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The Zero Resource Speech Benchmark 2021: Metrics and baselines for unsupervised spoken language modeling

We introduce a new unsupervised task, spoken language modeling: the learning of linguistic representations from raw audio signals without any labels, along with the Zero Resource Speech Benchmark 2021: a suite of 4 black-box, zeroshot metrics probing for the quality of the learned models at 4 linguistic levels: phonetics, lexicon, syntax and semantics. We present the results and analyses of a composite baseline made of the concatenation of three unsupervised systems: self-supervised contrastive representation learning (CPC), clustering (k-means) and language modeling (LSTM or BERT). The language models learn on the basis of the pseudo-text derived from clustering the learned representations. This simple pipeline shows better than chance performance on all four metrics, demonstrating the feasibility of spoken language modeling from raw speech. It also yields worse performance compared to text-based 'topline' systems trained on the same data, delineating the space to be explored by more sophisticated end-to-end models.

Introduction

In recent work, self-supervised techniques from vision and NLP have been applied to large datasets of raw audio, giving rise to very effective methods of pretraining for downstream ASR tasks, particularly in the low resource scenario [START_REF] Schneider | wav2vec: Unsupervised pre-training for speech recognition[END_REF][START_REF] Baevski | Effectiveness of self-supervised pre-training for speech recognition[END_REF][START_REF] Chung | Generative pre-training for speech with autoregressive predictive coding[END_REF]Baevski et al., 2020b;[START_REF] Rivière | Unsupervised pretraining transfers well across languages[END_REF][START_REF] Kawakami | Learning robust and multilingual speech representations[END_REF][START_REF] Wang | Unsupervised pre-training of bidirectional speech encoders via masked reconstruction[END_REF]. The approaches based on transformers and masking objectives, strikingly similar to the models used to train language models, are especially intriguing. The fact that these approaches yield excellent ASR performance (less than 10% WER) with as little as 10 minutes of labels plus a language model (LM), or with 10 hours of labels but no LM (Baevski et al., 2020b), suggests that these systems may actually go beyond acoustic modeling, learning their own LM from raw audio. Such work therefore connects with research into the zero resource setting, which aims at learning linguistic representations from scratch for language with little or no textual resources. However, up to now, there exists no established benchmark to analyse the representations learned by such models beyond the acoustic/phonetic level.

Typically, language models trained from text are evaluated using scores like perplexity. Unfortunately, this simple approach cannot be used here, since perplexity scores computed from learned discrete units vary according to granularity, making model comparison impossible. This is why we chose to follow a black-box NLP strategy: our metrics do require expert linguistic labels for the dev and test sets, but are zero-shot in that they do not require training a classifier, they use simple tasks enabling direct human/machine comparison, and they give interpretable scores at each linguistic level. As seen in Table 1, they can be divided into two types: distance-based and probability-based metrics. Distancebased metrics require models to provide a pseudo-distance computed over pairs of embeddings. The ABX score [START_REF] Schatz | Evaluating speech features with the minimal-pair abx task: Analysis of the classical mfc/plp pipeline[END_REF], already used for the evaluation of acoustic/phonetic representations, falls in this category and provides a measure of how well separated phonetic categories are in a given embedding space. Here, we use the ABX score developed in Libri-light [START_REF] Kahn | Libri-light: A benchmark for asr with limited or no supervision[END_REF].

Distance-based methods can also be used to evaluate the semantic representation of words, by computing the correlation between these distances and human semantic similarity judgements (see [START_REF] Schnabel | Evaluation methods for unsupervised word embeddings[END_REF][START_REF] Faruqui | Problems with evaluation of word embeddings using word similarity tasks[END_REF]. [START_REF] Chung | Speech2vec: A sequence-to-sequence framework for learning word embeddings from speech[END_REF] adapted this metric to speech, which we compiled into our sSIMI dataset. Probability-based metrics require models to compute a pseudo-probability for a given test input (non-normalized non-negative number for a given input waveform). The pseudo-probabilities are computed over pairs of inputs, one of which is acceptable in the tested language and the other not. Such methods have been used in NLP to evaluate the syntactic abilities of language models, by comparing the probabilities of grammatical versus ungrammatical sentences [START_REF] Warstadt | Blimp: A benchmark of linguistic minimal pairs for english[END_REF], and we built the sBLIMP dataset upon this work. Finally, in our sWUGGY dataset, we extend this logic to the lexical level by comparing the pseudo-probability associated to words and nonwords. The four metrics are presented in more details in Section 3.2.

Next, we apply these metrics to a simple baseline system (Section 3.3), built on contrastive pretraining (Contrastive Predictive Coding, CPC, van den [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF][START_REF] Rivière | Unsupervised pretraining transfers well across languages[END_REF], followed by k-means clustering, which we use to decode a speech dataset (LibriSpeech, Panayotov et al., 2015) into pseudo-text. This pseudo-text is used to train a language model varying in compute budget: an LSTM (smaller budget) or BERT (larger budget) model. We show (Section 4) that such simple baseline models give better than chance performance on all 4 metrics, demonstrating that it has learned representations at the four corresponding linguistic levels. However, comparison with a text-based BERT topline system trained on the phonetic transcription of the same training data shows that the speech input raises challenges for the LM component of the model that need to be addressed in further work. Datasets and baselines will be open sourced to encourage bridging the gap between speech and text-based systems.

Related work

Zero Resource Speech Challenge Series. Previous work [START_REF] Versteegh | The zero resource speech challenge 2015: Proposed approaches and results[END_REF][START_REF] Dunbar | The zero resource speech challenge[END_REF][START_REF] Dunbar | The zero resource speech challenge[END_REF][START_REF] Dunbar | The zero resource speech challenge 2020: Discovering discrete subword and word units[END_REF] has focused on establishing benchmarks for unsupervised learning of an entire dialogue system, but has so far remained at a rather low level (acoustic, lexical). Acoustic modeling has used two metrics: ABX, a distance-based metric to be discussed later, and opinion scores on TTS output (whereby the discovered units are used to resynthesize speech). As for the lexical level, past work has focused on using the NLP metrics developed for word segmentation [START_REF] Ludusan | Bridging the gap between speech technology and natural language processing: an evaluation toolbox for term discovery systems[END_REF]. However, these metrics assume that the models should discover words explicitly. The success of character-based language models suggests that it is possible to learn high-level linguistic concepts without explicitly segmenting words (see [START_REF] Hahn | Tabula nearly rasa: Probing the linguistic knowledge of character-level neural language models trained on unsegmented text[END_REF].

Black box NLP. Among the variety of black-box linguistic tasks, psycholinguistically-inspired ones enable direct comparison of models and humans. Grammaticality judgments for recurrent networks have been investigated since [START_REF] Allen | The emergence of grammaticality in connectionist networks[END_REF], who use closely matched pairs of sentences to investigate grammatical correctness. This approach has recently been adopted to assess the abilities of RNNs, and LSTMs in particular, in capturing syntactic structures. For instance, [START_REF] Linzen | Assessing the ability of LSTMs to learn syntax-sensitive dependencies[END_REF] and [START_REF] Gulordava | Colorless green recurrent networks dream hierarchically[END_REF] use word probes in minimally different pairs of English sentences to study number agreement. To discriminate grammatical sentences from ungrammatical ones, they retrieve the probabilities of the possible morphological forms of a target word, given the probability of the previous words in the sentence. Practically, in the sentence "the boy is sleeping", they assume the network has detected number agreement if P(w = is) > P(w = are). This methodology has also been adapted by [START_REF] Goldberg | Assessing bert's syntactic abilities[END_REF] to models trained with a masked languagemodeling objective. Similarly, [START_REF] Ravfogel | Can LSTM learn to capture agreement? the case of basque[END_REF] use word probes to examine whether LSTMs understand Basque agreement and [START_REF] Godais | Comparing character-level neural language models using a lexical decision task[END_REF] to test the lexical level in character-based LM.

3 Methods

Training set

We used as a training set the LibriSpeech 960h dataset [START_REF] Panayotov | Librispeech: An asr corpus based on public domain audio books[END_REF]. We also included in this work the clean-6k version of the Libri-light dataset [START_REF] Kahn | Libri-light: A benchmark for asr with limited or no supervision[END_REF] which is a huge collection of speech for unsupervised learning. A phonetic transcription of the LibriSpeech dataset was also employed. To obtain this, we used the original LibriSpeech lexicon, as well as the G2P-seq2seq toolkit2 to generate the phonetic transcriptions of words lacking from the lexicon. We generated a forced-alignment version of Librispeech using the abkhazia library3 . This enabled us to provide comparative text-based topline systems along with the speech baseline.

Metrics

We set up four metrics with their accompanying datasets, to evaluate the sLMs at four levels: phonetic (the Libri-light ABX metrics), lexical (the sWUGGY spot-the-word metrics), syntactic (the sBLIMP acceptability metrics) and semantic (the sSIMI similarity metric). The 4 datasets are composed of speech sounds extracted from LibriSpeech (sSIMI), or synthetic stimuli constructed with the Google API4 using 4 different voices, two males and two females (sWUGGY, sBLIMP, sSIMI)5 . When synthetic, the stimuli were subsequently force-aligned to retrieve the phonetic boundaries. The datasets containing words or sentences were filtered to only contain the LibriSpeech vocabulary, and are split into dev and test sets.

Phonetics: Libri-light ABX metrics. The ABX metric consists in computing, for a given contrast between two speech categories A and B (e.g., the contrast between triphones 'aba' and 'apa'), the probability that two sounds belonging to the same category are closer to one another than two sounds that belong to different categories. Formally, we compute an asymmetric score, with a and x, different tokens belonging to category A (of cardinality n A ) and b belonging to B (n B ), respectively:

ê(A, B) := 1 n A (n A -1)n B a,x∈A x =a b∈B 1 d(b,x)<d(a,x) + 1 2 1 d(b,x)=d(a,x) (1) 
The score is symmetrized and aggregated across all minimal pairs of triphones like 'aba', 'apa', where the change only occurs in the middle phoneme. This score can be computed within speaker (in which case, all stimuli a, b and x are uttered by the same speaker) or across speaker (a and b are from the same speaker, and x from a different speaker). This score requires a pseudo-distance between acoustic tokens computed by averaging along a dynamic time warping path a framewise distance (KL or angular distance). This metric is agnostic to the dimensionality of the embeddings, can work with discrete or continuous codes, and has been used to compare ASR speech features [START_REF] Schatz | ABX-discriminability measures and applications[END_REF].

Here, we run this metric on the pre-existing Libri-light dev and test sets, which has been already used to evaluate several self-supervised models [START_REF] Kahn | Libri-light: A benchmark for asr with limited or no supervision[END_REF][START_REF] Rivière | Unsupervised pretraining transfers well across languages[END_REF].

Lexicon: sWUGGY spot-the-word metrics. We built on [START_REF] Godais | Comparing character-level neural language models using a lexical decision task[END_REF] which used the 'spot-the-word' task. In this task, networks are presented with a pair of items, an existing word and a matching nonword, and are evaluated on their capacity to attribute a higher probability to the existing word. The spot-the-word metric corresponds to the average accuracy of classifying the words and nonwords correctly across each pair.

The nonwords are produced with WUGGY [START_REF] Keuleers | Wuggy: A multilingual pseudoword generator[END_REF], which generates for a given word, a list of candidate nonwords best matched in phonotactics and syllabic structure. Because we were aiming at speech stimuli, we needed additional constraints to ensure that (i) the audio synthesis of the pairs would be of good quality, and (ii) that the pairs would have matching unigram and bigram scores relative to their phonemes. On a sample of 100 word/nonword pairs, and with feedback from a native English speaker informant, we designed a synthesis-quality rule. The rule consists of testing whether the original phonetic transcription matches the output of a back-to-back phoneme-to-grapheme (p2g) and grapheme-to-phoneme encoding (g2p). 6 Only pairs where both the words and nonwords passed this test were kept. We added additional constraints using a stochastic sampler to also match unigram and bigram phoneme frequencies (see Supplementary Material A).

The final sWUGGY test and development sets consists of 20,000 and 5,000 pairs respectively, with the existing words being part of the LibriSpeech train vocabulary. We also prepared additional OOV-sWUGGY test and development sets consisting of 20,000 and 5,000 pairs respectively, with existing words which do not appear in the LibriSpeech training set.

The spot-the-word accuracy is the average of the indicator function 1 P P (word k )>P P (nonword k ) over the set of pairs (word k , nonword k ), where PP is a pseudo-probability (a possibly non-normalized non-negative number) assigned to each input file by the model.

Syntax: sBLIMP acceptability metrics. This part of the benchmark is adapted from BLIMP [START_REF] Warstadt | Blimp: A benchmark of linguistic minimal pairs for english[END_REF], a dataset of linguistic minimal sentence pairs of matched grammatical and ungrammatical sentences. Similarly to the preceding test, the task is to decide which of the two members of the pair is grammatical based on the probability of the sentence. We adapted the code used to generate the BLIMP dataset [START_REF] Warstadt | Blimp: A benchmark of linguistic minimal pairs for english[END_REF] in order to create sBLIMP, specifically tailored for speech purposes. In BLIMP, sentences are divided into twelve broad categories of syntactic paradigms. These categories are themselves divided into 68 specific paradigms containing 1000 sentence pairs each, automatically generated using an expert hand-crafted grammar (this includes an additional subcategory which was added to the code subsequent to [START_REF] Warstadt | Blimp: A benchmark of linguistic minimal pairs for english[END_REF].

To make this dataset 'speech-ready,' we discarded five subcategories and slightly modified the grammar for nine additional subcategories in order to ensure sentences had appropriate prosodic contours. We also removed from the vocabulary all words absent from the LibriSpeech train set [START_REF] Panayotov | Librispeech: An asr corpus based on public domain audio books[END_REF], as well as compound words and homophones that could cause further comprehension issues once synthesised. 5000 sentence pairs were then generated for each of the 63 remaining subcategories. We sampled sentence pairs from the generated pool to create a development and a test set, ensuring that the larger linguistic categories were sampled so as to balance the n-gram language model scores (see Supplementary Material A). The test and development sets contain 63,000 and 6,300 sentence pairs respectively, with no overlap in sentence pairs. Stimuli were then synthesized and force-aligned as described at the beginning of the section.

Similar to the spot-the-word metric, the acceptability judgment metric requires a pseudo-probability for each given input file. The sentence acceptability accuracy is reported similarly to the spot-the-word accuracy with the pairs of grammatical and ungrammatical sentences in the sBLIMP dataset.

Lexical semantics: sSIMI similarity metrics. Here, the task is to compute the similarity of the representations of pairs of words and compare it to human similarity judgements. Based on previous work [START_REF] Chung | Speech2vec: A sequence-to-sequence framework for learning word embeddings from speech[END_REF], we used a set of 13 existing semantic similarity and relatedness tests to construct our similarity benchmark. The similarity-based datasets include WordSim-353 [START_REF] Yang | Verb similarity on the taxonomy of WordNet[END_REF], WordSim-353-SIM (Agirre et al., 2009), mc-30 (Miller and[START_REF] George | Contextual correlates of semantic similarity[END_REF], rg-65 [START_REF] Rubenstein | Contextual correlates of synonymy[END_REF], Rare-Word (or rw) [START_REF] Luong | Better word representations with recursive neural networks for morphology[END_REF], simLex999 [START_REF] Hill | Simlex-999: Evaluating semantic models with (genuine) similarity estimation[END_REF], simverb-3500 [START_REF] Gerz | Simverb-3500: A large-scale evaluation set of verb similarity[END_REF], verb-143 [START_REF] Baker | An unsupervised model for instance level subcategorization acquisition[END_REF] , YP-130 [START_REF] Yang | Verb similarity on the taxonomy of WordNet[END_REF] and the relatedness-based datasets include MEN [START_REF] Bruni | Distributional semantics in technicolor[END_REF], Wordsim-353-REL [START_REF] Agirre | A study on similarity and relatedness using distributional and wordnet-based approaches[END_REF], mturk-287 [START_REF] Radinsky | A word at a time: computing word relatedness using temporal semantic analysis[END_REF], mturk-771 [START_REF] Halawi | Large-scale learning of word relatedness with constraints[END_REF]. All scores were normalised on a 0-10 scale, and pairs within the same dataset containing the same pair of words but in the opposite order were averaged. Pairs containing a word not in the LibriSpeech train set [START_REF] Panayotov | Librispeech: An asr corpus based on public domain audio books[END_REF] were discarded.

We selected as a development set the mturk-771 dataset, which was, in preliminary study using character-and word-based LMs, both highly correlated with all other datasets and was large enough to be used as a development set. It was also ensured that no pair from the development set was present in any of the test sets. All other twelve datasets were used as test sets. We then created two subsets of audio files, one synthetic, one natural. For the first, we followed the synthesis and forced alignment procedures described at the beginning of the section. For the second, we retrieved the audio extracts from LibriSpeech corresponding to each word, following the process presented in [START_REF] Chung | Speech2vec: A sequence-to-sequence framework for learning word embeddings from speech[END_REF]. The natural subset is therefore smaller than its synthesized counterpart as we had to discard pairs from the test and dev sets which were not present in the LibriSpeech test and dev sets respectively. However, in this natural subset, each word may appear in multiple tokens, providing phonetic diversity; duplicated scores are averaged in the analysis step. The synthesised subset is composed of 9744 and 705 word pairs for the test and dev sets respectively, and the LibriSpeech subset is composed of 3753 and 309 pairs for the test and dev sets.

The semantic similarity score is reported as the Spearman's rank correlation coefficient ρ between the semantic distance scores given by the model and the true human scores in the dataset. Note that in this work all the semantic similarity scores are multiplied by 100 for clarity.

Models

Baseline models. Our baseline models are a composite of three components: an acoustic model (CPC), a clustering module (k-means) and a language model (LSTM or BERT) varying in size.

The acoustic model is built upon Contrastive Predictive Coding (CPC, van den Oord et al. ( 2018)), where the representation of the audio is learned by predicting the future through an autoregressive model. In more detail, given an input signal x, the CPC model embeds x to a sequence of embeddings z = (z 1 , . . . , z T ) at a given rate through a non-linear encoder g enc . At each time step t, the autoregressive model g ar takes as input the available embeddings z 1 , . . . , z t and produces a context latent representation c t = g ar (z 1 , . . . , z t ). Given the context c t , the CPC model tries to predict the K next future embeddings {z t+k } 1≤k≤K by minimizing the following constrastive loss:

L t = - 1 K K k=1 log exp z t+k W k c t z∈Nt exp (z W k c t ) (2) 
where N t is a random subset of negative embedding samples, and W k is a linear classifier used to predict the future k-step observation. We used a PyTorch implementation of CPC7 [START_REF] Rivière | Unsupervised pretraining transfers well across languages[END_REF], which is a modified version of the CPC model that stabilizes the CPC training by replacing batch normalization with a channel-wise normalization and improves the CPC model by replacing the linear classifier W k in equation ( 2) with a 1-layer Transformer network [START_REF] Vaswani | Attention is all you need[END_REF]. The encoder g enc is a 5-layer 1D-convolutional network with kernel sizes of 10,8,4,4,4 and stride sizes of 5,4,2,2,2 respectively, resulting in a downsampling factor of 160, meaning that the embeddings have a rate of 100Hz. The autoregressive model g ar is a multi-layer LSTM network, with the same hidden dimension as the encoder. For this baseline, we trained two different versions of CPC: CPC-small and CPC-big. Details are given in Table 2.

After training the CPC model, we then train a k-means clustering module on the outputs of either the final layer or a hidden layer of the autoregressive model. The clustering is done on the collection of all the output features at every time step of all the audio files in a given training set. After training the k-means clustering, each feature is then assigned to a cluster, and each audio file can then be discretized to a sequence of discrete units corresponding to the assigned clusters. The k-means training was done on the subset of LibriSpeech containing 100 hours of clean speech.

Finally, with the discretized version of the audio files, we train language models on the discretized units. We establish two 'low budget' and two 'high budget' baselines, based on the number of parameters and the compute resources necessary to train them. The high budget used a BERT-based architecture [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] trained either on CPC-small or CPC-big plus k-means-50 pretrained units. The low budget architectures were a two-layer LSTM and a small BERT architecture (see Table 3 for details); they both used the units from the CPC-big pretraining. Following Baevski et al. (2020a), we trained the BERT models with only the masked token prediction objective. We also followed Baevski et al. (2020a) by masking a span of tokens in the input sequence instead of a single token (otherwise the prediction would be trivial to the model as discretized units tend to replicate). We masked M consecutive tokens for each span, where M ∼ N (10, 10), with a total masking coverage of roughly half of the input tokens (spans may overlap). All models were trained on LibriSpeech 960h. The BERT models were trained with a total batch size of 524k tokens, and the LSTM model was trained with a total batch size of 163k tokens. The learning rate was warmed up to a peak value of 1 × 10 -5 . All the implementation was done via fairseq [START_REF] Ott | fairseq: A fast, extensible toolkit for sequence modeling[END_REF].

The Topline models.

For topline comparison, we trained a BERT model on force-aligned phonemes using the gold transcription of the LibriSpeech dataset. We also employed the span masking similarly to the baseline model. In addition to the BERT trained on forced alignments, we also included a BERT model trained on the gold phonetic transcription of the LibriSpeech dataset, with the difference that we only mask one token instead of a span of tokens. For an absolute topline comparison, we used the pretrained RoBERTa large model [START_REF] Liu | Roberta: A robustly optimized BERT pretraining approach[END_REF], which was trained on 50K subword units on a huge dataset of total 160GB, 3000 times bigger than the transcription of the LibriSpeech 960h dataset.

Results

4.1 Libri-light ABX Computing distances. We used the average angular distance (arccos of the normalized dot product) of the representations along the DTW-realigned path, as used by default in previous challenges [START_REF] Versteegh | The zero resource speech challenge 2015: Proposed approaches and results[END_REF][START_REF] Dunbar | The zero resource speech challenge[END_REF][START_REF] Dunbar | The zero resource speech challenge[END_REF]. For our baseline models, we computed the ABX scores over one-hot representations of discretized units of the audio files.

Results. We first ran experiments varying the number of clusters. As seen in Supplementary Table S2, too few or too many clusters gives rise to worse ABX performance, with a sweet spot at 50 clusters, which is the number we retain for the remainder of the paper. In Table 4, we present the result of the ABX for our two models (CPC-small and CPC-big), before and after clustering. One can see that the CPC-big model yields better performance than the CPC-small model (we retain the big model for the rest of the experiments), and the clustering step yields an increase in error of between 60-100%. Still, the performances are better than for an MFCC representation, with a much more compact code.

sWUGGY spot-the-word

Computing the pseudo-probability. Given an audio file x, we first discretize x into a sequence of discretized units q 1 ...q T . Then, following [START_REF] Salazar | Masked language model scoring[END_REF], we propose the following pseudoprobability score for our BERT models trained with a span-masked token prediction objective:

span-PP M d ,∆t (q 1 ..q T ) = i=1+j∆t (T -1)/∆t ≥j≥0 P (q i ..q i+M d |q 1 ..q i-1 q i+M d +1 ..q T ),
where M d is a chosen decoding span size, and ∆t is a temporal sliding size. For the LSTM model, we computed the probability of the discretized sequence with the classic left-to-right scoring style obtained by the chain rule: P (q 1 ..q T ) = T i=1 P (q i |q 1 ..q i-1 ).

Results. We determined the optimal masking (Supplementary Table S3) to be ∆t = 5 and M d = 15. We kept this setting for all other experiments involving pseudo-probabilities. Table 5 presents the average of the four baseline systems and in Figure S1, the detailed performances of the baseline compared to n-gram controls and toplines. The performance of all four baselines is consistently better than chance and n-gram controls.

sBLIMP acceptability

Computing the pseudo-probability. We computed the pseudo-probability as in Section 4.2.

Results. The aggregate results are shown in Table 5 and the detailed ones on the best system in Table S4. The results of this test, while above chance are considerably lower than the text-based toplines.

sSIMI semantic similarity

Computing the distance. We computed the semantic distance between two audio files x and y as the similarity between the two corresponding discretized sequences q x 1 ...q x T and q y 1 ...q y S . To obtain this, we extracted outputs from a hidden layer of the LM to the two discretized sequences, aggregating them with a pooling function to produce a fixed-length representation vector for each sequence, and computed the cosine similarity between the two representation vectors:

d SEM (x, y) = sim f pool h (i) (q x 1 ...q x T ) , f pool h (i) (q y 1 ...q y S ) ,
where f pool is the pooling function and h (i) (•) is the output of the i th hidden layer of the LM.

As each word consists of possibly several voices, we averaged the similarity distance over pairs of the same voice for the synthetic subset, and all possible pairs for the LibriSpeech subset.

Results. For each model, we chose the pooling function and the hidden level that give the best score on the dev set, and computed the score on the corresponding test set. The aggregate results are in Table 5, and a detailed layer-by-layer analysis in Table S5. The scores for semantic similarity are overall modest, compared to BERT systems trained on larger units (BPE). However, one can observe that the best layers for semantic similarity occur towards the first third of the transformer, and that max pooling seems to be best. This contrasts with the best layers for acoustic similarity (as indexed by ABX), which occur at the extremities.

Model comparison

The overall results are in Table 5. They show that the four baseline models are above chance in the four tasks, even low budget ones, although there is substantial variation between tasks. While task at the lexical level is substantially above chance, the syntactic and semantic tasks show room for improvement compared to text-based toplines trained on similar amounts of data. We introduced the new Zero Resource Speech Benchmark 2021 for spoken language models. It is composed of 4 zero-shot tests probing 4 linguistic levels: acoustic, lexical, syntactic and semantic. We showed that a simple CPC+clustering+LM trained on LibriSpeech can perform above chance on all of these tests, outperforming n-gram models, while being worse than text-based models trained on the same data. This shows both that the spoken LM task is feasible, and that there is room for improvement.

Discussion

Obvious directions for research include improving the representation learning component, the clustering methods, and the transformer, which have not been particularly tuned for this benchmark.

There are also end-to-end models like wav2vec (Baevski et al., 2020b) and other masking systems [START_REF] Wang | Unsupervised pre-training of bidirectional speech encoders via masked reconstruction[END_REF] that could be tried in this context. The performance gap between the RoBERTa large system and our toplines trained on LibriSpeech suggest that much is to be gained by increasing the size of the training set, which can be obtained by large unlabelled audio datasets like LibriVox. Finally, even though this benchmark is intended for developing speech technology for low resource languages, significant resources are still required to construct the test sets and metrics (phonetic dictionary, aligned speech, grammar, TTS or trained speakers to make the stimuli). More work is needed to reduce this footprint and scale up this benchmark to languages other than English.

Broader Impact

The metrics developed here may help improve interpretability of unsupervised systems. Research within the Zero Resource setting may help for developing speech technology for low resourced languages, or for languages with no textual resources, which cannot be addressed in the supervised setting. Even for high resource languages, learning a language model from raw speech would help address dialect variation, including minorities, making speech technology more inclusive. Broadening the reach of speech technology might be used to increase the economic dominance of already-large actors if developed with proprietary resources. To minimize this, we engage the community through an open source benchmark. C Supplementary spot-the-word results

Table S3: Spot-the-word accuracy (higher is better) on sWUGGY dev as a function of the masking parameters to compute the pseudo-probabilities. The runtime is estimated based on the evaluation time with the base parameters M d = ∆t = 10. In bold the compromise we selected between accuracy and speed. Table S3 investigates the effect of the masking parameters M d and ∆t to the spot-the-word metrics. We found that the way of computing log-probability can greatly influence the evaluation scores. We see that as long as we overlap the masking spans more, the performance is better. In addition, given that we masked spans of M ∼ N (10, 10) tokens during training, the best decoding masking size was found to be 15. Considering the evaluation time, it is theoretically inversely proportional to ∆t, and we thus decided to choose M d = 15 and ∆t = 5 for an accuracy and speed trade-off.

Figure S1 shows the performance of the CPC-big system on the BERT-large architecture: they are worse than the toplines but well above chance. We reproduce the frequency effects (more frequent words giving rise to better accuracies) and the length effect (longer words giving rise to better accuracies). This may be due to the fact that the phonetic space is sparser for long than for short words. As a consequence, a short nonword like "tup" could be continued as a real word in multiple ways ("tuple", "tupperware", etc.). In contrast, a long nonword can rarely be salvaged into a word (eg, 'rhanoceros' is a nonword very early on).

D Supplementary grammaticality results

Table S4 shows the detailed results on the various subsets of sBLIMP of our best model. Almost all of the subsets show better than chance scores (11/12), and of the phoneme ngrams controls (11/12), Table S4: Sentence acceptability accuracy (sBLIMP dev set, higher is better, chance level at 50%) for our best CPC+kmeans 50+BERT model, compared to phone ngram baselines, text-based transformer toplines, and human scores (from [START_REF] Warstadt | Blimp: A benchmark of linguistic minimal pairs for english[END_REF].
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Figure S1 :

 S1 Figure S1: Spot-the-word accuracy (sWUGGY dev set, higher is better, chance level at 50%) for our best CPC+clustering+BERT model (blue), compared to phone ngram baselines (gray) and text-based transformer toplines (orange). Left, word frequency effect. Right, word length effect.

Table 1 :

 1 Summary description of the four Zero Resouce Benchmark 2021 metrics. The metrics in light blue use a pseudo-distance d between embeddings (d h being from human judgments), the metrics in light orange use a pseudo-probability p computed over the entire input sequence.

	Linguistic	Metrics	Dataset	Task	Example
	level				
	acoustic-	ABX	Libri-light d(a, x) < d(b, x)?	within-speaker:
	phonetic			a ∈ A, b ∈ B,	(apa s1 , aba s1 , apa s1 )
				x = a ∈ A	across-speaker:
					(apa s1 , aba s1 , apa s2 )
	lexicon	spot-the-	sWUGGY p(a) > p(b)?	(brick, blick)
		word			(squalled, squilled)
	lexical	similarity	sSIMI	d(a, b) ∝ d h (a, b)? (abduct, kidnap) : 8.63
	semantics	judgement			(abduct, tap) : 0.5
	syntax	acceptability	sBLIMP	p(a) > p(b)?	(dogs eat meat, dogs eats meat)
		judgment			(the boy can't help himself, the
					boy can't help herself)

Table 2 :

 2 Characteristics of the baseline acoustic CPC models. We took the last LSTM layer of CPC-small and the second LSTM hidden layer of CPC-big as inputs to the clustering as they give the best ABX scores (Supplementary TableS1).

	Model	CPC configuration autoregressive hidden units	Training data	Input to kmeans
	CPC-small 2-layer LSTM	256	LibriSpeech clean-100	LSTM level 2
	CPC-big	4-layer LSTM	512	Libri-light clean-6k	LSTM level 2

Table 3 :

 3 Characteristics of the baseline LMs. L refers to the number of hidden layers; ED, HD and FFD refer to the dimension of the embedding layer, hidden layer, and feed-forward output layer respectively; H refers to the number of attention heads in the BERT case.

			Architecture		nb	Train	Compute
	Model	L ED	HD	FFD H parameters	data	Budget
	BERT	12 768 768 3072 12	90M	LS960 48h -32 GPUs
	BERT-small 8 512 512 2048 8	28M	LS960	60h -1GPU
	LSTM	3 200 1024 200	-	22M	LS960	60h-1GPU

Table 4 :

 4 Within and Across Speaker ABX error (lower is better) on Libri-light dev-clean and -other for two unsupervised models, before and after clustering (1-hot representations).

		within		across	
	Embedding	dev-clean dev-other	dev-clean dev-other
	MFCC	10.95	13.55	20.94	29.4
	CPC-small	6.24	8.48	8.17	13.55
	+kmeans-50	10.26	14.24	14.17	21.26
	CPC-big	3.41	4.85	4.18	7.64
	+kmeans-50	6.38	10.22	8.26	14.86

Table 5 :

 5 Overall performance of our baseline and topline models on dev and test sets on our four zero-shot metrics. For baseline models, the k-means training (k=50) was performed on LibriSpeech clean-100h, and the LSTM/BERT models was trained on discretized units of LibriSpeech 960h. For topline comparisons, we included a BERT model trained on the forced aligned frames of LibriSpeech 960h, a BERT model trained on the gold phonetic transcription of LibriSpeech 960h, and a RoBERTa large model pretrained on a text dataset 3000 times bigger than the transcription of LibriSpeech 960h.

		ABX within ABX across sWUGGY sBLIMP	sSIMI
	System	Set clean other clean other			synth. libri.
		Low budget baseline systems			
	CPC-big+km50+BERT-small	dev 6.38 10.22 8.26 14.86 test 6.71 10.62 8.41 15.06	65.81 65.94	52.91 53.02	3.88 5.56 3.02 0.06
	CPC-big+km50+LSTM	dev 6.38 10.22 8.26 14.86 test 6.71 10.62 8.41 15.06	66.13 66.22	53.32 52.89	4.42 7.56 7.35 6.66
		High budget baseline systems			
	CPC-small+km50+BERT	dev 10.26 14.24 14.17 21.26 test 10.07 14.71 13.45 22.42	70.69 70.50	54.26 54.61	2.99 6.68 8.96 -1.55
	CPC-big+km50+BERT	dev 6.38 10.22 8.26 14.86 test 6.71 10.62 8.41 15.06	75.56 75.51	56.14 56.16	6.25 8.72 5.17 1.75
			Topline systems				
	Forced align BERT	dev 0.00 0.00 0.00 0.00 test 0.00 0.00 0.00 0.00	92.19 91.88	63.72 63.16	7.92 4.54 8.52 2.41
	Phone BERT	dev -test -	--	--	--	97.90 97.67	66.78 66.91	9.86 16.11 12.23 20.16
	RoBERTa large	dev -test -	--	--	--	96.58 96.25	81.56 82.11	32.28 28.96 33.16 27.82

Table S1 :

 S1 Within and Across Speaker ABX error (lower is better) on Libri-light dev-clean at different level of the autoregressive network of CPC-small and CPC-big models. Best layer for each model in bold.TableS2reports the ABX scores for different number of clusters, we also included multiple-group clustering in our experiences as similar toBaevski et al. (2020a). We found that the best score is obtained with 50 clusters. Using multiple groups do not further improve the quality of the discretized units, this may be due to the fact that we only used one-hot information of the multiple groups (for example, the two codes 26-20 and 26-10 represent two different one-hot units without any correlation).

		CPC-small		CPC-big	
	LSTM layer	1	2	1	2	3	4
	within	10.26 6.24	9.62 3.41 4.65 9.50
	across	14.17 8.17	14.73 4.18 5.40 9.95

Table S2 :

 S2 Within and Across-Speaker ABX error rate (lower is better) on LibriSpeech devclean dataset for CPC-small+kmeans (one-hot vectors embeddings) with different number of units (clusterings). Optimal number of clusters in bold.

	nunits	20	50	200 500 2000 50 x 2gr 320 x 2gr
	within 11.3 10.3 12.5 13.4 17.0	12.6	18.3
	across 14.5 14.2 16.8 19.9 27.2	17.7	27.7

https://github.com/cmusphinx/g2p-seq2seq

https://github.com/bootphon/abkhazia

https://cloud.google.com/text-to-speech

We use WaveNet voices A, C, D and F. All dev set stimuli are synthesised in all four voices. Stimuli in the sSIMI and sBLIMP test sets are split evenly among the four different voices, and sWUGGY uses all four for each test set stimulus.

We used the G2P-seq2seq toolkit.

https://github.com/facebookresearch/CPC_audio
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Supplementary Materials

A Sampling method to balance ngram scores

We describe here our sampling method to balance ngram scores for sWUGGY and sBLIMP datasets. We first show the algorithm that we applied to sWUGGY, then we just modify slightly the algorithm for the sBLIMP dataset.

For sWUGGY, let's assume that we have N words w 1 , . . . , w N ; and for each word w i , we have a list of K matching nonword candidates 1 i , . . . , nw K i . We also assume that each word or nonword w has M scores s 1 (w), . . . , s M (w) (this might be unigram/bigram char/phone scores). We aim to choose, for each word w i , a matching nonword nw * i such that the proportion of the pairs where the score of the word is higher than the score of nonword is close to 50% as possible, for each of M scores.

In other words, we want to build a list of word-nonword pairs L = {(w 1 , nw * 1 ), . . . , (w N , nw * N )} such that the objective function

is as close to zero as possible.

We thus deduce a simple sampling method as follows: We first initialize a list L of chosen pairs of word and nonword. At each iteration, we randomly choose an unchosen word. Then we sample a nonword candidate in the list of matching nonword candidates, update the list with the new pair, and compute the objective function of the new list as given in S1. If the objective increases, we remove this newly added element, and resample a new nonword from the list of candidates. If we encounter all the nonword candidates but cannot find a new pair, we randomly choose a nonword from the list of candidates. We then continue to the next word until all the words are chosen.

We found afterwards that if we sample all the words at the same time, we can obtain an overall score very close to 50%, but then words with high frequency or with short length tended to have higher accuracy than others. We then decided to divide the words into sub-categories by frequency and word length, and then do the sampling on each of the sub-categories, which gives a more balanced score on all the length and frequency levels.

For sBLIMP, the candidates are slightly different. We now have a list of N pairs of grammatical and non-grammatical sentences and we want to choose K pairs among them such that the accuracy of the chosen pairs is as close to 50% as possible as for sWUGGY. We can then use the same sampling method as described above, with the exception that instead of choosing a word and sampling the nonword candidates at each iteration, we sample an unchosen pair in the list of candidates, and add that pair to the chosen list if we succeed to decrease the objective function.

As we also found that there is a huge difference in the accuracy scores of linguistic paradigms, we tried to do the sampling by each sub-paradigm. However, there were still some paradigms for which we were not able to perfectly balance the score.

B Supplementary ABX methods and results

Given two sounds x and y with two sequences of representations r x = r x 1 , . . . , r x T and r y = r y 1 , . . . , r y S respectively, the ABX distance between x and y is computed as follows:

where sim(x, y) is the arc cosine of the normalized dot product between the embeddings x and y.

Table S1 shows the ABX error on Libri-light dev-clean as a function of different hidden layer of the autoregressive network. We found that as long as we have a big autoregressive network, it is generally not the last layer that brings the best phonetic information of the audio file.

E Supplementary semantic similarity results

Table S5 shows the detailed sSIMI results, layer by layer of the best BERT model together with the detailed ABX results on the same layers. This shows a complementarity of these two metrics (the best layers for acoustics/phonetics are the worst for semantics and vice versa). .3 -1.12 -0.93 0.86 6.21 1.9 0.96 0.12 3.53 5.03 0.71 3.41 -0.9 --