Block Low-Rank Matrices with Shared Bases: Potential and Limitations of the BLR2S Format - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Matrix Analysis and Applications Année : 2021

Block Low-Rank Matrices with Shared Bases: Potential and Limitations of the BLR2S Format

Cleve Ashcraft
  • Fonction : Auteur
  • PersonId : 1086124
Théo Mary

Résumé

We investigate a special class of data sparse rank-structured matrices that combine a flat block low-rank (BLR) partitioning with the use of shared (called nested in the hierarchical case) bases. This format is to H 2 matrices what BLR is to H matrices: we therefore call it the BLR 2 matrix format. We present algorithms for the construction and LU factorization of BLR 2 matrices, and perform their cost analysis-both asymptotically and for a fixed problem size. With weak admissibility, BLR 2 matrices reduce to block separable matrices (the flat version of HBS/HSS). Our analysis and numerical experiments reveal some limitations of BLR 2 matrices with weak admissibility, which we propose to overcome with two approaches: strong admissibility, and the use of multiple shared bases per row and column.
Fichier principal
Vignette du fichier
BLR2.pdf (556.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03070416 , version 1 (15-12-2020)
hal-03070416 , version 2 (22-03-2021)

Identifiants

Citer

Cleve Ashcraft, Alfredo Buttari, Théo Mary. Block Low-Rank Matrices with Shared Bases: Potential and Limitations of the BLR2S Format. SIAM Journal on Matrix Analysis and Applications, 2021, 42 (2), ⟨10.1137/20M1386451⟩. ⟨hal-03070416v2⟩
499 Consultations
640 Téléchargements

Altmetric

Partager

More