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A B S T R A C T   

The main objective of this paper is to propose an approach for identification of provenance of archaeological iron 
artefacts making use of major oxides and trace elements. For this purpose, seven classifiers were built on the basis 
of the following techniques: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Random 
Forests (RF), Naïve Bayes (NB), K-Nearest Neighbours (KNN), Recursive Partitioning and Regression Trees 
(RPART) and Kernel Discriminant Analysis (KDA). A final assignment of a given observation to a regional class 
was carried out on the basis of results provided by all classifiers using a majority voting technique. The proposed 
approach was first tested on experimental slag and then it was applied to actual archaeological data. It is hoped 
that this method can become part of a new integrated approach which will consider all available types of data, 
such as major and trace elements and isotopic ratios.   

1. Introduction 

The aim of this paper is to offer a new approach to the problem of 
provenance of archaeological iron on the basis of major oxides and trace 
elements. A significant novelty of the proposed method consists in the 
fact that it combines several different classification algorithms (para-
metric and non-parametric ones). Then, the final result is produced 
using a majority voting technique. Individual classifiers which are 
employed in this study have their advantages and disadvantages (see 
below) and they may perform differently on different data assemblages. 
It has therefore been assumed that a good way to obtain a credible 
classification it to first aggregate partial results provided by each 
method and then combine it into a final provenance assessment. 

The proposed approach was first tested on experimental smelting 
data (six smelting experiments altogether, in which both identical and 
very different ores were used). In this way, strengths and weaknesses of 
each classification method could be demonstrated and assessed. As the 
final classification produced by the majority voting technique was 

reasonable, the approach was applied to actual archaeological data that 
has been previously analysed in Disser et al. (2017). It turned out again 
that individual classifiers produced results that in some cases may be at 
variance with each other. This seems to reinforce a claim that a method 
that allows to aggregate them and then to propose a final majority-voted 
classification is recommended. 

In 2012 Charlton et al. proposed a method of identification of 
smelting slag inclusions in iron artefacts with the use of multivariate 
statistics. The identification model uses � log transformed subcomposi-
tional ratios of six oxides: MgO, Al2O3, SiO2, K2O, CaO and TiO2. The 
first step is a Principal Component Analysis (PCA) and Agglomerative 
Hierarchical Clustering (AHC, preferably Euclidean distance and 
average linkage agglomeration) in order to identify groups of slag in-
clusions of different origin (Charlton et al., 2012, pp. 2281–2283). In 
order to propose a provenance of artefacts, series of training sets are 
obtained by means of analyses of large samples of smelting slag from 
known locations. Data on the chemical composition of smelting slag 
(� log subcompositional ratios of MgO, Al2O3, SiO2, K2O, CaO, TiO2 and 
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MnO) is processed using PCA, Linear Discriminant Analysis (LDA) and 
Kernel Density Estimation (KDE) in order to define boundaries of 
training set fields. Then, data concerning the same oxides from 
smelting-derived slag inclusions in artefacts is projected with the use of 
PCA, LDA and KDE onto the fields defined by the chemistry of the 
training sets (Charlton et al., 2012, pp. 2284–2289). This approach was 
first tested on experimental smelting slag, and then these researchers 
applied it to archaeological slag data provided by Buchwald (2005). 
They maintained that they had obtained a reasonable separation be-
tween individual regions (Charlton et al., 2012, pp. 2289–2291); for 
earlier attempts at provenancing with the use of oxide ratios in slag see, 
e.g. Blakelock et al. (2009); Buchwald (2005); Buchwald and Wivel 
(1998). 

Charlton et al. also raised several reservations concerning the use of 
this analytical approach. Identifications of provenance sources must not 
be considered in absolute sense, but should rather be seen as hypotheses 
which can be verified with other methods. Furthermore, training sets do 
not always contain actual sources of metal in examined artefacts and 
sometimes it is not possible to sufficiently discriminate between training 
sets. Another problem may be posed by the lack of comparative data on 
iron sources (Charlton et al., 2012, pp. 2290–2292); see also Charlton 
et al. (2013) for an overview of provenancing methods). One possible 
way of coping with these shortcomings is a combination of the major 
oxide analysis with examinations of other minor and trace elements 
(Charlton et al., 2012, p. 2291). 

In the recent years it has become increasingly clear that major ele-
ments alone are not sufficient for provenance studies unless there are 
significant differences between iron ores. Analyses with the use of 
various sets of major and trace elements, sometimes combined with Pb 
isotopic ratios were carried out by several researchers (Serneels, 1995; 
Schwab et al., 2006; Coustures et al. 2003, 2006; Desaulty et al., 2008). 
In some cases, test sets were first filtered with regard to the contents of 
MnO and P2O5) (Leroy et al., 2012; Pryce et al., 2014). L’Heritier et al. 
(2016, pp. 213–230) discussed a method of quantification of major ox-
ides and trace elements in slag inclusions with the use of Laser Ablation 
Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). In their 
multivariate analysis of SI from medieval iron bars from a shipwreck, 
Birch and Martin�on-Torres highlight the importance of relating SI 
chemistry to the microstructures (i.e., steel or iron) in which they are 
embedded. They also highlight the issue of the dilution effect on 
multivariate statistical methods, imparted by dominant compounds such 
as FeO (Birch and Martin�on-Torres (2015)). 

A study on construction iron from the Carolingian bridge in Die-
ulouard in France made use of both major and trace elements in order to 
define the chemical signature of slag inclusions. After the identification 
of ‘zones of interest’ in the metal using metallography, smelting slag 
inclusions were isolated and the contents of the aforementioned ele-
ments were measured. Furthermore, a two-step PCA and AHC analysis 
was implemented in order to compare the chemical signatures of the 
examined artefacts to those of ores and smelting slags from Lorraine. 
However, a match was obtained in no case (Disser et al., 2016, pp. 
149–159). A similar approach was applied by Disser et al. to study the 
provenance of iron for the construction of Metz Cathedral in France 
(Disser et al. (2017); see also Bauvais et al. (2017)). 

A provenance study carried out by Dillmann et al. (2017) on Early 
Iron Age iron artefacts from the North Alpine region made use of pre-
vious developments, combined with the analyses of osmium isotopic 
ratios in the metallic matrix (as proposed by Brauns et al. (2013)). It was 
found out that many ores varied significantly with regard to their 
187Os/188Os ratios, although some overlapping could also be seen. 
Another important aspect of this study was that both major and trace 
elements were used for provenance studies. Their contents for produc-
tion areas (ores and slag) and slag inclusions in artefacts are first sepa-
rately normalised using a log-ratio transformation. The results are 
processed in a multi-stage PCA-AHC approach. Observations are then 
compared with the results of isotopic analyses (Dillmann et al., 2017, pp. 

108–115). The final outcomes demonstrated an existence of a complex 
system of iron production and exchange (Dillmann et al., 2017, pp. 
115–122). 

Leroy et al. (2017, pp. 1–21) studied construction iron from three 
medieval masonry complexes in Angkor in Cambodia. For the sake of 
isolation of production sites, these researchers preferred the use of LDA 
and AHC. An interesting novelty was the use of Multiple Correspondence 
Analysis (MCA). 

Bearing in mind all the discussed recent developments which 
convincingly suggest (especially Brauns et al. (2013) or Dillmann et al. 
(2017)) that an integrated approach (major and trace elements, isotope 
ratios) is indispensable in archaeological iron provenance studies, the 
authors of this paper believe that the method proposed by Charlton et al. 
(2012) is still worth working on, especially due to the fact that their 
LDA-based discrimination approach proved to be valuable (as shown in 
Leroy et al. (2017)). It can be further refined and confronted with other 
multivariate methods. Furthermore, such a refined method can be suc-
cessfully applied for repeated analyses of datasets from earlier works, 
where only data on major oxides is available. 

The approach proposed in this paper consists in using as many as 
seven different classification techniques for the purpose of provenancing 
of analysed observations. These techniques are: Linear Discriminant 
Analysis (LDA), Supported Vector Machine (SVM), Random Forests 
(RF), Naïve Bayes (NB), K-Nearest Neighbours (KNN), Recursive Parti-
tioning and Regression Trees (RPART) and Kernel Discriminant Analysis 
(KDA). Then, the quality of each classifier was tested using reclassifi-
cation, holdout, leave-one-out cross-validation and k-fold cross- 
validation methods. A final identification of observations was carried 
out on the basis of results provided by all classifiers using a majority 
voting technique. It is hoped that experience gained in the course of this 
study can be used in the future for proposing a new integrated method. 
Such a method will take into consideration all types of data which can be 
used for discrimination and provenancing. 

All calculations for the needs of this paper were done in the R soft-
ware, Version 3.4.4 (R Core Team, 2019). Source codes are attached in 
Electronic Supplements. The attached source files allow to reproduce all 
figures included in the paper and all data provided in the tables. 

2. Data and research methods 

Data from three smelting experiments (marked in the paper as XP27, 
XP61, and XP90, or collectively XPA) conducted by Peter Crew and 
analysed by Thomas Birch (Birch (2014)) was used for the purpose of 
testing and presenting the proposed approach. This assemblage includes 
two groups: smelting slag (SLAG) and slag inclusions (SI) in the iron (see 
Electronic Supplements), which were analysed for their major element 
oxide and trace-element composition using a combination of SEM-EDS 
and LA-ICP-MS. The analytical methodology, accuracy and precision 
and a full dataset (Birch (2014)) are available online (Aberdeen Uni-
versity Library, https://digitool.abdn.ac.uk) or from the author. Major 
element oxides investigated were Non-Reduced Compounds. Concern-
ing trace elements, strictly lithophile ones were selected. A final selec-
tion of variables was made after a series of LDA-based experiments with 
major oxides alone, different combinations of trace elements and a “full 
set”, containing both groups of data (see Birch (2014)). Concerning the 
smelting experiments themselves, although operating conditions were 
similar, there were some significant differences between the rich bog 
ores that were used. For XP27 ore from the River Perry in Shropshire was 
used (3% MnO, 3% P2O5), XP61 was carried out with ore from Crawc-
wellt West (3% MnO, 0.4% P2O5), while for XP90 a manganese-rich bog 
ore blend from Crawcwellt South was used (11% MnO, 0.1% P2O5). The 
XP27 and XP90 blooms were processed to currency bars while the XP61 
bloom remained unrefined (on the nature of these experiments see Crew 
(2013) and references therein). 

Bearing in mind the fact that the ores that were used in XP27, XP61 
and XP90 strongly differed from one another and thus they may not be 
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perfectly suitable to fully demonstrate the classification ability of the 
proposed approach, it was decided to test the classifiers again using 
datasets from another three experiments (XP17, XP23 and XP26, called 
collectively XPB). These datasets have already been used for testing 
purposes in Charlton et al. (2012) and Blakelock et al. (2009). For XP17, 
Blaenafon siderite ore (1.0% MnO, 0.4% P2O5) was used, while XP23 
and XP26 shared both design features as well as the ore (South African 
Sishen hematite, MnO below detection, 0.1% P2O5). For these experi-
ments, however, only major oxide data was available. Therefore, the 
following oxides were taken into consideration for provenance identi-
fications: MgO, Al2O3, SiO2, K22O, CaO, TiO2, and MnO. 

Then, the proposed approach was applied to actual archaeological 
data (Disser et al., 2017). This data has been defined by identifying 
consistent chemical groups by unsupervised approaches and then the 
groups have been discussed by recontextualising each individual one 
according to its archaeological context. Some words must also be said on 
the strategy of the selection of variables to be considered in the analysis. 
Concerning major elements, Non-Reduced Compounds were selected, i. 
e., those which are never reduced in the smelting stage of the bloomery 
process and thus display constant ratios in smelting-related slag. As 
regards trace elements, the measurement accuracy was below 12% in 
most cases. The elements that behave as siderophile or partition between 
the metallic and lithic phases were discarded, following the Ellingham 
approximation (based on system enthalpy). Following the methodology 
initiated by Peter and Vincent Serneels, elements that tend to be polluted 
during smelting were eliminated. These elements were identified by 
performing, when possible, experimental smelting of the ores which 
were dealt with. Thus, only such trace elements were selected that are 
strictly lithophile and not prone to pollution. Furthermore, the scat-
tering of the elemental ratios, mainly by plotting the data, was examined 
in order to identify potential biases (due to measurement, sampling and 
the like). Sometimes the contribution of the variables in multivariate 
analyses were also made use of in order to discard those that carry 
almost no information (see also (Disser et al., 2017, pp.500–501). 
Eventually, the results were compared with those obtained in the 
aforementioned paper. 

The first group of experimental data (XPA), which is used as training 
set in this paper, included 170 observations (XP27 – 20; XP61 – 70; XP90 
– 80). The other group (used as test set) encompasses slag inclusions in 
bars and billets. The total number of observations in this group before 
verification of smelting-related slag was 104 (XP27 – 16; XP61 – 44; 
XP90 – 44). Concerning the other assemblage of experimental data 
(XPB), the relevant figures were the following: the training set – 225 
observations (XP17 – 75; XP23 – 45; XP26 – 105); the test set before 
verification of smelting-related slag – 153 observations (XP17 – 64; 
XP23 – 44; XP26 – 45). 

In order to isolate smelting slag inclusions in both groups, the 
approach proposed by Charlton et al. (2012) was used. Oxide values 
below detection limits were replaced with minimum values recorded in 
a given regional assemblage for a given variable. This replacement is 
necessary, as zeros or B/Ds (below detection) would render further data 
transformations impossible. Prior to running the PCA, it is necessary to 
transform the raw SI chemical data in order to remove the dilution effect 
imparted by non-modeled compounds and to give approximately equal 
weight to all compounds of interest. The dilution problem can be cor-
rected by converting the original variables to subcompositional ratios, 
where a subcompositional ratio is equal to the measured composition of 
a compound divided by the sum of all compounds of interest (Birch and 
Martin�on-Torres (2015)). Variables with large variances will dominate 
any PCA. In general, variables with the largest variances also tend to be 
those with the largest magnitudes. Therefore, subcompositional ratios of 
relevant groups of oxides were calculated and their � log values were 
taken (for other possible approaches see Charlton et al. (2012, pp. 
2283–2284)). Then, the PCA (correlation type) was run on the assem-
blages (MgO, Al2O3, SiO2, K2O, CaO, and TiO2 were taken into 
consideration) and PC scores were used for the AHC (dissimilarity type, 

Euclidean distance, weighted average agglomeration) in order to isolate 
inclusion groups. Then, biplots of PC scores were examined in order to 
find groups of smelting slag inclusions. 

It must be mentioned here that a different approach to identification 
of smelting slag inclusions was proposed by Disser et al. In this case, the 
Ward method is used in the AHC and the identification of slag inclusion 
groups is additionally verified using biplots of contents of pairs of 
relevant oxides (Disser et al., 2014, pp. 322–326, Figs 8–10). Both 
methods of identification of smelting slag inclusions (i.e., proposed by 
Charlton et al. (2012) and Disser et al. (2014)) were compared and they 
yielded similar results, see _Zabi�nski et al. (2018). 

After the verification, the total number of observations in the first 
group of the test data (XPA) was 97 (XP27 – 15; XP61 – 40; XP90 – 42). 
In the next stage, positively verified smelting slag inclusions were ana-
lysed, taking the following variables into consideration: MgO, Al2O3, 
SiO2, K2O, CaO, TiO2, MnO, BaO (major elements), as well as V, Cr, Rb, 
Sr, Y, Zr, Nb, Ce, Nd, Sm, Eu, Tb, Tm, Yb, Hf, Ta, Th, and U (trace ele-
ments). Concerning the other group (XPB), the number of verified ob-
servations was 110 (XP17 – 36; XP23 – 32; XP26 – 42). As for this group 
only data on major oxides was available, the following ones were 
included in further analyses: MgO, Al2O3, SiO2, K2O, CaO, TiO2, and 
MnO. 

In Table 1 we briefly summarise the data that we analyse. In Table 2 
we state which variables we selected for further analyses. Let us draw 
attention here to a large disparity in the number of observations in 
classes in Disser’s datasets (abbreviated as AD). For instance, the Min 
class has as many as 107 records, while the SaH class has only 6. 

Table 1 
Datasets used in the paper. The following abbreviations of regions were used: 
Barrois – Bar, Saint-Dizier-MA – SaM, FerFort – Fer, Bajocian-Bathonian – Baj, 
Minette – Min, Saint-Dizier-HMA – SaH, Bruche – Bru.  

Description Dataset 
abbreviation 

Elements Number of 
observations 

Number of 
observations 
(in parenthes) 
divided into 
classes 

Smelting 
experimental 
data, courtesy 
Peter Crew and 
Thomas Birch 
(abbreviated as 
XPA datasets, M 
– major 
elements,T – 
trace elements) 

XPA-SLAG- 
M 

Major 170 XP27 (20) 
XP61 (70) 
XP90 (80) XPA-SLAG-T Trace 

XPA-SI-M Major 97 XP27(15) 
XP61(40) 
XP90(42) 

XPA-SI-T Trace 

Smelting 
experimental 
data used by  
Charlton et al. 
(2012), XP17, 
XP23, XP26 
(abbreviated as 
XPB datasets, M 
– major 
elements) 

XPB-SLAG- 
M 

Major 225 XP17 (75) 
XP23 (45) 
XP26 (105) 

XPB-SI-M Major 110 XP17(36) 
XP23(32) 
XP26(42 

Iron for the 
construction of 
Metz Cathedral 
in France, data 
provided by 
Alexandre 
Disser 
(abbreviated as 
AD datasets, M – 
major elements, 
T – trace 
elements) 

AD-SLAG-M Major 188 Baj(14) 
Bar(15) 
Bru(21) 
Fer(13) 
Min(107) 
SaH(6) 
SaM(12) 

AD-SLAG-T Trace 

AD-SI-M Major 92 not applicable 
AD-SI-T Trace  
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2.1. Datasets transformations 

In Electronic Supplements one can find a detailed specification of the 
datasets presented in Table 1. These four datasets are compositional data 
(or composition for short) Aitchison (1986); van den Boogaart and 
Tolosana-Delgado (2013); Pawlowsky-Glahn et al. (2015). There is no 
doubt that such data cannot be analysed directly. Two commonly used 
transformations are log-ratio transform (lr) and centred log-ratio transform 
(clr). These transformations are widely known, which is why we do not 
discuss them here in detail. Nevertheless, for the sake of completeness of 
the presentation, we provide relevant mathematical formulas in Elec-
tronic Supplements. There, we also make a brief comparison of the 
relevant transformations. In addition, we pay attention to a certain 
variant of transformations used in Charlton et al. (2012). 

The differences between simpler transformations (like lr) and other 
more complex (like clr) are, in most cases, minor and qualitatively 
imperceptible. However, we would suggest using the clr, because it has 
become the most standard approach to compositional data analyses in 
archaeology, as suggested by references quoted in this paper. 

2.2. Workflow for identifying SI provenance 

From Table 1 we can see that ten different datasets are used in this 
work. Below, we briefly discuss how these datasets are processed in 
computational experiments. 

In the first step, the M (major elements) and T (trace elements) 
datasets are combined into one set of M þ T components. In other words, 
we do not carry out separate experiments for the M and T sets. Before the 
M and T sets are combined into one result set they must be transformed 
accordingly. Since the M and T sets are in different units (in percent and 
ppm respectively), they must be reduced to one unit (percentages were 
selected as target). Finally, the clr transform is applied, as presented in 
Electronic Supplements. The entire procedure can be summarised in the 
following 3 steps: 

Step 1:Tppm→T% 
Step 2:T% þM%→ðTþMÞ% 
Step 3:ðTþMÞ%→clrðTþMÞ% 

We must also note that in case it is decided to use the lr transform, 
Step 2 should be followed by the z-score transformation (also known as 
z-values, normal scores, or standardized variables). This transformation 
is done in order to avoid the situation where large values in the data will 
dominate over small ones. However, if the clr transform is applied, z- 
score is not strictly needed. Otherwise, an additional step would appear, 
i.e. Step 2a: ðTþMÞ%→z � scoreðTþMÞ%. 

From now on, by using the XPA-SLAG, XPA-SI, XPB-SLAG, XPB-SI, 

AD-SLAG and AD-SI symbols, we mean data that underwent the trans-
formations discussed above. If at any given time it does not matter 
whether we are dealing with SLAG or SI datasets (or both), we will 
simply use XPA, XPB, or AD abbreviations. 

Two types of numerical experiments were performed. In order to 
make our discussion more comprehensible, an illustrative workflow 
diagram was prepared, see Fig. 1. Individual nodes have been marked 
with capital letters and in the text we refer to these markings. In Elec-
tronic Supplements, a script in the R language (workflow.R file) has been 
prepared, which complements the diagram and demonstrates how the 
actions presented on it can be performed in practice. 

In the first experiment, we take into account the XPA datasets. It is of 
importance that in both XPA-SLAG and XPA-SI datasets we have a 
reliable assignment to individual groups (i.e., XP27, XP61, XP90). 
Therefore, we use XPA-SLAG assemblages as training dataset in order to 
present the methodology for creating classifiers, while XPA-SI assem-
blages are used as test dataset in order to demonstrate that the proposed 
approach is proper and works correctly. This experiment can be sum-
marised as follows:  

1. Both XPA-SLAG dataset and XPA-SI dataset were loaded (node A) 
and transformed, as it was shortly described in Electronic Supple-
ments (see nodes B1 and B2).  

2. Using the XPA-SLAG dataset a few classifiers were built (see nodes E 
and G). Six parametric (LDA, SVM, RF, NB, KNN, RPART) and one 
nonparametric (KDA) methods were used in this task (see nodes C1 
and C2). The nonparametric method also requires dimensionality 
reduction. Some notes are given in Section 2.4 (see nodes D1 and 
D2).  

3. The quality of individual classifiers was determined using four 
techniques, that is: a) reclassification, b) holdout, c) k-fold cross vali-
dation and d) leave-one-out cross validation (see nodes E and G). In this 
way, it was checked whether individual methods allowed to build 
classifiers with sufficiently good properties. Details are given in 
Section 2.5.  

4. Finally, the XPA-SI dataset was classified (see nodes F and H) using 
the six aforementioned classifiers and the final result (that is, iden-
tification of SI provenance) was achieved using majority voting tech-
nique. Details on this technique are given in Section 2.6. As in this 
dataset we have a reliable assignment to individual groups, it has 
become possible to thoroughly check the practical usability of con-
structed classifiers (i.e., building confusion matrices and calculating 
percentages of well-classified cases, see node J1). 

The results of the above steps are presented in Section 3. 
Then, the quality of the classifiers which are applied in this paper 

was tested again with the use of the XPB assemblage. The XPB dataset 
has the same structure as the XPA dataset. Therefore, its analysis is 
identical to that for the XPA set. Detailed results are included in Elec-
tronic Supplements. 

In the second experiment, we take into account the AD datasets. Note 
here that now only the SLAG dataset has a reliable assignment to seven 
individual regions (abbreviated as Baj, Bar, Bru, Fer, Min, SaH and SaM; 
see the caption of Table 1). As in the AD-SI dataset we do not have a 
reliable assignment to individual groups and it has not been possible to 
thoroughly check the practical usability of constructed classifiers (see 
node J2). The results of the above steps are presented in Section 4. 

2.3. Classification methods 

The main purpose of this research is to classify the AD-SI observa-
tions to a correct class (region in this case). The classifier is built based 
on one dataset (the AD-SLAG dataset, called a training one) and then the 
classifier constructed in this way is used to classify a completely 
different dataset (the AD-SI dataset, called a test one). It is obvious that 
the test set is independent from the training dataset. 

Table 2 
Names and numbers of variables in particular datasets.  

Datasets Variable names Number of 
variables 

XPA-SLAG- 
M 
XPA-SI- 
M 

MgO, Al2O3, SiO2, K2O, CaO, TiO2, MnO, Ba  8 

XPA-SLAG- 
T 
XPA-SI-T 

V, Cr, Rb, Sr, Y, Zr, Nb, Ce, Nd, Sm, Eu, Tb, Tm, 
Yb, Hf, Ta, Th, U 

18 

XPB-SLAG- 
M 
XPB-SI-M 

MgO, Al2O3, SiO2, K2O, CaO, TiO2, MnO  7 

AD-SLAG- 
M 
AD-SI-M 

Mg, Al, Si, K, Ca, Mn 6 

AD-SLAG-T 
AD-SI-T 

Ce, Eu, Gd, Hf, La, Nb, Nd, Pr, Sm, Tb, Th, U, Y, 
Yb 

14  
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The main problem associated with the classification technique is that 
the target vector (region in our case) in the test dataset is completely 
unknown. Consequently, one must trust that the created model (classi-
fier) correctly classifies the test dataset. In practical terms, there are no 
reliable methods for assessing the correctness of this process. 

In order to improve the reliability of the final classification, it was 
decided to build several classifiers using different methods. The ob-
tained partial results were then averaged in an appropriate manner and 
the final classification of the test dataset is a resultant of the scores of 
individual classifiers. 

Six classical parametric classifiers and one nonparametric classifier 
were used. These are:  

� LDA (Linear Discriminat Analysis),  
� SVM (Support Vector Machine),  
� RF (Random Forests),  
� NB (Naive Bayes),  
� KNN (K-Nearest Neighbours),  
� RPART (Recursive Partitioning and Regression Trees),  
� KDA (Kernel Discriminant Analysis). 

These methods are widely known in the statistical world. On the 
other hand, we are fully aware that these may not necessarily be 
completely clear to every archaeologist. We do not discuss these 
methods in detail here, as all of them, are rather complex from a 

Fig. 1. Workflow diagram, from loading datasets to return the final results.  
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mathematical point of view. We realise that anyone who wishes to know 
them better will anyway need to make a thorough study of relevant 
literature. Anyway, it seems to us that a detailed theoretical knowledge 
of each of these methods is not necessary for using them effectively in 
practice. For more information, the reader is sent to, e.g., Hastie et al. 
(2009); James et al. (2013). Different authors also propose new methods 
or modify existing ones, see for example Michalak and Kwa�snicka 
(2006); Kantavat et al. (2018); Taheri and Mammadov (2013). 

A comment on the KDA method must be made here. While building 
the KDA-based classifier, it was necessary to reduce the dimensionality 
of the original N-dimensional data to its 2-dimensional equivalent. Such 
action is necessitated by the fact that the KDA method is basically un-
suitable for data with dimensionality greater than 4–5, as it was reported 
by many authors. The reason for this is caused by phenomena known in 
literature as curse of dimensionality (Hastie et al., 2009). In practical 
terms, however, the resulting classifier is most conveniently presented 
as a 2D drawing and hence the need to reduce the data dimensionality to 
2D. 

The KDA classifier was used with two nD→2D dimensionality 
reduction methods, i.e., LDA and PCA, see Section 2.4 (note that the LDA 
abbreviation is used in two senses: a) as an independent classification 
method, b) as a method of dimensionality reduction). 

It must be noted that the QDA method (Quadratic Discriminat Anal-
ysis) was initially taken into account. However, due to the nature of our 
data (many variables and too few records; see Tables 1 and 2), it could 
not be applied. The QDA method requires that the number of records in 
each category cannot be less than the number of variables. For example, 
XP-SLAG dataset has as many as 26 variables and XP27 category has 
only 20 records. As 20 < 26, the QDA method cannot be used in this 
case. 

2.4. Dimensionality reduction 

There are a couple of methods which can be used for dimensionality 
reduction. Many of them are mainly used as a convenient tool for rep-
resenting (mainly as 2-dimensional plots) similarities and/or dissim-
ilarites in data. In classification tasks the following two approaches are 
probably the most commonly used:  

� Multidimensional scaling based on Principal Components Analysis 
(PCA),  
� Multidimensional scaling based on Linear Discriminant Analysis 

(LDA). 

More general dimensionality reduction methods can be most broadly 
divided into Metrical Multidimensional Scaling (mMDS) and Non- 
metrical Multidimensional Scaling (nMDS). The methods are based on 
calculating distances between individual samples using different dis-
tance measure methods. Different authors very often use here the default 
Euclidean measure, while we have also examined other available mea-
sures (for example, the distance function implemented in philentropy R 
package is able to compute 46 different distances/similarities mea-
sures). For details on the nMDS and mNDS methods see, e.g., Kruskal 
(1964); Kruskal and Wish (1978); Shepard (1962a, b). The literature on 
multidimensional scaling is very abundant, and two very often cited 
monographs on this subject are Borg and Groenen (2005) and Cox and 
Cox (2000). 

It is worth noting that LDA was also used in Charlton et al. (2012) for 
8D→2D dimensionality reduction. 

2.5. Methods for assessing the quality of classifiers 

A natural step after building a classifier is to evaluate its perfor-
mance. A large number of measures have been developed and, typically, 
the training dataset is used for this task. Four approaches are the most 
common:  

1. Reclassification method. After building a classifier using the training 
dataset the same dataset is used for evaluating its performance. In a 
sense, these results can be considered less binding, because it can be 
considered as controversial to use exactly the same full training 
dataset both for building and assessment of the resulted classified.  

2. Holdout method. This is the most typical type of validation, in which 
the training dataset is divided randomly into independent sets: the 
training and the test one. Typically, the test set is less than 1/3 of the 
training set. Such procedure is carried out repeatedly hundreds of 
times and at the end the average rate of correct classifications is 
calculated.  

3. K-fold cross validation method. The original dataset is randomly 
divided into K equal sized subsets. Out of these, a single subset is 
retained as the validation data for testing the model, and the 
remaining K � 1 subsets are used as training data. The cross- 
validation process is then repeated K times (the folds), with each 
of the K subsets being used exactly once as the validation data. The 
advantage of this method is that all observations are used for both 
training and validation, and each observation is used for validation 
exactly once. A 10-fold cross-validation is commonly used but in 
general K remains an unfixed parameter.  

4. Leave-one-out cross validation method. This is a variation of the K- 
fold approach when the N-element dataset is divided into N subsets, 
containing one element. The method involves using 1 observation as 
the test dataset and remaining N � 1 observations as the training 
dataset. This method is often used for small datasets. 

All the above mentioned approaches were used to assess the quality 
of constructed classifiers. 

2.6. Classifier voting technique 

As it was stated in Section 2.3 six different classifiers were used for 
the task of identifying the AD-SI provenance. Obviously, the returned six 
results are not identical. A natural approach here is to combine these 
results in order to obtain the final classification. It seems that this 
approach is the only one that can lead to an improvement of the final 
classification of the AD-SI dataset. We are dealing here with a kind of 
Ensemble Vote Classifier. This idea allows to immunise the result to 
various types of disorders, which is why it is a reliable solution when 
working with ‘uncertain’ data. 

In this case, the group G of N classifiers is a set which usually consists 
of less complicated base classifiers G ¼ fC1;…;Ckg; k ¼ 1…N based on 
which the final decision is taken. Typical approaches are:  

1. Majority voting (also known as hard voting),  
2. Weighted majority voting,  
3. More robust algorithms based on bagging and boosting ideas (see, e.g., 

Zho (2012); Kuncheva (2004)), such as, for example, a popular 
AdaBoost.M1 method, see Freund and Schapire (1997). 

A remark is required in this place. Let the decision of the kth which 
chooses the jth class be denoted as 

dk;j 2f0; 1g; k¼ 1;…;N; j¼ 1;…;M; (1)  

where N is the number of classifiers and M is the number of classes. If kth 

classifier chooses class J, then dk;J ¼ 1, and dk;J ¼ 0, otherwise. Voting 
based methods operate on labels only, where dk;J is 1 or 0 depending on 
whether classifier k chooses J, or not, respectively. The ensemble then 
chooses class J that receives the largest total vote. 

In the majority voting case, we predict the final class label as the class 
label that has been predicted most frequently by the individual classi-
fiers. This is the simplest case of ensemble voting system. Here, the 
decision DG is as follows: 
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DG¼ argmax
j¼1;…;M

X

k¼1

N

dk;j: (2) 

As an example, let us assume that we have a group of three classifiers 
G ¼ fC1;C2;C3g which classify an observation to one of two classes ‘A’ 
or ‘B’:  

� C1→ class A,  
� C2→ class A,  
� C3→ class B. 

Then, following (2) we obtain that 

for  class  A→
X

k¼1

3

dk;A ¼ 1þ 1þ 0 ¼ 2;

for  class  B→
X

k¼1

3

dk;B ¼ 0þ 0þ 1 ¼ 1:
(3) 

It is therefore obvious that we would classify the sample as ‘class A’. 
The weighted majority voting case differs from the hard voting in that 

we currently define the factor ωk which is the weight assigned to the kth 

classifier Ck according to some measure of performance, e.g. measures 
described in Section 2.5. Equation (2) now has the following shape: 

DG¼ argmax
j¼1;…;M

X

k¼1

N

ωkdk;j: (4) 

As another example, let us assume that we have a group of three 
classifiers G ¼ fC1;C2;C3g and three weights ω1;ω2;ω3 which classify an 
observation as follows:  

� C1→ class A and ω1 ¼ 0:2,  
� C2→ class A and ω2 ¼ 0:2,  
� C3→ class B and ω3 ¼ 0:6. 

Then, following (4) we obtain that 

for  class  A→
X

k¼1

3

ωkdk;A ¼ 0:2� 1þ 0:2� 1þ 0:6� 0 ¼ 0:4;

for  class  B→
X

k¼1

3

ωkdk;B ¼ 0:2� 0þ 0:2� 0þ 0:6� 1 ¼ 0:6:
(5) 

Therefore, it is obvious that we would classify the sample as ‘class B’. 
It seems that the second approach is more appropriate for our purpose. 

3. Experiments with the XPA datasets (XP27, XP61, XP90) 

This section presents the classification results of the XPA datasets. In 
line with the workflow discussed in Section 2.2, in the first step XPA- 
SLAG and XPA-SI datasets were transformed accordingly. The raw and 
transformed datasets are included as Electronic Supplements. They are 
the basis for all further calculations. The two XPA sets are used to pre-
sent the methodology for creating and testing classifiers. 

The first task to be performed is to check the quality of constructed 
classifiers. This is based on the training dataset that was used to build 
them (see Section 3.1). If the result of this test is satisfactory, one can 
proceed to the classification of the XPA-SI test dataset. This issue is 
described separately for the classical parametric classifiers (see Section 
3.2) and for the nonparametric KDA classifier (see Section 3.3). 

Each of the classifiers mentioned in Section 2.3 returns slightly 
different results. In such a situation it is difficult to decide which result is 
the most reliable. Therefore, the classifier voting technique (see Section 
2.6) was applied and the final classification of each specific record from 
the test dataset was made (see Section 3.4). 

3.1. Quality of the applied classifiers 

There is no question that it is indispensable to examine the quality of 
the constructed classifiers. Omitting this step may lead to a situation that 
we do not really know whether the classifiers have any practical value. 
Suggested methods for this task were briefly discussed in Section 2.5. 

It is also worth remembering that the assessment of the classifier 
quality is made on the basis of the training dataset and not the test one. 
In consequence, we are not able to precisely determine how our classi-
fier will work when we classify a completely different dataset than the 
one used to build the classifier. 

Nevertheless, the obtained results certainly tell us something about 
the quality of the classifiers we use. One has to be prepared for all kinds 
of surprises. Such surprise, for example, appears when we build classi-
fiers based on the XPA-SLAG dataset. The results obtained (see Table 3) 
prove that this set is in a sense too good or too ideal. To put it simply, the 
separation between classes (regions marked as XP27, XP61, XP90) is in 
fact perfect. 

3.2. Results for parametric classifiers 

While interpreting results presented in Section 3.1, one must 
remember that the assessment of the classifiers quality was made on the 
basis of the training dataset (i.e., XPA-SLAG) and not the test one (i.e., 
XPA-SI). Having built our classifiers, we can use them to properly clas-
sify the test data (i.e., XPA-SI). 

One of the most natural ways to demonstrate the quality of the 
classifier is to show it in the form of a so-called confusion matrix. Each 
row of the matrix represents the instances in a predicted class while each 
column represents the instances in an actual class (or vice versa). Table 4 
shows the results for classification of the XPA-SI dataset with the LDA, 
SVM, NB, RF, KNN and RPART parameric classification methods. The 
best result was obtained for the LDA method and the worst one for the 
SVM method. The second result is rather surprising, because the SVM 
method is widely regarded as very robust and reliable one. 

It is also worth noting that the classification of XP61 observations is 
the most peculiar. It is highly possible that this is to a great degree 
caused by the nature of XP61 SI data, which may have been considerably 
influenced by local conditions in the furnace. The samples from the 
XP61 bloom which were analysed (1A, 1B, 2A, 2B, 2D, and 7B) came 
from different locations within the bloom, corresponding to chemical 
variation observed in SI data (Birch (2014)). While Samples 2B and 2D 
came from the core, Sample 7B with a high CaO content was taken from 
a place near the blowing hole, and Samples 1A, 1B and 2A came from the 
top and edges of the bloom. Therefore, the composition of Samples 1A, 
1B, 2A and 7B could be somewhat anomalous and thus not fully match 
the chemistry of slag (the symbols of individual observations, like 1A, 1B 
etc., can be found in the raw csv files attached in Electronic Supple-
ments). This is an interesting example of the wide heterogeneity of 
bloom SIs (see Birch (2014)) and it certainly requires further studies. 
Having the results of not very high credibility, the classifier voting 
technique may already be very useful. It takes into account the 
‘knowledge’ of several lower quality classifiers and on this basis it 

Table 3 
Results of assessing the quality of different classifiers created for the XPA-SLAG 
dataset. Four classical tests were used, as described in Section 2.5.  

No. Method Reclassification Holdout K-fold CV Leave-one-out CV 

1 LDA 100.0 100.0 100.0 100.0 
2 SVM 100.0 100.0 100.0 100.0 
3 NB 100.0 100.0 100.0 100.0 
4 RF 100.0 100.0 100.0 100.0 
5 KNN 100.0 100.0 100.0 100.0 
6 RPART 100.0 100.0 99.4 99.4 
7 KDA-LDA 100.0 100.0 100.0 100.0 
8 KDA-PCA 100.0 100.0 100.0 100.0  
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prepares the final result with greater credibility. 

3.3. Results for the KDA nonparametric classifier 

In order to choose the best method to reduce the dimensionality of 
the XPA-SLAG and the XPA-SI datasets we have made a simple experi-
ment. The XPA-SLAG and the XPA-SI datasets were reduced to 2D by two 
methods mentioned above and the results were depicted in Fig. 2. One 
can easily see that for this particular data the LDA method (upper plots) 
gives evidently better results then the PCA method. Regarding the XPA- 
SLAG set, the results are quite similar. In both cases, data from indi-
vidual classes are clearly separated. However, as for the XPA-SI set, it 
can be seen that for the LDA method the separation of XP61 and XP90 
classes is clearly better comparing to the PCA method. There is still an 
overlapping zone between them in the upper right plot. In the lower left 
plot such a zone does not occur. The XP27 class in both cases is ‘safely’ 
far from the two other classes. The advantage of the LDA method over 
the PCA method is not surprising here. PCA is an unsupervised learning 
technique (it does not use class information) while LDA is a supervised 
technique (it uses class information). Therefore, we would expect LDA to 
provide better data separation when compared to PCA, and this is 
exactly what we can see in Fig. 2. This kind of difference is to be ex-
pected since PCA tries to retain most of the variability in the data while 
LDA tries to retain most of the between-class variance in the data. In this 
example the first LD1 explains 83% of the between-group variance in the 
data while the first PC1 explains only 53% of the total variability in the 
data. These two values (i.e., LD and PC) are not directly comparable, but 
higher values always mean better performance and lower values mean 
worse performance. 

It is also worth noting that in Fig. 2 (and also in Fig. 4) a principal 

component loading vector could also be included. This type of drawing is 
called biplot. The loading vector defines a direction in the feature space 
along which the data varies the most. The equivalents of Figs. 2 and 4 in 
the form of biplots were included in Electronic Supplements. 

Among all classifiers used in our study, the KDA one is different than 
the others (i.e. LDA, SVM, RF, NB, KNN and RPART). A fundamental 
difference is that the KDA is based on probability density estimation of 
data under consideration. Although in theory the KDA method can be 
used for data of any dimensionality, practical considerations (the 
amount of available data, which rarely exceeds one thousand observa-
tions) suggest that 2 or possibly 3 dimensions are basically the upper 
limit. However, the data we work with have 8 þ 18 ¼ 26 dimensions for 
XPA datasets. Therefore, dimensionality reduction is required before 
one can use the KDA approach. The final KDA-based classifiers are 
depicted in Fig. 3. Technical details of constructing such classifiers are 
beyond the scope of this paper. For additional information, readers may 
consult, e.g., Gramacki and Gramacki (2017); Gramacki (2018); Cha�con 
and Duong (2018) where simple demonstrative examples are presented 
and a basic mathematical background is given. Kernel Density Estimate 
(KDE) contours (one contour for data belonging to every given region 
XP27, XP61 and XP90) are marked with different colors. White color 
represents areas where the probability density is practically zero. For 
points located in this area it is not possible to assign them to a specific 
class. 

In this place, it is worth noting that Charlton et al. (2012) proposed a 
way to verify whether all training sets could be rejected as possible 
provenance sources. For this purpose, they used 100% KDE contours in 
order to define boundaries of possible provenance fields and then they 
calculated mean SI percentile ranks within all provenance fields. Mean 
SI percentile ranks which did not plot within any field were considered a 
rejection of all possible provenance fields. In case the mean SI was 
within overlapping fields, it meant that one of two proposed provenance 
hypotheses could be considered more likely. This approach is of course 
viable, but an important reservation must be raised here. 

In Fig. 3, graphs on the left demonstrate the case where the white 
areas are possibly the smallest (upper graph) or they do not appear at all 
(lower graph). This occurs if the “growth” of coloured areas is solely 
limited by a finite precision of calculations offered by present-day 
computers (double-precision floating-point format is used, which al-
lows one to operate on numbers with really large but not infinite ac-
curacy). Namely, the KDA is based on the use of the Gaussian function 
which has an infinite domain (from minus infinity to plus infinity). 
Therefore, from a strictly formal point of view, these white areas should 
not occur at all. However, every computer will sooner or later become 
unable to distinguish between extremely small numbers and zero. In our 
case, this results in the fact of appearance of areas where it is not 
possible to separate coloured zones. 

On the other hand, it is possible to arbitrarily diminish the coloured 
areas, as demonstrated in the graphs on the right. In such a case, the 
white areas expand and some observations become non-classifiable. In 
our case, there are three such observations in the upper right graph and 
three in the lower right one. It is possible to control the contraction of 
the coloured areas with the use of the supp parameter in the kde2D R 
function. Interested readers can find it in the Electronic Supplements. A 
default value of this parameter is 100, and the result is that the white 
areas (if they occur at all) are as small as possible. 

However, it must be very firmly underlined that a proper selection of 
the supp parameter is solely possible in a heuristic or experimental way. 
Such a procedure was applied when producing the graphs on the right. 
All in all, in the case of our XP data all the SI observation fell within the 
training set boundaries (Fig. 3, graphs on the left). The same was also the 
case for the AD dataset (see Fig. 5). 

A question may be asked whether the KDA method has any advan-
tage over classical parametric methods (see Section 3.2). While 
comparing the results in Tables 4 and 5, it can be seen that the LDA and 
KDA-LDA methods produce the best results and these results are 

Table 4 
Confusion matrices for classification of the XPA-SI dataset. The following 
methods are (from top to bottom): LDA, SVM, NB, RF, KNN and RPART.   

XP27 XP61 XP90 Total % correct 

LDA 
XP27 15 0 0 15 100% 
XP61 0 23 17 40 57.5% 
XP90 0 0 42 42 100% 

Total 15 23 59 97 82.47% 

SVM 
XP27 6 0 9 15 40% 
XP61 0 4 36 40 10% 
XP90 0 0 42 42 100% 

Total 6 4 78 97 53.61% 

NB 
XP27 15 0 0 15 100% 
XP61 0 5 35 40 12.5% 
XP90 0 5 37 42 88.1% 

Total 15 10 72 97 58.76% 

RF 
XP27 15 0 0 15 100% 
XP61 0 14 26 40 35% 
XP90 0 2 40 42 95.23% 

Total 15 16 66 97 71.13% 

KNN 
XP27 15 0 0 15 100% 
XP61 0 16 24 40 40% 
XP90 0 4 38 42 90.48% 

Total 15 20 62 97 71.13% 

RPART 
XP27 15 0 0 15 100% 
XP61 1 23 16 40 57.5% 
XP90 7 3 32 42 76.19% 

Total 23 26 48 97 72.16%  
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identical for data that is analysed. There is no question that an advan-
tage of the KDA method is an opportunity for a rapid visual assessment 
of the analysed data. In particular, one can quickly assess how data from 
individual classes are arranged relative to each other. On the other hand, 
one major disadvantage of the KDA method is its relatively slow 
computation time. Parametric methods usually do not offer such a 
possibility, especially if the data is strongly multidimensional. One must 
of course bear in mind that while using the KDA method a certain loss of 
information is inevitable. It results from the need of reduction of 
multidimensional data into 2D or possibly 3D. In the case of the XPA- 
SLAG data this loss is anyway not very significant, especially for the 
LDA method, where the first LD explains 83% of the between-group 
variance in the data. A PCA-based dimensionality reduction method 
should theoretically produce somewhat worse results than the LDA- 

based reduction. However, in this paper results produced by both 
methods are given. It seems therefore that the use of the KDA method is 
always worth considering, even if it does not offer a decisive advantage 
over more classical approaches. A sort of shortcoming of the KDA 
method is its computational complexity. On the other hand, for data 
assemblages which are not more numerous than a few thousands it is not 
a too great difficulty. 

3.4. Final results of SI provenance for the XPA dataset 

The final results are summarised in Table S1 in Supplementar-
y_Materials.html file in Electronic Supplements. Numbers in parentheses 
indicate a posteriori probabilities of a choice of a given class (XP27, 
XP61, XP90). The XP column is the number of experiment in which a 

Fig. 2. Visualization of the XPA-SLAG and the XPA-SI datasets’ transformations according to the LDA and PCA dimensionality reduction methods. Next, the XPA-SI 
testing set was projected into the space created by the XPA-SLAG training set (plots in right column). Such 2D projections show that they are much more dispersed (as 
should generally be expected). In this example the first LD explains 83% of the between-group variance in the data while the first PC explains only 53% of the total 
variability in the data. 
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given artefact was manufactured (see the raw scv files attached in 
Electronic Supplements). The Final column gives the result of the clas-
sification after employing the voting technique, taking into account the 
six methods (LDA, SVM, NB, RF, KNN and RPART) for which it is 
possible to assess the a posteriori probabilities. The KDA-LDA and KDA- 
PCA columns give the result for the KDA method (dimensionality 
reduction was made by the LDA and PCA approaches). Note also that for 
the KDA method the voting technique cannot be used as the posteriori 
probabilities are undefined here. 

In order to help the reader understand the results given in the Final 
column in Table S1, details of how to obtain them are offered below. As 
an example, the results for observation #20 are calculated.  

1. Six classifiers (LDA, SVM, NB, RF, KNN, RPART) decided to classify 
observation #20 in the following manner: (numbers in parentheses 
indicate a posteriori probabilities of selection of a given class – XP27, 
XP61 or XP90) 
LDA SVM NB RF KNN RPART XP61(1) XP90(0.61) XP90(1.00) XP61 
(0.58) XP61(1.00) XP61(1)  

2. Then, a posteriori probabilities have been normalised to sum up to 1, 
with the following results: 
LDA SVM NB RF KNN RPART XP61(0.193) XP90(0.117) XP90 
(0.193) XP61(0.112) XP61(0.193) XP61(0.193)  

3. Next, Equation (4) produced the following result:   

Fig. 3. KDA-based classifiers. 8D→2D reduction was made using LDA and PCA methods The locations of individual points are exactly the same as depicted in Fig. 2.  
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Fig. 4. Visualization of the AD-SLAG and the AD-SI datasets’ transformations according to the LDA and PCA dimensionality reduction methods. In this example the 
first LD explains 65% of the between-group variance in the data while the first PC explains only 53% of the total variability in the data. 

class  XP27→
X

k¼1

6

ωkdk;j ¼

0:193� 0þ 0:117� 0þ 0:193� 0þ 0:112� 0þ 0:193� 0þ 0:193� 0 ¼ 0:000

class  XP61→
X

k¼1

6

ωkdk;j ¼

0:193� 1þ 0:117� 0þ 0:193� 0þ 0:112� 1þ 0:193� 1þ 0:193� 1 ¼ 0:691

class  XP90→
X

k¼1

6

ωkdk;j ¼

0:193� 0þ 0:117� 1þ 0:193� 1þ 0:112� 0þ 0:193� 0þ 0:193� 0 ¼ 0:422   
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Eventually, we find out that observation #20 is assigned to the class 
‘XP61’ with a confidence level of 69%. As it could be seen, in the case of 
observation #20 two classifiers (SVM, NB) classified it to XP90, four 
classifiers (LDA, RF, KNN and RPART) assigned it to XP61, while none 
classifier voted for XP27. Although individual a posteriori probabilities 
are sometimes high (1.00), it is difficult to clearly determine which 
result should be accepted. Therefore, the only logical conclusion is that 
we tend to assign observation #20 to class XP61 but with a low confi-
dence level (here only 69%). 

While comparing the results obtained with these six classifiers they 
are quite in line with each other. Of course, there is no full agreement 
between all the classifiers used in our research. Therefore, this is a strong 
argument for using the voting techniques (see Section 2.6) in order to 
obtain sufficiently reliable results. 

3.5. Experiments with the XPB datasets (XP17, XP23, XP26) 

As mentioned above, due to considerable differences between the ore 
chemistries that were used in XP26, XP61 and XP90, it was decided to 
test the proposed approach with the use of data from another three 
experiments. For detailed results, the reader is sent to the Supple-
mentary_Materials_XPB.html file in the Electronic Supplement and in this 
section only the main points are discussed. The LDA demonstrated a 
reasonable separation between both the test set and the training set 
(XP17; XP23; XP26), although some overlapping between XP23 and 
XP26 can be seen. The result is worse for the PCA, due to reasons stated 
in Section 3.3. Concerning the validation of the classification, the best 
results were produced by the RF and the SVM methods, while the per-
formance of the KN approach seems to be the worst. As regards the 

Fig. 5. KDA-based classifier. 8D→2D reduction was made using LDA (upper line) and PCA (lower line) methods. The left plots show the Kernel Density Estimate 
(KDE) contours (one contour for data belonging to a given region). The right plots show graphically the obtained classifier. The locations of individual points are 
exactly the same as depicted in Fig. 4. 
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confusion matrices of the SI data, it was the NB and the SVM methods 
that performed the best, while the results yielded by the LDA were the 
worst. As regard the final results of the provenance assessment, all SI 
observations from the XP17 dataset and most SI observations from the 
XP26 dataset were correctly classified, while there was some confusion 
concerning the XP23 dataset. All in all, the obtained results demonstrate 
that the performance of the proposed method is sound and reasonable. 

4. Experiments with the AD datasets 

Our main goal is to build a classifier using the AD-SLAG data and 
then to classify the AD-SI data using this classifier. We use exactly the 
same methodology as it was discussed in Section 3. Therefore, in this 
section, we do not repeat the information given therein and only discuss 
the final results. 

Table 6 offers results of assessing the quality of classifiers. The results 
are generally very good for parametric methods; however, the results for 
the two variants of the KDA method are slightly worse. In the case of the 
AD assemblage we have as many as 7 classes, while there were only 3 
classes in the XP data. In such circumstances, the KDA approach be-
comes slightly less efficient. What is more, the numerical strength of 
individual classes is sometimes not very high, e.g., for ‘SaH’ there are 
only 6 observations (see Table 1). This is perhaps the main reason why 
the results produced by the Holdout, K-kold CV oraz Leave-one-out CV 
methods are a little worse (but these are still not bad). 

As mentioned before, in order to use the nonparametric KDA clas-
sifier the nD→2D dimensionality reduction is required. In order to 
choose the best 2D conversion method, an experiment which is similar 
to the aforementioned one was carried out, (see Fig. 4). 

As it was the case with the XP data, the LDA-based dimensionality 
reduction method produces better results and individual classes are 
better separated. This visual assessment is also confirmed by the nu-
merical results. In this example the first LD explains 65% of the between- 
group variance in the data while the first PC explains only 53% of the 
total variability in the data. It is also worth stressing that data from ‘Bar’ 
and ‘SaM’ classes, as well as ‘Baj’, ‘Fer’, and ‘Min’ classes are practically 
non-separable. Thus, it cannot be expected that the KDA method will 

perform well. As regards the AD-SI data, after the reduction to 2D it can 
be seen that both for the LDA and PCA methods individual observations 
are allocated to one pretty compact region. On this basis it could be 
tentatively expected that they come from one region or several regions 
which are similar to one another. 

Final results of SI provenance classification for the AD dataset are 
given in Table S2 in Supplementary_Materials.html file in Electronic 
Supplements. In addition, the classification results for two variants of 
the KDA method are also included in this table. The KDA-LDA and KDA- 
PCA columns present results for the case where 2D reduction was done 
using the LDA and PCA methods respectively (see Section 2.4). The two 
methods give in fact different results and unfortunately it is not possible 
to reliably indicate which one should be used. The graphical pre-
sentations of the KDA-based classifiers are depicted in Fig. 5. It can be 
seen that both classifiers give essentially different results. In principle, it 
is not possible to indicate which results are better and which ones are 
worse. The final results are to a great degree convergent with those 
achieved by Disser and his team (Disser et al., 2017). After the appli-
cation of the ‘classifier voting technique’ (see Section 2.6) a vast ma-
jority of the AD-SI data is classified into the ‘Min’ class. Concerning these 
observations which were assigned to different classes, it can be assumed 
that the final classification produced by a set of independent methods 
can perhaps be considered more reliable. 

For this specific data one should rather prefer the KDA-LDA method 
as the LDA produces generally better results for the dimensionality 
reduction task. This is demonstrated both by the visual assessment of the 
2D models as shown in Fig. 4 and by numerical indicators (between- 
group variance and total variability in the data). The latter, however, are 
slightly better for the LDA than for the PCA method. 

It can be also asked whether the KDA method is of any practical use 
here if the results it produces are so different than those in the ‘Final’ 
column in Table S2. However, it can be seen in Fig. 4 that the AD-SI data 
anyway falls within the ‘Min’ region. Although the results from Fig. 5 
classify some observations from the AD-SI data to other classes than 
‘Min’, their proximity to the ‘Min’ class can be perceived as a sort of 
positive verification of the results which were produced by the para-
metric methods and were then aggregated into the final outcome with 
the use of the classifier voting technique. 

5. Conclusions 

This paper proposes a new approach to the issue of provenance of 
archaeological iron artefacts making use of major oxides and trace ele-
ments. This approach significantly improves the credibility of final re-
sults. What is original in the proposed method is the fact that in the first 
step we classify data using a few very different (concerning their prin-
ciples of operation) classification algorithms. In the next step, we 
aggregate such partial results in order to obtain a final classification of 
the studied data assemblage. To our knowledge, such an approach has 
not been applied so far in archaeometry. 

As stated in the Introduction, the use of multivariate methods is 
already well-established in provenance studies. Among the methods 
which were used in previous works there were LDA and AHC (e.g., Leroy 
et al. (2012)), sometimes supported with MCA (Leroy et al. (2017)), a 
two-step PCA and AHC analysis (Disser et al. (2016), Disser et al. (2017); 
see also Bauvais et al. (2017), or a multi-stage PCA-AHC approach 
(Dillmann et al. (2017)). However, a common trait of many studies on 
iron provenance that one method is preferred and the reader has no 
chance to see how the final results could be compared with those ach-
ieved with different approaches. In our opinion, a provenance assess-
ment which is produced by several different methods where a final result 
is a majority-voted outcome may be considered more reliable. 

Concerning the variable selection for our provenance study, the 
major oxides or major elements (the experimental data - MgO, Al2O3, 
SiO2, K2O, CaO, TiO2, MnO, BaO; the AD data - Mg, Al, Si, K, Ca, Mn) are 
commonly used for such purposes and as such do not necessitate a 

Table 5 
Confusion matrices for classification of the XPA-SI dataset using the KDA-LDA 
and KDA-PCA methods.   

XP27 XP61 XP90 Total % correct 

KDA-LDA 
XP27 15 0 0 15 100% 
XP61 0 23 17 40 57.5% 
XP90 0 0 42 42 100% 

Total 15 23 59 97 82.47% 

KDA-PCA 
XP27 15 0 0 15 100% 
XP61 0 21 19 40 52.5% 
XP90 0 15 27 42 64,29% 

Total 15 21 61 97 64.95%  

Table 6 
Results of assessing the quality of different classifiers created by the authors for 
the AD dataset. Four classical tests were used, as described in Section 2.5.  

No. Method Reclassification Holdout K-fold CV Leave-one-out CV 

1 LDA 100.0 100.0 99.5 99.5 
2 SVM 98.9 97.0 97.3 97.3 
3 NB 96.8 95.0 95.7 95.2 
4 RF 96.8 98.0 96.8 96.8 
5 KNN 98.9 97.0 96.8 97.6 
6 RPART 98.9 90.0 86.2 93.1 
7 KDA-LDA 91.5 88.0 88.3 87.8 
7 KDA-PCA 95.7 90.0 88.8 89.9  
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further discussion. The matter is more complex with trace elements (in 
our case, V, Cr, Rb, Sr, Y, Zr, Nb, Ce, Nd, Sm, Eu, Tb, Tm, Yb, Hf, Ta, Th, 
U for the experimental data, and Ce, Eu, Gd, Hf, La, Nb, Nd, Pr, Sm, Tb, 
Th, U, Y, Yb for the AD data). As it can be seen, the variables overlap to a 
considerable extent (Ce, Eu, Hf, Nb, Nd, Sm, Tb, Th, U, Y, Yb), but in 
each case a decision must be made individually, as stated in Section 2. A 
case-specific selection of trace elements was also applied in many pre-
vious studies (e.g., Coustures et al. (2003); Coustures et al. (2006); 
Desaulty et al. (2008); Leroy et al. (2012); L’H�eritier et al. (2016); Disser 
et al. (2016); Bauvais et al. (2017); Dillmann et al. (2017). 

In our paper we used three assemblages of data. The first two is 
experimental data, marked as XPA and XPB (see Section 2, Tables 1 and 
2). It consists of two sub-assemblages: smelting slag (SLAG) and slag 
inclusions (SI) and it contains both major oxides (M) and trace elements 
(T). The experimental data assemblages were used to test our new 
approach to the issue of classification. On the basis of these assemblages 
we demonstrate technical details of the method (Section 2) and then we 
prove its considerable practical value (Section 3). A significant new 
element is the use of the so-called Classifier Voting Technique. Thanks to 
it, we are able to strongly enhance the credibility of final results of 
classifying of archaeological artefacts of unknown provenance to indi-
vidual regions. What is more, we can express this trustworthiness in a 
quantitative manner as a probability of classification of a given obser-
vation to a given group. The experimental assemblages also underwent 
classification with the use of the non-parametric method, that is, Kernel 
Discriminant Analysis (KDA). It significantly differs from other para-
metric methods which were used in our study, i.e., Linear Disriminat 
Analysis (LDA), Support Vector Machine (SVM), Random Forests (RF), 
Naive Bayes (NB), K-Nearest Neighbours (KNN), as well as Recursive 
Partitioning and Regression Trees (RPART). The obtained results are of 
reasonable quality (see Fig. 3). However, it is perhaps the experimental 
nature of the data that produced very good classification results (accu-
racy of about 85% for the KDA-LDA method). This may not necessarily 
be the case for actual archaeological data assemblages. 

The third analysed assemblage is actual archaeological data provided 
by Alexandre Disser (marked as AD, see Section 2, Tables 1 and 2). As in 
the previous case, this assemblage is also divided into SLAG and SI 
groups and it consists of M and T data (see Tables 1 and 2). The classi-
fication results for this assemblage are offered in Section 4. On the basis 
of the AD assemblage 6 different parametric classifiers (using the afore- 
mentioned LDA, SVM, NB, RF, KNN, and RPART methods) and 2 non- 
parametric KDA classifiers were built. In the latter case, two different 
methods of data multidimensionality reduction were applied, that is, 
Linear Discriminat Analysis (LDA) and Principal Component Analysis 
(PCA). The quality of these classifiers was verified with a series of 
methods which are typical for such cases (see Table 6). Then, the final (i. 
e., test set) data was classified. As in the case of the experimental as-
semblages, the final classification of the AD test data (SI group) was 
obtained with the use of the classifier voting technique. The final result 
is in most cases convergent with that obtained by Disser et al. (2017). As 
said above, the classification of such observations that were assigned to 
different classes than in Disser et al. (2017) is perhaps more credible, as 
it has been produced by the voting technique on the basis of a few in-
dependent methods. It is worth stressing that the results of classification 
of the AD assemblage with the use of the KDA method are pretty 
debatable and thus a practical value of this approach is rather dubious. 
Although very good results were obtained for the experimental assem-
blages, the classification obtained for the AD data demonstrates that this 
is not necessary a general rule. What is a significant problem here is a 
great discrepancy of results (see Fig. 5). This is caused by the fact that a 
key operation in the KDA method is multidimensionality reduction of 
input data. Depending on the approach we apply, we usually receive 
results which strongly differ from each other in the 2D space (compare 
Figs. 2 and 4). What is more, there is virtually no credible method of 
assessing which result is the best. Therefore, these observations are 
somewhat contradictory to the results obtained with the KDA method, as 

discussed by Charlton et al. (2012). In our opinion, cross-validation is a 
very important step to assess the quality of the classification. This 
research has developed an example of a convenient framework to ach-
ieve this objective. 

Eventually, it is worth stressing that an indisputable advantage of the 
KDA method is the fact that it clearly visualises data. This is especially 
significant if one works with multidimensional data, where a visuali-
zation of raw data is not very convenient. The analysed assemblages 
have 26, 7 and 20 dimensions respectively (see Table 2). Figs. 2 and 4 
clearly demonstrate observations in individual classes. The non- 
parametric classifiers which were constructed on the basis of the data 
which was rescaled to 2D (see Figs. 3 and 5) can also be a very useful tool 
which increases the credibility of results produced by the parametric 
classifiers, as mentioned in the end of Section 4. 
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