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Abstract. We investigate a special class of data sparse rank-structured matrices that combine
a flat block low-rank (BLR) partitioning with the use of shared (called nested in the hierarchical
case) bases. This format is to H2 matrices what BLR is to H matrices: we therefore call it the BLR2

matrix format. We present algorithms for the construction and LU factorization of BLR2 matrices,
and perform their cost analysis—both asymptotically and for a fixed problem size. With weak
admissibility, BLR2 matrices reduce to block separable matrices (the flat version of HBS/HSS). Our
analysis and numerical experiments reveal some limitations of BLR2 matrices with weak admissibility,
which we propose to overcome with two approaches: strong admissibility, and the use of multiple
shared bases per row and column.

Key words. Data sparse matrices, block low-rank matrices, block separable matrices, hierar-
chical matrices, LU factorization, numerical linear algebra.

AMS subject classifications. 65F05, 65G50.

1. Introduction. Data sparse matrices possess an off-diagonal block low-rank
structure: most of their off-diagonal blocks B can be accurately approximated by
low-rank matrices: B ≈ XY T , with size(X) + size(Y ) � size(B). This property can
be exploited to reduce the number of entries required to store them and the floating-
point operations (flops) required to perform standard linear algebra computations on
them.

Many different rank-structured matrix formats have been proposed in the litera-
ture to exploit this property. The most general format is the hierarchical H matrix
format [10, 11, 21, 22]. Hierarchical formats can be classified based on two main cri-
terions: whether they use weak or strong admissibility, and whether they use nested
bases or not.

Weakly admissible formats directly approximate all off-diagonal blocks as low-
rank matrices, regardless of their rank, whereas strongly admissible formats recur-
sively partition the off-diagonal blocks until their rank becomes small enough. H
matrices use strong admissibility; with weak admissibility, they reduce to a format
called HODLR [8].

The so-called nested bases structure consists of two main components. First,
all blocks on the same block-row or block-column share the same X or Y basis,
respectively. Second, these low-rank bases are nested across the levels of the hierarchy,
that is, the basis at a given level is implicitly represented by the bases at the lower
levels. H2 [11] matrices add to H these nested bases for an even more compact
representation. The HSS [15,34] and HBS [19] formats are weakly admissible versions
of H2 matrices.

In the recent years, non-hierarchical formats based on a flat partitioning have
gained attention: the block low-rank (BLR) format [3] has been successfully employed
to accelerate many computational science applications, notably in sparse direct meth-
ods [7,30], geosciences [4,32], climate modeling [1,12], boundary integral equations [2],
and many others [27, 29, 33]. The theoretical and numerical properties of the BLR
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format are well understood [5,6,23,25], and its performance on modern parallel com-
puters has been heavily optimized [7, 9, 13, 16, 24, 30, 31]. The BLR format is usually
used with strong admissibility since, unlike hierarchical formats, doing so is not any
more complex than using weak admissibility. Furthermore, BLR does not use any
nested bases structure. The BLR format can therefore be seen as a flat version of the
H format.

Figure 1.1 summarizes the data sparse matrix formats presented so far. This tax-
onomy reveals an unexplored corner: flat formats exploiting a nested bases structure.
Indeed, surprisingly, even though the BLR format has been extensively studied, there
have been no real attempts to introduce nested bases in BLR matrices. Note that
since flat formats possess no hierarchy, low-rank bases cannot be nested. However,
they can still be shared across all blocks on any given block-row or block-column. We
refer to such a structure as shared bases. In a nutshell, if BLR is a flat version of H
matrices, BLR with shared bases becomes a flat version of H2 matrices: we therefore
propose to call such a format BLR2.

Gillman et al. [19] describe the flat version of their HBS format, which they call
block separable (BS), but it is only presented as a first step towards HBS, and is
not studied in its own right. Given the success of the BLR format in a wide range of
computational science applications, we believe that it is timely and worthy to dedicate
a specific investigation of flat data sparse formats exploiting shared bases. This article
represents a first attempt at introducing a shared bases structure into BLR matrices.
We now describe more precisely our contributions.

1.1. Our contributions. With weak admissibility, the BLR2 format is essen-
tially equivalent to the BS format of Gillman et al. [19]. As mentioned, this format
was only thought of as being a first step towards HBS, and therefore was not investi-
gated in its own right. We therefore begin, in sections 3 through 7, by revisiting the
BS format with a dedicated study. In particular:

• We describe a new algorithm to transform a BLR matrix into a BLR2 one
(Algorithm 3.2), which can be used to build a BLR2 representation of a dense
matrix at a lower cost than existing algorithms that skip the intermediate
BLR step.

• The existing algorithms to solve linear systems Ax = b where A is under BLR2

form are based on an inversion scheme that uses the Sherman–Morrison–
Woodbury formula [19]. We propose instead new algorithms based on LU
factorization and triangular substitution (Algorithms 4.1 and 4.2).

• We perform detailed cost analyses of the BLR2 format, both for storage and
flops for their LU factorization. We first investigate their asymptotic cost, ob-
taining reduced asymptotic costs in O(n4/3) for storage and O(n9/5) for flops.
This asymptotic analysis is however only valid under the assumption that
the shared bases have low enough rank, so we also perform a non-asymptotic
analysis, obtaining precise conditions (6.1) and (6.2) for the BLR2 format to
achieve storage and flops gains over the BLR one, respectively.

Based on this study, we propose two new improvements to BLR2 matrices aiming at
reducing the rank of the shared bases.

• We first introduce strong admissibility, that is, we move from a flat version of
HBS/HSS to a flat version of H2. We show how the rank of the shared bases
can be significantly reduced by removing only a small number of high-rank
blocks from the shared bases.

• We further generalize the BLR2 representation by not using a unique shared

2



H H2

HODLR
HSS
HBS

BLR BLR2

BS

nested bases

flat

weak adm. weak adm.

nested bases

flat

flat

weak adm.

shared bases

Fig. 1.1: A taxonomy of data sparse matrix formats.

basis per row and column, but multiple bases. We propose several strategies
to select groups of blocks that share the same basis.

Throughout the article, we illustrate the analysis and discussion with experiments
on a range of matrices coming from various applications. Our experimental results
highlight the potential and limitations of the BLR2 format.

The outline of this article follows the above list of contributions. After introducing
BLR and BLR2 matrices in section 2, we present BLR2 construction algorithms in
section 3 and BLR2 LU factorization and solution algorithms in section 4. We then
perform asymptotic and non-asymptotic cost analyses in sections 5 and 6. Based on
these results, we discuss the potential and limitations of the block separable format
(BLR2 with weak admissibility) in section 7. We then propose two directions to
overcome these limitations: we propose introducing strong admissibility in section 8
and we investigate the use of multiple shared bases in section 9. We finally provide
our conclusions in section 10.

2. Preliminaries. We present BLR and BLR2 matrices in sections 2.1 and 2.2.
We also discuss our experimental setting and our notations (sections 2.3 and 2.4).

2.1. BLR matrices. Consider a dense matrix A partitioned into b × b blocks
Aij . A BLR representation separates the matrix as A = D + H, where D is block
diagonal (with Dii = Aii) and where all blocks of H are low rank:

Hij = Xij︸︷︷︸
b×rij

Y Tij︸︷︷︸
rij×b

. (2.1)

where the dimension rij corresponds to the rank of the Hij block. We refer to matrices
Xij and Yij as bases.

The representation (2.1) can be computed by several methods. The singular value
decomposition ofHij yields the optimal rank rij , but requires O(b3) flops. Throughout
this article, we will rather assume the use of a cheaper method requiring only O(b2rij)
flops. Many such methods exist, such as rank-revealing QR factorizations, adaptive
cross approximations, randomized methods, etc.
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The ranks rij are in general very different but, to simplify the notation and the
analysis, we will use a single quantity r to denote them. In the cost analyses where
r appears, r should formally be defined as the maximum of all rij , although more
realistic estimates are obtained by taking r to be the average rank.

We also recall in Algorithm 2.1 how to compute the LU factorization of a BLR
matrix.

Algorithm 2.1 Standard BLR factorization algorithm.

1: {Input: a BLR matrix A = D +H as defined by (2.2).}
2: {Output: the BLR LU factors A = LU .}
3: for k = 1 to p do
4: Akk = LkkUkk.
5: for i = k + 1 to p do
6: Yik = U−T

kk Yik.
7: Xki = L−1

kkXki.
8: for j = k + 1 to p do
9: Aij ← Aij −Xik(Y TikXkj)Y

T
kj .

10: end for
11: end for
12: end for

To summarize, a BLR matrix A = D +H is represented by

Dii = Aii (Hii = 0), (2.2a)

Hij = XijY
T
ij , i 6= j. (2.2b)

2.2. Block separable matrices. The BLR2 format is based on the idea of
finding a common (or joint) basis for all blocks in a given block-row or block-column
of H, namely

Hij = Xi︸︷︷︸
b×si

Cij︸︷︷︸
si×tj

Y Tj︸︷︷︸
tj×b

. (2.3)

We moreover require Xi and Yj to have orthonormal columns (hereinafter OC ma-
trices). For a given block-row i, all blocks Hij share the same left basis Xi and, for a
given block-column j, all blocks Hij share the same right basis Yj . Therefore, we call
Xi and Yj shared bases.

The dimensions si and tj are the ranks of the shared bases, and are different for
each i and j. For the simplicity of the notation and analysis, we will again use a single
quantity s to denote the ranks of the shared bases.

The matrices Cij , which we call coupling matrices, play a very important role.
Indeed, because the shared bases are OC, Cij contains all the norm and spectrum
information of the block Hij : it has the same singular values and therefore the same
rank rij . Crucially, Cij is thus a low-rank matrix that can be represented as

Cij = Φij︸︷︷︸
si×rij

ΨT
ij︸︷︷︸

rij×tj

. (2.4)

As soon as sitj ≥ (si + tj)rij , that is, r ≤ s/2, storing Cij under this form is more
efficient than in full form.
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Table 2.1: List of test matrices used in this article.

Name Matrix size n Block size b Application

P64 4096 128 Poisson
P160 25600 256 Poisson
GaAsH6 6232 128 Quantum chemistry
nd24k 7785 128 2D/3D
Fault 639 7983 128 Contact mechanics
nlpkkt80 14080 256 Optimization
Serena 15552 256 Structural
Cube Coup dt0 21072 256 Coupled consolidation
Geo 1438 13254 256 Geomechanical

To summarize, a BLR2 matrix A = D +H is represented by

Dii = Aii (Hii = 0), (2.5a)

Hij = XiCijY
T
j , i 6= j, (2.5b)

Cij = ΦijΨ
T
ij . (2.5c)

2.3. Experimental setting. All our numerical experiments were carried out
with MATLAB R2018b. To test the algorithms, we have used the matrices listed in
Table 2.1. These matrices are Schur complements of sparse matrices, (corresponding
to the root separator of the sparse factorization), all of which come from the SuiteS-
parse collection [17], except P64 and P160, which are 3D Poisson problems with Schur
complement of dimension 642 and 1602.

2.4. Notations. For convenience, we recall here the main notations used in this
article. We consider an n×n matrix A partitioned into b×b blocks. We denote by r the
ranks of the local blocks and by s the ranks of the shared bases. We also define p = n/b.
We refer to computing the low-rank form of a block XY T ≈ B as compression and
to restoring an approximate full-rank form B̃ = XY T as decompression; by the same
token we call (de)compression of a matrix the operation of (de)compressing all the
blocks it is made of.

3. Construction algorithms. Given a dense matrix, what is the best method
to build its BLR2 representation? In this section we compare two different construc-
tion algorithms. The simplest approach, presented in section 3.1, is Algorithm 3.1,
which builds the BLR2 representation by directly compressing the dense matrix. In
section 3.2, we propose intead Algorithm 3.2, which first builds a BLR representation
before transforming it into a BLR2 one. We show in section 3.3 that the intermediate
BLR construction leads to lower cost.

3.1. Dense → BLR2 construction algorithm. Algorithm 3.1 proceeds in
three steps. First, the shared bases Xi of each block-row are computed (line 4).
(Starting with the shared bases of the block-columns is equivalent). At this point,
each block Hij can be represented as XiB

T
ij , where Xi is OC. Then, each shared basis

Yj is computed by agglomerating and compressing all Bij matrices on block-column
j together (line 7). Finally, the third step is to compute a low-rank representation of
the coupling matrices (line 11) which, as noted before, have usually low rank.
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Algorithm 3.1 Dense→BLR2 construction algorithm.

1: {Input: a dense matrix A.}
2: {Output: the BLR2 matrix A = D +H as defined by (2.5).}
3: for i = 1 to p do
4: Compress [Hi1 · · ·Hip] = Xi[B

T
i1 · · ·BTip] where Xi is OC.

5: end for
6: for j = 1 to p do
7: Compress [B1j · · ·Bpj ] = Yj [C

T
1j · · ·CTpj ] where Yj is OC.

8: end for
9: for i = 1 to p do

10: for j = 1 to p do
11: Compress Cij = ΦijΨ

T
ij .

12: end for
13: end for

Algorithm 3.2 Dense→BLR→BLR2 construction algorithm.

1: {Input: a dense matrix A.}
2: {Output: the BLR2 matrix A = D +H as defined by (2.5).}
3: for i = 1 to p do
4: for j = 1 to p do
5: Compress Hij = XijY

T
ij where Xij and Yij are OC.

6: end for
7: end for
8: for j = 1 to p do
9: Compress [Y1j · · ·Ypj ] = Yj [E

T
1j · · ·ETpj ] where Yj is OC.

10: end for
11: for i = 1 to p do
12: for j = 1 to p do
13: Orthonormalize Eij = FijΨ

T
ij where Ψij is OC.

14: end for
15: end for
16: for i = 1 to p do
17: Compress [Xi1Fi1 · · ·XipFip] = Xi[Φi1 · · ·Φip] where Xi is OC.
18: end for

3.2. Dense → BLR → BLR2 construction algorithm. Next we describe
Algorithm 3.2, which is based on the observation that a BLR representation can be
transformed into a BLR2 one. The basic idea is to first compute a BLR representation
(line 5, yielding blocks Hij under the form XijY

T
ij , where Xij is OC), and then

to obtain each shared basis Yj from the compression of the agglomerated Yij bases
on block-column j (line 9). Similarly, the shared bases Xi could be obtained from
agglomerating the Xij basis on each block-row. However, there are two key points to
make the algorithm effective.

The first key point is not to compress the Xij bases on their own, because they
are OC. Indeed, the Yij bases contain all the information on the spectrum of the
local block Hij , and it is important to exploit this information in the compressions
of both shared bases. To do so, we must include in the computation of the Xi bases
the weight information contained in matrices Eij obtained from the compression of
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the Yj bases (line 9). For example, agglomerating matrices XijEij on block-row i and
compressing them together would yield

[Xi1Ei1 · · ·XipEip] = Xi[Ci1 · · ·Cip]

, where Xi is OC and where it remains to compress the Cij coupling matrices.
However, the second keypoint is that it is more efficient to orthonormalize ma-

trices Eij first, as this allows to obtain the coupling matrices Cij directly under
their low-rank form ΦijΨ

T
ij . Indeed, assume Eij is orthonormalized as Eij = FijΨ

T
ij

(line 13), where Ψij is OC (by means of an LQ factorization, for example). Then, by
compressing the agglomerated XijFij (line 17), we obtain both the Xi shared bases
and the Φij local bases of the coupling matrices Cij .

3.3. Cost analysis. Let us now compare the costs of the two construction al-
gorithms 3.1 and 3.2. We begin with Algorithm 3.1.

• Line 4: computing the shared basis of any given b × n block-row requires
O(nbs) flops, and so the total cost of compressing all p block-rows is O(n2s).

• Line 7 requires p compressions of b×O(ps) matrices of rank s, amounting to
O(nps2) flops.

• Line 11 requires p2 compressions of s × s matrices of rank r, amounting to
O(p2s2r) flops.

• Total: O(n2s + nps2 + p2s2r) = O(n2s). The overall cost is dominated by
the cost O(n2s) of the first step because ps ≤ pb = n.

For Algorithm 3.1, we thus recover the O(n2s) cost mentioned in [19, p. 226]. We
now turn to Algorithm 3.2.

• Line 5 requires p2 compressions of b×b blocks of rank r, amounting to O(n2r)
flops.

• Line 9 performs p compressions of b×O(pr) matrices of rank s, which require
O(npsr) flops.

• Line 13 carries out p2 orthonormalizations (LQ factorizations) of r × s ma-
trices, which require O(p2sr2) flops.

• Line 17 first requires p2 products of cost O(br2), for a total of O(npr2). Then,
p compressions of b×O(pr) matrices of rank s are performed, which require
O(npsr) flops.

• Total: O(n2r+npsr+p2sr2 +npr2) = O(n2r). The overall cost is dominated
by the cost O(n2r) of the first step.

The cost of Algorithm 3.2 is therefore roughly a factor s/r smaller than that of
Algorithm 3.1, ignoring lower order terms. We conclude from this cost analysis that
using an intermediate BLR construction leads to a reduced cost.

We illustrate this conclusion in Table 3.1, where we experimentally compare the
construction costs of each algorithm on matrix P64 for varying ε. The comparison
shows that Algorithm 3.2 outperforms Algorithm 3.1, and that this trend becomes
stronger as ε increases; this is explained by a larger s/r ratio. In the rest of this
article, we will use Algorithm 3.2.

4. LU factorization and solution algorithms. In this section we explain how
to compute the BLR2 LU factorization, that is, how to decompose a BLR2 matrix A
into a lower triangular BLR2 matrix L and an upper triangular BLR2 matrix U such
that A = LU (Algorithm 4.1 described in section 4.1). We also explain how to exploit
these BLR2 LU factors to solve a linear system Ax = b (Algorithm 4.2 in section 4.2)
and present backward error results in section 4.3.
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Table 3.1: Construction costs (in GigaFlops) of Algorithms 3.1 and 3.2 on matrix P64
(see section 2.3), with varying ε.

Algorithm 3.1 Algorithm 3.2 ratio average s/r

ε = 10−12 12.66 5.44 2.3 5.7
ε = 10−8 9.53 2.13 4.5 10.2
ε = 10−4 5.03 0.37 13.5 22.8

Other algorithms to invert BLR2 matrices or solve a linear system involving a
BLR2 matrix have been proposed. In particular, Gillman et al. [19] propose an in-
version scheme based on the Sherman–Morrison–Woodbury formula. However, to our
knowledge, the algorithms presented here are the first of the literature to exploit an
LU factorization for BLR2 matrices, similarly to LU-based algorithms for other matrix
formats, such as BLR (Algorithm 2.1, [5]), H [14, 20], HSS [15], and H2 [26].

4.1. LU factorization algorithm. Given a BLR2 matrix A as defined in (2.5),
Algorithm 4.1 computes two lower and upper triangular BLR2 matrices L and U
satisfying A = LU (see (4.6) below), by performing the following operations.

At each step k, we first compute the LU factorization of the diagonal block Akk =
LkkUkk (line 8). Then, we perform the triangular solves Lik = AikU

−1
kk and Ukj =

L−1
kkAkj . Here, the crucial observation is that all the blocks Aik = XiCikY

T
k in the

k-th block-column share the same right basis Yk, so that only one triangular solve
Vk = U−T

kk Yk (line 9) suffices. Similarly, to compute Ukj we only need to perform one
triangular solve Wk = L−1

kkXk (line 10).
Finally, the last step is the update of the blocks of the trailing submatrix:

Aij ← Aij −AikAkj , (4.1)

for all i, j > k. Here again the crucial observation is that all Aik = XiCikV
T
k share the

same right basis Vk and all Akj = WkCkjY
T
j share the same left basis Wk, so that we

actually only need to compute one product, Zk = V Tk Wk (line 11). The update (4.1)
then becomes

XiCijY
T
j ← XiCijY

T
j −XiCikZkCkjY

T
j , (4.2)

= Xi

(
Cij − CikZkCkj

)
Y Tj . (4.3)

Thus, (4.3) shows that we only need to update the coupling matrices (line 14).
The update of the diagonal blocks Akk is a special case, since Akk is not repre-

sented under low rank form. The updates Akk ← Akk − Ak`A`k for all ` < k can be
efficiently accumulated by noticing that

Akk −
∑
`<k

Ak`A`k = Akk −Xk

(∑
`<k

Ck`Z`C`k

)
Y Tk . (4.4)

Thus we can accumulate the products Ck`Z`C`k in a temporary workspace Ckk (ini-
tialized to zero on line 4) and only perform the decompression XkCkkY

T
k once, at the

beginning of step k (line 7).
Note that since the coupling matrices usually have low rank, the update of the

coupling matrices on line 14 takes the form

Cij − CikZkCkj = ΦijΨ
T
ij − Φik

(
ΨT
ikZkΦkj

)
ΨT
kj . (4.5)
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We thus recover the standard form of a low-rank matrix update, which amounts to
adding together two low-rank matrices and recompressing the result to avoid rank
growth [5], [27, Chap. 3].

Algorithm 4.1 BLR2 LU factorization algorithm.

1: {Input: a BLR2 matrix A = D +H as defined by (2.5).}
2: {Output: the triangular factors L and U satisfying (4.6).}
3: for k = 1 to p do
4: Initialize Ckk = 0.
5: end for
6: for k = 1 to p do
7: Akk ← Akk +XkCkkY

T
k .

8: Akk = LkkUkk.
9: Vk = U−T

kk Yk.
10: Wk = L−1

kkXk.
11: Zk = V Tk Wk.
12: for i = k + 1 to p do
13: for j = k + 1 to p do
14: Cij ← Cij − CikZkCkj .
15: end for
16: end for
17: end for

Overall, we have therefore computed lower and upper triangular matrices L and
U , respectively, that satisfy

A = LU, (4.6a)

Lij = XiCijV
T
j , Vj = U−T

jj Yj , i > j, (4.6b)

Uij = WiCijY
T
j , Wi = L−1

ii Xi, i < j. (4.6c)

A key observation is that the shared bases Xi and Yj of the original matrix A are
preserved throughout the factorization and become the left bases of L and the right
bases of U , respectively. Moreover, since the right bases of L are given by Vj = U−T

jj Yj ,

and similarly the left bases of U are given by Wi = L−1
ii Xi, Vj and Wi have the same

rank as Yj and Xi, respectively. Therefore, Algorithm 4.1 has the notable property
that it does lead not any rank growth in the shared bases. Only the coupling matrices
exhibit rank growth.

However, we now have two BLR2 matrices (L and U) and thus four shared bases,
and so the storage for the shared bases has doubled. Since this can represent a
significant increase of the overall storage, a possible strategy is to only store explicitly
the original bases Xi and Yj . Indeed, using (4.6b) and (4.6c), the new bases Vj and
Wi can be implicitly applied at the price of an additional triangular solve.

4.2. LU solution algorithm. Algorithm 4.2 describes how to solve a linear
system Ax = b given the BLR2 LU factorization A = LU defined by (4.6). The algo-
rithm is based on standard forward (Ly = b) and backward (Ux = y) substitutions,
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which are given by the formulas

yi ← L−1
ii

(
bi −

i−1∑
j=1

Lijyj

)
, i = 1: p. (4.7)

xi ← U−1
ii

(
yi −

p∑
j=i+1

Uijyj

)
, i = p : 1. (4.8)

Exploiting the BLR2 structure of the LU factors to reduce the cost of these substi-
tutions is however not completely straightforward: simply replacing Lij and Uij by
XiCijV

T
j and WiCijY

T
j in the above equations is not sufficient.

Algorithm 4.2 BLR2 LU solution algorithm.

1: {Input: BLR2 LU factors L and U defined (4.6) and a right-hand side b.}
2: {Output: the solution x to the system LUx = b.}
3: Forward substitution Ly = b
4: y ← b.
5: for j = 1 to p do
6: t← 0.
7: for i = 1 to j − 1 do
8: t← t+ Cijzj .
9: end for

10: yj ← yj −Xjt.
11: yj ← L−1

jj yj .

12: zj = V Tj yj .
13: end for
14: Backward substitution Ux = y
15: x← y.
16: z ← 0.
17: for i = p to 1 by −1 do
18: t← 0.
19: for j = i+ 1 to p do
20: t← t+ Cijzj .
21: end for
22: xi ← xi −Witi.
23: xi ← U−1

ii xi.
24: zi ← Yixi.
25: end for

For example, in the case of the forward substitution (Ly = b), we obtain

yi ← L−1
ii

(
bi −

i−1∑
j=1

Xi(Cij(V
T
j yj))

)
(4.9)

= L−1
ii

(
bi −Xi

i−1∑
j=1

Cij(V
T
j yj)

)
, (4.10)

so a first obvious improvement is to mutualize the multiplication with Xi over all
terms in the sum by accumulating them in some vector t of b elements (line 8) before
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Table 4.1: Backward error (4.11) obtained by BLR and BLR2 LU factorizations to
solve the linear system Ax = b, for matrix P64 and x = [1 . . . 1]T , with different ε.

ε = 10−4 ε = 10−8 ε = 10−12

BLR BLR2 BLR BLR2 BLR BLR2

6.79e-05 6.82e-05 8.64e-09 8.69e-09 2.98e-13 3.00e-13

the product with Xi (line 10). More subtly, the products V Tj yj can also be mutualized
over the steps i, at the price of an extra vector z of n elements to store the results
(line 12).

The case of backward substitution is similar.

4.3. Backward error analysis. The error analysis from [23] proves that solv-
ing a linear system Ax = b by BLR LU factorization yields a computed solution x̂
satisfying the backward error bound

‖Ax̂− b‖
‖A‖‖x̂‖+ ‖b‖

= O(ε). (4.11)

Adapting this analysis to the BLR2 LU factorization is outside our scope, but we
expect the bound (4.11) to be preserved, since Algorithms 4.1 and 4.2 essentially
perform the same operations as the BLR LU factorization and solution algorithms,
except that they exploit the shared bases structure of the matrix.

For reference, in Table 4.1 we experimentally compare the backward error ob-
tained by solving the linear system Ax = b by BLR and BLR2 LU factorization, for
a variety of matrices A and where x = [1 . . . 1]T is the vector of ones (and where b is
computed as the matrix–vector product Ax). The BLR2 error is almost consistently
larger than the BLR one, but only by a very small amount. We therefore conclude
that the introduction of shared bases has a negligible impact on the stability and
accuracy of the solution.

5. Asymptotic cost analysis. In many problems of interest, the ranks r of
the local blocks can be shown to be small, increasing slowly or not at all with the
problem size n and the block size b. As a consequence, the BLR factorization can
significantly reduce the asymptotic costs in both storage and flops. Specifically, under
the assumption that r is a small constant, the analysis of [5] obtains costs in O(n3/2)
for storage and in O(n2) for flops, which both have a much weaker dependence on n
than their counterparts for full dense matrices (O(n2) storage and O(n3) flops).

It is not clear whether these costs still apply to the BLR2 factorization or if they
can be even further improved. The main question to elucidate is the dependence of the
shared bases ranks s on the block size b. Gillman et al. [19] give the estimate s ∼ log b
for one-dimensional boundary integral equations, and under this assumption, prove
a O(n9/5) cost for their proposed inversion scheme based on the Sherman–Morrison–
Woodbury formula.

We now perform an asymptotic cost analysis of the BLR2 format in the same
spirit as the above references. We assume r = O(bα) and s = O(bβ), for α, β ∈ [0, 1].
In particular, if both r and s are small constants (that is, α = β = 0), we obtain
asymptotic costs in O(n4/3) for storage and in O(n9/5) flops for Algorithm 4.1 (thus
recovering the same asymptotic cost as the inversion scheme of [19]).
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5.1. Storage. The number of entries required to store a BLR2 matrix can be
computed as the sum of three terms:

• The diagonal full-rank blocks: O(pb2) entries.
• The shared bases: O(ns) entries.
• The coupling matrices: O(p2sr) entries.

Since s ≤ b, the overall storage is therefore in O(pb2+p2sr) = O(nb+n2bα+β−2), which
is minimized when b = O(n1/(3−α−β)). For this choice of block size, the resulting
storage cost is

Storage = O(n
4−α−β
3−α−β ). (5.1)

Therefore, if both r and s are small constants (α = β = 0), we obtain a storage cost
in O(n4/3), which is significantly lower than that of the BLR format (in O(n3/2)). For
reference, the two-level MBLR storage cost is O(n4/3) [6]. If, on the contrary, s grows
linearly with b (β = 1), we recover an asymptotic cost for BLR2 that is identical to
the BLR one.

5.2. LU factorization. Algorithm 4.1 calls several kernels whose cost is given
as follows:

• LU factorization of the diagonal blocks (line 8): O(pb3) flops.
• Triangular solves (lines 9 and 10): O(pb2s) flops.
• Computing the product Zk (line 11): O(pbs2) flops.
• Update of the coupling matrices (line 14): O(p3s2r) flops.
• Update of the diagonal blocks (line 7): O(pb2s) flops.

The total cost of the factorization is the sum of the above costs, and is thus in
O(pb3 + p3s2r) = O(nb2 + n3bα+2β−3). This expression is minimized for a block size
b = O(n2/(5−α−2β)), which yields the total cost

LU flops = O(n
9−α−2β
5−α−2β ). (5.2)

For α = β = 0, we obtain a cost in O(n9/5), which represents a significant improve-
ment with respect to the cost of the classical BLR factorization, O(n2), and is identical
to the cost of the inversion scheme proposed in [19]. For β = 1 (and α = 0), we obtain
a cost in O(n7/3), which is thus worse than the BLR cost. In fact, to obtain a BLR2

cost no worse than the BLR one, we must have β ≤ (1 + α)/2.

5.3. Experimental assessment. In order to assess what asymptotic gains can
be expected from the BLR2 format, we experimentally estimate the values of α and
β by investigating the dependence of the ranks r and s on the block size b. We report
the results for the P64 matrix in Figure 5.1 (other matrices exhibit similar trends).

Figure 5.1a shows that the ranks of the local blocks r are indeed quite small and
grow only slowly with the block size b, at a rate of at most

√
b. In contrast, Figure 5.1b

shows that the ranks of the shared bases s are much larger, and grow with b at a faster
rate, unless ε is large.

These experiments suggest that we are not likely to obtain much asymptotic
improvement from the use of the BLR2 format over the BLR one, and motivates the
development of the non-asymptotic analysis of the next section.

6. Non-asymptotic cost analysis. We next perform a non-asymptotic cost
analysis to get further insight on the conditions under which we can expect the BLR2

format to achieve gains with respect to the BLR one.

6.1. Storage. Compared with the BLR representation, in the BLR2 case we
replace the b × b blocks of rank r (2p2br entries in total) by smaller, s × s coupling
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Fig. 5.1: Maximal ranks r and s for varying block size b and ε. The dashed and dotted
black lines indicate a growth proportional to b and

√
b, respectively. The P64 matrix

is used (see section 2.3).

matrices of corresponding rank (2p2sr entries). Therefore, the BLR2 storage is less
than the BLR storage as soon as this gain is large enough to compensate the ex-
tra storage needed for the shared bases (2ns entries). In other words, we have the
condition

2p2(b− s)r ≥ 2ns ⇔
(
b2

nr
+ 1

)
s ≤ b ⇔ s

b
≤ 1− b2

rn+ b2
. (6.1)

The BLR storage is minimized for a block size in Θ(
√
nr) [5]. For such a block

size, the condition reduces to cs ≤ b, where c > 1 is a fixed constant. In practice
c is typically a small constant, but the conclusion is nevertheless that s must be
significantly smaller than b for BLR2 to outperform BLR.

6.2. LU factorization. We now compare the costs of Algorithm 4.1 and that
of the standard BLR factorization (Algorithm 2.1). We analyze the costs of the
operations required at any given step k, and write pk = p − k the number of off-
diagonal blocks in the trailing submatrix at step k.

• Lines 8 (Alg. 4.1) and 4 (Alg. 2.1) both perform the LU factorization of the
diagonal block Akk and have the same cost (2b3/3 flops).

• The cost of the triangular solves is reduced thanks to the use of shared bases:
at step k, Alg. 4.1 (lines 9 and 10) only requires 2b2s flops, while Alg. 2.1
(lines 6 and 7) requires 2b2pkr flops. This yields a first gain of 2b2(pkr − s)
flops (gain 1).

• The update of the coupling matrices (line 14 of Alg. 4.1) requires two ex-
tra operations: computing Zk (line 11), for 2bs2 flops (extra cost 1), and
multiplying Zk with either Cik or Ckj , for 2p2ks

2r flops (extra cost 2).
• Once these extra operations have been performed, the update of the coupling

matrices reduces to a low-rank matrix update Cij ← Cij − VW , where all
matrices involved are of rank at most r. This is therefore a similar operation to
the updates in the BLR factorization (line 9 of Alg. 2.1), the difference being
the latter involve b×b matrices instead of s×s ones. Therefore the difference
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Fig. 6.1: Largest value of s such that condition (6.2) is satisfied, for pk = 10, c = 6,
and varying b and r.

in cost between these operations leads to another gain of cp2kr
2(b − s) flops

(gain 2), where c is a constant whose precise value depends on the specific
recompression algorithm used. Since at least two matrix–matrix products are
needed, c ≥ 4.

In summary, at step k Algorithm 4.1 performs less flops than Algorithm 2.1 if

2b2(pkr − s) + cp2kr
2(b− s)− 2bs2 − 2p2ks

2r > 0. (6.2)

The first two terms on the left-hand side of this equation are clearly positive since
s ≤ min(b, pkr), and correspond to gains 1 and 2 listed above. The question is
therefore whether these gains are large enough to compensate the (negative) third and
fourth terms associated with extra costs 1 and 2. The answer obviously depends
on the precise value of each of the involved constants.

Unlike the condition on storage (6.1), (6.2) is too complicated to obtain a simple
rule on how small s should be compared to b. We therefore turn to numerical examples
to get further insight. Given a matrix of fixed size n (50000 in our experiments), we
summed the left-hand side of Equation (6.2) over pk = 1: n/b. For values of b between
100 and 500, Figure 6.1 plots the largest value of s such that this quantity is positive
(c is set to 6). Expectedly, as b increases larger and larger s can satisfy condition (6.2).
More interestingly, the same trend arises as the rank r increases, which is due to the
fact that the gain terms in the condition grow faster with r than the extra cost terms.
Most importantly, Figure 6.1 clearly shows that, unless r is very large, s needs to be
significantly smaller than b for any gain to be possible: for example, for b = 200 and
r = 10, (6.2) is satisfied for s ≤ 66.

6.3. Experimental assessment. The conclusions from both the storage and
flops analysis are similar: the BLR2 format can outperform the BLR one only when
the rank of the shared bases s is small with respect to the block size b. We now assess
experimentally to what extent this condition is satisfied for our test problems.

Figure 6.2 compares the storage and flops required by the BLR and BLR2 rep-
resentations for a variety of matrices and for different threshold ε. Unfortunately, in
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Fig. 6.2: Weakly admissible BLR2 storage and flops for LU factorization, normalized
by that of the BLR format, for different matrices and varying ε.

almost all cases, the BLR2 format requires slighly more storage than the BLR one,
and a much higher flop count. This indicates that, for many problems, the rank of
the shared bases is simply not small enough for the weakly admissible BLR2 format
to be beneficial.

7. Discussion: potential and limitations of BLR2 vs. BLR matrices.
The analysis and experiments of the previous sections suggest that block separable
matrices (BLR2 matrices with weak admissibility) are not competitive with BLR
matrices, neither in terms of storage nor flops to factorize them. For the BLR2

representation to be competitive with the BLR one, the rank of the shared bases s
should be significantly smaller than what we have observed it to be for several real
problems. Furthermore the situation does not seem to improve significantly as the
matrix size increases.

This is perhaps one of the reasons why block separable matrices have rarely been
considered in the literature. In fact, Gillman et al. [19] only introduce block separable
matrices as a first step towards the HBS representation, which recursively applies
the block separable format to the coupling matrices Cij . Employing a hierarchical
approach is indeed one possible strategy to attenuate the issue that the rank of the
shared bases is too large, since this rank becomes smaller at each level of the hierarchy.
However, the fundamental issue persists, because it is related to the use of weak
admissibility: for many problems, the matrix formed of the entire off-diagonal part of
any block-row or block-column has quite a large rank.

Indeed, geometrically, the shared basis of block-row number i must represent the
interaction of a domain σi with all other domains, near and far, and in every direction.
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(a) Weak admissibility.

σi

(b) Strong admissibility.

σi

(c) Multiple bases (and strong
admissibility).

Fig. 7.1: Illustration of the geometric interpretation of different approaches to com-
press a given block-row corresponding to subdomain σi. The gray area of the domain
is compressed: a shared basis of the corresponding part of the block-row is computed.
In the right figure, the light and dark gray areas use different shared bases.

The interaction between two widely separated domains is weak, and only requires a
few of the shared basis vectors. The interaction between two nearby domains is
strong, and requires a good number of the shared basis vectors. The two interactions
between a domain and two others, the same distance away from the first, but located
on opposite sides of each other, may not use many shared basis vectors in common.

This geometric intuition motivates alternative approaches that only force the
shared basis structure on a subset of the blocks of each block-row and block-column.
In the next two sections, we investigate two such approaches, whose geometric inter-
pretation is illustrated in Figure 7.1.

• The first approach (section 8) introduces strong admissibility in the BLR2

representation. Near interactions are not compressed, that is, blocks whose
rank is too large are not included in the shared bases (Figure 7.1b). The
BLR2 format then essentially reduces to a flat (non-hierarchical) version of
H2 matrices.

• The second approach (section 9) employs multiple shared bases per block-
row/block-column: blocks are grouped together in subsets who each use a
different shared basis. Geometrically, this means that interactions with do-
mains in opposite directions are compressed separately (Figure 7.1c).

Both approaches however share one drawback. By losing the weakly admissible
structure, factorizing the matrix becomes a significantly more complicated endeavor.
Indeed, the good properties that allowed for an elegant LU factorization algorithm
(Algorithm 4.1) are lost. The main issue is that blocks belonging to a given shared
basis will receive updates from blocks outside this shared basis (either because they
are in BLR form, or because they belong to a different shared basis). This leads to
rank growth in the shared bases, and requires expensive recompressions to control the
growth. Overall, we therefore envision BLR2 being more effective at reducing storage,
and when used in the context of an iterative solver, where only matrix–vector products
are needed [28]. In the next two sections, we therefore focus on the storage costs of
the methods.

8. Improving BLR2 matrices with strong admissibility. To illustrate why
strong admissibility may help improving the BLR2 compression, we begin with an
example. We focus on a given block-row of matrix P64 (specifically, block-row number
10), which is composed of 31 off-diagonal blocks. If we try to compute a left basis
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Fig. 8.1: Storage for block-row number 10 of matrix P64, depending on the number
blocks inside the shared basis (under BLR2 form) and outside of it (under BLR form).
We have used ε = 10−8.

for the entire block-row, as we do in the weakly admissible case, we obtain a shared
basis of rank s = 104. Representing this block-row in BLR2 form then requires 81, 328
entries, which is more than the 75, 400 entries required by the BLR form. Clearly,
this is due to s being too large.

We now sort the 31 blocks by decreasing rank, and start removing them one by
one outside the shared basis. For example, the first block has rank 48. If we take
it out, that is, if we compute a BLR2 representation of the 30 remaining blocks, the
rank of the shared bases decreases from 104 to 80. The number of entries required
to store the entire block-row (30 blocks in BLR2 form and 1 block in BLR form) is
now only 73, 600. Figure 8.1 shows the evolution of the storage as we continue taking
more blocks out of the shared basis. The optimal storage of 65, 966 entries is attained
when the first 4 blocks of highest rank are stored in BLR form, and the remaining 27
are under BLR2 form. This reduces the rank of the shared basis to s = 31.

We can generalize this idea to the entire matrix by setting some parameter rmax

that defines the maximal rank for a block to be included in the shared bases. Any
block of rank larger than rmax thus remains in BLR form.

We analyze in Figure 8.2 the storage for the strongly admissible BLR2 format
depending on the choice of rmax. Standard BLR corresponds to rmax = 0 (none
of the blocks are in the shared bases) and weakly admissible BLR2 corresponds to
rmax =∞ (all blocks, regardless of their rank, are included in the shared bases). The
figure shows that setting rmax to in-between values can lead to significant storage
savings, reducing the BLR storage by at least 15% and up to 30% overall.

These results indicate that strong admissibility, by significantly reducing the rank
of the shared bases, leads to a new BLR2 format that requires less storage than BLR.

9. Improving BLR2 matrices with multiple shared bases. The second
approach that we explore to reduce the rank of the shared bases in the BLR2 format
is the use of multiple shared bases for a given block-row/block-column. That is, we
replace the representation (2.3) by

Hij = X
(q)
i CijY

(q)
j , (9.1)
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Fig. 8.2: Storage for strongly admissible BLR2 format depending on the maximal
rank value rmax allowed in the shared bases. Storage is normalized with respect to
BLR format (rmax = 0). Weakly admissible BLR2 corresponds to rmax = ∞. We
have used ε = 10−8.

for a given base number q. This approach is based on the idea that, while an entire
block-row may not possess a strong shared rank structure, carefully selected parts of
it may.

Interpreting this approach geometrically brings further insight. While any given
subdomain (corresponding to some block-row) usually has a strong interaction with
the rest of the domain (the off-diagonal part of the block-row has high rank), it may
have much weaker interaction with a localized part of the domain. Note that this
observation remains valid with strong admissibility: using a unique shared basis per
block-row amounts to compress the interaction between a given subdomain and the
rest of the domain, except for a ring around the subdomain (which is taken out based
on distance). Instead, using multiple bases amounts to compressing different parts of
the domain separately (based not only on distance but also direction). This geometric
interpretation is illustrated in Figure 7.1.

How should one choose blocks that are grouped together and share the same
basis? We distinguish two approaches.

• Regular t× t block-groups: we group t2 adjacent blocks forming a t× t block-
group pattern.

• HODLR groups with ` levels: similarly to the HODLR representation, we
partition the matrix into

A =

[
A11 A12

A21 A22

]
(where the Aij are of the same size) and group all blocks belonging to A12

and A21 together. We then apply this approach recursively to A11 and A22,
up to ` levels. On the last level, off-diagonal blocks of A11 and A22 are also
grouped together.

We compare these two approaches with standard BLR and both weakly and
strongly admissible BLR2 in Figure 9.1. Both multiple base approaches achieve sig-
nificant storage gains with respect to both the weakly admissible BLR2 format and
the BLR format, up to 30% reduction overall. While both approaches are therefore
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Fig. 9.1: Storage for various BLR2 variants, normalized by that of BLR. For each
matrix, the first two bars correspond to BLR2 with weak and strong admissibility,
respectively. The remaining six bars correspond to the use of multiple shared bases
with different strategies to group blocks that share a basis together: either t×t groups
or HODLR groups with ` levels. We have used ε = 10−8. The strongly admissible
variant (second bar) uses the optimal choice of rmax identified in Figure 8.2 The
multiple base variants also use strong admissibility, with fixed rmax = 30.

useful to improve BLR2 compression, the HODLR grouping strategy consistently out-
performs the regular block grouping one. The storage for multiple base BLR2 is in
all cases very similar to that of the strongly admissible BLR2 approach described in
section 8.

10. Conclusions. Can a nested bases-like structure be used within flat data
sparse matrix representations, such as the block low-rank (BLR) format? We have
attempted to answer this question. Unlike hierarchical formats, the low-rank bases
cannot be nested, since there is only one level; however, they can still be shared
across the block-rows and block-columns. We have proposed such a format, that
we call BLR2 in reference to the H2 representation of which it is essentially a flat
version. We have described algorithms to build BLR2 matrices, to compute their LU
factorization, and to use them for the solution of linear systems.

We have carried out costs analyses, both in an asymptotic and non-asymptotic
sense, that show that, if the shared bases are of sufficiently low rank, the BLR2

format is more compact than the standard BLR one and should allow for significant
storage gains. However, with weak admissibility (that is, all off-diagonal blocks are
compressed and included in the shared bases), our experiments show that the rank of
the shared bases are too large to lead to significant gains.

Motivated by this observation, we have proposed two alternative approaches to
reduce the rank of the shared bases. The first approach switches from weak to strong
admissibility, leaving blocks of too large rank outside the shared bases. The second
approach uses multiple shared bases for each block-row and block-column: only sub-
sets of blocks, grouped together based on different strategies, share their bases. With
either of these two approaches, we have shown that the BLR2 format can achieve
significant storage gains with respect to the BLR format, up to a 30% reduction.

In future work, we will explore the application of these techniques to the iterative
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solution of linear systems, which relies on matrix–vector products, and whose cost
could therefore be reduced by using the BLR2 representation.
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