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Abstract—We initiate a study on the fundamental relation
between data sanitization (i.e., the process of hiding confidential
information in a given dataset) and frequent pattern mining, in
the context of sequential (string) data. Current methods for string
sanitization hide confidential patterns introducing, however, a
number of spurious patterns that may harm the utility of
frequent pattern mining. The main computational problem is
to minimize this harm. Our contribution here is twofold. First,
we present several hardness results, for different variants of this
problem, essentially showing that these variants cannot be solved
or even be approximated in polynomial time. Second, we propose
integer linear programming formulations for these variants and
algorithms to solve them, which work in polynomial time under
certain realistic assumptions on the problem parameters.

Index Terms—data privacy, data sanitization, knowledge hid-
ing, frequent pattern mining, string algorithms

I. INTRODUCTION

A string is a sequence of letters over some alphabet Σ.
Strings are commonly used to represent individuals’ data in
domains ranging from transportation to web analytics and
bioinformatics. For example, a string can represent a user’s
location profile, with each letter corresponding to a visited
location [28], a user’s purchasing history, with each letter cor-
responding to a purchased product [2], or a patient’s genome
sequence, with each letter corresponding to a DNA base [20].
Mining patterns from such strings is thus useful in a gamut of
applications, including route planning [8], marketing [2], and
clinical diagnostics [20]. To support these applications while
preserving privacy, strings representing individuals’ data are
often being disseminated after sanitization [1], [27].

In this paper, we study the fundamental relation between
data sanitization [1], [4], [27] (also known as knowledge
hiding) and frequent pattern mining [19], [22], [25]. The
objective of frequent pattern mining in strings is to obtain
all patterns occurring frequently enough in a string, or in
a collection of strings. There may also be constraints for
the mined strings (e.g., to be of fixed length k [3], [9]).
In string sanitization, the privacy objective is to transform a
string to ensure that a given set of sensitive patterns, modeling
confidential knowledge, does not occur in the sanitized version

of the string; sensitive patterns are selected based on domain
expertise [4], [15], [27]. This transformation may incur some
utility loss that should be minimized. Recent methods achieve
this using combinatorial algorithms [4], [5]. Let W be the
input string over Σ, k > 0 be an integer, and S be the set of
sensitive length-k substrings. These methods construct a string
X such that: (I) X contains no element of S as a substring;
(II) the total order and thus the frequency of all non-sensitive
length-k substrings of W is preserved in X; and (III) the
length of X is minimized [4], or the edit distance between
W and X is minimized [5]. These methods work by copying
carefully selected substrings of W into X and separating them
by a special letter # /∈ Σ.

Example 1. Let W = GACAAAAACCCAT, k = 3, and the
set of sensitive patterns S = {ACA,CAA,AAA,AAC,CCA}.
Further, let XTR = GAC#ACC#CCC#CAT, XMIN =
GACCC#CAT and XED = GAC#AA#ACCC#CAT be three
sanitized strings. All three strings contain no sensitive pattern
and preserve the total order and thus the frequency of all non-
sensitive length-3 patterns of W : XTR is the trivial solution
of interleaving the non-sensitive length-3 patterns of W with
#; XMIN is the shortest possible such string [4]; and XED is
a string closest to W in terms of edit distance [5].

Unfortunately, as noted in [4], the occurrences of # reveal
the locations of sensitive patterns and thus must be ultimately
replaced by letters of the original alphabet Σ. This replacement
gives rise to another string over Σ, which we denote by Z.
However, this replacement may create spurious patterns that
could not be mined from X at a minimum frequency threshold
τ but would be mined from Z at the same frequency threshold.
These patterns are referred to as τ -ghosts.

We investigate the crucial interplay between # replacements
and τ -ghosts, posing here the following question that, to the
best of our knowledge, has not been addressed: Given a
string X containing #’s, a positive integer k, and a positive
integer τ , how should we replace the #’s in X with letters in
Σ, so that the number of length-k τ -ghosts in the resulting
string Z is minimized? This question helps preserving the

1



accuracy of frequent pattern mining and tasks based on it (e.g.,
pattern-based clustering [17] and classification [24], as well as
sequential rule mining [26]) that we may not know a priori.

The above question is also of quite general interest, as it
applies to sequential datasets that may have occurrences of a
special letter for a variety of reasons beyond data sanitization.
This special letter, denoted here by # for consistency, rep-
resents some information that is missing from these datasets.
For instance, in genome sequencing data, # corresponds to
an unknown DNA base [18]; in databases, # represents a
value that has not been recorded [7], [12]; and in masked
data outputted by other privacy-preserving methods [6], # is
introduced deliberately to achieve their privacy goal.

Like in data outputted by sanitization methods, the oc-
currences of # in other string datasets often have to be
replaced. For example, since the DNA alphabet consists of four
letters (A, C, G, and T), off-the-shelf algorithms for processing
DNA data use a two-bits-per-base encoding to represent the
DNA alphabet. In order to use these algorithms with input
strings containing unknown bases, we would have to amend
them to work on the extended alphabet {A,C,G,T,#}. This
solution may have a negative impact on the time efficiency of
the algorithms or the space efficiency of the data structures
they use. Thus, instead, in several state-of-the-art DNA data
processing tools (e.g., [21]), the occurrences of # are replaced
by an arbitrarily chosen letter from the DNA alphabet, so
that off-the-shelf algorithms can be directly employed. This,
however, may introduce a large number of spurious patterns,
negatively affecting the accuracy of DNA analyses.

Replacing the occurrences of # in a database is often
needed to be able to perform frequent pattern mining with off-
the-shelf algorithms [12]. To this end, the occurrences of # are
commonly replaced by some statistical estimate, such as the
most frequent value [12], [16]. However, such a replacement
does not generally maintain the accuracy of frequent pattern
mining, since it may introduce many spurious patterns [12].

Example 2. Let again W =GACAAAAACCCAT, k = 3, and
S = {ACA,CAA,AAA,AAC,CCA}. Further, let the frequency
threshold be τ = 2. Note that the frequency of all non-sensitive
length-3 patterns in W is preserved in all three sanitized strings
XTR = GAC#ACC#CCC#CAT, XMIN = GACCC#CAT, and
XED = GAC#AA#ACCC#CAT. Replacing, however, all #’s
with G would create τ -ghost GAC both in XTR and in XED.

Contributions. To our knowledge, there does not exist a
general solution to the question we pose here that simultane-
ously guarantees effectiveness and efficiency. In this work, we
provide compelling evidence as to why this is the case. Within
the string sanitization context, we also provide algorithms for
answering this question. Specifically:
1) We embark on a theoretical study to understand the relation
between replacing #’s and creating τ -ghosts. In particular, we
define the following problems and examine their hardness:
• HMD (Hide and Mine decision): This is the core decision

version of the problem asking whether or not we can
replace all #’s in X , so that no sensitive pattern and

no τ -ghost occurs in Z. Deciding this may allow for
sanitizing X with no utility loss in frequent pattern
mining. We show that HMD is strongly NP-complete
via a reduction from a variant of the well-known Bin
Packing problem [14] (see Section III). This is the most
technically involved part of the paper, as the provided
reduction is highly non-trivial.

• HM (Hide and Mine): This is the optimization version of
HMD asking how we can replace all #’s, while ensuring
that no sensitive patterns and a minimal number of τ -
ghosts occur in Z. This would minimize the utility loss
in frequent pattern mining. HM is clearly NP-hard as a
consequence of HMD being NP-complete, but we also
show that it is hard to approximate.

• HMMT (Hide and Mine minimum threshold): Given a pa-
rameter τ , this problem asks for the minimum frequency
threshold τ1 ≥ τ for which no sensitive pattern and no τ1-
ghost occurs in Z. Solving HMMT would imply no utility
loss in frequent pattern mining at a higher frequency
threshold τ1 that is as close as possible to τ . We show
that HMMT is (NP-hard and) hard to approximate.

The hardness (see Section III) and inapproximabilty (see
Section IV) results for our problems provide solid evidence for
the lack of polynomial-time exact or approximation algorithms
for these problems and motivate our next contribution.
2) We develop exact algorithms for HMD and HM (see
Section V) that require polynomial time, under certain realistic
assumptions on the problem parameters:
• Exact algorithms based on an Integer Linear Program-

ming (ILP) formulation of HMD. The main idea is to
identify all length-k strings over Σ in X that may po-
tentially become τ -ghosts in Z, and then decide whether
each of the #’s can be replaced by a letter in Σ without
creating any sensitive pattern or any τ -ghost pattern in
Z. We prove that HMD is fixed-parameter tractable [11]
in most cases encountered in practice (e.g., when the
number of distinct letters in the string and the length k
of sensitive patterns are upper bounded by a constant).

• Exact algorithms based on an ILP formulation of HM.
This ILP formulation differs from the HMD formulation
in that it takes into account the number of τ -ghosts
created by replacing #’s, so as to minimize their number.
We prove that HM is fixed-parameter tractable in many
cases encountered in practice (e.g., when the length k of
sensitive patterns and the number of distinct patterns that
may become τ -ghosts are upper bounded by a constant).

II. PRELIMINARIES AND PROBLEM STATEMENT

An alphabet Σ is a finite nonempty set whose elements are
called letters. We also consider an alphabet Σ# = Σ ∪ {#},
where # is a special letter not in Σ. We fix a string X =
X[0] · · ·X[n − 1] of length |X| = n over Σ#. The set of
length-k strings over Σ is denoted by Σk. For two indices
0 ≤ i ≤ j < n, X[i . . j] = X[i] · · ·X[j] is the substring of X
that starts at position i and ends at position j of W . FreqX(U)
denotes the number of occurrences (starting positions) of string
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U as a substring of X . A prefix of X is a substring of X of the
form X[0 . . j], and a suffix of X is a substring of X of the form
X[i . . n−1]. A dictionary over Σ is a set of strings over Σ. The
dictionary used in our work is a set of length-k strings that do
not occur in X; we refer to these strings as sensitive patterns.
Any element of Σk that is not in this dictionary is referred to
as a non-sensitive pattern. In combinatorics on words, such a
dictionary is known as antidictionary and the sensitive patterns
are known as forbidden patterns (e.g., see [10]).

Problem 1 (HIDE & MINE (HM)). Given an integer k > 0, a
string X = X0#X1# · · ·#Xδ of length n over an alphabet
Σ#, with |Xi| ≥ k− 1, for all i ∈ [0, δ], a dictionary S ⊆ Σk

such that no S ∈ S occurs in X , and an integer τ > 0,
compute a function g : [δ] → Σ such that the following hold
for string Z = X0g(1)X1g(2) · · · g(δ)Xδ:

I The number of strings U ∈ Σk, with FreqX(U) < τ and
FreqZ(U) ≥ τ in Z, is minimized.

II No S ∈ S occurs in Z.

Note that function g replaces each # by exactly one letter
from Σ. Condition |Xi| ≥ k − 1 means that any two #’s in
X are at least k positions apart. Thus, any length-k substring
X[i . . i+k−1] of X is affected by at most one # replacement.
The sanitization method of [4, Lemma 1] produces an X
satisfying this condition, for any set S ⊆ Σk, to guarantee
that the frequency of every non-sensitive pattern is preserved
in X . Thus, HM is directly applicable to the output of [4].

A string U ∈ Σk with FreqX(U) < τ and FreqZ(U) ≥ τ is
referred to as τ -ghost. To prove NP-completeness, we consider
the decision variant HMD of HM, which asks to decide if there
exists any function g : [δ]→ Σ such that the following hold:

I No τ -ghost occurs in Z.
II No S ∈ S occurs in Z.

III. HMD IS NP-COMPLETE

Problem HMD is clearly in NP. In this section, we show it
to be strongly NP-complete via a reduction from a variant of
Bin Packing [14].

A. The UNIQUE-WEIGHTS BIN PACKING problem

The BIN PACKING (BP) problem is defined as follows.
Given three positive integers, M (number of bins), B (ca-
pacity of every bin), and N (number of items), and a vector
[w1, . . . , wN ] of positive integers (the weights of the items),
BP asks whether we can partition the items into M subsets
(bins) without exceeding the capacity of any bin.

BP is strongly NP-complete [14], i.e., it is NP-complete
even when weights and bin capacities are bounded by a
polynomial function of N and M . We can thus use gadgets
whose size is proportional to the numerical values in the
instance IBP of BP, as if we were representing those numbers
in unary notation. To simplify the reduction, we assume there
are no items of weight 1 (they can be added at the end where
capacity is left), and that no two items have the same weight.
We refer to this variant as UNIQUE-WEIGHTS BIN PACKING

(UWBP). UWBP is also strongly NP-complete; we defer the
proof of this claim to the full version of the paper.

Lemma 1. UWBP is strongly NP-complete.

B. Overview of the Reduction from UWBP to HMD

For any UWBP instance, we construct in polynomial time
an instance of HMD that has positive answer if and only if
UWBP has positive answer. To this end, we will introduce
several gadgets which will serve to model the different con-
straints of UWBP. Each gadget consists of a string of length
2k − 1 over a specific alphabet: #, x, y, $, and a letter bi
for each i ∈ [M ]. We will explain how all UWBP constraints
are linked to the gadgets. The gadget tij models whether item
j ∈ [N ] is placed in bin i ∈ [M ]:

tij = bi x . . . x︸ ︷︷ ︸
k−wj−1

bi . . . bi︸ ︷︷ ︸
wj−1

# bi . . . bi︸ ︷︷ ︸
k−1

The structure models the weight of items placed in bin i:
when we replace the # with bi, we introduce wj occurrences
of bki . The gadget uij , together with tij and the set of forbidden
patterns, ensures that each item is placed in some bin:

uij = bi x . . . x︸ ︷︷ ︸
k−wj−1

bi . . . bi︸ ︷︷ ︸
wj−1

# y . . . y︸ ︷︷ ︸
wj

x . . . x︸ ︷︷ ︸
k−wj−2

y

We link the filling of the ith bin with the number of
occurrences of bki . To limit the other non-sensitive patterns
flexibly, we then choose a value τ high enough, and lower the
available occurrences of each pattern by adding extra copies
of them at the end. Namely, we have k = maxj wj + 3 and
τ = max{M,B}+ 1.

The final instance of HMD is the concatenation of the
following patterns separated by the string $$:

1) tij , ∀i, j.
2) uij , ∀i, j.
3) τ −B− 1 occurrences of bki , ∀i (allowed occurrences of

bki model the capacity of bin i).
4) τ − 2 occurrences of bixk−wj−1b

wj−1
i x, ∀i, j (only one

more occurrence of this pattern is allowed, and one is
created by replacing the # in tij or uij with x).

5) τ − M occurrences of ywj+1xk−wj−2y, ∀j (allowed
occurrences force us to replace at least one u·j with x
for each j, thus forcing us to use bij in the corresponding
tij gadget, i.e., placing each item in a bin).

The set S of sensitive patterns is carefully chosen to link
these gadgets, and consists of the union of the following sets:

1) {bi′bk−1
i | i, i′ ∈ [M ], i′ 6= i}, which forbids putting a bi′

to replace the # in any tij , if i′ 6= i.
2) {biybk−2

i | i ∈ [M ]}, which forbids putting a y to replace
the # in a tij .

3) {bi$bk−2
i | i ∈ [M ]}, which forbids putting a $ to replace

the # in a tij .
4) {biywjxk−wj−2y | i ∈ [M ], j ∈ [N ]}, which forbids

putting any bi to replace the # in a uij .
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5) {bi$ywjxk−wj−2 | i ∈ [M ], j ∈ [N ]}, which forbids
putting a $ to replace the # in a uij .

It can be shown that this instance of HMD has positive
answer if and only if the original UWBP does, thus proving
our claim. We defer the details to the full version of the paper.

Theorem 1. HMD is strongly NP-complete.

IV. HM IS HARD TO APPROXIMATE

Given the hardness of HMD, we now shift our focus on
checking whether an approximately optimal solution of HM
can be obtained instead. Given any instance IM of a minimiza-
tion problem M , an algorithm is called an α-approximation,
for some α ≥ 1, if it runs in polynomial time in the size of IM
and always outputs a solution value Γ ≤ α ·OPT, where OPT
denotes the optimal value for IM . We start with the following:

Theorem 2. There is no α-approximation algorithm for HM,
for any α ≥ 1, unless P=NP.

Proof. Suppose by contradiction that an α-approximation al-
gorithm A existed for minimizing the number of τ -ghosts in
HM. We could then use A to solve HMD: the answer to
HMD would be positive (i.e., there would exist a function
g that creates 0 τ -ghosts) if and only if the answer of A was
Γ = 0 ≤ α · OPT = 0, which contradicts Theorem 1.

The reader may now wonder whether the problem becomes
easier should one relax the requirement for a fixed threshold
τ . Thus, the following problem arises naturally.

Problem 2 (HMMT). Given an integer k > 0, a string
X = X0#X1# · · ·#Xδ of length n over alphabet Σ#, with
|Xi| ≥ k − 1 for all i ∈ [0, δ], a dictionary S ⊆ Σk

such that no S ∈ S occurs in X , and an integer τ0 > 0,
compute the smallest integer τ1 ≥ τ0 so that there exists a
function g : [δ] → Σ, such that the following hold for string
Z = X0g(1)X1g(2) · · · g(δ)Xδ:

I No U ∈ Σk, with FreqX(U) < τ1 and FreqZ(U) ≥ τ1
occurs in Z.

II No S ∈ S occurs in Z.

The practical rationale for considering HMMT is that it
could be useful if, for instance, τ1 is only slightly larger than τ
in a given HM instance. Unfortunately, we show that HMMT
is NP-hard, and it is even hard to approximate.

Theorem 3. HMMT is NP-hard.

Proof. We reduce HMD to HMMT as follows. Let IHMD be the
instance of HMD we would like to solve for some threshold
τ . We construct an instance of HMMT consisting of the X ,
k, and S from IHMD, and we also set τ0 = τ . We denote this
instance by IHMMT. The reduction takes linear time in the size
of HMD. We seek to find the minimum threshold τ1 ≥ τ0
such that no length-k substring of Z is a τ1-ghost. Then IHMD

has a positive answer if and only if the answer τ1 of IHMMT

is equal to τ0 = τ . The statement thus follows.

Observe that a pattern U is a τ -ghost if and only if
τ ∈ (FreqX(U),FreqZ(U)]. Therefore, the minimal number
of τ -ghosts is not monotonous in τ . On the contrary, the
minimal number of τ -ghosts is zero when τ = 0 and all
patterns are already frequent (i.e., they appear at least τ times),
or when τ > n and the threshold is so high that no pattern can
ever become a τ -ghost. In between, the minimal number of
τ -ghosts increases whenever τ equals the frequency of some
patterns in X , and then slowly decreases again. We will use
this behavior, and the fact that HMD is NP-hard, to construct
a string for which we cannot determine in polynomial time
whether τ1 = τ0 or τ1 > ατ0 (and for which we can prove
that τ1 6∈ [τ0 + 1, ατ0]), implying inapproximability.

Theorem 4. There is no α-approximation algorithm for
HMMT, for any α ≥ 1, unless P=NP.

Proof. Let X be an arbitrary string and S be the set of
sensitive patterns as defined in HMD. Further, let T be the
length-(k − 2) suffix of X and Z be a string obtained by
replacing the #’s of X . From this instance of HMD, we will
construct an instance of HMMT consisting of a string Y and
a set S ′ of sensitive patterns, so that if an α-approximation
algorithm existed for HMMT, we could decide HMD in
polynomial time. We define Y over Σ ∪ {#,&} to be

Y = X(&&T )τ0&(#T&)d(α−1)τ0e.

Let R be the set of all strings &sT , with s ∈ Σ. We define
the dictionary of sensitive patterns be S ′ = S ∪ R. Note
that we need to replace all #’s in (#T&)d(α−1)τ0e by &’s
in order not to introduce any sensitive patterns. However,
doing so increases the number of &T& patterns (and all
other newly created patterns) from τ0 to dατ0e. Therefore,
if τ = τ0, then the number of τ -ghosts in Z equals that
in Z(&&T )τ0&(&T&)d(α−1)τ0e, because the additional new
patterns were already occurring at least τ times in Y . However
if τ0 < τ ≤ dατ0e, then there will always be at least one
τ -ghost, namely &T&. Recall that deciding HMD is NP-
complete. Therefore it is NP-complete to decide whether or
not τ1 = τ0 or τ1 > dατ0e. We conclude that there exists no
α-approximation algorithm for HMMT, unless P=NP.

V. EXACT ALGORITHMS FOR HM

We resort to ILP to design exact algorithms for HMD and
HM. In particular, we show that both problems are fixed-
parameter tractable for several combinations of parameters.

We say that the length-(k− 1) substring U preceding an
occurrence of # in X , and the length-(k− 1) substring V
following it, form its context UV . Recall that there are δ
occurrences of # in X , and that any two occurrences are at
least k letters apart, so UV is in Σ2k−2. We assign to every
context UV a unique identifier (id). We write #i for # in
X if its context UV has id i. A string N ∈ Σk is critical if
it may become a τ -ghost, i.e., if an additional occurrence of
N can be created by replacing some # by a letter in Σ and
FreqX(N) ∈ [τ − kδ, τ − 1]. This is because the frequency of
N cannot increase by more than kδ, and the frequency of N
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in X must be less than τ for N to become τ -ghost. We assign
to each critical string N a unique id `, and denote it by N`.
We introduce the following parameters:
γ number of distinct contexts present in X;
δi number of occurrences of letter #i in X , for i ∈ [γ];
λ number of distinct critical length-k strings;
αi

`,j additional number of occurrences of N` introduced
by replacing a #i with a letter j ∈ Σ, for ` ∈ [λ];

e` difference (τ − 1)− FreqX(N`), for ` ∈ [λ].
Intuitively, e` is the budget we have for N`: the number of
its additional occurrences we can afford. Since replacing an
occurrence of #i by j ∈ Σ adds k new strings in Σk, αi

`,j

counts how many of them are equal to N`. Let xi,j be the
number of times we replace #i by j ∈ Σ, and let F ⊆ [γ]×Σ
be the set of forbidden replacements: (i, j) ∈ F if and only if
replacing #i by j introduces a sensitive pattern. To determine
whether there exists a way of replacing all #’s with letters
without introducing any sensitive patterns nor τ -ghosts, we
need to find a solution x ∈ Zγ×|Σ| to the following problem:

xi,j ≥ 0 ∀(i, j) ∈ [γ]× Σ

xi,j = 0 ∀(i, j) ∈ F∑
i∈[γ],j∈Σ αi`,jxi,j ≤ e` ∀` ∈ [λ]∑
j∈Σ xi,j = δi ∀i ∈ [γ]

(1)

The first and fourth constraints ensure that each # is
replaced by exactly one letter, the second constraint that we
do not reinstate any sensitive patterns, and the third constraint
that we do not introduce any τ -ghosts. This is clearly an ILP
with m = γ|Σ| variables and at most 2m+λ+γ constraints.
The well-known algorithm by Megiddo [23] solves the ILP
problem in linear time in the number constraints (resp. vari-
ables) when the number of variables (resp. constraints) is upper
bounded by a constant. Hence, although HMD is NP-complete
in general, if appropriate subsets of parameters are bounded
by a constant, we can count on polynomial-time solutions.

To show that HMD takes polynomial time in certain cases,
let us start with a general preprocessing step. We construct
a static dictionary with O(1) access time of the letters in X
and the letters in strings of S . The value (id) of each key
(letter) is chosen from {1, . . . , k|S| + n}. This construction
can be done in O(n+ k|S|) time using perfect hashing [13].
We can thus lexicographically sort all length-k substrings of
X and all length-k strings in S (viewed as strings over letter
id’s) using radix sort in O(nk+ |S|k) time, and construct two
dictionaries, one for X and one for S, as follows. For X , we
construct a trie of all its non-sensitive length-k substrings. The
value of each key (non-sensitive pattern) is its multiplicity in
X . We also construct a trie of all strings in S in a similar
fashion (no multiplicities are relevant here, so no values are
stored). We store in both tries, for every node, the first letter
on each of its outgoing edges in a static dictionary with O(1)
access time [13]. Thus both trie dictionaries support O(k)
access time: if a length-k string Q is given as a query, we
first convert it to a string I(Q) of id’s in O(k) time using the
letter dictionary, and then search for I(Q) from the root of the
tries in O(k) time. The total construction time is O(nk+|S|k).

When δ = O(1), the brute-force algorithm checking all
possible ways to replace the #’s with letters of Σ runs in
polynomial time. There are |Σ|δ ways to replace the #’s. Each
of these ways generates δk new length-k strings for which
we have to check if they are sensitive or create a τ -ghost.
Checking if they are sensitive can be done using the trie of S
in O(k) time per each length-k string. Counting the additional
number of occurrences of each length-k substring of X can be
done using the trie of X in O(k) time. Counting the number
of occurrences of each length-k string that does not occur in
X can be done by constructing a trie of all such strings (we
have at most δk of them per way), similar to the preprocessing
step. This gives O(nk + |S|k + |Σ|δδk2) time in total.

A problem with parameters p and q is fixed-parameter
tractable (FPT) in p if there exists a function f and a
polynomial P such that the problem has time complexity
O(f(p) · P (q)) [11]. The following theorem shows three
scenarios where an FPT algorithm exists for HMD.

Theorem 5. HMD is fixed-parameter tractable if
(a) |Σ| = O(1) and γ = O(1); or
(b) |Σ| = O(1) and k = O(1); or
(c) k = O(1) and λ = O(1).

Proof. We first perform the above-mentioned preprocessing.
(a) We will solve this case by constructing and solving the
ILP in Eq. 1. We can count the number of occurrences of
each length-k substring of X using the trie of X (and thus
determine e` for these strings) in O(nk) time. The id i of each
context #i and its number δi of occurrences can be determined
within the same complexity using a similar preprocessing: this
is possible because the length of every context is 2k − 2 =
O(k). Finally, the αi`,j’s and F can be computed in O(γ|Σ|k2)
total time as follows. For a context #i and a letter j ∈ Σ, we
create k new length-k strings when replacing #i with j, each
of which is either sensitive (in which event we add (i, j) to
F) or non-sensitive (we increase αi`,j by 1). Checking if they
are sensitive can be done using the trie of S in O(k) time per
length-k string. Counting the additional number of occurrences
of a critical length-k substring of X can be done using the trie
of X in O(k) time. Counting the number of occurrences of
a critical length-k string that does not occur in X (note that
e` = τ − 1 for these strings) can be done by constructing a
trie of all such strings, similar to the preprocessing step. The
ILP is thus constructed in O(nk + |S|k + γ|Σ|k2) total time.
Since the number of variables in the ILP is m = γ|Σ| = O(1)
and solving ILP’s is fixed-parameter linear in the number of
variables [23], HMD is FPT if γ and |Σ| are fixed.

(b) Since every context has length 2k − 2 and also |Σ| =
O(1) and k = O(1), we have that γ ≤ |Σ|2k−2 = O(1). Thus,
if k and |Σ| are fixed, we are in case (a), and HMD is FPT.

(c) If k = O(1) and λ = O(1), the numbers of constraints
and variables in the ILP are not necessarily upper bounded
by a constant. Therefore, we cannot directly solve the ILP
in polynomial time. However, since the λ critical length-k
strings contain overall at most λk different letters, we actually
only need to distinguish among a bounded number of letters.
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Since we do not need to consider explicitly the remaining
letters, we rather represent them by a single special letter. Let
σ ⊆ Σ denote the set of letters contained in critical length-k
strings. Note that critical length-k strings can be determined
as described in part (a). Thus σ can be specified and indexed
using perfect hashing [13] within the same time complexity.
We introduce a new letter $ representing all the letters in Σ\σ,
and we denote by F|$ the set of forbidden replacements where
all pairs (i, j) ∈ F with j ∈ Σ \ σ are collapsed in a single
pair (i, $). We thus need to find a solution x ∈ Zγ×(|σ|+1) for:

xi,j ≥ 0 ∀i ∈ [γ], j ∈ σ ∪ {$}
xi,j = 0 ∀(i, j) ∈ F|$∑
i∈[γ],j∈σ αi`,jxi,j ≤ e` ∀` ∈ [λ]∑
j∈σ∪{$} xi,j = δi ∀i ∈ [γ]

(2)

This new ILP can be constructed in O(nk + |S|k + γ|Σ|k2)
time, like Eq. 1. Since the ILP has only γ(|σ| + 1) = O(1)
variables, HMD is FPT for fixed k and λ [23]. We can obtain
a solution to the original problem by replacing $ by any letter
in Σ \ σ that does not create a sensitive pattern.

We can decide in polynomial time if HM has a solution:
we check all |Σ| letter replacements at each of the δ positions
where a # occurs. If, at each position, there exists at least
one letter replacement that does not create a sensitive pattern,
then HM has a solution. Thus, without loss of generality we
assume that HM always has a solution. To minimize τ -ghosts
in Z, we define a binary variable z`, ` ∈ [λ], which is equal
to 1 (resp. 0) when N` has (resp. has not) become τ -ghost.
The ILP formulation for HM is to find x ∈ Zγ×|Σ| so as to:
Minimize

∑λ
`=1 z` subject to

xi,j ≥ 0 ∀(i, j) ∈ [γ]× Σ

xi,j = 0 ∀(i, j) ∈ F
z` ≥ 0 ∀` ∈ [λ]∑
i∈[γ],j∈Σ αi`,jxi,j − kδz` ≤ e` ∀` ∈ [λ]∑
j∈Σ xi,j = δi ∀i ∈ [γ]

(3)

Note that, in the ILP of Eq. 3,
∑
i∈[γ],j∈Σ α

i
`,jxi,j−kδz` ≤

e` if and only if N` is not a τ -ghost or z` = 1.

Theorem 6. HM is fixed-parameter tractable if
(a) |Σ| = O(1), γ = O(1), and λ = O(1); or
(b) k = O(1) and λ = O(1).

Proof. (a) We can obtain the ILP of Eq. 3 in O(λ) time from
the ILP of Eq. 1, which can be constructed in O(nk+ |S|k+
γ|Σ|k2) time; see the proof of Theorem 5(a). The ILP of Eq. 3
has at most 2m+ 2λ+ γ constraints and m+ λ = |Σ|γ + λ
variables. Therefore HM is FPT if |Σ|, γ and λ are fixed [23].

(b) Similar to the ILP of Eq. 2 (see Theorem 5(c)), we can
reduce the alphabet Σ to the letters of the critical length-k
strings and a special letter $. This new minimization ILP has
γ(|σ|+1)+λ ≤ (kλ+1)2k−1+λ = O(1) variables. Therefore
HM is FPT if k and λ are fixed [23].
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