedure one more time to obtain ten 1/1000 th subsets. See Supplementary Materials and Methods 1 for additional information.

Signal processing, models and inference. The raw speech signal is decomposed into a sequence of overlapping 25ms-long frames sampled every 10ms and moderate-dimensional (d=39) descriptors of the spectral shape of each frame are then extracted, describing how energy in the signal spreads across di erent frequency channels. The descriptors are comprised of 13 mel-frequency cepstral coecients (MFCC) with their first and second time derivatives. These coe cients correspond approximately to the principal components of spectral slices in a log-spectrogram of the signal, where the spectrogram frequency channels are selected on a mel frequency scale (linear for lower frequency and logarithmic for higher frequencies, matching the frequency selectivity of the human ear).

For each corpus, the set of all spectral-shape descriptors for the corpus' training set is modeled as a large i.i.d. sample from a probabilistic generative model. The generative model is a Gaussian mixture model with no restrictions on the form of covariance matrices and with a Dirichlet process prior over its parameters with 
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As a baseline, we also train a phoneme recognizer on the training set of each corpus, with explicit supervision (i.e. phonemic transcriptions of the training stimuli). We extract frame-level posterior probabilities at two granularity levels: actual phonemes-the Model representations are extracted for the whole test sets, and the part corresponding to a specific occurrence of a phonetic category is then obtained by selecting representation frames centered on time points located between the start and end times for that occurrence, as specified by the test set's forced aligned phonemic transcriptions. Given model representations = (" 1 , " 2 , ..., "n " ) and = (› 1 , › 2 , ..., ›n › ) for n " tokens of phonetic category " and n › tokens of phonetic category ›, the non-symmetrized Machine ABX discrimination error between " and › is then estimated as the proportion of representation triplets a, b, x, with a and x taken from and b taken from , such that x is closer to b than to a, i.e.: 
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To study average durations of activation we exclude any 765 utterance-initial or utterance-final silence from the analysis, as well 766 as any utterance for which utterance-medial silence was detected 767 during the forced alignment. The average duration of activation for 768 a given unit is computed by averaging over all episodes in the test 769 utterances during which that unit becomes dominant, i.e. has the 770 highest posterior probability among all units. Each of these episodes 771 is defined as a continuous sequence of speech frames during which 772 the unit remains dominant without interruptions, with duration 773 equal to that number of speech frames times 10ms.

774

The acoustic (in)variance of the learned units is probed by 775 looking at multiple repetitions of a single word and testing whether 776 the dominant unit at the central frame of the central phone of the 777 word remains the same for all repetitions. Specifically, we count 778 the number of distinct dominant units occurring at the central 1. Datasets. The BUC and GPJ corpora annotations present a number of inconsistencies and were curated in-house. In particular, readers for the GPJ corpus often need several takes before they read an utterance correctly and the failed takes are included in the original corpus. We only keep the final take for each sentence. For the two spontaneous speech corpora, we keep disfluencies typical of spontaneous speech (such as hesitations, word fragments, pronunciation errors, fillers, etc.), but remove parts that were not phonetically transcribed or that include other kinds of noise or silence (96.11% and 80.38% of all utterances are kept for the BUC and CSJ corpora, respectively).

Phonetic transcriptions for the two read speech corpora are obtained by combining the read text with a phonetic dictionary. For the two spontaneous speech corpora, a manual phonetic transcription of the recordings is used. Word units, which are not directly apparent in the Japanese writing system, are obtained from the phonetic transcriptions by a Japanese morphological parser for the read Japanese corpus. For the spontaneous Japanese corpus, we use the provided 'Long Word Units' as words.

We exclude phonemes occurring with frequency less than 1 in 10,000 by removing any utterance in which they occur and we harmonize the transcriptions in order to have the same phonemic inventory for the read and spontaneous corpora for each language. No phonemes are excluded for the American English corpora. For the Japanese corpora, a few geminate consonants are excluded (/b:/, /z:/, /h:/, /d:/, /˝:/, /g:/, /F:/ for both corpora and /µ:/ for the GPJ corpus only). The retained phonemic inventory for American English consists of 24 consonants (/p/, /t/, /k/, /b/, /d/, /g/, /f/, /v/, /T/, /D/, /s/, /z/, /S/, /Z/, /Ù/, /Ã/, /m/, /n/, /N/, /h/, /ô/, /l/ /w/, /j/) and 15 vowels (/I/, /i:/, /E/, /2/, /Ç/, /ae/, /A:/, /O:/, /U/, /u:/, /eI/, /aI/, /aU/, /OI/, /oU/). The retained phonemic inventory for Japanese consists of 27 consonants (/p/, /t/, /k/, /p:/, /t:/, /k:/, /b/, /d/, /g/, /s/, /C/, /s:/, /C:/, /z/, /˝/, /µ/, /µ:/, /tC/, /tC:/, /m/, /n/, //, /h/, /F/, /r/, /w/, /j/) and 10 vowels (/ä/, /e/, /i/, /o/, /W/, /ä:/, /e:/, /i:/, /o:/, /W:/). For each corpus, timestamps are obtained for the phonetic transcriptions through forced alignment with an automatic speech recognition (ASR) system (same architecture for the acoustic model as for the phoneme recognizer baseline described in Section 2 below, trained on the full corpus). The trained acoustic and language models are combined (with kaldi acoustic scale parameter set to 0.1) to obtain representations of test stimuli (possibly in a 'foreign' language) under the form of a sequence of frame-level Viterbi-smoothed posterior probability vectors. We extract frame-level posterior probabilities at two granularity levels: actual phonemes-to which we refer as the phoneme recognizer baseline-and individual states of the contextual hidden Markov models-to which we refer as the ASR phone state baseline.

Analysis of learned representations.

Correction for possible misalignment in the acoustic (in)variance test.

We compensate for possible misalignment of the central phones' central frames by allowing the dominant unit at the central frame to be replaced by any unit that was dominant at some point within the previous or following 46ms, provided this brings down the overall count of distinct dominant units for the ten occurrences. Finding the optimal way to assign dominant units under this constraint corresponds to solving an instance of the NP-complete minimal hitting set size problem [START_REF] Flum | Parameterized Complexity Theory[END_REF]. We are able to solve the problem exactly in most cases, due to the small size of the considered instances. In the few cases where we are not able to solve the problem exactly, our solver provides a lower bound on the number of representations and we use a greedy search to obtain an upper bound. Although the e ect on the results is very small, we report lower bounds for the Gaussian mixture models and upper bounds for the phoneme recognizer and ASR phone state baselines, in order to be maximally conservative.

Stimulus selection for the acoustic (in)variance test.

To avoid potentially mispronounced short function words and possible co-articulation e ect across word boundaries, for the acoustic (in)variance test, we select only words of at least five phonemes and study their central phoneme(s). We sample uniformly at random a subset of ten occurrences (by a single speaker or by at least ten distinct speakers, depending on the condition) for each such word with enough repetitions in the test set. We report results averaged over ten independent runs of this stimulus sampling procedure. The results are also averaged over the two possible 'central phone' positions for words of even length and-in the within-speaker condition-over all available speakers for a given word type. This yields one average number of distinct dominant units per tested word type. The number This stimulus selection procedure was only applied for the acoustic (in)variance test and has the effect of making the test more conservative-i.e. the learned representations would look even more variable without this restriction. Other analyses were not restricted to such words, and all model training was carried out with unfiltered continuous speech that contained words of all different lengths in unsegmented whole sentences.
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Thomas Schatz, Naomi H. Feldman, Sharon Goldwater, Xuan-Nga Cao and Emmanuel Dupoux of available word types matching the specified conditions is 13 (within speaker) and 476 (across speaker) for the American English test stimuli and 83 (within speaker) and 408 (across speaker) for the Japanese test stimuli. As an example, here are the word types selected for the within-speaker American English condition: unquote, billion, dollars, hundred, company, market, million, mister, nineteen, percent, seven, seventy, thousand. For the within-speaker condition, we additionally listened to each test stimulus to identify potential mispronounced, noisy or misaligned stimuli and we checked that excluding these stimuli from the analysis (0/83 word types, 4/1048 word tokens excluded for American English; 14/168 word types, 204/2217 word tokens excluded for Japanese) did not a ect the overall pattern of results (Figure S8).

4. Deriving systematic model predictions. We systematically seek phonetic contrasts of American English and of Japanese for which the learning mechanism under study robustly predicts a significant cross-linguistic di erence in discrimination between Japanese-and American English-learning infants. By robust we mean that (a) a significant di erence in discrimination errors between models trained on American English and Japanese is consistently found across possible choices for the training and test registers, and (b) that the magnitude of this di erence does not decrease when the amount of training input is increased.

The former criterion allows us to rule out e ects that would reflect peculiarities of the training and/or test stimuli rather than an intrinsic property of the language pair under study. The latter criterion allows us to rule out transient e ects that might reflect peculiarities of the model initialization and/or be unlikely to be observed empirically.

We define the predicted cross-linguistic e ect for a phonetic contrast as the expected di erence in average ABX discrimination error between an 'American English-native' and a 'Japanese-native' model on that contrast, where the expectation is taken over the choice of American English model, Japanese model, test speaker, phonetic context, and choice of the a, b, and x acoustic tokens given the contrast, speaker and phonetic context. For each contrast, we perform statistical significance tests separately for each of the 8 possible combinations of training register for the American English model, training register for the Japanese model, and test register. We use the models trained on the 1/10 th training sets of each corpus for these significance tests, which allows us to take into account variance due to the model training procedure (including the choice of input data) in addition to that due to the choice of test stimuli. We estimate the predicted cross-linguistic e ect and its variance and use those estimates to conduct asymptotic bilateral z-tests of the hypothesis that the cross-linguistic e ect is di erent from 0. We also estimate the e ects (but not the variances) using the full training sets, which allows us to test whether the observed e ects increase (in absolute value) with the amount of input data. We report a robust predicted cross-linguistic e ect for a contrast if In what follows, we first formally define the predicted cross-linguistic e ect for a phonetic contrast P1, P2. We then discuss how to estimate the e ect in practice from finite samples of models trained on Japanese and trained on American English, and finite samples of test acoustic tokens from phonetic categories P1 and P2. Finally, we explain in detail how the statistical significance of the estimated e ects can be assessed.

E ect of interest.

We are interested in the predicted cross-linguistic e ect for a phonetic contrast P1, P2, i.e. the expected di erence in average ABX discrimination error between a model trained on language L1 and a model trained on language L2, which we denote as "(P1, P2, L1, L2) and define formally below. of these results to more realistic learning conditions have failed [START_REF] Rah Bion | Learning phonemic vowel length from naturalistic recordings of Japanese infant-directed speech[END_REF][START_REF] Antetomaso | Modeling phonetic category learning from natural acoustic data[END_REF]. The few studies that attempted to model infant phonetic learning from naturalistic, unsegmented speech input remained inconclusive for lack of a suitable evaluation method [START_REF] Miyazawa | Unsupervised learning of vowels from continuous speech based on self-organized phoneme acquisition model[END_REF][START_REF] Miyazawa | The multi timescale phoneme acquisition model of the self-organizing based on the dynamic features in[END_REF]. Finally, we know of only one demonstration of feasibility for an account of early phonetic learning in which the outcome of learning is not phonetic categories [START_REF] Guenther | The perceptual magnet e ect as an emergent property of neural map formation[END_REF]. It also assumes the phonetic category segmentation problem to be solved and minimizes the impact of the lack of invariance problem by artificially limiting the variability of the input speech.

Modeling assumptions are necessary in any model-for example, our approach ignores the visual component of speech and uses adult-directed rather than child-directed speech-but they should be critically examined to assess their suitability relative to the research objectives. For example, whereas the assumptions typically made in previous studies were all geared toward making the learning problem easier-by sidestepping the lack of invariance and phonetic segmentation problems-we focus, as much as possible, on modeling assumptions that make it harder. This means that in our framework, positive feasibility results constitute much stronger evidence. Our framework is not devoid of modeling assumptions that make the learning problem easier; for example, we consider speech input consisting of speech from a single speaker at a time, captured by a close-range microphone, and with no overlap with environmental sounds. However, we make many fewer such simplifying assumptions than previous models and we are careful not to sidestep the phonetic category segmentation and the lack of invariance problems in particular. This ensures that our simulations are suitable to address feasibility concerns related to these problems.

2. Model initialization, learning procedure and convergence. Following Chen et al. [START_REF] Chen | Parallel inference of dirichlet process gaussian mixture models for unsupervised acoustic modeling: A feasibility study in[END_REF], the parameters of our Gaussian mixture models are learned through the exact Markov chain Monte-Carlo (MCMC) sampling algorithm proposed in Chang & Fisher (23). This algorithm combines, in a principled way, Gibbs sampling of the parameters of instantiated mixture components (i.e.

the clusters with non-empty membership at any given point in the algorithm execution) with sampling of split and merge moves that increase or reduce the number of instantiated mixture components. It is designed to combine good statistical convergence properties with computational e ciency, and in particular to allow the parallelization of the computations to accommodate large training datasets.

We also follow Chen et al. [START_REF] Chen | Parallel inference of dirichlet process gaussian mixture models for unsupervised acoustic modeling: A feasibility study in[END_REF] for model initialization. They used the default initialization procedure in the implementation proposed by Chang & Fisher [START_REF] Chang | Parallel sampling of dp mixture models using sub-cluster splits in[END_REF], which consists of assigning each data point in the training set uniformly at random to one of ten initial clusters. The mean vector and covariance matrix for each of these ten initial clusters is then taken as the mean and covariance of the points assigned to that cluster. The weights of each of the cluster in the initial mixture is obtained by drawing from a Dirichlet distribution with ten categories and concentration parameter whose i-th component, for 1 AE i AE 10, is the number of points that were initially assigned to the i-th cluster.

In theory, the initial state should not influence the learning outcomes when using this algorithm. The sampling algorithm we use comes with the usual guarantees (for sampling algorithms) of global convergence to the true posterior in the limit [START_REF] Chang | Parallel sampling of dp mixture models using sub-cluster splits in[END_REF], so that in principle, the initialization procedure should not matter if we run the sampling procedure for long enough. The main issue in practice is that there is usually no definitive way to determine when it has been 'long enough'. In our case, we look at the number of learned categories as a function of the number of sampling iterations (Figure S11). We see that this number is largely stabilized after about 600 iterations for all the models we train. This suggests that training the models for 1500 sampling iterations (per parameter), as we do-again following the example of ( 22)-is su cient for model convergence. We also see that cross-linguistic di erences emerge quite robustly on independent runs for models trained on one to two hours of speech input (Figure 3(b)). Thus, we are reasonably confident that the models have converged.

Still, we cannot completely rule out the possibility that running the algorithm for longer might ultimately lead to a di erent outcome (e.g. to units corresponding to phonetic categories), and that a di erent setting of the initial state might lead to that outcome faster. This leads us to consider the biological and psychological plausibility of the initialization procedure we used.

A prominent proposal in the literature (see 24, for example)-motivated by observations of a certain 'language-readiness' of the human brain at birth and even before (25)-is that infants start with an innately specified, 'universal' mapping from an auditory space to a phonetic space, which is then progressively altered as they gain experience with their native language.

However, there have not yet been proposals for a concrete implementation of such a mapping (although see 26, for a possible technical solution).

This view is not universally shared. An alternative hypothesis has been argued to be fully compatible with the empirical record (e.g. 27, 28), according to which the observation of 'universal' phonetic discrimination abilities in newborns would correspond to an initial mode of perception of a purely auditory nature, in the absence of any mapping to phonetic space.

Under this view, phonetic representations would be initiated through some form of random mapping, and subsequently refined through experience-dependent plasticity. One benefit of this latter view is that it assumes less in terms of what needs to be genetically specified than an innate universal mapping between acoustic and phonetic space.

As discussed in the main text, MFCC input features can be interpreted as the output of a (very) simple model of the peripheral auditory system, and our approach to initialization can thus be understood as an implementation of this latter view. We are not aware of many empirical constraints on what would constitute a plausible random initialization of the phonetic clusters within this auditory space, and our initialization procedure represents one possible, albeit admittedly arbitrary, solution.

3. Interpretation of simulated discrimination errors and relation to empirical observations. To evaluate our trained models, we expose them to appropriate test stimuli (e.g. exemplars of [ô] and [l]) and simulate discrimination tasks using the models' representation of these stimuli. Here, we discuss our criteria to decide if the models successfully account for early phonetic learning on the basis of the resulting discrimination errors. For the purpose of this article, we deem our models successful if they can account for the cross-linguistic di erences in discrimination abilities observed in infants in the first year of life for the Japanese/American English language pair we study.

The results to be accounted for come from a 2006 study by Kuhl and colleagues ( 29), since we are not aware of other studies directly comparing the phonetic discrimination abilities of Japanese and American English infants in the first year. Using a conditioned head turning paradigm, they found no significant di erence between American English and Japanese infants' ability to discriminate a synthetic [ôa] stimulus from a synthetic [la] stimulus at 6-8 months. Both groups answered correctly on about 65% of test trials. In contrast, at 10-12 months, American English infants were found to to be significantly more accurate than Japanese infants in the same task. American English infants answered correctly on about 75% of trials while Japanese infants answered correctly on about 60% of trials. All four groups discriminated the stimuli significantly above chance. When comparing across ages, American English 10-12 month olds were found to be significantly better at discriminating the stimuli than their 6-8 month old counterparts, whereas Japanese 10-12 month olds were not found to be significantly worse than their 6-8 month old counterparts (but see 30). We adopt the standard interpretation that these results reflect infants' discrimination of the [ô]-[l] contrast, and not just of the two specific stimuli tested in the experiment. We therefore test our models both on those specific stimuli (Figure S6), and on other instances of [ô] and [l] (Figure 3). However, we do not assume these observations of early phonetic learning in infants to mean that 10-12 month old infants have formed adult-like representations; while this is a common view in the literature, it is premised on the phonetic category hypothesis we are contesting. In particular, we do not take the results from Kuhl et al. (29) to necessarily indicate that Japanese 10-12 month olds have become nearly deaf to the

[ô]-[l] distinction, or that American English 10-12 month olds learned to discriminate it perfectly. §

Given our current state of knowledge about infant cognition, there are some quantitative aspects of these results that we cannot hope to model, even in principle. First, we cannot hope to model the quantitative values of the error rates or d' measurements characterizing infant discrimination in these experiments, as these values depend strongly on the specifics of the experiments in ways that are not well understood (33). This uncertainty might potentially be accounted for through free parameters in the model, but fitting those parameters would not be feasible due to the limited number of datapoints available to constrain them. ¶ Second, we do not know the precise correspondence between an infant of a particular age and a model presented with a particular amount and quality of data. The quality and quantity of data in infants' environments does not directly translate into their intake (34), the data they use for learning. In addition, some of the di erences in infants' behavior at di erent ages might also stem from developmental factors not directly related to perception, and these are not included in our model. Moreover, we do not know whether infants rely solely on learned representations for discrimination, even when those representations are just starting to be formed and might be unreliable, or whether they initially rely on language-universal input features for discrimination, and then smoothly transition to relying on the learned language-specific representations as the amount of training data increases. This prevents us from interpreting the change in discrimination errors as a function of the amount of training input given to the model on Figure 3(b) directly as a developmental trajectory for example.

Because we cannot hope to get a quantitative match in either the absolute discrimination scores or the absolute quantity of training data, we focus on modeling qualitative aspects of the empirical results. This means showing that American English models discriminate [ô] and [l] better than Japanese models do. We find this qualitative e ect both with the original stimuli from Kuhl et al. (29), and with a broader set of speech stimuli drawn from American English speech corpora. Figure S6 shows that with small amounts of training data, the dissimilarity between the two original stimuli is roughly similar for all models.

As the amount of training data increases, the two stimuli become more dissimilar for the American English models, while their dissimilarity stays roughly the same for the Japanese models. When tested on a broader set of [ô] and [l] stimuli, all models get better at discriminating this contrast as the amount of training data increases, but a clear cross-linguistic di erence nevertheless emerges (Figure 3(b)). As noted above, there are a number of reasons why the direction of change in absolute error rates might not be reliable; but in both simulations, the increasing separation between English and Japanese models with increasing training data qualitatively matches the empirical pattern.

A limitation of this study is that it focuses on one language pair, limiting the relevant empirical record to mostly one study (29). Mugitani and colleagues (35) suggested that vowel length perception at 10 months could be similar in American English and Japanese listeners; our models appear broadly consistent with this hypothesis, as we find no systematic di erence in Japanese vowel length discrimination between the Japanese and American English models (see Supplementary Discussion 5).

However, we do not focus on this result, as Mugitani and colleagues (35) did not directly test American English 10 month olds, and recent evidence suggests that the development of vowel length perception, for Japanese listeners at least, might be more complicated than once thought (36). As argued in the main discussion, in the longer term our modeling framework will allow evaluating the proposed learning mechanism against the empirical record on further language pairs, comparing it with other possible learning mechanisms, and designing empirical tests of their predictions.

We are not aiming to model adult data, nor are we able to interpret absolute error rates relative to infant data. Thus, the absolute levels of the discrimination errors we obtain have little bearing on our main conclusions. However, it is still interesting to get a sense of how those absolute error rates might be interpreted. To this end, we added a supervised phoneme recognizer baseline as a possible approximation of an adult-like state, In general, the supervised baselines show larger cross-linguistic di erences than our (unsupervised) models do. For the [ô]-[l] contrast, for example, the absolute di erence in discrimination errors between 'native' and 'non-native' models is about four times as large for the supervised phoneme recognizers as for the § This view is supported by empirical evidence that American English infants' perception of [ô]-[l] develops well beyond the first year of life (31). See also Feldman et al. (32). ¶ One potential solution might be to pool infant data across many experiments to try and calibrate task models. However, it is unclear whether this strategy could be successful, because of the heterogeneity in the way infant experiments are carried out in practice.

This is different from its role in Figures 4, S7, S9 and S10, where it is used as a possible embodiment of the linguistic notion of phonetic category.

unsupervised models. These larger crosslinguistic di erences are driven by decreased performance of the supervised baselines on the 'non-native' language and increased performance on the 'native' language (Figures S3, S5), though improvement on the 'native' language does not appear robust to a register change (Figure S3). These results show that the proposed learning mechanisms for early phonetic learning is compatible with the view that one-year-olds have not yet formed mature, adult-like speech representations (32).

We additionally included an unlearned 'auditory' input features baseline (with distances computed directly between sequence of MFCC input vectors) in Figures S3,S5, as a possible approximation of discrimination on the basis of a language-universal auditory representation. This baseline performs surprisingly well relative to both the supervised baseline and the unsupervised models in discriminating some phonetic contrasts. On average, the 'native' models do better than the baseline, and the 'non-native' models do worse, as expected (Figure S3). However, this is not true for every contrast, as can be seen for [ô]-[l] and [w]-[j] on Figure S5. There are a number of possible ways to interpret this result. † † This might reflect a shortcoming common to both the unsupervised models and supervised baselines for these contrasts. It might also be that, in order to catch up with the input features baseline, our models require larger amount of training input (Figure 3(b)) or input that is more similar to what infants hear (39). Finally, another possibility is that high level language-specific representation might need to be combined with information-rich auditory representation (40) to enable accurate phonetic discrimination of certain contrasts-as appears to be the case in humans (41).

4. Interpretation and plausibility of the learned representations. It might seem surprising for infants to be learning-as part of the language acquisition process-units such as those we find, with no established linguistic interpretation. Given the relative evolutionary recency of the language faculty in humans (42), however, early phonetic learning might be grounded in domaingeneral perceptual learning mechanisms (43,44), the outcome of which might not conform to a purely linguistic interpretation.

Supporting this view are observations of early perceptual attunement in other modalities than speech perception-for example in face (45), voice (46), pitch (47,48), music (49) and linguistic sign (50) perception-and in other animals than humans-for example for conspecific vocalizations in rats (51), for music in mice ( 52) and for faces in macaques (53). Furthermore, there is evidence that the physiological mechanisms governing the onset and o set of perceptual attunement might be similar in these di erent modalities and conserved from mouse to man (54)(55)(56). Furthermore, from a more adaptive/functional point of view, phonetic categories embody sophisticated linguistic knowledge and inferring them from scratch might simply be too di cult. The learned representations under the proposed account support remarkably accurate discrimination of native language word-forms (22, 57-59)-a criterion for which early phonetic representations have been proposed to be optimized (60)(61)(62). They could thus serve as a more robust intermediate point in a bootstrapping process (63) ultimately leading to language proficiency.

Another question that arises is whether the learned representations are biologically and psychologically plausible given their relatively high dimensionality-between 444 and 899 learned categories, with posterior probability vectors of matching dimension. It is questionable whether infants-or even adults-would be able to explicitly access and manipulate such detailed representations of the phonetics of very short stretches of speech. We believe, however, that the learned units are plausible at least as lower-level perceptual representations. Such high-capacity intermediate representations are commonly postulated in other domains of adult and infant cognition-for example, as part of the 'core' object recognition and the 'core' spatial navigation systems (64), with correspoding computational models typically featuring representations in even higher dimensions than the ones we consider here (65)(66)(67)[START_REF] Jc Whittington | The tolman-eichenbaum machine: Unifying space and relational memory through generalisation in the hippocampal formation[END_REF]. Computation over such high-capacity representations is likely to be costly and might be limited to a restricted set of operations-including the formation of integrated similarity or familiarity judgments, for example. Such representations are typically seen as supporting the operation of largely subconscious cognitive processes and allowing the formation of higher-level, lower-capacity, representations over which computations can be carried out more flexibly (see 69, for example).

Systematic model predictions.

We provide a concrete demonstration of our framework's ability to link accounts of early phonetic learning to systematic predictions regarding the empirical phenomenon they seek to explain by reporting in Table S1 phonetic contrasts of Japanese and American English for which the distributional learning mechanism we study robustly predicts a significant di erence in discrimination abilities between learners of those languages. Note that nothing in our method-which we present in detail in Supplementary Materials and Methods 4-is specific to the particular distributional learning mechanism studied in this article. It applies directly to any learning mechanism taking actual speech signal as input, as long as a reasonable way to measure the (dis)similarity between the learned representations of relevant test stimuli can be provided.

Reassuringly, we find that American English [ô]-[l] is among the contrasts robustly predicted to be significantly harder to discriminate for Japanese-learning infants. Only two other contrasts of American English are predicted to be robustly harder to discriminate for Japanese-learning infants, both involving the rhotacized vowel [Ç]. We are not aware of empirical comparisons of Japanese-and American English-learning infants (and even adults) having been carried out so far for these contrasts. No contrast of Japanese is predicted to be robustly harder for American-English-learning infants.

6. Advantages of our approach over traditional approaches to making predictions. Our approach to linking a learning mechanism to systematic predictions regarding infant phonetic discrimination relies on explicit simulations of the learning process. Such simulations have been carried out before (5-16, 19-21, 70), however this never resulted in concrete predictions regarding

This view is supported among other things by evidence of continued phonetic learning well after the first year (see e.g. 31, 37, 38). † † We do not attempt to decide between these possible interpretations here, as this is not directly relevant to our main conclusions.
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Thomas Schatz, Naomi H. Feldman, Sharon Goldwater, Xuan-Nga Cao and Emmanuel Dupoux infants' discrimination abilities. One reason is that previous simulation studies were conducted in the context of outcomedriven approaches and therefore focused on testing whether phonetic categories could be learned, rather than on predicting discrimination patterns observed in infants. There are also methodological limitations that would have have severely limited the possibility of obtaining systematic predictions in these studies. One of them is the drastically simplified input used in most studies. Influences of the phonetic context on cross-linguistic di erences in discrimination abilities (71) might fail to be captured when the training data is restricted to just a few contexts, for example. Or meaningful predictions might be impossible for non-native contrasts falling into part of the phonetic space that is not represented in the input when it contains only a subset of the phonetic categories of the training language (e.g. if the input consists exclusively of vowels represented in terms of their formant frequencies). Even for the studies that did attempt to model infant phonetic learning from realistic speech input [START_REF] Miyazawa | Unsupervised learning of vowels from continuous speech based on self-organized phoneme acquisition model[END_REF][START_REF] Miyazawa | The multi timescale phoneme acquisition model of the self-organizing based on the dynamic features in[END_REF], the lack of a suitable evaluation method to handle the complex speech representations typically produced by algorithms learning from raw speech without supervision would have prevented the derivation of systematic predictions. Indeed, as we already noted, traditional signal detection theory models of discrimination tasks (72) cannot handle high-dimensional input representations, while more elaborate Bayesian probabilistic models [START_REF] Miyazawa | Unsupervised learning of vowels from continuous speech based on self-organized phoneme acquisition model[END_REF] typically have too many free parameters to be practical. Moreover, traditional evaluation methods for representation learning algorithms from the machine learning literature typically assess performance on downstream tasks such as supervised classification, or against known cluster labels, rather than on the discrimination abilities measured in infants. Finally, the procurement of appropriate test stimuli for all the phonetic contrasts for which predictions are to be obtained, and the need for a sound statistical methodology to separate signal from noise in the large number of resulting predictions, would have presented two additional challenges.

In principle, an alternative to our mechanism-driven approach would be to obtain predictions by relying on pre-specified notions of the outcome of learning. In phonetic category accounts, for example, predictions could be made based on how the phonetic categories from the test language map onto the phonetic categories of the native language. This has been the standard approach in the field until now, but to the best of our knowledge, has never resulted in the kind of systematic predictions we report here. Its scalability is limited by two central di culties related to the intrinsic complexity of the speech signal.

First, given that detailed aspects of the speech signal can strongly a ect discrimination abilities (71,74), making systematic predictions would require extraordinarily detailed phonetic descriptions of the whole phonetic space in all of the relevant languages. Such descriptions are not available at the required scale at present, and conducting detailed phonetic analyses to obtain them would represent a colossal undertaking. Second, even on a small scale, how to carry out the required phonetic analyses is not clear. Arbitrary decisions would have to be made, for example, regarding which phonetic dimensions to include, how to characterize these dimensions acoustically, how to characterize discrete categories in the presence of gradient e ects, and how to concretely relate the observed cross-linguistic phonetic di erences to predicted discrimination abilities. Some of this methodological uncertainty has been sidestepped in practice by relying on empirical assimilation patterns-adults' judgments regarding what sound from their native language is most similar to a non-native stimulus-to guide the derivation of predictions in an ad hoc fashion. This is not a scalable solution, however, given the costs associated with human experimentation. It also fails to explain how the observed assimilation patterns arise in the first place.

Our modeling framework provides the first practical, scalable way to link accounts of early phonetic learning to systematic predictions regardings infant phonetic discrimination. Key innovations underlying the success of our framework relative to previous approaches include a focus on mechanisms rather than outcomes, and on mechanisms capable of learning from naturalistic speech in particular, resulting in models capable of making systematic predictions. The testing of these models at scale relies on further important innovations. One of them is the use of large forced-aligned databases of transcribed continuous speech recordings to procure relevant test stimuli. Another is the use of the machine ABX test to link model representation of test stimuli to concrete, systematic predictions regarding infants' discrimination abilities. The machine ABX test is an automatized, parameterless measure of discriminability that is computationally tractable, statistically e cient, and can handle representations in essentially any format, as long as a reasonable way to measure the similarity between the speech representations to be evaluated can be provided, making it easy to compare the predictions from di erent models (75). The rationale for such an evaluation method, with a focus on simplicity of use and scalability-rather than seeking to provide a detailed model of infants' behavior in a particular experimental paradigm-is the idea that di erent discrimination tasks all index a common perceptual process and should result in qualitatively similar discrimination patterns-an idea that has received empirical support from the signal detection literature (72) . Average ABX error rates over all consonant and vowel contrasts obtained with unsupervised Gaussian mixture models (GMM), with a supervised phoneme recogniser baseline (HMM) and with an input features (MFCC) baseline, as a function of the match between the training set and test set language and register. Error bars correspond to plus and minus one standard deviation of the errors across resampling of the test stimuli speakers. For both Gaussian mixture models and the phoneme recogniser baseline, the 'Native' (blue) conditions, with training and test in the same language, show fewer discrimination errors than the 'Non-native' (red) conditions. Also, in both cases the 'Native' conditions show fewer errors than the input features baseline, while 'non-native' conditions show more errors. However, the native language effect (difference between 'native' and 'non-native' models) is bigger for the supervised than the unsupervised models. Also, whereas the unsupervised models generalise very well across registers, the supervised models appear to overfit the training register.

Read speech models Spontaneous speech models

American English models Japanese models

1min 10min 1h 10h
Training set size Dissimilarity (in bits)

Original experimental stimuli American English [ɹ]-[l]

Fig. S6. Dissimilarity between the trained models' representation of a synthetized /ra/ stimulus and a synthetized /la/ stimulus as a function of the amount of input. These stimuli are those used in the empirical study which showed the emergence of a cross-linguistic difference in discriminability of these stimuli between Japanese-and American English-learning infants (29). For each selected duration (except when using the full training set), ten independent subsets are selected and ten independent models are trained. Solid lines indicate the average dissimilarity, with error bands indicating plus or minus one standard deviation. The dissimilarity corresponds to the average of the Kullback-Leibler divergence between posteriorgram representations of the stimuli along the dynamic time warping alignment path, expressed in bits (see Material and Methods).

As the amount of input data increases, there does not appear to be much of a change in the dissimilarity of the two stimuli for the Japanese models, whereas there is sharp increase in dissimilarity for the American English models, especially between the 1-2h and 10-20h of training input. This is remarkably consistent with the empirically observed behavior of infants tested with these stimuli: no significant change was observed in the ability of Japanese-learning infants to discriminate these stimuli between 6-8 and 10-12 months of age, whereas American English infants became better at it (29). The predicted cross-linguistic difference between American English and Japanese learners appears to require more input to be observed reliably when testing the models with synthetic stimuli than with natural stimuli (cf. Figure 3). 
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American English models

Japanese models

Fig. S7. As in Figure 4, with an additional ASR phone-state baseline (cf. Supplementary Materials and Methods 2). The Gaussian units in the learned (unsupervised) Gaussian mixtures are more similar to the phone-state units than to the phoneme units in the supervised baseline, although some differences remain. Even though the phone states are more numerous than the Gaussian components (a), they remain activated slightly longer on average (b) and they are better aligned with phonetic categories in terms of linguistic content, both within-speakers (c) and across speakers (d).

No. distinct units for 10 repetitions Acoustic (in)variance (within speaker)

No. of distinct units for 10 repetitions Acoustic (in)variance (across speaker)

No. distinct units for 10 repetitions No. of distinct units for 10 repetitions

American English models

Japanese models For the phoneme recognizer baseline, we see that the average number of distinct units for ten repetitions of a same word shows a small increase compared to the condition with correction for misalignment, with up to about 33% more distinct units (which remains less than what was found for the unsupervised models, with correction). In contrast the average number of distinct units more than doubles for our unsupervised models in all cases. This indicates that misalignment of the phone centers is not a very common issue-as the phoneme recognizer baseline manages to find largely invariant units without any correction-suggesting that our main acoustic (in)variance analyses overestimate the acoustic invariance of the units learned by our unsupervised models by a sizable margin. 

Training set

Read American English Spont. American English Read Japanese Spont. Japanese Confidence bands indicate mean +/-one standard deviation in number of learned units for models trained on independent subsets. For models trained on the full corpus no confidence band is available. The number of learned units remains stable after about 600 iterations for all models we trained, suggesting 1500 iterations was enough for our models to converge. For models trained on subsets of the full training set, we also see through the confidence bands that the number of learned categories does not depend a lot on the particular subset selected. Finally, we see evidence that for models trained on small amounts of data, the size of the training set appears to predict the number of learned units well, while for models trained on larger amounts of data, the precise nature of the training set appears to have a stronger effect. Models trained on similar amounts of input (full training sets are about 20 hours long for models trained on read speech and about 10 hours long for model trained on spontaneous speech) learn similar number of categories initially (for 1/1000 th and 1/100 th training subsets), but as the size of the training sets gets larger (starting with 1/10 th training subsets), models trained on Japanese result in larger number of learned categories than models trained on similar amount of American English. This suggests that the number of learned units for the models trained on larger amounts-the models showing cross-linguistic differences in discrimination-does not simply reflect the amount of training input, but also the qualitative characteristics of the training sets.

41 speech

 41 segments corresponding to a single period of vocal fold 42 vibration in a vowel. Second, phonetic categories-although43 

Fig. 1 .

 1 Fig. 1. Gaussian mixture model training and representation extraction, illustrated for a model with three Gaussian components.In practice the number of Gaussian components is learned from the data and much higher. (a) Model training: the learning algorithm extracts moderate-dimensional (d=39) descriptors of the local shape of the signal spectrum at time points regularly sampled every 10ms (speech frames). These descriptors are then considered as having been generated by a mixture of Gaussian probability distributions, and parameters for this mixture that assign high probability to the observed descriptors are learned. (b) Model test: the sequence of spectral-shape descriptors for a test stimulus (possibly in a language different from the training language) are extracted and the model representation for that stimulus is obtained as the sequence of posterior probability vectors resulting from mapping each descriptor to its probability of having been generated by each of the Gaussian components in the learned mixture.

  are used instead of traditional phonetic measurements obtained separately for each vowel and consonant, such as formant frequencies or harmonic amplitudes. § This type of input representation only assumes basic auditory abilities from infants, which are known to be fully operational shortly after birth (75), and has been proposed previously as a potential way to get around both the lack of invariance and the phonetic category segmentation problems in the context of adult word recognition (37). A second di erence from previous implementations of distributional learning is in the output representation. Test stimuli are represented as sequences of posterior probability vectors (posteriorgrams) over K Gaussian components in the mixture (Figure 1 (b))
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 3 Fig. 3. (a) ABX error rates for the American English [ô]-[l] contrast and two controls: American English [w]-[j] and average over all American English consonant contrasts (C-C).Error rates are reported for two conditions: average over models trained on American English and average over models trained on Japanese. Error bars correspond to plus and minus one standard deviation of the errors across resampling of the test stimuli speakers. Similar to infants, the Japanese 'native' models exhibit a specific deficit for American English [ô]-[l] discrimination compared to the 'American English' models. (b) The robustness of the effect observed in panel (a) to changes in the training stimuli and their dependence on the amount of input are assessed by training separate models on independent subsets of the training data of each corpus of varying duration (see Materials and Methods). For each selected duration (except when using the full training set), ten independent subsets are selected and ten independent models are trained. We report mean discrimination errors for American English [ô]-[l] and [w]-[j] as a function the amount of input data, with error bands indicating plus or minus one standard deviation. The results show that a deficit in American English [ô]-[l] discrimination for 'Japanese-native' models robustly emerges with as little as 1h of training data.

  Fig. 3. (a) ABX error rates for the American English [ô]-[l] contrast and two controls: American English [w]-[j] and average over all American English consonant contrasts (C-C).Error rates are reported for two conditions: average over models trained on American English and average over models trained on Japanese. Error bars correspond to plus and minus one standard deviation of the errors across resampling of the test stimuli speakers. Similar to infants, the Japanese 'native' models exhibit a specific deficit for American English [ô]-[l] discrimination compared to the 'American English' models. (b) The robustness of the effect observed in panel (a) to changes in the training stimuli and their dependence on the amount of input are assessed by training separate models on independent subsets of the training data of each corpus of varying duration (see Materials and Methods). For each selected duration (except when using the full training set), ten independent subsets are selected and ten independent models are trained. We report mean discrimination errors for American English [ô]-[l] and [w]-[j] as a function the amount of input data, with error bands indicating plus or minus one standard deviation. The results show that a deficit in American English [ô]-[l] discrimination for 'Japanese-native' models robustly emerges with as little as 1h of training data.

  contribution of this article.Toward predictive theories of early phonetic learning. Almost 555 since the original empirical observation of early phonetic 556 learning (1), a number of theoretical accounts of the phe-557 nomenon have co-existed[START_REF] Mh Coen | Self-supervised acquisition of vowels in american english[END_REF][START_REF] Dehaene-Lambertz | The human infant brain: A neural architecture able to learn language[END_REF] 49, 50). This theoretical 558 under-determination has typically been thought to result from 559 the scarcity of empirical data from infant experiments. We ar-560 gue instead that the main limiting factor on our understanding 561 of early phonetic learning might have been the lack-on the 562 theory side-of a practical method to link proposed accounts 563 of phonetic learning with concrete, systematic predictions re-564 garding the empirical discrimination data they seek to explain. 565 Establishing such a systematic link has been challenging due 566 to the necessity of dealing with the actual speech signal, with 567 all its associated complexity. The modeling framework we 568 introduce provides, for the first time, a practical and scalable 569 way to overcome these challenges and obtain the desired link 570 for phonetic learning theories-a major methodological ad-571 vance, given the fundamental epistemological importance of 572 linking explanandum and explanans in scientific theories (116). 573 Our mechanism-driven approach to obtaining predictions-574 which can be applied to any phonetic learning model imple-575 mented in our framework-consists first of explicitly simulating 576 the early phonetic learning process as it happens outside of 577 the lab, which results in a trained model capable of mapping 578 any speech input to a model representation for that input. 579 The measurement of infants' perceptual abilities in labora-580 tory settings-including their discrimination of any phonetic 581 contrast-can then be simulated on the basis of the model's 582 representations of the relevant experimental stimuli. Finally, 583 phonetic contrasts for which a significant cross-linguistic di er-584 ence is robustly predicted can be identified through a careful 585 statistical analysis of the simulated discrimination judgments 586 (see Supplementary Materials and Methods 4). As an illus-587 tration of how such predictions can be generated, we report 588 specific predictions made by our distributional learning model 589 in Table

590

  Although explicit simulations of the phonetic learning pro-591 cess have been carried out before(9, 12, 14, 15, 40-49, 73, 74), 592 those have typically been evaluated based on whether they 593 learned phonetic categories, and have not been directly used 594 to make predictions regarding infants' discrimination abilities.595An outcome-driven approach to making predictions regarding 596 discrimination has typically been adopted instead, starting 597 from the assumption that phonetic categories are the outcome 598 of learning. To the best of our knowledge this has never re-599 sulted in the kind of systematic predictions we report here, 600 however (see Supplementary Discussion 6 for a discussion of 601 the limits of previous approaches and of the key innovations 602 underlying the success of our framework). 603 Our framework readily generates novel, empirically testable, 604 predictions regarding infants' discrimination, yet further com-605 putational modeling is called for before we return to experi-606 ments. Indeed, existing data-collected over more than three 607 decades of research (2, 3, 21, 30)-might already su ce to dis-608 tinguish between di erent learning mechanisms. To make that 609 determination, and to decide which contrasts would be most 610 useful to test next in case more data are needed, many more 611 learning mechanisms and training/test language pairs will 612 need to be studied. Even for a specified learning mechanism 613 and training/test datasets, multiple implementations should 614
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 5 Fig. 5. Generative Gaussian mixture model with Dirichlet process prior with normalinverse-Wishart base measure, represented as a graphical model in plate notation based on the stick-breaking construction of Dirichlet processes.

  for any k oe {1, 2, ...}, with N the multivariate Gaussian distribution, W the Wishart distribution, Multi the generalisation of the usual multinomial probability distribution to an infinite discrete support and SB, the mixing weights generating distribution from the stick-breaking representation of Dirichlet processes (120). Mixture parameters with high posterior probability given the observed input features vectors and the prior are found using an e cient parallel Markov chain Monte Carlo sampler (121).Following previous work(61, 66), model initialization is performed by partitioning training points uniformly at random into ten clusters and the hyperparameters are set as follows: -to 1, µ 0 to the average of all input features vectors, ⁄ to 1, ⁄ 0 to the inverse of the covariance of all input feature vectors and ‹ to 42 (i.e. the spectral shape descriptors dimension plus three). We additionally train a model on each of the ten 1/10 th , 1/100 th and 1/1000 th training subsets of each of the four corpora, following the same procedure.

  779 frame of the central phone for ten repetitions of the same word. To 780 compensate for possible misalignment of the central phones' central 781 frames (e.g. due to slightly di erent time courses in the acoustic 782 realization of the phonetic segment and/or small errors in the forced 783 alignment), we allow the dominant unit at the central frame to 784 be replaced by any unit that was dominant at some point within 785 the previous or following 46ms (thus covering a 92ms slice of time D R A F T corresponding to the average duration of a phoneme in our read 787 speech test sets), provided it can bring down the overall count of 788 distinct dominant units for the ten occurrences (see Supplementary 789 Materials and Methods 3 for more information). We consider 790 two conditions: in the within-speaker condition, the test stimuli 791 are uttered by the same speaker ten times; in the across-speaker 792 condition, they are uttered by ten di erent speakers one time. See D R A F T word modeling: A contribution to zerospeech 2017 in Proc. ASRU. (2017). 68. WN Hsu, Y Zhang, J Glass, Unsupervised learning of disentangled and interpretable representations from sequential data in Proc. NEURIPS. (2017).

2 .

 2 Phoneme recognizer baselines. As a baseline, we also train a phoneme recognizer on the training set of each corpus, with explicit supervision (i.e. providing the phonemic transcriptions of the training stimuli along with the waveforms). Specifically, we use the Kaldi toolkit (1) for automatic speech recognition (ASR) to train a hidden Markov model Gaussian mixture model (HMM-GMM) acoustic model and a phoneme-level bigram language model for each training set. The same training recipe (adapted from the Wall Street Journal corpus recipe), with the same parameters is used to train a separate model on each of the four corpora. The acoustic model takes the form of a probabilistic generative model with each phoneme modeled as a set of contextual variants that are allowed to depend on word-position and preceding and following phonemes. Each variant is itself modeled as a tri-state hidden Markov model with diagonal covariance Gaussian mixture emission probabilities. The models are adapted to speakers both during training and test through feature-space maximum likelihood linear regression (fMLLR). See the Kaldi toolkit documentation for more detail (http://kaldi-asr.org/doc/).

  each of the estimated e ects for that contrast (for each of the 8 possible combination of training and test registers) is in the same direction and significantly di erent from 0 in our asymptotic bilateral z-test, with Benjamini-Yekutieli (3) correction for multiple correlated comparisons at level -= 0.05; and if the estimated e ect for models trained on the full training sets are in the same direction and larger in absolute value than the corresponding e ects estimated for models trained on the 1/10 th subsets.

  Fig. S3. Average ABX error rates over all consonant and vowel contrasts obtained with unsupervised Gaussian mixture models (GMM), with a supervised phoneme recogniser baseline (HMM) and with an input features (MFCC) baseline, as a function of the match between the training set and test set language and register. Error bars correspond to plus and minus one standard deviation of the errors across resampling of the test stimuli speakers. For both Gaussian mixture models and the phoneme recogniser baseline, the 'Native' (blue) conditions, with training and test in the same language, show fewer discrimination errors than the 'Non-native' (red) conditions. Also, in both cases the 'Native' conditions show fewer errors than the input features baseline, while 'non-native' conditions show more errors. However, the native language effect (difference between 'native' and 'non-native' models) is bigger for the supervised than the unsupervised models. Also, whereas the unsupervised models generalise very well across registers, the supervised models appear to overfit the training register.

Fig. S10 .

 S10 Fig. S10. As in FigureS9 (c, d), but without applying a correction for possible misalignments of the forced-aligned phone centers (Supplementary Materials and Methods 3). For the phoneme recognizer baseline, we see that the average number of distinct units for ten repetitions of a same word shows a small increase compared to the condition with

Fig. S11 .

 S11 Fig. S11.As a convergence check, we plot the number of learned units (i.e. Gaussian components in the sampled mixture) as a function of the number of sampling iterations. Confidence bands indicate mean +/-one standard deviation in number of learned units for models trained on independent subsets. For models trained on the full corpus no confidence band is available. The number of learned units remains stable after about 600 iterations for all models we trained, suggesting 1500 iterations was enough for our models to converge. For models trained on subsets of the full training set, we also see through the confidence bands that the number of learned categories does not depend a lot on the particular subset selected. Finally, we see evidence that for models trained on small amounts of data, the size of the training set appears to predict the number of learned units well, while for models trained on larger amounts of data, the precise nature of the training set appears to have a stronger effect. Models trained on similar amounts of input (full training sets are about 20 hours long for models trained on read speech and about 10 hours long for model trained on spontaneous speech) learn similar number

Table 1 . Language, speech register, duration and number of speak- ers of training and test sets for our four corpora of speech recordings

 1 

	Corpus	Language	Reg.	Duration	No. speakers
				Train	Test	Train	Test
	R-Eng (84)	Am. English	Read	19h30	9h39	96	47
	R-Jap (85)	Japanese	Read	19h33	9h40	96	47
	Sp-Eng (86)	Am. English	Spont.	9h13	9h01	20	20
	Sp-Jap (87)	Japanese	Spont.	9h11	8h57	20	20

likely Gaussian component. These continuous representations 192 have been shown to support accurate discrimination of native 193 phonetic categories in the Zerospeech challenges.
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  -94, for example).

	-/j/	C-C		
				condition	
				Native	
			(a)	Non-native	(b)	Native language advantage	advantage 'Native register'
			ABX error rate (in %)		ABX error rate (in %)
			S a m e la n g u a g e S a m e r e g is te r S a m e la n g u a g e D iff e r e n t r e g is te r D iff e r e n t la n g u a g e S a m e r e g is te r D D iff iff e r e n t la n g u a g e e r e n t r e g is te r	
				Train/Test relationship	
			Fig. 2. (a) Average ABX error rates over all consonant and vowel contrasts obtained
			with our models as a function of the match between the training set and test set
			language and register. Error bars correspond to plus and minus one standard deviation
			of the errors across resampling of the test stimuli speakers. The 'Native' (blue)
			conditions, with training and test in the same language, show fewer discrimination
			errors than the 'Non-native' (red) conditions, whereas there is little difference in
			error rate within the 'Native' and within the 'Non-native' conditions. This shows
			that the models learned native-language specific representations that generalize
			across register. (b) Letter-value representation (95) of the distribution of 'native'
			advantages across all tested phonetic contrasts (pooled over both languages). The
			native language advantage is the increase in discrimination error for a contrast of
			language L1 between a 'L1-native' model and a model trained on the other language,
		336 337 338 339 340 341 342 343 344 345 346 347	for the same training register. The 'native register' advantage is the increase in error for a contrast of register R1 between a 'R1-native' model and a model trained on the other register, for the same training language. A native language advantage is observed across contrasts (positive advantage for 81.7% of all contrasts) and there is a weaker native register advantage (positive advantage for 60.1% of all contrasts). from American English and Japanese language backgrounds performed similarly in discriminating this contrast, 10-to 12-month-old American English infants outperformed their Japanese peers. We compare the discrimination errors ob-tained with each of our four models for American English [ô]-[l] and for two controls: the American English [w]-[j] con-trast (as in 'wet' versus 'yet'), for which we do not expect a R A F T gap in performance between American English and Japanese natives (96), and the average error over all the other conso-nant contrasts of American English. For each contrast and for each of the four models, we average discrimination errors D obtained on each of the two American English held-out test
		348	sets, yielding 3◊4 discrimination errors. We further average
		349	over models with the same 'native' language to obtain 3◊2
		350	discrimination errors. The results are shown in Figure 3 (see
		351	also Figures S2 and S6 for untabulated results and a test
		352	confirming our results with the synthetic stimuli used in the
		353	original infant experiment, respectively). In panel (a), we see
		354	that, similar to 10-to 12-month old infants, American English
		355	'native' models (in blue) greatly outperform Japanese 'na-
		356	tive' models (in red) in discriminating American English [ô]-[l].
		357	Here again, a supervised phoneme recognizer baseline yields
		358	a similar pattern of results, but with larger cross-linguistic
		359	di erences (see Figure S5), again suggesting that the repre-
		360	sentations learned by the unsupervised models-like those of
		361	infants-remain somewhat 'immature'. In panel (b), we see re-
		362	sults obtained by training ten di erent models on ten di erent
		363	subsets of the training set of each corpus, varying the sizes of
		364	the subsets (see Materials and Methods for more details). It
		365	reveals that one hour of input is su cient for the divergence
		366	between the Japanese and English models to emerge robustly,

  Diagnostic test results for our four unsupervised Gaussian mixture models (in beige) and phoneme recogniser baselines trained with explicit supervision (in pink). Top row: American English 'native' models. Bottom row: Japanese 'native' models. Models are tested on read speech in their 'native' language. (a) Number of units learned by the models. Gaussian mixtures discover ten to twenty times more categories than there are phonemes in the training language, exceeding any reasonable count for phonetic categories. (b) Average duration of activation of the learned units. The average duration of activation of each unit is computed and the average and standard deviation of the resulting distribution over units are shown. Learned Gaussian units get activated on average for about the quarter of the duration of a phoneme. They are thus much too 'short' to correspond to phonetic categories. (c) Average number of distinct representations for the central frame of the central phone for ten repetitions of a same word by the same speaker, corrected for possible misalignment. The number of distinct representations is computed for each word type with sufficient repetitions in the test set and the average and standard deviation of the resulting distribution over word types are shown. The phoneme recogniser baseline reliably identifies the ten tokens as exemplars from a common phonetic category, whereas our Gaussian mixture models typically maintain on the order of two distinct representations, indicating representations too fine-grained to be phonetic categories. (d) As in (c) but with repetitions of a same word by ten speakers, showing that the learned Gaussian units are not speaker-independent.
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	502	category segmentation problems (37). Such brief units do				
	503	not correspond to any previously identified linguistic unit (32)				
	504	(see Supplementary Discussion 4 for a discussion of possible				
	505	reasons why the language acquisition process might involve				
	506	the learning by infants of a representation with no established				
	507	linguistic interpretation, and a discussion of the biological				
	508	and psychological plausibility of the learned representation),				
	509	and it will be interesting to try to further understand their				
	510	nature. However, since there is no guarantee that a simple				
		characterization exists, we leave this issue for future work.					
	517							

category accounts. Infants' abilities, both in the lab

[START_REF] Mcmurray | Statistical learning of phonetic categories: insights from a computational approach[END_REF] 35) 

486 and in ecological conditions

(34)

, are consistent with such a 487 learning mechanism. Moreover, when applied to the input 488 representation considered in this paper, distributional learning 489 is adaptive in that it yields speech representations that can 490 support remarkably accurate discrimination of the phonetic 491 categories of the training language, outperforming a number of 492 alternatives that have been proposed for unsupervised speech 493 representation learning (58, 59, 69). 494 As a consequence of our mechanism-driven approach, what 495 has been learned needs to be determined a posteriori based 496 on the outcomes of learning simulations. The speech units 497 learned under the proposed account accurately model infants' 498 discrimination, but are too brief and acoustically variable 499 to correspond to phonetic categories, failing in particular to 500 provide a solution to the lack of invariance and phonetic 511 Phonetic categories are often assumed as precursors in ac-512 counts of phenomena occurring later in the course of language 513 acquisition. Our account does not necessarily conflict with 514 this view, as phonetic categories may be learned later in de-515 velopment, before phonological acquisition. Alternatively, the 516 influential PRIMIR account of early language acquisition

[START_REF] Vallabha | Unsupervised learning of vowel categories from infant-directed speech[END_REF] 

  phoneme recognizer baseline-and individual states of the contextual hidden Markov models-the ASR phone state baseline. See Supplementary Materials and Methods 2 for additional information.

	To avoid combinatorial explosion in the number of ABX triplets	735
	to be considered, a randomly selected subset of five occurrences is	736
	used to compute discrimination errors when a phoneme occurs more	737
	than five times in a given context. An aggregated ABX error rate is	738
	obtained for each combination of model, test corpus and phonemic	739
	contrast, by averaging the context-specific error rates over speakers	740
	and phonetic contexts, in that order.	
	Discrimination tests. Discriminability between model representa-	
	tions for phonetic contrasts of interest is assessed using machine ABX discrimination errors (90, 91). Discrimination is assessed in context, defined as the preceding and following sound and the iden-	
	tity of the speaker. For example, discrimination of American English	
	[u] versus [i] is assessed in each available context independently,	

yielding-for instance-a separate discrimination error rate for test stimuli in [b]_[t] phonetic context, as in 'boot' versus 'beet', as spoken by a specified speaker. Other possible factors of variability, such as word boundaries or syllable position are not controlled. For each model, each test corpus and each phonemic contrast in that test corpus (as specified by the corpus' phonemic transcriptions), we obtain a discrimination error for each context in which the contrasted phonemes occur at least twice in the test corpus' test set.
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  the probability distribution over model representations R, where we treat the trained model M , test speaker S and test context C as conditioning random variables and assume fixed values for the other parameters. Then, the predicted cross-linguistic e ect for phonetic contrast P1, P2 and training languages L1, L2 is defined as

	"(P1, P2, L1, L2) := EM 1 ,M 2 ,S,C ['(P1, P2, M1, S, C) ≠ '(P1, P2, M2, S, C)],
	where
	• Mx for x in {1, 2} is a randomly sampled trained model for input language Lx, training register RI,x and input amount AI,x;
	• S is a randomly chosen test speaker and C is a context chosen uniformly at random among available test phonetic
	contexts, for test language LT , test register RT and test phonetic contrast(P1, P2);

† Let us consider a model M trained on input language L, input register RI and input amount AI , and tested on phonetic category P from test language LT in phonetic context C (preceding and following phonetic category) from test speaker S with test register RT . Let us note pP,L,R I ,A I ,L T ,R T (R | M, S, C), • '(P1, P2, Mx, S, C) is the symmetric ABX discrimination error, defined as '(P1, P2, Mx, S, C) := 1 2 [e(P1, P2, Mx, S, C) + e(P2, P1, Mx, S, C)],

| www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Schatz et al.

| www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Schatz et al.

| www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Schatz et al.

| www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Schatz et al.

| www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Schatz et al.

† This is for a given choice of input registers R I,1 and R I,2 and input amounts A I,1 and A I,2 for each model, and of test language L T and test register R T (which we constrain to be the same for the two tested phonetic categories in our experiments). To avoid clutter, we do not indicate these dependencies explicitly in the notation.Thomas Schatz, Naomi H. Feldman, Sharon Goldwater, Xuan-Nga Cao and EmmanuelDupoux 
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Supplementary Materials and Methods 3 for more information on 794 the stimulus selection procedure. This is the quantity we seek to estimate, given our trained models in English and Japanese, and the particular acoustic tokens in our corpora from the phonetic categories we would like to test.

Supplementary Information for

Estimation of the e ect. In order to obtain a sample of model representations SP,M,L T ,R T ,S,C for each relevant combination of the index variables, we extract a representation of each test acoustic token for each model M . ‡ For each combination of test language LT , test register RT , test speaker S and test phonetic context C, we obtain a sample of up to 5 acoustic realizations of each phonetic category from the test corpus. For each combination of training language L, training register RI , we obtain one model trained on the full training set and 10 models that are each trained on 1/10 th of it.

Given these samples from the distributions of model representations of test stimuli, we define the following estimator of

where S is the set of sampled test speakers, C(S) is the set of contexts available for the target contrast from test speaker S, M1 and M2 are the sampled models for training language L1 and L2 respectively and ' is the estimator for the ABX discrimination error defined in the Material and Methods section of the main text.

Provided there is no systematic bias in how phonetic contexts are missing from the sample of any particular test speaker, "(S, M1, M2) can be shown to be an unbiased estimator of "(P1, P2, L1, L2).

Significance testing. We want to assess the contrasts for which a significant cross-linguistic di erence in discriminability is observed. In order to do assess significance, we need a test statistic with a known distribution. For given P1, P2, L1, L2, we define

It is straightforward to check that

D(S, M1, M2).

"(S, M1, M2) can thus be interpreted as a (generalized) U-statistic with kernel D of order 3 and degree (1, 1, 1) (4), applied to mutually independent i.i.d. samples S, M1 and M2 (where an element S of S is e ectively a sample of up to five acoustic tokens for each phonetic context available from speaker S for the target phonetic contrast).

Assuming this U-statistic is not degenerate, we can apply the central limit theorem for U-statistics (4) to obtain that "(S, M1, M2) Var[ "(S, M1, M2)] has an asymptotic normal distribution with mean "(P1, P2, L1, L2) and variance 1. Provided we can estimate the variance of the estimator Var[ "(S, M1, M2)], this result allows us to perform asymptotic z-tests of H0 : "(P1, P2, L1, L2) = 0 versus H1 : "(P1, P2, L1, L2) " = 0. We provide the required estimator V (S, M1, M2) of Var[ "(S, M1, M2)] in the next section.

Estimation of the variance of ". The previous section showed that given an estimate V (S, M1, M2) of the variance Var[ "(S, M1, M2)], we can compute statistical significance of the estimated di erences in discrimination error between languages. In this section we derive such an estimator.

We first find an expression for Var[ "(S, M1, M2)], then derive an estimator from it. We use n1 to denote the number of test speakers, |S|, n2 to denote the number of models trained on language L1, |M1|, and n3 to denote the number of models trained on language L2, |M2|. We can express the variance using the standard decomposition for the variance of a U statistic (4),

where ‡ 2 xyz denotes the covariance between D(s1, a1, j1) and D(s2, a2, j2) for two triplets (s1, a1, j1), (s2, a2, j2) formed of a randomly sampled combination of a test speaker, an American English model, and a Japanese model, with the subscripts x, y, ‡ Possibly with some missing data, as not all possible phonetic contexts occur for each speaker and each phonetic category in any given test set.
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Thomas Schatz, Naomi H. Feldman, Sharon Goldwater, Xuan-Nga Cao and Emmanuel Dupoux and z indicating whether the two test speakers, American English models and Japanese models, respectively, are constrained to be identical (subscript 0) or not (subscript 1). For example,

We now use the above variance decomposition to derive an estimator. Let us define the order 3, degree (2, 2, 2) kernel  k 1 k 2 k 3 for some strictly positive integers k1, k2, k3, as follows

Let us consider some arbitrary orderings (s1, s2, ..., sn 1 ), (a1, a2, ..., an 2 ) and (j1, j2, ..., jn 3 ) of S, M1, and M2, respectively.

Let us also note (n k), for any integers n and k, the set of all integer k-tuples

It is straightforward to show that Ân 1 n 2 n 3 is an unbiased estimator for Var[ "(S, M1, M2)], leading to the following symmetric unbiased estimator based on all of the available data

where

with S2 = {(1, 2), (2, 1)} the set of all permutations of {1, 2}.

With this estimator for the variance of "(S, M1, M2), we can now conduct a z-test over the test statistic defined in the previous section to compute statistical significance of cross-linguistic discrimination di erences. Supplementary Discussion.

1. Input idealization in computational modeling of early phonetic learning. Modeling studies investigating the feasibility of potential learning mechanisms for early phonetic learning have typically relied on input idealizations that sidestep the lack of invariance problem and the phonetic segmentation problem, and cannot therefore alleviate the feasibility concerns related to these problems. In initial modeling work investigating the feasibility of learning phonetic categories through distributional learning (5-9), the phonetic category segmentation problem was either simply assumed to have been solved [START_REF] Vallabha | Unsupervised learning of vowel categories from infant-directed speech[END_REF][START_REF] Mcmurray | Statistical learning of phonetic categories: insights from a computational approach[END_REF][START_REF] Jones | Learning vowel categories from maternal speech in gurindji kriol[END_REF], or the input speech was assumed to consist of exemplars from a restricted number of pre-segmented or isolated syllable types, that were furthermore chosen such that automatic segmentation of the vowel nucleus based on voicing cues would be easy [START_REF] De Boer | Investigating the role of infant-directed speech with a computer model[END_REF][START_REF] Mh Coen | Self-supervised acquisition of vowels in american english[END_REF]. The impact of the lack of invariance problem was minimized by artificially limiting the variability of the input. Specifically, the input speech signal was: chosen from a restricted set of phonemes [START_REF] De Boer | Investigating the role of infant-directed speech with a computer model[END_REF][START_REF] Mh Coen | Self-supervised acquisition of vowels in american english[END_REF][START_REF] Vallabha | Unsupervised learning of vowel categories from infant-directed speech[END_REF][START_REF] Mcmurray | Statistical learning of phonetic categories: insights from a computational approach[END_REF][START_REF] Jones | Learning vowel categories from maternal speech in gurindji kriol[END_REF]; occurring in a restricted set of phonetic contexts (5-7); uttered by a (very) restricted set of speakers [START_REF] De Boer | Investigating the role of infant-directed speech with a computer model[END_REF][START_REF] Jones | Learning vowel categories from maternal speech in gurindji kriol[END_REF]; available to the learner in a manually encoded [START_REF] Vallabha | Unsupervised learning of vowel categories from infant-directed speech[END_REF][START_REF] Mcmurray | Statistical learning of phonetic categories: insights from a computational approach[END_REF][START_REF] Jones | Learning vowel categories from maternal speech in gurindji kriol[END_REF] and/or restricted [START_REF] De Boer | Investigating the role of infant-directed speech with a computer model[END_REF][START_REF] Mh Coen | Self-supervised acquisition of vowels in american english[END_REF][START_REF] Vallabha | Unsupervised learning of vowel categories from infant-directed speech[END_REF][START_REF] Mcmurray | Statistical learning of phonetic categories: insights from a computational approach[END_REF][START_REF] Jones | Learning vowel categories from maternal speech in gurindji kriol[END_REF] phonetic feature space; drawn from synthetic parametric sound distributions fitted to corpus data rather than using corpus data directly [START_REF] Vallabha | Unsupervised learning of vowel categories from infant-directed speech[END_REF][START_REF] Mcmurray | Statistical learning of phonetic categories: insights from a computational approach[END_REF]. Subsequent studies considered slightly more realistic variability and found that distributional learning was not su cient anymore to learn phonetic categories accurately [START_REF] Adriaans | Distributional learning of vowel categories is supported by prosody in infant-directed speech in[END_REF][START_REF] Dillon | A single-stage approach to learning phonological categories: Insights from inuktitut[END_REF][START_REF] Nh Feldman | A role for the developing lexicon in phonetic category acquisition[END_REF][START_REF] Rasilo | Feedback and imitation by a caregiver guides a virtual infant to learn native phonemes and the skill of speech inversion[END_REF][START_REF] Frank | Weak semantic context helps phonetic learning in a model of infant language acquisition in Proc. ACL[END_REF][START_REF] Adriaans | Prosodic exaggeration within infant-directed speech: Consequences for vowel learnability[END_REF][START_REF] Adriaans | E ects of consonantal context on the learnability of vowel categories from infant-directed speech[END_REF] and proposed additional learning mechanisms tapping into other sources of information plausibly available to infants to complement distributional learning. However, demonstrations of feasibility for the proposed mechanisms still assumed the phonetic category segmentation problem to be solved [START_REF] Adriaans | Distributional learning of vowel categories is supported by prosody in infant-directed speech in[END_REF][START_REF] Dillon | A single-stage approach to learning phonological categories: Insights from inuktitut[END_REF][START_REF] Nh Feldman | A role for the developing lexicon in phonetic category acquisition[END_REF][START_REF] Frank | Weak semantic context helps phonetic learning in a model of infant language acquisition in Proc. ACL[END_REF][START_REF] Adriaans | Prosodic exaggeration within infant-directed speech: Consequences for vowel learnability[END_REF][START_REF] Adriaans | E ects of consonantal context on the learnability of vowel categories from infant-directed speech[END_REF] and/or did not fully address the lack of invariance problem by not considering the full variability of natural speech [START_REF] Adriaans | Distributional learning of vowel categories is supported by prosody in infant-directed speech in[END_REF][START_REF] Dillon | A single-stage approach to learning phonological categories: Insights from inuktitut[END_REF][START_REF] Nh Feldman | A role for the developing lexicon in phonetic category acquisition[END_REF][START_REF] Rasilo | Feedback and imitation by a caregiver guides a virtual infant to learn native phonemes and the skill of speech inversion[END_REF][START_REF] Frank | Weak semantic context helps phonetic learning in a model of infant language acquisition in Proc. ACL[END_REF][START_REF] Adriaans | Prosodic exaggeration within infant-directed speech: Consequences for vowel learnability[END_REF][START_REF] Adriaans | E ects of consonantal context on the learnability of vowel categories from infant-directed speech[END_REF]. Specifically, input speech signal was: chosen from a restricted set of phonemes [START_REF] Adriaans | Distributional learning of vowel categories is supported by prosody in infant-directed speech in[END_REF][START_REF] Dillon | A single-stage approach to learning phonological categories: Insights from inuktitut[END_REF][START_REF] Nh Feldman | A role for the developing lexicon in phonetic category acquisition[END_REF][START_REF] Frank | Weak semantic context helps phonetic learning in a model of infant language acquisition in Proc. ACL[END_REF][START_REF] Adriaans | Prosodic exaggeration within infant-directed speech: Consequences for vowel learnability[END_REF][START_REF] Adriaans | E ects of consonantal context on the learnability of vowel categories from infant-directed speech[END_REF]; occurring in a restricted set of phonetic contexts [START_REF] Nh Feldman | A role for the developing lexicon in phonetic category acquisition[END_REF][START_REF] Frank | Weak semantic context helps phonetic learning in a model of infant language acquisition in Proc. ACL[END_REF][START_REF] Adriaans | E ects of consonantal context on the learnability of vowel categories from infant-directed speech[END_REF]; uttered by a very restricted set of speakers [START_REF] Adriaans | Distributional learning of vowel categories is supported by prosody in infant-directed speech in[END_REF][START_REF] Dillon | A single-stage approach to learning phonological categories: Insights from inuktitut[END_REF][START_REF] Rasilo | Feedback and imitation by a caregiver guides a virtual infant to learn native phonemes and the skill of speech inversion[END_REF][START_REF] Adriaans | Prosodic exaggeration within infant-directed speech: Consequences for vowel learnability[END_REF][START_REF] Adriaans | E ects of consonantal context on the learnability of vowel categories from infant-directed speech[END_REF]; available to the learner in a manually encoded [START_REF] Jones | Learning vowel categories from maternal speech in gurindji kriol[END_REF][START_REF] Adriaans | Distributional learning of vowel categories is supported by prosody in infant-directed speech in[END_REF][START_REF] Nh Feldman | A role for the developing lexicon in phonetic category acquisition[END_REF][START_REF] Frank | Weak semantic context helps phonetic learning in a model of infant language acquisition in Proc. ACL[END_REF][START_REF] Adriaans | Prosodic exaggeration within infant-directed speech: Consequences for vowel learnability[END_REF][START_REF] Adriaans | E ects of consonantal context on the learnability of vowel categories from infant-directed speech[END_REF] and/or restricted (10-12, 14-16) phonetic feature space; drawn from synthetic parametric sound distributions fitted to corpus data rather than using corpus data directly [START_REF] Dillon | A single-stage approach to learning phonological categories: Insights from inuktitut[END_REF][START_REF] Nh Feldman | A role for the developing lexicon in phonetic category acquisition[END_REF][START_REF] Rasilo | Feedback and imitation by a caregiver guides a virtual infant to learn native phonemes and the skill of speech inversion[END_REF][START_REF] Frank | Weak semantic context helps phonetic learning in a model of infant language acquisition in Proc. ACL[END_REF]. Existing attempts to extend some Thomas Schatz, Naomi H. Feldman, Sharon Goldwater, Xuan-Nga Cao and Emmanuel Dupoux Table S1. Phonetic contrasts for which a significant difference in discriminability between American English-and Japanese-learning infants is robustly predicted by the proposed distributional learning mechanism. That is, for each possible choice of training and test register, these contrasts show a significant difference in discrimination errors between models trained on American English and Japanese, and the magnitude of this difference does not decrease as the training data size is increased. See Supplementary Materials and Methods 4 for justification of these criteria and details of the method.

Language Contrast

Easier for Average difference in learners of discrimination error Am. English

[Ç] -[I] Am. English

5.4%

Am. English [Ç] -[2]

Am. English

4.8%

Am. English [ô] -[l]

Am. English ABX error rates for the American English [ô]-[l] contrast and two controls: American English [w]-[j] and average over all American English consonant contrasts. Error-rates are reported for each of the four trained Gaussian mixture models and each of the two American English test sets. Error bars correspond to plus and minus one standard deviation of the errors across resampling of the test stimuli speakers. Results show that the specific deficit for American English [ô]-[l] discrimination for 'Japanese' models compared to 'American English' models is robustly observed across all training and test conditions. 76) of the distribution of 'native' advantages across all tested phonetic contrasts (pooled over both languages) for the unsupervised Gaussian mixture models (GMM) and the supervised phoneme recogniser baseline (HMM). The native language advantage is the increase in discrimination error for a contrast of language L1 between a 'L1-native' model and a model trained on the other language, keeping the training register constant. The 'native register' advantage is the increase in error for a contrast of register R1 between a 'R1-native' model and a model trained on the other register, keeping the training language constant. For both types of models and in all tested cases, the reduction in the average discrimination error between 'native language' and 'non-native language' conditions is not driven by just a few contrasts. The 'native register' only seems to play a role for the supervised models. In particular supervised models trained on read speech appear to have trouble discriminating spontaneous speech stimuli, while supervised models trained on spontaneous speech do not have problem discriminating read speech stimuli.

American English models Japanese models Input features baseline S5. ABX error rates for the American English [ô]-[l] contrast and two controls: American English [w]-[j] and average over all American English consonant contrasts (C-C). Error rates averaged over the two American English test sets and across model's training registers are reported for the unsupervised Gaussian mixture models (GMM), the supervised phoneme recogniser baseline (HMM) and the input features baseline. Error bars correspond to plus and minus one standard deviation of the errors across resampling of the test stimuli speakers. The specific deficit for American English [ô]-[l] discrimination for 'Japanese' models compared to 'American English' models is observed with both the unsupervised Gaussian mixtures and the supervised phoneme recognisers. The size of the deficit is larger for the supervised baseline, though, which we can interpret as the unsupervised GMM models producing somewhat immature representations of speech, like those of human infants (37), while the supervised HMM models produce more adult-like representations. Another interesting result is that the supervised American English models ('native' condition, in blue) do not outperform the input features baseline in the supervised case and underperform it in the unsupervised case. This suggests that some of the detailed information relevant to discrimination that was present in the input features was not preserved through the learning of a different representation of the speech signal in terms of discrete Gaussian components (see Supplementary Discussion 3 for further discussion). error bars show the standard deviations across the ten trained models. Models trained on 1/10 th subsets learn much fewer categories (about one fourth as many). This is closer to the typical number of phonemes or of phonetic categories one would expect in a language. Yet, these learned units remain qualitatively different from phonetic categories as shown by the duration and acoustic (in)variance analyses (panels b, c, d). Although their average duration of activation are a few millisecond longer than for models trained on the full training sets, this is still about one fourth of the average duration of speech segments corresponding to phonetic category units. The units learned by the models trained on 1/10 th subsets also appear slightly more acoustically invariant, with number of distinct units in the acoustic (in)variance tests about 80% that of the models trained on the full training sets (panels c, d). This remains much more variable than the phoneme recognizer baseline, however. Furthermore, for the acoustic (in)variance analysis we have applied a very generous correction for possible misalignment (see Supplementary Materials and Methods 3). This likely causes an overestimation of the acoustic invariance for all the unsupervised models, as indicated by the results on Figure S10. Overall these analyses suggest that the failure of our models to learn phonetic categories cannot be attributed solely to their learning of too many categories.