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ABSTRACT  

The posterior parietal cortex (PPC) serves as a sensorimotor interface by integrating 

multisensory signals with motor related information for generating and updating body 

representations and movement plans. Using retrograde transneuronal transfer of rabies virus 

combined with a conventional tracer, we identified direct and polysynaptic pathways to two 

PPC areas, the rostral medial intraparietal area (MIP) and the ventral part of the lateral 

intraparietal area (LIPv) in macaque monkeys. We found that rostral MIP and LIPv receive 

ascending vestibular pathways, and putative efference copy inputs disynaptically from the 

medullary medial reticular formation (MRF) where reticulospinal pathways to neck and arm 

motoneurons originate. LIPv receives minor disynaptic vestibular inputs, and substantial 

projections from the head movement-related rostral MRF, consistent with head gain 

modulation of LIPv activity and a role in planning gaze shifts. Rostral MIP is the target of 

prominent disynaptic pathways from reaching- and head movement-related MRF domains, 

and major ascending vestibular pathways trisynaptically from both labyrinths, explaining 

prominent vestibular responses and discrimination between active and passive movements 

demonstrated in rostral MIP and in the neighboring ventral intraparietal area, which are 

heavily interconnected. The findings that rostral MIP (belonging to the ‘parietal reach 

region’), receives vestibular inputs as directly as classical vestibular areas, via a parallel 

channel, and efference copy signals pathways from MRF reticulospinal domains that belong 

to reach and head movement networks have important implications for the understanding of 
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the role of the PPC in updating body representations and internal models for online guidance 

of movement.  

 

INTRODUCTION   

 The posterior parietal cortex (PPC), which is part of the visual dorsal stream and has 

reciprocal connections with frontal lobe motor areas, is a major sensorimotor interface, which 

maintains dynamic representations of internal and extrapersonal space and participates in 

planning and execution of sensory-guided goal-directed movements (Andersen, 1997; 

Rushworth et al., 1997; Grefkes et al., 2004; Buneo & Andersen, 2006; Filimon et al., 2009). 

Integration of internal information (proprioceptive, vestibular, motor) and external signals 

(visual, tactile, auditory) is crucial for these functions. Damage to the PPC can cause a variety 

of disorders that result from defective multisensory integration; depending on the location of 

the lesion, they affect bodily self-consciousness and/or spatial awareness, as in neglect 

(Vallar, 1998; Danckert & Ferber, 2006; Lopez et al., 2008), or compromise sensorimotor 

guidance of movement as in optic ataxia (Andersen et al., 2014). Clarifying the type and 

origin of inputs to the PPC is critical for understanding the sensorimotor mechanisms 

supporting its command operations.  

Cortical integration of vestibular signals evoked by self-motion is important for a 

variety of self-related perceptual and cognitive functions (Andersen, 1997; Lopez et al., 

2008; Blanke et al., 2015). Vestibular signals are transmitted to multiple cortical areas by 

vestibulothalamic pathways and cortico-cortical connections (Lopez & Blanke, 2011). In the 

PPC, human neuroimaging studies showed intraparietal sulcus (IPS) activation after 

vestibular stimulation (reviewed by Lopez & Blanke, 2011). Evidence has also been provided 

that the human IPS uses vestibular signals for fast online adjustment of goal-directed arm 

movements (Reichenbach et al., 2016). In monkeys, vestibular responses in the IPS have 
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been recorded in the ventral intraparietal area (VIP) and in the rostral medial intraparietal 

area (MIP) (Bremmer et al., 2001, 2002; Schlack et al., 2002; Klam & Graf, 2003, 2006; 

Chen et al., 2011).  

We have studied the origin of direct and polysynaptic inputs to rostral MIP and to the 

ventral part of the lateral intraparietal area (LIPv) in macaque monkeys, using retrograde 

transneuronal transfer of rabies virus combined with a conventional tracer (Fig. 1) (Ugolini 

1995, 2010, 2011; Prevosto et al., 2009, 2010, 2011). The targeted rostral MIP, at midpoint 

level of the medial bank of the IPS, is part of the functionally defined ‘parietal reach region’, 

(Andersen et al., 2014). It corresponds to the rostral part of the myeloarchitectonically 

defined MIP (Colby et al., 1988; Bakola et al., 2017), which according to other 

nomenclature, is regarded as part of 5v (e.g., Hwang et al., 2012, 2014), caudal PEip, or the 

middle third of PEa (see Prevosto et al., 2010; Bakola et al., 2017). LIPv is part of the 

‘parietal eye field’ (Buneo & Andersen, 2006; Bisley & Goldberg, 2010); it differs from 

dorsal LIP with regard to myelo- and cytoarchitecture, visual field representation, 

connectivity and functional role (Lynch et al., 1985; Blatt et al., 1990; Lewis & Van Essen, 

2000a,b; Ben Hamed et al., 2001; Liu et al., 2010; Chen et al., 2016).  

Here, we demonstrate that rostral MIP receives major ascending vestibular inputs 

through a trisynaptic pathway from both labyrinths (i.e., from Scarpa’s ganglia to second 

order vestibular neurons issuing vestibulothalamic pathways, and then thalamocortical 

neurons). Conversely, LIPv receives minor ascending vestibular inputs. These findings have 

important implications for the understanding of vestibular information processing on 

reference frame transformations for action in the PPC and online control of goal-directed arm 

movements. Because vestibular units in the ventral posterior thalamus can distinguish 

between active and passive movements (Dale & Cullen, 2017), ascending vestibular 

pathways to rostral MIP explain the distinction between active and passive movements 
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demonstrated in rostral MIP and VIP (Klam & Graf, 2006), providing a correlate for ensuring 

perceptual stability and effective motor actions.  

Remarkably, our study also revealed that rostral MIP and LIPv receive disynaptic 

pathways from the medullary medial reticular formation (MRF), which target most 

prominently rostral MIP, but also provide substantial and topographically distinct inputs to 

LIPv. These pathways are suited to carry efference copy signals related to arm and head 

movements, because they originate from reticulospinal MRF regions that belong to reaching 

and head movement networks. MRF efference copy pathways to the PPC have the required 

characteristics to contribute to internal models for online motor control operations in the PPC, 

together with ascending vestibular pathways and cerebellar output channels (Prevosto et al., 

2010). Preliminary accounts of some of these findings have been reported earlier (Prevosto et 

al., 2006). 

 

MATERIAL AND METHODS 

Experiments were conducted in 3 adult macaque monkeys (1 Macaca fascicularis, 2 

Macaca mulatta). The animals were purpose-bred and purchased from authorized suppliers. 

The experiments were carried out at the appropriate biosafety containment level. Animal care 

and experimental procedures were approved by the relevant institutional Bioethical Committees 

(Regional Committee of Biomedical Ethics, Centre National de la Recherche Scientifique, and 

French Ministry of Agriculture Veterinary Services) and conformed with national laws and the 

Council Directive 2010/63EU of the European Parliament and the Council of 22 September 

2010 on the protection of animals used for scientific purposes, as well as the European 

Communities Council Directive of 24 November 1986 (86/609/EEC) concerning biosafety and 

use of laboratory animals in research, and "Principles of Laboratory Animal Care" (NIH 

publication No. 86-23, revised 1985). Details on preparation of rabies virus, handling of 
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animals, and the methodology for transneuronal tracing using rabies virus were described 

previously (Ugolini, 1995, 2010, 2011; Ugolini et al., 2006; Prevosto et al., 2009, 2010, 2011).  

 

Surgical procedures, injections and postoperative care  

Surgery was performed aseptically under general anesthesia. After premedication with 

Valium (10 mg) and Atropine (0.5 mg), anesthesia was induced with Ketamine (30 mg/kg 

i.m.) and Acepromazine (0.5 mg/kg i.m.); after establishing venous access, the anesthetic 

Propofol was administered intravenously during the entire procedure (induction dose, 10 

mg/kg, maintenance dose 15 mg/kg/h). The monkey’s head was fixed in a stereotaxic head-

holder. Access to the intraparietal sulcus (IPS) areas (VIP, rostral MIP and LIPv) of the left 

hemisphere (Fig. 1) was gained via a previously implanted recording chamber, which was 

equipped with a Teflon grid for electrode placement, thereby allowing highly reproducible 

electrode penetrations. Injections were made at the end of long-term electrophysiological 

recordings (Klam & Graf, 2006), and targeted at stereotaxic coordinates of previously 

recorded responses. As described earlier (Prevosto et al., 2009, 2010, 2011), neurons at the 

rostral MIP injection site were characterized by prominent vestibular responses, sensitivity to 

somatosensory stimulation on the arms and hands (Klam & Graf, 2003, 2006) and bimodal 

somatosensory/visual responses (e.g., Colby & Duhamel 1991; Iriki et al., 1996; Graziano et 

al., 2000). Neurons at the LIPv injection site showed characteristic visual and eye movement 

related activities (Blatt et al., 1990, Ben Hamed et al., 2001), weak vestibular responses 

(Andersen, 1997), and no somatosensory responses characteristic of VIP (Colby & Duhamel, 

1991).  
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A mixture of rabies virus (CVS strain, 5.96 x 10
10

 PFU/ml) and the conventional 

tracer Cholera toxin B fragment (CTB low salt, end concentration 0,03%) (List Biological 

Labs, Campbell, CA) was injected in a single dose (2 µl delivered over 30 minutes) into 

rostral MIP (2 monkeys) or LIPv (1 monkey) at midpoint of the rostrocaudal length of the IPS 

(Fig. 1) using a Hamilton syringe driven by a micromanipulator. The injection needle was left 

in place for more than 30 minutes after the end of the injection. After recovery from general 

anesthesia, the animals behaved normally without any clinical or behavioral signs of infection 

for the entire duration of the study (Prevosto et al., 2009, 2010, 2011).  

 

Time points of transfer 

Animals were euthanized for histological examination 2.5 days (experiments MIP-2 

and LIPv-1) and 3 days (MIP-1) after intracortical injection of the rabies virus/CTB mixture. 

As shown earlier (Prevosto et al., 2009, 2010, 2011), these times points are sufficient for 

labeling of first-order neurons (CTB) and simultaneous retrograde transneuronal labeling of 

second-order neurons (2.5 days), and third-order neurons (3 days) with rabies virus (see 

Ugolini, 2010) (Figs 1 and 2). At the designated time points, the animals were given a lethal 

dose of pentobarbital (30 mg/kg i.v.) after induction of deep general anesthesia as described 

above. They were perfused transcardially with 2 liters of phosphate buffered saline (PBS) 

(pH 7.4), followed by 3.5 liters of 4% paraformaldehyde in 0.1 M phosphate buffer (PB) (pH 

7.4) and 4 liters of 10% sucrose in 0.1 M PB (pH 7.4). 

 

Tissue processing and immunohistochemistry  

Brains were removed from the cranium, including the left and right vestibular 

(Scarpa’s) ganglia, and cut stereotaxically in two blocks (13 mm anterior of the interaural 

line) in the frontal plane. Tissue blocks (the caudal one also including Scarpa’s ganglia) were 
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cryoprotected and gelatin-embedded as described previously (Ugolini et al., 2006), and cut in 

frozen serial sections (50 µm), which were collected free-floating in 8 parallel series. In two 

series (200 µm spacing), rabies virus was visualized immunohistochemically using a 

monoclonal antibody directed against the rabies P protein (diluted 1 :1000, overnight 

incubation at 4° C) and the peroxidase anti-peroxidase method as described previously 

(Ugolini et al., 2006). After reactions, sections were mounted on gelatin-coated slides, air dried, 

counterstained with 0.1-0.5% Cresylviolet (Sigma-Aldrich, France) and coverslipped with 

Entellan (Merck, Whitehouse Station, NJ). In an adjoining series of sections, CTB labeling 

was visualized using as primary antibody goat anti-choleragenoid (List Biological Labs, 

Campbell, CA) (diluted 1:5000, 8 days incubation at 4° C) and the peroxidase anti-peroxidase 

method as described previously (Prevosto et al., 2010). Sections were mounted on 

gelatin-coated slides, air dried and coverslipped with Entellan (Merck, Whitehouse Station, NJ). 

Another series of sections was stained for myelin with gold chloride (Prevosto et al., 2010). 

 

Data Analysis 

Every fourth section was examined for rabies immunolabeling and every eighth sections 

for CTB immunolabeling. Labeled neurons were analyzed and counted using a computer-

assisted plotting and three-dimensional reconstruction software (Neurolucida, MBF 

Bioscience, Williston, VT) on a computer linked to a light microscope. Three-dimensional 

reconstructions of the injection area were created using Neurolucida, by stacking in register 

digital plots of immunolabeled serial sections. Solid reconstructions were visualized using the 

associated Solid Model software and exported into Adobe Illustrator. High resolution 

composites of digital images were captured using a video camera (Lumenera, Ottawa, CN) 

coupled to the microscope and the Virtual Slice module of Neurolucida (MBF Bioscience, 

Williston, VT). Contrast, brightness and sharpness of digital photomicrographs were 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

adjusted, if necessary, using Adobe Photoshop CS5. Illustrations were prepared using Adobe 

Illustrator. 

 

RESULTS 

We have demonstrated earlier in this model that injecting intracortically a mixture of 

the conventional tracer CTB (0,03 %) and rabies virus makes it possible to determine the 

precise extent of the injection site and to identify simultaneously first-order (CTB) and 

higher-order projections (rabies virus) to the injected cortical areas, without altering the 

uptake and transport of either tracer (Prevosto et al., 2009, 2010; 2011; Ugolini, 2010).   

 

The CTB results showed that the injection area involved exclusively the rostral part of 

MIP (n=2) or ventral LIP (LIPv) (n=1) at midpoint level of the rostrocaudal extent of the IPS 

(see Fig. 1). Cyto- and myeloarchitectonic criteria used for the identification of the injected 

cortical areas have been illustrated earlier (Prevosto et al., 2009, 2010, 2011).  

 

In keeping with reports of reciprocal interconnections of MIP and LIPv with VIP 

(Lewis & Van Essen, 2000b; Bakola et al., 2017), the CTB results showed that direct 

projections to the injected rostral MIP originate from dorsal VIP (Fig. 3C and E); by 

comparison, projections to LIPv are derived from wider VIP portions, especially from ventral 

VIP, and are much heavier (Fig. 3A). Remarkably, we found that MIP receives major 

projections from the homotopic ventral MIP of the opposite hemisphere (Figs 3D and F, and 

4B); conversely, homotopic callosal projections to LIPv are minor (n= 6 versus n= 352 and 

n=137 cells in the MIP experiments) (Figs 3B and 4B), whereas CTB cell counts in the 

ipsilateral thalamus do not substantially differ (Fig. 4A). This direct connectivity is relevant 

for the interpretation of rabies transneuronal labeling in the thalamus and brainstem (see 
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below). The minor callosal connectivity of LIPv is consistent with the findings that 

representation of the ipsilateral visual hemifield in LIP is limited to the central 5°, whereas 

the targeted LIPv contains a peripheral representation (Ben Hamed et al., 2001).       

  

Thalamus  

We delineated the thalamic nuclei (Fig. 5) according to Olszewski’s classification 

(1952). The distribution in the thalamus (Fig. 5) of first-order (CTB, dots) and higher-order 

neurons (rabies virus, dark labeling) obtained in these experiments has been illustrated earlier 

(Prevosto et al., 2009, 2010, 2011). Thalamic labeling provided an internal control for the 

number of synapses crossed by the rabies tracer. Only disynaptic (second-order) projections 

were labeled at 2.5 days, because labeling of the reticular thalamic nucleus (Rt) occurred only 

ipsilaterally (second-order) (Figs 2 and 5); at this time point, rabies virus immunolabeling in 

the ipsilateral thalamus visualized also thalamo-cortical inputs to cortical areas of the same 

hemisphere that are directly connected to MIP and LIPv, including projections from 

vestibular areas 3a to MIP and 2v to LIPv (Prevosto et al., 2011) and from VIP to both areas 

(see above, Fig. 3). Second-order labeling in the contralateral (right) thalamus largely 

mirrored the distribution of first-order (CTB) labeling ipsilaterally, as it reflected thalamo-

cortical projections to MIP and LIPv of the opposite hemisphere, which are directly 

connected to the injected left MIP and LIPv via callosal connections (Prevosto et al., 2009, 

2010, 2011) (Figs 2, 3, 4 and 5). Notably, second-order labeling in the contralateral thalamus 

was much heavier in the MIP case (Fig. 5), because of the much stronger callosal connections 

of MIP compared with LIPv (Figs 3 and 4B, see above). The occurrence of an additional 

synaptic step at the 3 days time point was demonstrated by labeling of the contralateral Rt 

nucleus (trisynaptic) (Figs 2 and 5). 
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 The CTB results showed a different topography of thalamo-cortical projections to MIP 

and LIPv (Figs 4A and 5). Thalamic input to rostral MIP was derived from the dorsal capping 

zone of the ventral posterior lateral nucleus, pars caudalis (VPLc) (see Prevosto et al., 2011), 

portions of the ventral lateral nucleus, pars caudalis (VLc) and pars postrema (VLps), the 

intralaminar central lateral (CL) nucleus and the lateral portion of the medial dorsal (MD) 

nucleus, and from mainly dorsal and lateral portions of the lateralis posterior (LP) and anterior 

pulvinar (APul) nuclei (Fig. 5). Thalamic input to LIPv originated from the CL and lateral MD 

and largely from more caudal, medial, and ventral portions of LP and APul (Fig. 5); it also 

extended much more caudally in the pulvinar complex (Fig. 4A) (see Prevosto et al., 2010).  

 

 Of interest for the present report is the first-order labeling obtained in thalamic nuclei 

that receive vestibulothalamic or reticulothalamic projections, which would explain the 

disynaptic (second-order) labeling obtained at 2.5 days in the vestibular nuclei (VN) and 

dorsal medullary MRF in the MIP and LIPv experiments (see below). Thus, a brief summary 

of these pathways is provided below.   

 

Primate thalamic nuclei carrying vestibular signals include the VPLc and VPL, pars 

oralis (VPLo), parts of the ventral posterior inferior (VPI) and ventral posterior medial nuclei 

(VPM), large portions of the VL, the LP, CL, central medial (CM), APul and posterior group 

(Büttner & Henn, 1976; Liedgren et al., 1976; Deecke et al., 1977; Magnin & Fuchs, 1977; 

Büttner et al., 1977; Büttner & Lang, 1979; Marlinski & McCrea 2008; Meng et al., 2007, 

Meng & Angelaki 2010). In tracing studies, projections from the VN have been demonstrated 

only to the VPLc, VPLo, VPI, VLc, CL and lateral MD (Lang et al., 1979; Büttner & Lang, 

1979; Tracey et al., 1980; Asanuma et al., 1983a; Russchen et al., 1987; Meng et al., 2007). 

Reticulo-thalamic projections originating from the dorsal medullary MRF regions that issue 
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disynaptic pathways to MIP and LIPv heavily target the CL and lateral MD; patchy 

terminations were also found elsewhere in VL, VPL and LP-pulvinar complex (Graybiel, 

1977; Matsuyama et al., 1988; Ohtake, 1992; Nagata, 1986; Russchen et al., 1987).  

 The CTB results showed that direct thalamocortical projections to rostral MIP and LIPv 

originate from several of the thalamic nuclei receiving projections from the VN, i.e., the VPLc 

and caudal VLc, the CL and lateral MD (dots in Fig. 5). Of these, CL and MD give rise to 

projections to both MIP and LIPv, whereas the VPLc and VLc target MIP (Fig. 5). Similarly, 

reticulo-thalamic projections from the labeled MRF can reach MIP and LIPv via the CL, 

lateral MD, VLc and VPLc and, to a lesser extent, the LP-Pulvinar complex (see above). Of 

these, the CL and lateral MD and LP-Pulvinar complex project to both MIP and LIPv, 

whereas VPLc and VLc target only MIP (Fig. 5).  

 

Vestibular nuclei and reticular formation – disynaptic inputs to MIP (2.5 days)  

Retrograde transneuronal labeling in the brainstem at 2.5 days reflected disynaptic 

projections to MIP and LIPv via the thalamus. Of interest for the present report is the labeling 

obtained in the vestibular complex and medullary MRF. The results revealed major 

quantitative differences and some topographical differences in the vestibular and reticular 

populations that target disynaptically MIP and LIPv (Figs 2 and 6-10). Additional brainstem 

data obtained from these experiments (and partially included in the line drawings) were 

already described, regarding proprioceptive pathways to MIP and LIPv from the dorsal 

column nuclei (DCN) (see Prevosto et al., 2011), ascending pathways from the horizontal eye 

position integrator (prepositus hypoglossi, PH), which carry eye position and velocity signals 

to MIP and LIPv, and a few ascending pathways from the spinal trigeminal nucleus (SpV) 

targeting LIPv (see Prevosto et al., 2009).   
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Vestibular nuclei  

Neurons with disynaptic projections from the VN to MIP were seen bilaterally, with 

dominance contralaterally in the medial vestibular nucleus (MV) in the caudal half of the VN 

and ipsilaterally in the rostral part of the vestibular complex (Figs 6, 7 and 8). Their greatest 

number (n=386) was found in the medial vestibular (MV) nucleus, especially in its caudal 

half (Figs 6, 7 and 8); some labeled cells were also seen in portions of the descending 

vestibular (DV) (n=56), vestibular Y group (n= 23) and superior vestibular nuclei (SV; 

n=107) (Figs 6 and 8).   

 

In the MV nucleus caudal pole, labeled neurons were absent (Fig. 6A) or almost 

exclusively contralateral (Figs 6B and 8). More rostrally, within the caudal half of the MV, 

many labeled neurons were present bilaterally, with a much greater number contralaterally 

(Figs 6C-G, 7E-I, and 8). Most of them were large multipolar cells, with long labeled 

dendrites often running in the plane of sections (Fig. 7E-I). They showed a similar 

topography on both sides; they were characteristically located mainly ventrally, in the 

magnocellular portion of the MV (MVmc) and in the neighboring parvocellular MV (MVpc) 

laterally and dorsally (Figs 6C-G and 7E-I). In the rostral half of the MV, labeled cells 

drastically reduced in numbers (Figs 6H-L, 7A and 8), and in the rostral third of the MV, they 

were more numerous ipsilaterally, in MVmc (Fig. 6J-L).  

 

In the DV nucleus, only a few neurons were labeled in the caudal third of the nucleus 

on both sides (Fig. 6); more neurons were labeled at more rostral levels, especially 

contralaterally in the middle rostrocaudal third of the DV, and ipsilaterally in its rostral third 

(Figs 6, 7 and 8). Some neurons were also labeled bilaterally in the vestibular Y group (Figs 

6E and 8) and particularly in the SV nucleus, especially dorsally (Figs 6F-L and 8). The large 
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vestibulospinal cells of the lateral vestibular (LV) nucleus were not labeled; the few medium 

size multipolar cells labeled near/within the LV boundaries were regarded as part of the SV 

and included in the SV cell counts (Figs 6 and 8).   

 

 Reticular formation  

A considerable number of labeled cells (n=308) were also present bilaterally in dorsal 

parts of the reticular formation between the levels of the abducens (VI) and hypoglossal (XII) 

nuclei (Figs 6, 7 and 8). The portion of the MRF containing reticulothalamic neurons that 

target MIP included the dorsal portion of the gigantocellular reticular formation (Gi), as well 

as the reticular region dorsal to Gi, lateral to the paramedian tracts and ventral to the XII, PH 

and VI nuclei (Figs 6 and 7), which comprises the dorsal paragigantocellular reticular 

formation (DPGi), the caudal end of nucleus reticularis pontis caudalis at the level of the VI 

nucleus, and the paramedian reticular nucleus at caudal medullary levels (levels shown in 

Figs 6A-D and 7I) (Langer et al., 1986). To provide a shorthand for the description and 

because it is cytoarchitectonically similar throughout, we call this entire region DPGi, like 

Paxinos et al. (2000).  

 

Throughout most medullary levels, labeled cells were numerous in the dorsal part of 

Gi and neighboring DPGi (Figs 6 and 7); they were distributed bilaterally, with a 

contralateral dominance (Figs 6A-J, 7 and 8). Labeled neurons in Gi/DPGi were generally 

large, multipolar cells, dispersed among many unlabeled ones (Fig. 7). Rostrally, at the level 

of the VI nucleus and of the genu of the facial nerve, labeled cells in the MRF were numerous 

in Gi and only a few in DPGi (Fig. 6K and L). In both MIP and LIPv experiments, labeling at 

these levels did not involve the distinct eye movement-related cell cluster (inhibitory burst 

neurons) which is located dorsally in DPGi, near the VI nucleus (Ugolini et al., 2006). 
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Similarly, the cell groups embedded within the paramedian fiber tracts, which project to the 

flocculus and ventral paraflocculus (Langer et al., 1985), were unlabeled.   

 

In the rostral medulla, a few labeled cells of medium/large size were also present 

more laterally, in the dorsal portion of the lateral reticular formation (LRF), immediately 

ventral to the rostral MVmc, and lateral and caudal to the VI nucleus (Figs 6G-J, and 7A and 

D, asterisks). Eye movement-insensitive neurons were described in this small reticular region 

(Fuchs & Kimm, 1975), which receives a few direct otolith afferents (Newlands et al., 2003).  

 

Vestibular nuclei and reticular formation – disynaptic inputs to LIPv (2.5 days)  

Vestibular complex  

Disynaptic projections to LIPv from the VN were much fewer (less than 1/10 of the 

number of cells in the vestibular complex that targeted MIP). They were derived almost 

exclusively from the MV (n=36), with only small numbers in the DV (n=7) and SV (n=4) and 

none in the vestibular Y group or LV nuclei (Figs 8, 9 and 10). As for MIP, labeled cells 

targeting LIPv were most numerous in the caudal half of the MV (except its caudal pole), 

they were located only in MVmc and neighboring lateral portions of MVpc at all levels. 

Labeling involved large multipolar cells (Figs 9, and 10C and D). Their distribution was 

bilateral, with a slight ipsilateral dominance, even caudally (Figs 2, 8, 9, and 10C and D).  

 

Reticular formation  

Disynaptic input to LIPv was derived from a substantial number (n=144, 

approximately half of the numbers of cells labeled after MIP injections) of large multipolar 

cells in Gi/DPGi (Figs 8, 9 and 10). Their distribution was bilateral, with a contralateral 

dominance, as in the MIP case, but showed different rostrocaudal dominance. Most of the 
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labeled neurons were concentrated in the rostral medulla (Figs 9G-L and 10A-C), especially 

in Gi at the level of the VI nucleus and in both DPGi and Gi more caudally, whereas only a 

few labeled cells were found at caudal medullary levels, mainly in DPGi (Fig. 9A-F). The 

paramedian tract cell groups were not labeled. As in the MIP case, a few cells were labeled in 

the dorsal portion of the LRF adjoining the rostral MVmc (Figs 9I-J and 10A, asterisks) and 

in the LRF near the SpV (Fig. 9C and D).   

 

Scarpa’s ganglia, vestibular nuclei and reticular formation – trisynaptic inputs to MIP 

(3 days) 

Vestibular (Scarpa’s) ganglia 

At the trisynaptic time point, labeled cells appeared in Scarpa’s ganglion on both 

sides, revealing that MIP receives trisynaptic vestibular inputs directly from the labyrinth via 

second-order vestibular neurons in the VN (Figs 2 and 11D). Importantly, labeling of 

Scarpa’s ganglia involved a great number of neurons (n= 161 contralaterally and n= 15 

ipsilaterally in two series of sections) (Fig. 11D). Cell counts in the ipsilateral (left) Scarpa’s 

ganglion are likely to be a large underestimate of the total population of labeled vestibular 

ganglion’s cells targeting trisynaptically MIP, because much less tissue of the left Scarpa’s 

ganglion was available for analysis (more than half of it was lost during 

immunohistochemical processing). On both sides, rabies immunolabeling visualized the 

characteristic round cell bodies of vestibular ganglion cells, some intensely labeled and others 

weakly labeled, intermingled with many unlabeled cells; axons were not labeled (Fig. 11D). 
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Some labeled cells were also found bilaterally in the interstitial nucleus of the 

vestibular nerve (Langer et al., 1985; Newlands et al., 2003) (Figs 11A and 12I). At the 

trisynaptic time point, there was a major increase in the number and distribution of labeled 

neurons in the brainstem (see below, Figs 11 and 12), which could reflect the visualization of 

inputs to cortical areas directly connected with MIP and to brainstem and cerebellar 

populations targeting MIP (for the cerebellar results, see Prevosto et al., 2010). Thus, the 

heavy (mirror-image) direct connections between homotopic MIP portions of the two 

hemispheres (Figs 3C, D and F, and 4) and the resulting disynaptic labeling in the 

contralateral thalamus (Figs 2 and 5) likely contribute to explain why labeling in the VN (and 

MRF) became more bilateral at the trisynaptic time point (Fig. 12). The increase in labeling 

of VN and MRF at this time point may also be mediated by heavy commissural pathways 

between the VN, as well as reciprocal vestibulo-reticular connections and reticulo-reticular 

connections along the rostrocaudal axis (Graybiel, 1977; Corvaja et al., 1979; Matsuyama et 

al., 1988; Cowie et al., 1994). Thus, the relative contribution of each pathway to the 

trisynaptic labeling described below could not be precisely determined.  

 

Vestibular nuclei 

In the vestibular complex, labeling became more bilateral and involved a much 

greater number of neurons on both sides in MV, SV, DV and Y group (Figs 11 and 12). The 

increase in cell number and distribution was particularly pronounced in the MV, where 

labeling at 3 days included also its caudal pole (Fig. 12). Even at this time point, labeling was 

particularly pronounced contralaterally in MVmc and lateral MVpc (where labeled neurons 

were found at the disynaptic time point), where it included a dense network of labeled cell 

processes (Fig. 11C, E and F) (unlike other VN regions where labeling was initial, Fig. 11). 

Labeling additionally involved a substantial number of neurons in more medial portions of 
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MVpc at all levels, but the dorsomedial portion of MVpc and the marginal zone near the PH 

remained unlabeled at most levels (Figs 11 and 12). A substantial increase in the number and 

distribution of labeled cells occurred also in the DV (especially ventrally), SV and Y groups, 

whereas the large vestibulospinal neurons in the LV nuclei remained unlabeled (Figs 11 and 

12).  

 

Reticular formation 

A major increase in the number and distribution of labeled neurons occurred in the 

MRF on both sides (Figs 11 and 12). Labeling in DPGi became more extensive, still showing 

a clear contralateral dominance at most levels, but a bilateral distribution at the level of the 

VI nucleus. Notably, labeled cells were present throughout the Gi, including ventral portions 

which were unlabeled at the disynaptic time point (Figs 11A-C, E and G-I, and 12). At this 

time point, labeling clearly delineated the entire morphology of MRF neurons, including 

distal cell processes extending into the medial longitudinal fasciculus (Fig. 11B, E and G-I). 

A substantial increase in the number of labeled neurons also occurred in the dorsal LRF near 

the rostral MVmc (Figs 11A and 12I-K). Most of the other LRF portions remained unlabeled, 

with the exception of some cells around the facial nucleus, near the SpV (Fig. 12) and in the 

vicinity of the lateral reticular nucleus, where a large number of labeled cells were found at 3 

days, mostly contralaterally (Fig. 12A-C). Some inferior olive portions were also labeled.   

 

DISCUSSION  

The present study provides the first description of ascending polysynaptic pathways 

that convey vestibular signals to rostral MIP and LIPv. In addition to direct projections from 

‘vestibular’ cortical areas (Prevosto et al., 2011), we found that these PPC areas receive 

bilateral disynaptic pathways from the VN, which strongly target rostral MIP and provide 
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minor inputs to LIPv. We also demonstrate that rostral MIP receives vestibular inputs from 

the labyrinth vestibular end organs via a trisynaptic pathway (Figs 2 and 13A), as directly as 

classical “vestibular cortical areas” (Fukushima, 1997; Lopez & Blanke, 2011).  

We also show that rostral MIP and LIPv receive ascending disynaptic pathways from 

the dorsal medullary MRF (Figs 2 and 13), which target most prominently MIP and provide a 

topographically distinct input to LIPv.  These hitherto unknown pathways are suited to carry 

an efference copy of arm and head movement commands, because they originate from MRF 

reticulospinal regions that belong to reaching and head movement networks. These findings 

have important implications for the understanding of the influence of vestibular information 

and efference copy signals on rapid updating of internal representations and reference frame 

transformations, and internal models for action in the PPC.  

 

Vestibular and reticulothalamic pathways to LIPv: potential neural basis of head gain 

fields.  

LIPv is part of the ‘parietal eye field’ which participates in visuospatial processing 

and saccade encoding (Buneo & Andersen, 2006; Bisley & Goldberg, 2010). We show that 

LIPv receives substantial disynaptic pathways from the rostral MRF (Gi/DPGi) 

(approximately half of the number of cells targeting rostral MIP) (Figs 8, 9 and 10). 

Conversely, disynaptic pathways from the VN are minor, and originate bilaterally from the 

same MV portions that target MIP (Figs 8, 9 and 10). Their functional significance will be 

discussed in the MIP section. The stronger vestibular inputs to MIP versus LIPv suggests 

greater relevance of vestibular signals for extrapersonal space representations and arm 

movement planning exerted by MIP, versus eye movements and gaze-related functions of 

LIP. 
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Both vestibulo- and reticulothalamic pathways are routed to LIPv mainly via the 

central thalamus (CL and lateral MD) (see Results). Thalamo-cortical pathways through the 

central thalamus transmit eye position and velocity signals to LIPv and MIP from the PH 

(Prevosto et al., 2009) (Fig. 13) and corollary discharge/efference copy signals for online 

monitoring of saccades (Wurtz, 2008; Tanaka & Kunimatsu, 2011).  

To discuss the significance of reticulothalamic pathways to LIPv (and MIP), it is 

important to recall the functional organization of the MRF (Gi/DPGi), from which these 

pathways originate. There is a crude topography of motor output in the primate MRF, with 

eye movement-related neurons rostrally and dorsally in DPGi, cells projecting to both eye 

and neck motor pools at either side of the Gi/DPGi border and in Gi, and reticulospinal cells 

targeting more caudal spinal segments concentrated mainly more ventrally in Gi (Robinson et 

al., 1994; Ugolini et al., 2006; Sakai et al., 2009; Fregosi et al., 2017). In stimulation studies, 

head movements tend to be elicited especially dorsally and rostrally, and proximal arm 

movements especially at more caudoventral sites (Cowie & Robinson, 1994; Cowie et al., 

1994; Quessy & Friedman, 2004).  

Reticulo-thalamic pathways to LIPv originate mostly from the rostral part of the 

‘reticular head movement region’ (in rostral Gi and at the Gi/DPGi border, at the level of the 

VI nucleus and neighboring levels) (Fig. 9). Stimulation of this MRF portion consistently 

evokes ipsilateral head rotation (Cowie & Robinson, 1994; Cowie et al., 1994; Quessy & 

Friedman, 2004). It has the lowest threshold facilitatory effects on the upper trapezius muscle 

(a head rotator) (Davidson & Buford, 2006). Because MRF projections are highly 

collateralized (axons dichotomizing into an ascending and a descending branch, Robertson & 

Feiner, 1982), it is highly possible that reticulothalamic projections may be collaterals of 

reticulospinal neurons.  
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The significance of prominent reticulothalamic pathways to LIPv may be viewed in 

the context of head position modulation of LIPv activity and a role in planning gaze shifts 

(Buneo & Andersen, 2006). Importantly, many neurons in LIP are gain modulated by both 

eye and head position, i.e., gaze direction (Brotchie et al., 1995; Andersen et al., 1999). 

Theoretically, head gain fields can be derived by the integration of vestibular signals 

(indicating head orientation in the world), neck proprioceptive signals (indicating head 

orientation on the body) and efference copy head movement signals (Crowell et al., 1998; 

Andersen et al., 1999). Our demonstrations that LIPv receives neck proprioceptive inputs 

disynaptically from the DCN (Prevosto et al., 2011), and prominent disynaptic inputs from 

the rostral MRF head movement region (putative head efference copy signals), but minor 

vestibular inputs from the VN (Fig. 13B), are remarkably in keeping with the reports that 

head position modulation in LIP (Brotchie et al., 1995) is primarily driven by proprioceptive 

signals and/or efference copy from the head/neck motor system, with little contribution of 

vestibular signals (Snyder et al., 1998; Andersen et al., 1999; Buneo & Andersen, 2006).  

 

Vestibular and reticulothalamic pathways to rostral MIP 

The targeted rostral MIP is an arm movement area (Mountcastle et al., 1975; Kalaska 

& Crammond, 1992; Johnson et al., 1996), and is part of the functionally defined ‘parietal 

reach region’, together with caudal MIP and V6A (Andersen et al., 2014).  

 

Ascending vestibular pathways to rostral MIP: neural basis for active-passive 

movement discrimination 

Disynaptic pathways to rostral MIP originate bilaterally (especially contralaterally) 

from the VN (especially from lateral portions of the MV) (Figs 6, 7 and 8). The bilaterality of 

these ascending vestibular pathways is in keeping with evidence of bilateral VN projections 
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to the thalamus (Lang et al., 1979; Büttner & Lang, 1979), and with the reports that most 

vestibular units in the monkey thalamus can be activated from both labyrints (Deecke et al., 

1977). Neurons in the VN that project to the thalamus are not numerous, and their 

terminations are sparse and patchy (Lang et al., 1979; Büttner & Lang, 1979; Tracey et al., 

1980; Asanuma et al., 1983a; Meng et al., 2007; Marlinski & McCrea, 2009); 

correspondingly, vestibular units are infrequently encountered in the thalamus (Büttner & 

Henn, 1976; Liedgren et al., 1976; Büttner et al., 1977; Magnin & Fuchs, 1977; Meng et al., 

2007, 2010).  

In view of this organization, the high number of labeled neurons in the VN (at the 

disynaptic time point) (Figs 6, 7 and 8) and Scarpa’s ganglia (trisynaptic time point) (Figs 2, 

11D and 13A) in the MIP experiments is striking, and suggests that rostral MIP is a major 

target of vestibulothalamic pathways. The major quantitative differences in disynaptic 

vestibular inputs to MIP versus LIPv are probably mediated by VN projections to VPLc and 

VLc, i.e., thalamic nuclei that supply MIP but not LIPv (see Results). The response dynamics 

of vestibular neurons in the thalamus (Meng et al., 2007; Meng & Angelaki 2010; Dale & 

Cullen, 2017) are similar to those of eye movements-insensitive neurons in the VN, which 

include vestibulospinal neurons (Fuchs & Kimm, 1975; McCrea et al., 1999) and are 

regarded as the source of vestibulothalamic pathways (Angelaki & Cullen, 2008; Cullen, 

2012). Approximately 10% of vestibulothalamic neurons were shown to be vestibulospinal 

neurons (Meng et al., 2001).  

Vestibular signals are important to distinguish self-generated (active) from externally 

induced (passive) movement. Discrimination between active and passive body motion is 

crucial for self-motion perception and effective motor actions (Cullen, 2012; Laurens & 

Angelaki, 2017). Unlike vestibular responses to passive motion (Lopez & Blanke, 2011), the 

cortical processing of active self-motion has not been widely studied. To date, a single study 
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has compared vestibular responses to active and passive self-motion, in the targeted rostral 

MIP and neighboring VIP (Klam & Graf, 2006). In both areas, a population of neurons 

distinguished between active and passive head movements. During active movement, 

vestibular responses were diminished (or extinguished) in the majority of neurons (Klam & 

Graf, 2006).   

The prominent ascending vestibular pathways to rostral MIP revealed here can 

explain the distinction between active and passive movements in rostral MIP, because a 

similar distinction has been demonstrated in vestibular neurons in the ventral posterior lateral 

thalamus (Dale & Cullen, 2017) and VN (Roy & Cullen, 2001, 2004; Carriot et al., 2013; 

Brooks & Cullen, 2014) including both vestibulothalamic (Marlinksy & McCrea, 2009) and 

vestibulospinal neurons (McCrea et al., 1999). Specifically, their vestibular responses are 

markedly reduced during active movements; responses attenuation occurs only when the 

sensory consequences of motion (proprioceptors activation) match the motor-generated 

expectation (Roy & Cullen, 2004; Cullen 2012; Carriot et al., 2013; Brooks & Cullen, 2014; 

Dale & Cullen, 2017). This has been demonstrated in both unimodal (vestibular) and bimodal 

(vestibulo-proprioceptive) neurons, which respectively encode head and body motion 

(Marlinski & McCrea, 2008, 2009; Dale & Cullen, 2017). 

Vestibular pathways to rostral MIP potentially provide a major correlate for fast 

updating of self-motion estimates, for online changes of reference frame representation from 

egocentric (during passive movement) to allocentric (during active movement), and driving 

motor corrections (see Functional considerations). Because of the reciprocal connections 

between MIP and VIP (Fig. 3C and E; Lewis & Van Essen, 2000b; Bakola et al., 2017), 

ascending vestibular inputs to MIP likely influence VIP vestibular properties as well.  
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Reticulo-thalamic pathways to MIP: putative efference copy pathways of head 

and arm movements commands.  

Disynaptic pathways from the medullary MRF prominently originate from both the 

rostral MRF (also targeting LIPv) and from more caudal MRF portions (which have limited 

inputs to LIPv) (Figs 6, 7, 8 and 13), where head and arm movements or facilitatory effects 

can be evoked by stimulation (Cowie & Robinson, 1994; Davidson & Buford, 2006). 

Stronger MRF inputs may be mediated by reticulothalamic projections to VPLc and caudal 

VLc, which supply MIP but not LIPv (see Results).  

 

In addition to head movements, the labelled MRF regions are part of a tightly 

interconnected circuit for control of reaching, together with rostral MIP and other SPL reach 

areas and related frontal lobe motor areas, the superior colliculus (SC) and the cerebellar 

interpositus, which heavily targets MIP disynaptically (Prevosto et al., 2010) (Fig. 13A). 

Indeed, these MRF reticulospinal domains (part of the classic ‘medial descending pathways’, 

Lawrence & Kuypers, 1968a,b; Kuypers, 1981) have activity related to arm movement 

preparation and performance of reaching (Buford & Davidson, 2004) and output effects in 

shoulder, arm and forearm muscles (Davidson & Buford, 2004, 2006; Davidson et al., 2007).  

 

In addition to crossed projections from the SC (Harting, 1977; May, 2006) and the 

cerebellar nuclei (Batton et al., 1977; Asanuma et al., 1983b) (Fig. 13), the labeled MRF 

receives major bilateral projections from all frontal lobe motor areas (Kuypers, 1960, 1981; 

Kuypers & Lawrence 1967; Catsman-Berrevoets & Kuypers, 1976; Keizer & Kuypers, 

1989). Many such projections are collaterals of corticospinal fibers, notably issued by dorsal 

premotor cortex (PMd) arm areas (F2 dimple region, ventrorostral F2) (Keizer & Kuypers, 

1989) belonging to the parieto-frontal circuits encoding reach-to-grasp actions, which are 
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heavily interconnected with rostral and caudal MIP and V6A (Matelli et al., 1988; Distler & 

Hoffmann, 2015; Bakola et al., 2017; Galletti & Fattori, 2018), i.e., with the entire parietal 

reach region.  

 

Controlling goal-directed arm movements is challenging, because it requires 

coordinating the recruitment of many muscles acting on multiple joints. Growing evidence 

suggests that the CNS simplifies this control through motor ‘primitives’ (Overduin et al., 

2015). The MRF has a major role in muscle synergies recruitment because MRF 

reticulospinal pathways branch extensively in medial motor pools and in the ventromedial 

spinal intermediate zone (Kuypers et al., 1962), which has the required connectivity to 

mediate wide synergies involving arm, shoulder and axial muscles (Kuypers, 1981). 

Importantly, the role of the MRF in mediating visually guided reaching and a gating effect of 

frontal lobe motor areas on its activity was already revealed in classic behavioral studies after 

lesion (Lawrence & Kuypers, 1968a,b; Moll & Kuypers, 1977).  

 

Subcortical drive to the MRF for reach and gaze activity is provided by crossed tecto-

reticulospinal pathways (Harting, 1977; May, 2006), which originate from the caudal SC 

intermediate and deep layers (Cowie et al., 1994). Reach neurons have been identified in 

these layers (Kutz et al., 1997; Werner et al., 1997a,b; Stuphorn et al., 1999, 2000; Philipp & 

Hoffmann, 2014), which receive projections from multiple cortical areas, including M1 and 

PMd arm areas (Distler & Hoffmann, 2015) and MIP (Lynch et al., 1985).  

 

In view of these properties and connectivity, disynaptic pathways from the MRF to 

rostral MIP would have the required characteristic to convey efference copy signals 

potentially reflecting the combined activity of the same frontal cortical and subcortical reach 
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networks through which rostral MIP and the other arm-related regions of the PCC exert their 

command operations. They could also transmit head signals (see discussion of LIPv results). 

Their contribution to internal models for action in the PPC would clearly deserve to be 

investigated in functional studies.  

  

Functional considerations  

Role of ascending vestibular pathways and MRF efference copy signals to rostral 

MIP in self-motion computation and internal models for online control of arm 

movements 

Our findings have potential implications for the understanding of movement planning 

and online control operations of the PPC. Together with the other SPL arm areas, MIP acts as 

a sensorimotor interface for planning and online control of goal-directed arm movements 

(Mountcastle et al., 1975; Buneo & Andersen, 2006; Andersen et al., 2014). In humans, 

lesions of the SPL or restricted to the medial bank of the IPS (Trillenberg et al., 2007) cause 

optic ataxia, a major impairment in sensorimotor guidance of reaching movements (Rossetti 

et al., 2003; Andersen et al., 2014). Importantly, optic ataxia-like deficits have been 

reproduced in monkeys with inactivation targeting rostral MIP (Hwang et al., 2012, 2014), 

caudal MIP (Yttri et al., 2014), or SPL area PEc (Battaglia-Mayer et al., 2013), or V6A 

lesion (Battaglini et al., 2002).  

 

Signals from different sensory modalities are aligned into common reference frames 

for integration (Buneo & Andersen, 2006). Reference frame transformations are implemented 

already at the level of single neurons in the PPC, so that a cell’s response within its visual 

receptive field, and peripersonal space (PPS) representation, is remapped in function of eye, 

head, or arm position (gain fields) (Andersen & Buneo, 2002; Blanke et al., 2015). 
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Multimodal PPC neurons have not only eye-centered or head-centered receptive fields 

(Galletti et al., 1993; Duhamel et al.,1997) but also mixed or combined receptive fields 

(Andersen & Buneo, 2002).  

 

Motor plans are continuously updated by internal feedback loops. Considerable 

evidence points to internal models in the PPC (and cerebellum) that integrate multisensory 

inflow and efference copy (replicas of motor commands) to enable fast online corrections 

(Desmurget & Grafton, 2000; Buneo & Andersen, 2006; Mulliken et al., 2008). In addition to 

fronto-parietal projections (Bakola et al., 2017), efference copy signals of ongoing reaching 

and head movements could be fed back to the PPC by the ascending MRF pathways to the 

PPC first demonstrated here (see above), which, theoretically, should also carry the active/ 

passive movement distinction, because the labeled MRF and VN domains are heavily 

interconnected (Graybiel, 1977; Corvaja et al., 1979; Cowie & Robinson, 1994) and both are 

major targets of cerebellar output (Batton et al., 1977; Asanuma et al., 1983b; Gonzalo-Ruiz 

& Leichnetz, 1990) (Fig. 13A). Importantly, cerebellar rostral fastigial neurons distinguish 

between active and passive movements (Brooks & Cullen, 2013; Brooks et al., 2015) and 

similar properties were suggested for interpositus neurons (which heavily target rostral MIP) 

(Fig. 13A) (see Prevosto et al., 2010). 

 

 Distinction between active and passive movements in vestibular neurons, and 

attenuation of vestibular responses during active movement, is similarly explained by internal 

models, likely implying the cerebellum (see Dale & Cullen, 2017; Laurens & Angelaki, 

2017). Ascending vestibular pathways to rostral MIP, demonstrated here, provide a correlate 

for driving fast motor corrections. Indeed, there is evidence that the brain uses vestibular 

signals to generate the appropriate reaching command required to maintain accuracy during 
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self-motion (Moreau-Debord et al., 2014; Blouin et al., 2015). Reach corrections to 

vestibular perturbations are task-dependent, consistent with online integration of self-motion 

signals into an internal model for reach control (Keyser et al., 2017). TMS studies point to a 

key role of an intermediate portion of the human medial IPS for online adjustments of goal-

directed arm movements based on vestibular and proprioceptive feedback (Reichenbach et 

al., 2014, 2016). Our demonstrations that rostral MIP receives, via parallel pathways, 

arm/shoulder proprioceptive inputs from the DCN (Prevosto et al., 2011), prominent 

vestibular signals from the VN and labyrinths, reach-related MRF efference copy pathways 

(present findings), and major output channels from arm movement-related cerebellar domains 

(Prevosto et al., 2010) reveal the underlying anatomical substrates (see Fig. 13A).   

 

The vestibular and reticular pathways to rostral MIP investigated in the present study 

may also contribute to the properties of more caudal portions of the ‘parietal reach region’ 

(caudal MIP and V6A) and SPL area PEc (Buneo & Andersen, 2006; Andersen et al., 2014; 

Galletti & Fattori, 2018) because rostral MIP heavily projects to these areas (Caminiti et al., 

1999; Bakola et al., 2010, 2017). Functional data suggest that PPC reach-related areas may 

not be functionally equivalent, and rostral MIP may have a more substantial and/or direct role 

in vestibular and proprioceptive processing for arm movement guidance and eye/hand 

coordination coupling (Hwang et al., 2012, 2014; Battaglia-Mayer et al., 2013; Yttri et al., 

2014; Reichenbach et al., 2014, 2016). Rostral (but not caudal) MIP may also influence 

proprioceptive inflow to the PPC, because it projects to the proprioceptive DCN domains 

(Kuypers, 1960; Catsman-Berrevoetz & Kuypers, 1976) from where disynaptic pathways to 

rostral MIP originate (see Prevosto et al., 2011) (Fig. 13A).   
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Vestibular contribution to body schema and to the sense of ownership 

The PPC plays a major role in multisensory integration which is crucial for 

establishing and maintaining a ‘body schema’, defined as an action-oriented, sensorimotor 

body representation (Maravita & Iriki, 2004; Giummarra et al., 2008; Blanke et al., 2015). 

Damage to the PPC can cause a variety of disorders of bodily self-consciousness, which can 

affect body ownership, embodiment and/or spatial awareness (Vallar, 1998; Danckert & 

Ferber, 2006; Lopez et al., 2008; Blanke, 2012). The importance of vestibular processing in 

maintaining self-identification is exemplified by the reports that limb ownership in 

asomatognosia and somatoparaphrenia can be restored using caloric vestibular stimulation 

(Bisiach et al., 1991; Giummarra et al., 2008; Spitoni et al., 2016), and that vestibular 

stimulation is effective for neglect rehabilitation (Vallar 1998; Kerkhoff & Schenck, 2012).  

 

  Illusory states of bodily self-consciousness can also be induced experimentally by 

manipulating multisensory inputs, eliciting visuovestibular or visuotactile conflicts (Blanke, 

2012; Blanke et al., 2015). Illusory self-attribution of a rubber hand is induced by syncronous 

tactile stimulation of the visible fake hand and of the (hidden) real hand (Blanke et al., 2015). 

Interestingly, brief, low-intensity, galvanic vestibular stimulation, which induces vestibular 

activations similar to those of natural movement, significantly lowers the proprioceptive drift 

towards the fake hand perceived during this illusion, suggesting that vestibular inputs 

influence the multisensory weighting underlying bodily awareness (Ferrè et al., 2015). This 

process is likely based on the mechanisms, demonstrated in multisensory MIP/ area 5 

neurons, which reshape PPS and mediate incorporation of external objects (e.g., tools, 

prosthesis) in the body representation (Graziano et al., 2000; Maravita & Iriki, 2004; Blanke 

et al., 2015).  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Acknowledgements 

This work was supported by the European Union Grant EU 5th FP (QLRT-2001-00151, 

EUROKINESIS) and the Centre National de la Recherche Scientifique. 

 

Competing interests 

The authors declare that they have no conflict of interest. 

 

Author contributions 

GU designed study, conducted the experiments, collected data, analyzed data, wrote the 

paper. VP collected data, analyzed data, edited the paper. WG designed study, conducted the 

experiments, collected data, edited the paper. 

 

Data accessibility 

Raw data and materials are not made publicly available for lack of institutional plan or 

support to do so in any comprehensive manner. Raw data and materials are archived by GU. 

Requests for data sharing may be addressed to that author.  

 

Abbreviations 

APul, anterior pulvinar nucleus; CL, central lateral nucleus; CM, central median nucleus; 

CTB, cholera toxin B; CuT, cuneate nucleus, pars triangularis;  das, dorsal accessory stria; 

DCN, dorsal column nuclei; DPGi, dorsal paragigantocellular reticular formation; DV, 

descending vestibular nucleus;  ECu, external cuneate nucleus; fr, fasciculus retroflexus; g, 

genu of the facial nerve; Gi, gigantocellular reticular formation;  Hb, habenula; icp, inferior 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

cerebellar peduncle; III, oculomotor nucleus; InVIIIn, interstitial nucleus of the vestibular 

nerve; IO, inferior olive; IPS, intraparietal sulcus; IPul, inferior pulvinar nucleus; LD, lateral 

dorsal nucleus; LG, lateral geniculate nucleus; LIPd, lateral intraparietal area, dorsal; LIPv, 

lateral intraparietal area, ventral; LP, lateralis posterior nucleus; LV, lateral vestibular 

nucleus; MD, medial dorsal nucleus; M1, primary motor cortex; MG, medial geniculate 

nucleus; MIP, medial intraparietal area; mlf, medial longitudinal fasciculus; MRF, medial 

reticular formation; MV, medial vestibular nucleus; MVmc, medial vestibular nucleus, 

magnocellular;  MVpc, medial vestibular nucleus, parvocellular; LRF, lateral reticular 

formation; LRN, lateral reticular nucleus; Nst, nucleus of the solitary tract; PH, prepositus 

hypoglossi; PMd, premotor cortex, dorsal; PPC, posterior parietal cortex; PPS, peripersonal 

space; pt, pyramidal tract; Rt, reticular thalamic nucleus; SC, superior colliculus; scp, 

superior cerebellar peduncle; SG, suprageniculate nucleus; SPL, superior parietal lobe; SpV, 

spinal trigeminal nucleus; SV, superior vestibular nucleus; VI, abducens nucleus; VII, facial 

nucleus; VIIn, facial nerve (descending limb); VIIIn, vestibular nerve; VIP, ventral 

intraparietal area; VLc, ventral lateral nucleus, pars caudalis; VLG, ventral lateral geniculate 

nucleus; VLps, ventral lateral nucleus, pars postrema; VN, vestibular nuclei; VPI, ventral 

posterior inferior nucleus; VPLc, ventral posterior lateral nucleus, pars caudalis; VPLo, 

ventral posterior lateral nucleus, pars oralis; VPM, ventral posterior medial nucleus;  XII, 

hypoglossal nucleus; Y, vestibular Y group; ZI, zona incerta. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

References  

Andersen, R.A. (1997) Multimodal integration for the representation of space in the posterior 

parietal cortex. Philos. Trans. R. Soc. Lond., B, Biol. Sci., 352, 1421-1428. 

Andersen, R.A. & Buneo, C.A. (2002) Intentional maps in posterior parietal cortex. Annu. 

Rev. Neurosci., 25, 189-220.  

Andersen, R.A, Shenoy, K.V., Snyder, L.H., Bradley, D.C. & Crowell, J.A. (1999) The 

contributions of vestibular signals to the representations of space in the posterior 

parietal cortex. Ann. N. Y. Acad. Sci., 871, 282-292.  

Andersen, R.A., Andersen, K.N., Hwang, E.J. & Hauschild, M. (2014) Optic ataxia: from 

Balint's syndrome to the parietal reach region. Neuron, 81, 967-983. 

Angelaki, D.E. & Cullen, K.E. (2008) Vestibular system: the many facets of a multimodal 

sense. Annu. Rev. Neurosci., 31, 125-150.  

Asanuma, C., Thach, W.T. & Jones, E.G. (1983a) Distribution of cerebellar terminations and 

their relation to other afferent terminations in the ventral lateral thalamic region of the 

monkey. Brain Res., 286, 237-265. 

Asanuma, C., Thach, W.T. & Jones, E.G. (1983b) Brainstem and spinal projections of the 

deep cerebellar nuclei in the monkey, with observations on the brainstem projections 

of the dorsal column nuclei. Brain Res., 286, 299-322. 

Bakola, S., Gamberini, M., Passarelli, L., Fattori, P. & Galletti, C. (2010) Cortical 

Connections of Parietal Field PEc in the Macaque: Linking Vision and Somatic 

Sensation for the Control of Limb Action. Cereb. Cortex, 20, 2592-2560. 

Bakola, S., Passarelli, L., Huynh, T., Impieri, D., Worthy, K.H., Fattori, P., Galletti, C., 

Burman, K.J. & Rosa M.G.P. (2017) Cortical Afferents and Myeloarchitecture 

Distinguish the Medial Intraparietal Area (MIP) from Neighboring Subdivisions of 

the Macaque Cortex. eNeuro. 4(6). pii: ENEURO.0344-17.2017. doi: 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

10.1523/ENEURO.0344-17.2017. eCollection 2017 Nov-Dec. 

Battaglia-Mayer, A., Ferrari-Toniolo, S., Visco-Comandini, F., Archambault, P.S., Saberi-

Moghadam, S. & Caminiti, R. (2013) Impairment of online control of hand and eye 

movements in a monkey model of optic ataxia. Cereb. Cortex, 23, 2644-2656. 

Battaglini, P.P., Muzur, A., Galletti, C., Skrap, M., Brovelli, A. & Fattori, P. (2002) Effects 

of lesions to area V6A in monkeys. Exp. Brain Res., 144, 419-422. 

Batton, R.R. 3rd, Jayaraman, A., Ruggiero, D. & Carpenter, M.B. (1977) Fastigial efferent 

projections in the monkey: an autoradiographic study. J. Comp. Neurol., 174, 281-

305. 

Ben Hamed, S., Duhamel, J.R., Bremmer, F. & Graf, W. (2001) Representation of the visual 

field in the lateral intraparietal area of macaque monkeys: a quantitative receptive 

field analysis. Exp. Brain Res., 140, 127-144. 

Bisiach, E., Rusconi, M.L. & Vallar, G. (1991) Remission of somatoparaphrenic delusion 

through vestibular stimulation. Neuropsychologia, 29, 1029-1031. 

Bisley, J.W. & Goldberg, M.E. (2010) Attention, intention, and priority in the parietal lobe. 

Annu. Rev. Neurosci., 33, 1-21.  

Blanke, O. (2012) Multisensory brain mechanisms of bodily self-consciousness. Nat. Rev. 

Neurosci., 13, 556-571. 

Blanke, O., Slater, M. & Serino, A. (2015) Behavioral, Neural, and Computational Principles 

of Bodily Self-Consciousness. Neuron, 88, 145-166. 

Blatt, G.J., Andersen, R.A. & Stoner, G.R. (1990) Visual receptive field organization and 

cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. 

J. Comp. Neurol., 299, 421-445.  

Blouin, J., Bresciani, J.P., Guillaud, E. & Simoneau, M. (2015) Prediction in the Vestibular 

Control of Arm Movements. Multisens. Res., 28, 487-505. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Bremmer, F., Schlack, A., Duhamel, J.R., Graf, W. & Fink, G.R., (2001) Space coding in 

primate posterior parietal cortex. Neuroimage, 14, S46–S51. 

Bremmer, F., Klam, F., Duhamel, J.R., Ben Hamed, S. & Graf, W. (2002) Visual–vestibular 

interactive responses in the macaque ventral intraparietal area (VIP). Eur. J. 

Neurosci., 16, 1569–1586. 

Brotchie, P.R., Andersen, R.A., Snyder, L.H. & Goodman, S.J. (1995) Head position signals 

used by parietal neurons to encode locations of visual stimuli. Nature, 375, 232-235. 

Brooks, J.X. & Cullen, K.E. (2009) Multimodal integration in rostral fastigial nucleus 

provides an estimate of body movement. J. Neurosci., 29, 10499-10511.  

Brooks, J.X. & Cullen, K.E. (2013) The primate cerebellum selectively encodes unexpected 

self-motion. Curr. Biol., 23, 947-955. 

Brooks, J.X. & Cullen, K.E. (2014) Early vestibular processing does not discriminate active 

from passive self-motion if there is a discrepancy between predicted and actual 

proprioceptive feedback. J. Neurophysiol., 111, 2465-2478. 

Brooks, J.X., Carriot, J. & Cullen, K.E. (2015) Learning to expect the unexpected: rapid 

updating in primate cerebellum during voluntary self-motion. Nat. Neurosci., 18, 

1310-1377. 

Buford, J.A. & Davidson, A.G. (2004) Movement-related and preparatory activity in the 

reticulospinal system of the monkey. Exp. Brain Res., 159, 284-300. 

Buneo, C.A. & Andersen, R.A. (2006) The posterior parietal cortex: sensorimotor interface 

for the planning and online control of visually guided movements. Neuropsychologia, 

44, 2594-2606.  

Büttner, U. & Henn, V. (1976) Thalamic unit activity in the alert monkey during natural 

vestibular stimulation. Brain Res., 103, 127-132. 

Büttner, U., Henn, V. & Oswald, H.P. (1977) Vestibular-related neuronal activity in the 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

thalamus of the alert monkey during sinusoidal rotation in the dark. Exp. Brain Res., 

30, 435-444. 

Büttner, U. & Lang, W. (1979) The vestibulocortical pathway: neurophysiological and 

anatomical studies in the monkey. Prog. Brain Res., 50, 581-588. 

Caminiti, R., Genovesio, A., Marconi, B., Mayer, A.B., Onorati, P., Ferraina, S., Mitsuda, T., 

Giannetti, S., Squatrito, S., Maioli, M.G. & Molinari, M. (1999) Early coding of 

reaching: frontal and parietal association connections of parieto-occipital cortex. Eur. 

J. Neurosci., 11, 3339-3345. 

Carriot, J., Brooks, J.X. & Cullen, K.E. (2013) Multimodal integration of self-motion cues in 

the vestibular system: active versus passive translations. J. Neurosci., 33, 19555-

19566. 

Catsman-Berrevoets, C.E. & Kuypers, H.G.J.M. (1976) Cells of origin of cortical projections 

to dorsal column nuclei, spinal cord and bulbar medial reticular formation in the 

rhesus monkey. Neurosci. Lett., 3, 245-252. 

Chen, A., DeAngelis, G.C. & Angelaki, D.E. (2011) Representation of vestibular and visual 

cues to self-motion in ventral intraparietal cortex. J. Neurosci., 31, 12036-12052.  

Chen, M., Li, B., Guang, J., Wei, L., Wu, S., Liu, Y. & Zhang M. (2016) Two subdivisions of 

macaque LIP process visual-oculomotor information differently. Proc. Natl. Acad. 

Sci. U.S.A., 113, E6263-E6270. 

Colby, C.L. & Duhamel, J.R. (1991) Heterogeneity of extrastriate visual areas and multiple 

parietal areas in the macaque monkey. Neuropsychologia, 29, 517-537. 

Colby, C.L., Gattass, R., Olson, C.R. & Gross, C.G. (1988) Topographical organization of 

cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J. 

Comp. Neurol., 269, 392-413. 

Corvaja, N., Mergner, T. & Pompeiano O. (1979) Organization of reticular projections to the 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

vestibular nuclei in the cat. Prog. Brain Res., 50, 631-644. 

Cowie, R.J. & Robinson, D.L. (1994) Subcortical contributions to head movements in 

macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary 

region and the superior colliculus. J. Neurophysiol., 72, 2648-2664. 

Cowie, R.J., Smith, M.K. & Robinson, D.L. (1994) Subcortical contributions to head 

movements in macaques. II. Connections of a medial pontomedullary head-movement 

region. J. Neurophysiol., 72, 2665-2682. 

Crowell, J.A., Banks, M.S., Shenoy, K.V. & Andersen, R.A. (1998) Visual self-motion 

perception during head turns. Nat. Neurosci., 1, 732-737. 

Cullen, K.E. (2012) The vestibular system: multimodal integration and encoding of self-

motion for motor control. Trends Neurosci., 35, 185-196. 

Dale, A. & Cullen, K.E. (2017) The Ventral Posterior Lateral Thalamus Preferentially 

Encodes Externally Applied Versus Active Movement: Implications for Self-Motion 

Perception. Cereb. Cortex, 28, 1-14.  

Danckert, J. & Ferber, S. (2006) Revisiting unilateral neglect. Neuropsychologia, 44, 987- 

1006. 

Davidson, A.G. & Buford, J.A. (2004) Motor outputs from the primate reticular formation to 

shoulder muscles as revealed by stimulus-triggered averaging. J. Neurophysiol., 92, 

83-95. 

Davidson, A.G. & Buford, J.A. (2006) Bilateral actions of the reticulospinal tract on arm and 

shoulder muscles in the monkey: stimulus triggered averaging. Exp. Brain Res., 173, 

25-39. 

Davidson, A.G., Schieber, M.H. & Buford, J.A. (2007) Bilateral spike-triggered average 

effects in arm and shoulder muscles from the monkey pontomedullary reticular 

formation. J. Neurosci., 27, 8053-8058. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Deecke, L., Schwarz, D.W. & Fredrickson, J.M. (1977) Vestibular responses in the rhesus 

monkey ventroposterior thalamus. II. Vestibulo-proprioceptive convergence at 

thalamic neurons. Exp. Brain Res., 30, 219-232.  

Desmurget, M. & Grafton, S. (2000) Forward modeling allows feedback control for fast 

reaching movements. Trends Cogn. Sci., 4, 423-431. 

Distler, C. & Hoffmann, K.P. (2015) Direct projections from the dorsal premotor cortex to 

the superior colliculus in the macaque (macaca mulatta). J. Comp. Neurol., 523, 2390-

2408.  

Duhamel, J.R., Bremmer, F., Ben Hamed, S. & Graf, W. (1997) Spatial invariance of visual 

receptive fields in parietal cortex neurons. Nature. 389, 845-848. 

Ferrè, E.R., Berlot, E. & Haggard, P. (2015) Vestibular contributions to a right-hemisphere 

network for bodily awareness: combining galvanic vestibular stimulation and the 

"Rubber Hand Illusion". Neuropsychologia, 69, 140-147. 

Filimon, F., Nelson, J.D., Huang, R.S. & Sereno, M.I. (2009) Multiple parietal reach regions 

in humans: cortical representations for visual and proprioceptive feedback during on-

line reaching. J. Neurosci., 29, 2961-2971. 

Fregosi, M., Contestabile, A., Hamadjida, A. & Rouiller, E.M. (2017) Corticobulbar 

projections from distinct motor cortical areas to the reticular formation in macaque 

monkeys. Eur. J. Neurosci., 45, 1379-1395.  

Fuchs, A.F. & Kimm, J. (1975) Unit activity in vestibular nucleus of the alert monkey during 

horizontal angular acceleration and eye movement. J. Neurophysiol., 38, 1140-1161. 

Fukushima K. (1997) Corticovestibular interactions: anatomy, electrophysiology, and 

functional considerations. Exp. Brain Res., 117, 1-16. 

Galletti, C. & Fattori, P. (2018) The dorsal visual stream revisited: Stable circuits or dynamic 

pathways? Cortex, 98, 203-217. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Galletti, C., Battaglini, P.P. & Fattori, P. (1993) Parietal neurons encoding spatial locations in 

craniotopic coordinates. Exp Brain Res. 96, 221-229. 

Giummarra, M.J., Gibson, S.J., Georgiou-Karistianis, N. & Bradshaw, J.L. (2008) 

Mechanisms underlying embodiment, disembodiment and loss of embodiment. 

Neurosci. Biobehav. Rev., 32, 143-160. 

Gonzalo-Ruiz, A & Leichnetz, G.R. (1990) Connections of the caudal cerebellar interpositus 

complex in a new world monkey (Cebus apella). Brain Res Bull. 25, 919-927. 

Graybiel, A.M. (1977) Direct and indirect preoculomotor pathways of the brainstem: an 

autoradiographic study of the pontine reticular formation in the cat. J. Comp. Neurol., 

175, 37-78. 

Graziano, M.S., Cooke, D.F. & Taylor, C.S. (2000) Coding the location of the arm by sight. 

Science, 290, 1782-1786.  

Grefkes, C., Ritzl, A., Zilles, K. & Fink, G.R. (2004) Human medial intraparietal cortex 

subserves visuomotor coordinate transformation. Neuroimage, 23, 1494-1506. 

Harting, J.K. (1977) Descending pathways from the superior colliculus: an autoradiographic 

analysis in the rhesus monkey (Macaca mulatta). J. Comp. Neurol., 173, 583-612. 

Hwang, E.J., Hauschild, M., Wilke, M. & Andersen, R.A. (2012) Inactivation of the parietal 

reach region causes optic ataxia, impairing reaches but not saccades. Neuron, 76, 

1021-1029. 

Hwang, E.J., Hauschild, M., Wilke, M. & Andersen, R.A. (2014) Spatial and temporal eye-

hand coordination relies on the parietal reach region. J Neurosci., 34, 12884-12892. 

Iriki, A., Tanaka, M. & Iwamura, Y. (1996) Coding of modified body schema during tool use 

by macaque postcentral neurones. Neuroreport, 7, 2325-2330.  

Johnson, P.B., Ferraina, S., Bianchi, L. & Caminiti, R. (1996) Cortical networks for visual 

reaching: physiological and anatomical organization of frontal and parietal lobe arm 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

regions. Cereb. Cortex, 6, 102-119. 

Kalaska, J.F. & Crammond, D.J. (1992) Cerebral cortical mechanisms of reaching 

movements. Science, 255, 1517-1523.  

Keizer, K. & Kuypers, H.G.J.M. (1989) Distribution of corticospinal neurons with collaterals 

to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp. 

Brain Res., 74, 311-318. 

Kerkhoff, G. & Schenk, T. (2012) Rehabilitation of neglect: an update. Neuropsychologia, 

50, 1072-1079.  

Keyser, J., Medendorp, W.P. & Selen, L.P.J. (2017) Task-dependent vestibular feedback 

responses in reaching. J. Neurophysiol., 118, 84-92.  

Klam, F. & Graf, W. (2003) Vestibular response kinematics in posterior parietal cortex 

neurons of macaque monkeys. Eur. J. Neurosci., 18, 995-1010. 

Klam, F. & Graf, W. (2006) Discrimination between active and passive head movements by 

macaque ventral and medial intraparietal cortex neurons. J. Physiol., 274, 367-386. 

Kutz, D.F., Dannenberg, S., Werner, W., Hoffmann, K-P. (1997) Population coding of arm-

movement-related neurons in and below the superior colliculus of Macaca mulatta. 

Biol. Cybern., 76, 331-337. 

Kuypers, H.G.J.M. (1960) Central cortical projections to motor and somato-sensory cell 

groups. An experimental study in the rhesus monkey. Brain, 83, 161-184. 

Kuypers, H.G.J.M (1981) Anatomy of the descending pathways. In: Brooks, V., (ed), 

Handbook of physiology, Section 1. Neurophysiology, Vol. II, Part 1. American 

Physiology Society, Bethesda, Md., pp. 597–666.  

Kuypers, H.G.J.M. & Lawrence, D.G. (1967) Cortical projections to the red nucleus and the 

brain stem in the Rhesus monkey. Brain Res., 4, 151-88. 

Kuypers, H.G.J.M., Fleming, W.R. & Farinholt, J.W (1962) Subcorticospinal projections in 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

the rhesus monkey. J. Comp. Neurol., 118, 107-137. 

Lang, W., Büttner-Ennever, J.A. & Büttner, U. (1979) Vestibular projections to the monkey 

thalamus: an autoradiographic study. Brain Res., 177, 3-17. 

Langer, T., Fuchs, A.F., Chubb, M.C., Scudder, C.A. & Lisberger, S.G. (1985) Floccular 

efferents in the rhesus macaque as revealed by autoradiography and horseradish 

peroxidase. J. Comp. Neurol., 235, 26-37. 

Langer, T., Kaneko, C.R., Scudder, C.A. & Fuchs, A.F. (1986) Afferents to the abducens 

nucleus in the monkey and cat. J. Comp. Neurol., 245, 379-400. 

Laurens, J. & Angelaki, D.E. (2017) A unified internal model theory to resolve the paradox 

of active versus passive self-motion sensation. Elife, Oct 18;6. pii: e28074. doi: 

10.7554/eLife.28074. 

Lawrence, D,G. & Kuypers, H.G.J.M (1968a) The functional organization of the motor 

system in the monkey. I. The effects of bilateral pyramidal lesions. Brain, 91, 1-14. 

Lawrence, D.G. & Kuypers, H.G.J.M. (1968b) The functional organization of the motor 

system in the monkey. II. The effects of lesions of the descending brain-stem 

pathways. Brain, 91, 15-36. 

Lewis, J.W. & Van Essen, D.C. (2000a) Mapping of architectonic subdivisions in the 

macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol., 428, 

79-111. 

Lewis, J.W. & Van Essen, D.C. (2000b) Corticocortical connections of visual, sensorimotor, 

and multimodal processing areas in the parietal lobe of the macaque monkey. J. 

Comp. Neurol., 428, 112-137. 

Liedgren, S.R., Milne, A.C., Schwarz, D.W. & Tomlinson, R.D. (1976) Representation of 

vestibular afferents in somatosensory thalamic nuclei of the squirrel monkey (Saimiri 

sciureus). J. Neurophysiol., 39, 601-612. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Liu, Y., Yttri, E.A. & Snyder, L.H. (2010) Intention and attention: different functional roles 

for LIPd and LIPv. Nat. Neurosci., 13, 495-500.  

Lopez, C. & Blanke, O. (2011) The thalamocortical vestibular system in animals and humans. 

Brain Res. Rev., 67, 119-146.  

Lopez, C., Halje, P. & Blanke, O. (2008) Body ownership and embodiment: vestibular and 

multisensory mechanisms. Neurophysiol. Clin., 38, 149-161.  

Lynch, J.C., Graybiel, A.M. & Lobeck, L.J. (1985) The differential projection of two 

cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep 

layers of the superior colliculus. J. Comp. Neurol., 235, 241-254. 

Magnin, M. & Fuchs, A.F. (1977) Discharge properties of neurons in the monkey thalamus 

tested with angular acceleration, eye movement and visual stimuli. Exp. Brain Res., 

28, 93-99. 

Maravita, A. & Iriki, A. (2004) Tools for the body (schema). Trends Cogn. Sci., 8, 79-86. 

Marlinski, V. & McCrea, R.A. (2008) Coding of self-motion signals in ventro-posterior 

thalamus neurons in the alert squirrel monkey. Exp. Brain Res., 189, 463-472. 

Marlinski, V. & McCrea, R.A. (2009) Self-motion signals in vestibular nuclei neurons 

projecting to the thalamus in the alert squirrel monkey. J. Neurophysiol., 101, 1730-

1741. 

Matelli, M., Govoni, P., Galletti, C., Kutz, D.F. & Luppino, G. (1998) Superior area 6 

afferents from the superior parietal lobule in the macaque monkey. J. Comp. Neurol., 

402, 327-352.  

Matsuyama, K., Ohta, Y. & Mori, S. (1988) Ascending and descending projections of the 

nucleus reticularis gigantocellularis in the cat demonstrated by the anterograde neural 

tracer, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res., 460, 124-141. 

May, P.J. (2006) The mammalian superior colliculus: laminar structure and connections. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Prog. Brain Res. 151, 321-378. 

McCrea, R.A., Gdowski, G.T., Boyle, R. & Belton, T. (1999) Firing behavior of vestibular 

neurons during active and passive head movements: vestibulo-spinal and other non-

eye-movement related neurons. J. Neurophysiol., 82, 416-428. 

Meng, H. & Angelaki, D.E. (2010) Responses of ventral posterior thalamus neurons to three-

dimensional vestibular and optic flow stimulation. J. Neurophysiol., 103, 817-826. 

Meng, H., Bai, R.S., Sato, H., Imagawa, M., Sasaki, M. & Uchino, Y. (2001) Otolith-

activated vestibulothalamic neurons in cats. Exp. Brain Res., 141, 415-24. 

Meng, H., May, P.J., Dickman, J.D. & Angelaki, D.E. (2007) Vestibular signals in primate 

thalamus: properties and origins. J. Neurosci., 27, 13590-13602. 

Moll, L. & Kuypers, H.G.J.M. (1977) Premotor cortical ablations in monkeys: contralateral 

changes in visually guided reaching behavior. Science, 198, 317-319. 

Moreau-Debord, I., Martin, C.Z., Landry, M. & Green, A.M. (2014) Evidence for a reference 

frame transformation of vestibular signal contributions to voluntary reaching. J. 

Neurophysiol., 111, 1903-1919.  

Mountcastle, V.B., Lynch, J.C., Georgopoulos, A., Sakata, H. & Acuna, C. (1975) Posterior 

parietal association cortex of the monkey: Command functions for operations within 

extrapersonal space. J. Neurophysiol., 38, 871-908. 

Mulliken, G.H., Musallam, S. & Andersen, R.A. (2008) Forward estimation of movement 

state in posterior parietal cortex. Proc. Natl. Acad. Sci. U.S.A., 105, 8170-8177. 

Nagata, S. (1986) The vestibulothalamic connections in the rat: a morphological analysis 

using wheat germ agglutinin-horseradish peroxidase. Brain Res., 376, 57-70. 

Newlands, S.D., Vrabec, J.T., Purcell, I.M., Stewart, C.M., Zimmerman, B.E. & Perachio, 

A.A. (2003) Central projections of the saccular and utricular nerves in macaques. J. 

Comp. Neurol., 466, 31-47. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Ohtake, T. (1992) Ascending projections from the gigantocellular reticular and dorsal 

paragigantocellular nuclei of the medulla oblongata in the rat: an anterograde PHA-L 

tracing study. Neurosci. Res., 14, 96-116. 

Olszewski, J. (1952) The thalamus of the Macaca mulatta: an atlas for use with the 

stereotaxic instrument. Karger, Basel.  

Overduin, S.A, d'Avella, A., Roh, J., Carmena, J.M. & Bizzi, E. (2015) Representation of 

Muscle Synergies in the Primate Brain. J. Neurosci., 35, 12615-12624. 

Paxinos, G., Huang, X.-F., & Toga, A. W. (2000) The Rhesus Monkey Brain in Stereotaxic 

Coordinates. Academic Press, San Diego.  

Philipp, R. & Hoffmann, K-P. (2014) Arm movements induced by electrical microstimulation 

in the superior colliculus of the macaque monkey. J. Neurosci., 34, 3350-3363. 

Prevosto, V., Ugolini, G., Isom, S. & Graf, W. (2006) Differences in ascending vestibular, 

eye position, and somatosensory input to medial (MIP/VIPm) and lateral (VIPl/LIPv) 

intraparietal areas, revealed by retrograde transneuronal transfer of rabies virus. 

Program No. 242.18. 2006 Neuroscience Meeting Planner. Society for Neuroscience, 

Atlanta, GA. Online. 

Prevosto, V., Graf, W. & Ugolini, G. (2009) Posterior parietal cortex areas MIP and LIPv 

receive eye position and velocity inputs via ascending preposito-thalamo-cortical 

pathways. Eur. J. Neurosci., 30, 1151-1161. 

Prevosto, V., Graf, W. & Ugolini, G. (2010) Cerebellar inputs to intraparietal cortex areas 

LIP and MIP: functional frameworks for adaptive control of eye movements, 

reaching, and arm/eye/head movement coordination. Cereb. Cortex, 20, 214-228. 

Prevosto, V., Graf, W. & Ugolini, G. (2011) Proprioceptive pathways to posterior parietal 

areas MIP and LIPv from the dorsal column nuclei and the postcentral somatosensory 

cortex. Eur. J. Neurosci., 33, 444-460. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Quessy, S. & Freedman, E.G. (2004) Electrical stimulation of rhesus monkey nucleus 

reticularis gigantocellularis. I. Characteristics of evoked head movements. Exp. Brain 

Res., 156, 342-356.  

Reichenbach, A., Thielscher, A., Peer, A., Bülthoff, H.H. & Bresciani, J.P. (2014) A key 

region in the human parietal cortex for processing proprioceptive hand feedback 

during reaching movements. Neuroimage, 84, 615-625.  

Reichenbach, A., Bresciani, J.P., Bülthoff, H.H. & Thielscher, A. (2016) Reaching with the 

sixth sense: Vestibular contributions to voluntary motor control in the human right 

parietal cortex. Neuroimage, 124, 869-875.  

Robertson, R.T & Feiner, A.R. (1982) Diencephalic projections from the pontine reticular 

formation: autoradiographic studies in the cat. Brain Res., 239, 3-16. 

Robinson, F.R., Phillips, J.O. & Fuchs, A.F. (1994) Coordination of gaze shifts in primates: 

brainstem inputs to neck and extraocular motoneuron pools. J. Comp. Neurol., 346, 

43-62. 

Rossetti, Y., Pisella, L. & Vighetto, A. (2003) Optic ataxia revisited: visually guided action 

versus immediate visuomotor control. Exp. Brain Res., 153, 171-179. 

Roy, J.E. & Cullen, K.E. (2001) Selective processing of vestibular reafference during self-

generated head motion. J. Neurosci., 21, 2131-2142.  

Roy, J.E. & Cullen, K.E. (2004) Dissociating self-generated from passively applied head 

motion: neural mechanisms in the vestibular nuclei. J. Neurosci., 24, 2102-2111. 

Rushworth, M.F., Nixon, P.D. & Passingham, R.E. (1997) Parietal cortex and movement. I. 

Movement selection and reaching. Exp. Brain Res., 117, 292-310. 

Russchen, F.T, Amaral, D.G. & Price, J.L. (1987) The afferent input to the magnocellular 

division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J. 

Comp. Neurol., 256, 175-210. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Sakai, S.T., Davidson, A.G. & Buford, J.A. (2009) Reticulospinal neurons in the 

pontomedullary reticular formation of the monkey (Macaca fascicularis). 

Neuroscience, 163, 1158-1170. 

Schlack, A., Hoffmann, K.P. & Bremmer, F (2002) Interaction of linear vestibular and visual 

stimulation in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci., 16, 

1877-1886. 

Snyder, L.H., Grieve, K.L., Brotchie, P. & Andersen, R.A. (1998) Separate body- and world-

referenced representations of visual space in parietal cortex. Nature, 394, 887-891. 

Spitoni, G.F., Pireddu, G., Galati, G., Sulpizio, V., Paolucci, S. & Pizzamiglio, L. (2016) 

Caloric Vestibular Stimulation Reduces Pain and Somatoparaphrenia in a Severe 

Chronic Central Post-Stroke Pain Patient: A Case Study. PLoS One, 11, e0151213. 

Stuphorn. V., Hoffmann, K-P. & Miller, L.E. (1999) Correlation of primate superior 

colliculus and reticular formation discharge with proximal limb muscle activity. J. 

Neurophysiol., 81, 1978-1982. 

Stuphorn, V. Bauswein, E. & Hoffmann, K-P. (2000) Neurons in the primate superior 

colliculus coding for arm movements in gaze-related coordinates. J. Neurophysiol., 

83, 1283-1299.  

Tanaka, M. & Kunimatsu, J. (2011) Contribution of the central thalamus to the generation of 

volitional saccades. Eur. J. Neurosci., 33, 2046-2057.  

Tracey, D.J., Asanuma, C., Jones, E.G. & Porter, R. (1980) Thalamic relay to motor cortex: 

afferent pathways from brain stem, cerebellum, and spinal cord in monkeys. J. 

Neurophysiol., 44, 532-554. 

Trillenberg, P., Sprenger, A., Petersen, D., Kompf, D., Heide, W. & Helmchen, C. (2007) 

Functional dissociation of saccade and hand reaching control with bilateral lesions of 

the medial wall of the intraparietal sulcus: implications for optic ataxia. Neuroimage, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

36 Suppl 2, T69-76. 

Ugolini, G. (1995) Specificity of rabies virus as a transneuronal tracer of motor networks: 

transfer from hypoglossal motoneurons to connected second-order and higher order 

central nervous system cell groups. J. Comp. Neurol., 356, 457-480. 

Ugolini, G. (2010) Advances in viral transneuronal tracing. J. Neurosci. Methods, 194, 2-20. 

Ugolini, G. (2011) Rabies virus as a transneuronal tracer of neuronal connections. Adv. Virus 

Res., 79, 165-202. 

Ugolini, G., Klam, F., Doldan Dans, M., Dubayle, D., Brandi, A.M., Buttner-Ennever, J. & 

Graf, W. (2006) Horizontal eye movement networks in primates as revealed by 

retrograde transneuronal transfer of rabies virus: differences in monosynaptic input to 

"slow" and "fast" abducens motoneurons. J. Comp. Neurol., 498, 762-785. 

Vallar G (1998) Spatial hemineglect in humans. Trends Cogn. Sci., 2, 87-97. 

Weisberg, J.A. & Rustioni, A. (1977) Cortical cells projecting to the dorsal column nuclei of 

rhesus monkeys. Exp. Brain Res., 28, 521-528. 

Werner, W., Dannenberg, S. & Hoffmann, K-P. (1997a) Arm-movement-related neurons in 

the primate superior colliculus and underlying reticular formation: comparison of 

neuronal activity with EMGs of muscles of the shoulder, arm and trunk during 

reaching. Exp. Brain Res., 115, 191-205. 

Werner, W., Hoffmann, K-P. & Dannenberg, S. (1997b) Anatomical distribution of arm-

movement-related neurons in the primate superior colliculus and underlying reticular 

formation in comparison with visual and saccadic cells. Exp. Brain Res., 115, 206-

216. 

Wurtz, R.H. (2008) Neuronal mechanisms of visual stability. Vision Res., 48, 2070-2089. 

Yttri, E.A., Wang, C., Liu, Y. & Snyder, L.H. (2014) The parietal reach region is limb 

specific and not involved in eye-hand coordination. J. Neurophysiol., 111, 520-532.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Figure captions 

 

FIG. 1. (A) Three-dimensional (3D) reconstructions of the injection area (black outlines) into 

the ventral lateral intraparietal area (LIPv) or the rostral portion of the medial intraparietal 

area (MIP), visualized in coronal sections of the brains by Cholera toxin B (CTB) 

immunolabeling at 2.5 or 3 days after injection of a mixture of rabies and CTB (see A-E). 

Grey outlines: cortical surface. (Modified with permission from Prevosto et al., Cereb. Cortex 

2010, 20:214-228 © The Author 2010. Published by Oxford University Press. All rights 

reserved). The injection area was placed at the midpoint rostrocaudal level of the intraparietal 

sulcus (IPS) (brain figurines). (B-E) Photomicrographs of adjoining coronal sections at the 

center of the injection site in MIP (B, C) and LIPv (D, E), immunolabeled for CTB and rabies 

virus respectively. Note that the injection area is easily identifiable with CTB (B, D) but not 

with rabies virus (C, E) at 2.5 days, because of strong rabies immunolabeling of short-

distance projections neurons in the IPS. In D, shading in the white matter ventral to LIPv is 

background staining of an area of fibrosis due to multiple recording traces in that region 

(clearly individualized by cresyl violet conterstaining in E). Similarly, in B and C, zones of 

fibrosis due to multiple recording traces are seen in the white matter dorsomedial to the MIP 

injection site. Scale bars in A-E: 2000 µm.  

 

FIG. 2. Summary of the pathways of retrograde transneuronal transfer of rabies virus to the 

vestibular nuclei, medial reticular formation and Scarpa’s ganglia after injection of a mixture 

of rabies virus and Cholera toxin B, CTB into the left medial intraparietal area (MIP) or 

ventral lateral intraparietal area (LIPv): 1° (light grey), first-order neurons (conventional 

tracer, CTB) in the ipsilateral thalamus and cortical areas (ipsilateral cortico-cortical inputs, 

callosal inputs from homotopic IPS areas). 2° (black), second-order neurons labeled 
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transneuronally (rabies virus) at 2.5 days in the vestibular nuclei and medullary medial 

reticular formation bilaterally, in the ipsilateral thalamic nuclei and reticular thalamic 

nucleus, and in the contralateral thalamic nuclei (the latter reflecting projections to homotopic 

areas in the intraparietal sulcus, IPS, of the right hemisphere). For inputs from the vestibular 

nuclei and medial reticular formation, line thickness and marker size indicate the strength of 

the projections. Note the differences in strength and laterality of disynaptic (2°) inputs from 

vestibular nuclei and medial reticular formation to MIP compared with LIPv. 3° (grey), third-

order neurons labeled at 3 days bilaterally in Scarpa’s ganglia, in the vestibular nuclei, 

reticular formation and in the thalamus after MIP injection. NB: Third-order inputs to LIPv 

were not studied (stippled gray lines and open markers in LIPv diagram). Contrary to 

retrograde transneuronal transfer of rabies virus (2°, 3°), anterograde transneuronal transfer 

(e.g., to the pontine nuclei) did not occur.   

 

FIG. 3. Cross sections and photomicrographs of the ipsilateral and contralateral intraparietal 

sulcus (IPS) at the caudal end of the injection area, showing the distribution of neurons (first-

order) labeled by retrograde transport of Cholera toxin B (CTB) at 2.5 days after injection of 

a mixture of rabies virus and CTB into the left ventral lateral intraparietal area (LIPv) (A, B) 

or medial intraparietal area (MIP) (C-F) (see injection site in Fig. 1). Each marker indicates 

one labeled neuron. (A, B) LIPv: many CTB labeled neurons were seen ipsilaterally (A) in 

LIPv, in a portion of dorsal LIP (LIPd) and in the ventral intraparietal area (VIP); little 

labeling was found contralaterally in the homotopic LIPv (B). (C-F)  MIP: distribution of 

labeled neurons in ventral MIP and neighboring dorsal VIP ipsilaterally (C, E), and in the 

homotopic ventral MIP contralaterally (D, F). Framed areas in (C) and (D), are enlarged in 

the photomicrographs in (E) and (F), showing examples of CTB labeled neurons in ipsilateral 

VIP and contralateral MIP, respectively. Scale bars: 2000 µm (A-D), 50 µm in (E) and (F). 
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FIG. 4. Histograms of first-order neurons (Cholera toxin B, CTB) in the ipsilateral thalamus 

(A) and in homotopic areas of the contralateral intraparietal sulcus (IPS) (B) after injection 

into the left medial intraparietal area (MIP, at 2.5 days, black, and 3 days, grey, top) or the 

ventral lateral intraparietal area (LIPv) (2.5 days, black, bottom) (see also Fig. 3). (A) Left 

thalamus: differences in rostrocaudal distribution of first-order neurons targeting MIP (top) 

versus LIPv (bottom). Asterisks indicate the most caudal cross section of the thalamus shown 

in Fig. 5. (B) Callosal projections to MIP and LIPv from homotopic areas of the right IPS and 

neighboring portions. Note the major difference in cell numbers in the MIP versus LIPv 

experiments (underlined: rostrocaudal extent of the injection area in the left IPS, see Fig. 1. 

Asterisks as in A).  CTB cell counts are from one series of sections (spacing 400 µm). The 

total number of labeled cells is indicated in each histogram.  

 

FIG. 5. Thalamus (coronal sections): Combined visualization of first-order neurons (Cholera 

toxin B, CTB, white dots), and higher-order thalamic populations (rabies virus: second-order 

at 2.5 days; third-order at 3 days) after injection of a mixture of rabies virus and CTB into the 

ventral portion of the lateral intraparietal area (LIPv) or the medial intraparietal area (MIP) of 

the left hemisphere. Numbers at bottom left corner of each section indicate the distance from 

the interaural axis, and were computed from sections spacing and thickness and their 

correspondence with the anteroposterior levels shown in the atlas of Olzewski (1952) with 

regard to the thalamic nuclei cytoarchitecture and the location of key structures. White dots: 

first-order neurons (CTB labeling); note the topographical differences of first-order 

populations targeting LIPv (in central lateral, CL, medial dorsal, MD, lateralis posterior, LP 

and anterior pulvinar, APul nuclei) versus MIP (more dorsal and lateral, in CL, MD, LP, 

APul, and also in ventral lateral, pars postrema, VLps, ventral posterior lateral nucleus, pars 

caudalis, VPLc, and, to a small extent, ventral lateral nucleus, pars caudalis, VLc). Note the 
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similarity in distribution of first-order thalamic labeling in the two MIP experiments. Dark 

patches in the photomicrographs: rabies retrograde transneuronal labeling. At 2.5 days rabies 

immunolabeling is found in the reticular thalamic nucleus (Rt) ipsilaterally (second-order) 

and other second-order thalamic nuclei bilaterally. The contralateral Rt (third-order) is 

labeled at 3 days (MIP, right column) and not at 2.5 days, showing that third-order labeling is 

obtained only at the 3 days time point. Other abbreviations: see Abbreviations list. Scale bars: 

2000 µm.  

 

FIG. 6. Serial cross sections (400 µm spacing) through the brainstem from caudal (A) to 

rostral levels (L), showing the distribution of second-order neurons that target disynaptically 

the medial intraparietal area (MIP), labeled by retrograde transneuronal transfer of rabies 

virus at 2.5 days. Each dot indicates one labeled neuron. Labeling involves bilaterally the 

vestibular complex, especially the medial vestibular, magnocellular division (MVmc) and 

lateral portions of the medial vestibular, parvocellular (MVpc) nuclei. Some labeled cells are 

also present in descending vestibular (DV), superior vestibular (SV), lateral vestibular (LV) 

nuclei and vestibular Y group (Y). Bilateral labeling is also found in the medial reticular 

formation, especially in dorsal paragigantocellular reticular formation (DPGi) and dorsal 

portions of gigantocellular reticular formation (Gi). A few labeled neurons are also found 

dorsally in the lateral reticular formation near the rostral MVmc (levels I-J), and other 

reticular regions. Labeling obtained in prepositus hypoglossi (PH) and dorsal column nuclei 

(cuneate pars triangularis, CuT, A and external cuneate, ECu, level A) was already described 

(see Prevosto et al., 2009, 2011). See also the photomicrographs in Fig. 7, and histograms in 

Fig. 8. Other abbreviations: see Abbreviations list. Scale bar: 2000 µm.  
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FIG. 7. Photomicrographs showing rabies immunolabeled second-order neurons in the 

vestibular nuclei (VN) and medial reticular formation (dorsal paragigantocellular reticular 

formation, DPGi, and gigantocellular reticular formation, Gi) that target disynaptically the 

medial intraparietal area (MIP) (2.5 days). Four different rostrocaudal levels are illustrated. 

Framed areas in low power views are enlarged. (A) to (D) Rostral medulla (level shown in 

Fig. 6I): only a few rabies immunolabeled neurons are seen bilaterally in the rostral VN, in 

the medial vestibular nucleus, magnocellular (MVmc, individual cells are enlarged in the 

insets in A). Frames in (A) are enlarged in (B), (C) and (D). Note labeled cells in DPGi and 

Gi (B and C), Asterisks in (A) and (D) point to a dorsal reticular region known to receive a 

few direct vestibular afferents (see text). (E) and (F) (level shown in Fig. 6G): note at this 

level many rabies immunolabeled neurons in the VN bilaterally, especially contralaterally, in 

MVmc and descending vestibular nucleus, DV (frame in E is enlarged in F), and bilateral 

labeling in Gi (high power views in insets in E). (G) and (H) (level shown in Fig. 6E): in the 

VN, labeled neurons are most numerous contralaterally in lateral MVmc (frame in G, 

enlarged in H). Note many labeled neurons bilaterally in Gi and DPGi (individual cells are 

enlarged in the insets in G). (I) and (J) Caudal medulla (level shown in Fig. 6C): note many 

labeled cells in contralateral MV (enlarged in inset on the right in I) and bilaterally in Gi and 

DPGi (high power views in J and in inset on the left in E). Other abbreviations: see 

Abbreviations list. Scale bars: 1000 µm in (A), (E), (G) and (I), 50 µm in (B), (C), (D), (F), 

(H), (J) and in all insets in (A), (E), (G) and (I). 

   

FIG. 8. Histograms showing the differences in number and distribution of second-order 

neurons in the vestibular nuclei and medullary reticular formation that target disynaptically 

the medial intraparietal area (MIP) or the ventral lateral intraparietal area (LIPv) (2.5 days). 

Left histograms: differences in number and rostrocaudal distribution of second-order neurons 
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in the medial vestibular (MV) nuclei targeting MIP and LIPv. Sections are numbered 

(horizontal axis) from the caudal end of the MV. Right histograms: differences in number of 

second-order neurons in MV, descending vestibular (DV), Y group (Y), superior vestibular 

(SV), compared with cell counts in the medial reticular formation (dorsal paragigantocellular 

reticular formation, DPGi and gigantocellular, Gi). Cell counts are from two series of sections 

(spacing 200 µm). Black: ipsilateral; gray: contralateral. The total number of labeled cells is 

indicated on top of each histogram.  

 

FIG. 9. Serial cross-sections (400 µm spacing) through the brainstem from caudal (A) to 

rostral levels (L), showing the distribution of second-order neurons that target disynaptically 

the ventral lateral intraparietal area (LIPv), labeled by retrograde transneuronal transfer of 

rabies virus at 2.5 days. Each dot indicates one labeled neuron. A small number of labeled 

neurons is seen bilaterally in the vestibular complex, especially in the medial vestibular, 

magnocellular (MVmc) and lateral portions of the medial vestibular, parvocellular (MVpc) 

nuclei and sparsely in descending vestibular (DV) and superior vestibular (SV) nuclei. 

Bilateral labeling is also found in the medial reticular formation, in dorsal paragigantocellular 

reticular formation (DPGi) and dorsal portions of gigantocellular reticular formation (Gi). 

Some labeled neurons are also found in the lateral reticular formation dorsally, near the 

rostral MVmc (levels I-J), and ventrally, near the spinal trigeminal nucleus (SpV) (levels C-

D). Labeling obtained in SpV, prepositus hypoglossi (PH), and dorsal column nuclei (cuneate 

triangularis, CuT, A and external cuneate, ECu, A) was already described (see Prevosto et al., 

2009, 2011). See also the photomicrographs in Fig. 10, and histograms in Fig. 8. Other 

abbreviations: see Abbreviations list. Scale bar: 2000 µm.  
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FIG. 10. Photomicrographs showing rabies immunolabeled second-order neurons in the 

vestibular nuclei (VN) and medial reticular formation (dorsal paragigantocellular reticular 

formation, DPGi, and gigantocellular reticular formation, Gi) that target disynaptically the 

ventral lateral intraparietal area (LIPv) (2.5 days). Two different rostrocaudal levels are 

illustrated. Framed areas in low power views are enlarged. (A) and (B) Rostral medulla (level 

shown in Fig. 9I): note labeled cells in contralateral DPGi and Gi: frames are enlarged in 

inset in (A) and in (B). Asterisks point to a dorsal reticular region known to receive a few 

direct vestibular afferents (see text). (C) and (D) (level shown in Fig. 9G): rabies 

immunolabeled cells are seen in contralateral Gi and DPGi (insets in C). In the VN, only a 

few labeled cells are found in the ipsilateral medial vestibular nucleus, magnocellular 

(MVmc), frame in (C) is enlarged in (D). Other abbreviations: see Abbreviations list. Scale 

bars: 1000 µm in (A) and (C), 100 µm in (B) and in inset in (A), 50 µm in (D) and in insets in 

(C). 

 

FIG. 11. Photomicrographs showing rabies immunolabeled third-order neurons in the 

vestibular (Scarpa’s) ganglia, vestibular nuclei (VN) and medial reticular formation (dorsal 

paragigantocellular reticular formation, DPGi, and gigantocellular reticular formation, Gi) 

that target the medial intraparietal area (MIP), labeled at the trisynaptic time point (3 days). 

In addition to Scarpa’s ganglia, three different brainstem levels are illustrated. Framed areas 

in low power views are enlarged. (A) and (B) Rostral medulla (level shown in Fig. 12I), 

showing third-order neuronal labeling in the interstitial nucleus of the vestibular nerve 

(InVIIIn) (left framed area in A, enlarged in inset), in portions of medial vestibular, 

magnocellular (MVmc), descending (DV) and superior vestibular nuclei (SV) nuclei and in 

the medial reticular formation (DPGi and Gi, frame in A is enlarged in B). (C) Medulla, 

intermediate level (shown in Fig. 12G); bilateral neuronal labeling in Gi and DPGi and in the 
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VN, with the greatest concentration in the contralateral MVmc. Insets: labeled neurons in 

ipsilateral MVmc. (D) Third-order neurons labeled in the contralateral and ipsilateral (inset) 

Scarpa’s ganglia. Initial labeling of ganglion cells does not include axons. (E) to (I) Caudal 

medulla (level shown in Fig. 12D): bilateral labeling in the VN is still most prominent in the 

contralateral MVmc (framed area in E is enlarged in F). Some labeled cells are found in DV 

(inset in D), SV and Y group. At this time point, bilateral labeling in the medial reticular 

formation ipsilaterally (G) and contralaterally (H and I) includes distal cell processes 

extending into the medial longitudinal fasciculus (mlf). Other abbreviations: see 

Abbreviations list. Scale bars: 1000 µm in (A), (C) and (E), 200 µm in (G) and (H), 100 µm 

in (B), (D), (F) and in insets in (A) and (B), 50µm in (I) and in insets in (D) and (E).   

 

FIG. 12. Serial cross-sections (400 µm spacing) through the brainstem from caudal (A) to 

rostral levels (L), showing retrograde transneuronal labeling of third-order neurons at 3 days 

(trisynaptic time point) after injection of rabies virus into the medial intraparietal area (MIP). 

Each dot indicates one labeled neuron.  A great number of labeled neurons is seen bilaterally 

in the vestibular complex, in the medial vestibular, magnocellular (MVmc) and parvocellular 

(MVpc) nuclei, descending (DV), superior (SV) and lateral (LV) vestibular nuclei and Y 

group. Bilateral labeling is also present in dorsal paragigantocellular reticular formation 

(DPGi) and throughout the gigantocellular reticular formation (Gi), in the lateral reticular 

formation near the rostral MVmc (levels I,J), and more sparsely elsewhere in lateral reticular 

formation, especially near the spinal trigeminal nucleus (SpV). At this time point, dense 

labeling also appears in portions of the SpV, in the lateral reticular nucleus (LRN) (levels A-

C), mainly contralaterally, and in the interstitial nucleus of the vestibular nerve (InVIIIn) 

bilaterally (levels I,K) (see also Fig. 11A). Labeling obtained in prepositus hypoglossi (PH), 

and dorsal column nuclei (cuneate triangularis, CuT, A and external cuneate, ECu, A) was 
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already described (see Prevosto et al., 2009, 2011). See also the photomicrographs in Fig. 11. 

Other abbreviations: see Abbreviations list. Scale bar: 2000 µm.   

 

FIG. 13. Simplified diagram summarizing ascending polysynaptic pathways to the rostral 

medial intraparietal area (MIP) (A) or ventral lateral intraparietal area (LIPv) (B) (see text 

and Prevosto et al., 2009, 2010, 2011).  Labeled pathways are shown by black markers, solid 

lines and large arrows (markers size indicates projection strength). For bilateral pathways 

only the dominant side is shown. (1°): First-order; (2°) disynaptic pathways; (3°) trisynaptic 

(in MIP). (A) Inputs to rostral MIP: (a) eye velocity and position signals (prepositus 

hypoglossi, PH, vertical arrow: caudo-rostral velocity-to-position transformation; Prevosto et 

al., 2009); (b) arm and neck proprioceptive inputs from the dorsal column nuclei, DCN (2°) 

(cuneate pars triangularis, CuT, and external cuneate, ECu, Prevosto et al., 2011); (c) 

efference copy pathways from arm- and head movement-related reticulospinal domains 

(medial reticular formation, MRF) (2°); (d) vestibular inputs from the vestibular nuclei (VN) 

(2°) and Scarpa’s ganglia (3°) (present study); (e) major cerebellar output channels from 

dentate (D) and interpositus posterior (IP, arm- and eye movements-related domains, in dark 

and light grey respectively) (2°) and related cerebellar cortical modules (3°) (dark grey: 

paramedian lobule, PML/Crus II 50.6%, Simplex/Anterior lobe, AL 26.1%; light grey: dorsal 

paraflocculus, DPFl 10.6%); note only minor inputs from rostral fastigial (F) and cerebellar 

vermis, 2.6% (see Prevosto et al., 2010). Rostral MIP and the labeled PH, DCN, VN, MRF 

and cerebellar domains form a tightly interconnected circuit for multisensory guidance and 

online control of arm movements and eye-hand coordination coupling (and internal models 

implying the posterior parietal cortex and cerebellum). Known main interconnections and 

pathways (unlabeled) are indicated by open markers, stippled lines and small arrows: 

proprioceptive afferents to DCN, VN, MRF and cerebellum; inputs to the labeled cerebellar 
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domains from PH, DCN, VN, MRF; (crossed) cerebellar output pathways to VN, MRF and 

DCN (ECu); VN-MRF interconnections; vestibulo- and reticulospinal pathways; MIP 

projections to DCN (see text and Prevosto et al., 2009, 2010, 2011). (B) Disynaptic pathways 

to LIPv carry eye and head movement signals: (a) eye position and velocity inputs (PH); (b) 

neck proprioceptive (DCN); (c) efference copy signals from the MRF head movement region, 

and (d) minor vestibular inputs (VN) (neural substrates of eye and head gain fields); (e) 

cerebellar output channels from the saccade-related caudal ventrolateral IP and caudal dentate 

(cD) (and not from F) (see text and Prevosto et al., 2009, 2010, 2011). Stippled pathways as 

in (A). Other abbreviations: CCN, central cervical nucleus; DRG, dorsal root ganglia; IA, 

Interpositus anterior; IPS, intraparietal sulcus. 
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