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Abstract: 24 

In an increasingly anthropogenic world, the scientific community and managers have to take 25 

interactions between the drivers of ecosystems into consideration. Tools like ecological network 26 

analysis (ENA) indices offer the opportunity to study those interactions at the ecosystem level. 27 

However, ENA indices have never been used to test the incidence of cumulative drivers. The present 28 

study uses models combining the effects of (i) the reef caused by the future offshore wind farm of 29 

Courseulles-sur-Mer and (ii) climate change on species distribution, to test the response of multiple 30 

ENA indices. ENA indices proved sensitive to this cumulative impact, displaying a wide variety of 31 

cumulative effects. They were also very powerful to characterize the role of the cumulative impact 32 

on ecosystem functioning. These results demonstrate the capacity of ENA indices to describe and 33 

understand cumulative effects at the ecosystem scale. Using a sensitivity analysis approach, this 34 

study shows that ENA indices could be viable tools for managers. To help them in their tasks, the 35 

next step could be to link ecosystem services to ENA indices for a more practical use.  36 

Key words: Cumulative impact, Linear inverse modeling, Marine Renewable Energies, Ecological 37 

Network Analysis, ENA food web. 38 

 39 
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1. Introduction 41 

The world is in constant evolution, and human activities have deeply changed the rate of this 42 

evolution (Halpern et al., 2008b). Due to constant human activity, ecosystem functioning can no 43 

longer be dissociated from the dynamics of anthropogenic activities (Vitousek et al., 1997). Although 44 

coastal ecosystems are already heavily stressed, they are going to be increasingly exploited owing to 45 

the ever-increasing human population and demand for resources (Halpern et al., 2015). The English 46 

Channel – an epicontinental sea – is considered as one of the most anthropized marine ecosystems in 47 

the world (Halpern et al., 2008b; Dauvin, 2019). It is subjected to multiple anthropogenic drivers such 48 

as marine transport, fishing, sediment dredging and aggregate extraction (Dauvin et al., 2004; 49 

Dauvin, 2019). It is also a hotspot for the future development of an offshore wind farm (OWF) in 50 

France (Pezy et al., 2020; Raoux et al., 2017). The effects of OWFs on ecosystems are divided in two 51 

phases: (i) the construction phase and (ii) the operational phase. The construction phase is 52 

characterized by short-lasting heavy disturbance (extreme noise from pile driving and vessels, cable-53 

trenching disturbance), while the operational phase is associated to long-lasting effects on the 54 

environment (Hammar et al., 2014). One of the long-lasting effects of OWFs is the creation of new 55 

habitats and shelters for benthic and demersal species through the introduction of hard substrates in 56 

the surrounding soft substrate habitats (Wilhelmsson and Malm, 2008). The increased habitat 57 

heterogeneity can lead to changes in the abundance, biomass, and species richness of benthos and 58 

fish (Coates et al., 2014; Wilhelmsson et al., 2006), known as the reef effect. This reef effect is likely 59 

to be the main ecosystem effect of OWFs during the exploitation phase and can potentially affect the 60 

whole food web (Bergström et al., 2013). Only the exploitation phase is considered in this study, and 61 

the construction phase is ignored (De Mesel et al., 2015; Langhamer, 2012; Petersen and Malm, 62 

2006). 63 

To help managers and decision-makers in their sustainable development mission, it is a priority to 64 

understand how OWFs act on ecosystem dynamics, which is mainly driven by trophic interactions 65 

between species. Trophic network modeling can help to study those interactions. In a network, a 66 

stimulus on one part of the model can cascade throughout the network. Trophic network modeling is 67 

therefore an interesting tool to understand how drivers act on the whole ecosystem. 68 

To analyze how food webs are affected by drivers, Ulanowicz (1997, 2004) used ecological network 69 

analysis (ENA) indices. ENA indices can assess properties like the size, function or organization of a 70 

network through multiple metrics related to ecological processes, such as omnivory, recycling, 71 

overhead of flows (Borrett and Scharler, 2019; Heymans and Tomczak, 2016; Niquil et al., 2012a; 72 

Ulanowicz, 1986). These indices have been considered to be good potential indicators of the 73 

ecosystem health status and were thus cited by the OSPAR convention as promising indicators (Niquil 74 
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et al., 2014; De la Vega et al., 2018; Safi et al., 2019). They were subsequently employed to 75 

understand the effects of human activities (e.g., the extension of a harbor) on ecosystems (Tecchio et 76 

al., 2016), or even to develop different management scenarios (Heymans and Tomczak, 2016; 77 

Tomczak et al., 2013). 78 

Raoux et al. (2017) explored a new way to look at the potential effects of OWFs through food web 79 

models and flow analysis. These authors implemented the Ecopath with Ecosim (EwE) approach 80 

(Christensen and Walters, 2004; Heymans et al., 2011; Polovina, 1984) to model the food web at a 81 

planned OWF (Courseulles-sur-mer, Bay of Seine, English Channel, France). One of their main results 82 

was that the total ecosystem activity, recycling, and the ecosystem maturity increased after OWF 83 

construction, due to the reef effect (Raoux et al., 2017, 2019). Results also indicated an anticipated 84 

increase in detritivory flows and an increased benthic fish biomass after OWF construction. 85 

However, one of the main weaknesses of impact studies is that they focus on a single ecosystemic 86 

driver (Raoux et al., 2018), and ignore the other drivers of disturbance with long-lasting effects such 87 

as climate change (Hoegh-Guldberg and Bruno, 2010). The main issue when ignoring combined 88 

drivers is to miss cumulative effects that may alter the magnitude or direction of predicted changes 89 

(Breitburg et al., 1998; Vinebrooke et al., 2004; Fu et al., 2018; Planque et al., 2010). Hence, 90 

irrelevant or misleading recommendations can be issued when cumulative effects are not included 91 

(Halpern et al., 2008).  92 

We propose to investigate the cumulative effects of climate change and one OWF using ecological 93 

network analysis on a food web model. To do so, we transformed the Raoux et al. (2017) Ecopath 94 

model of the future Courseulles-sur-Mer OWF into a Linear inverse model (LIM).  We coupled this 95 

OWF LIM model with niche models of the Courseulles-sur-Mer ecosystem (Ben Rais Lasram et al., 96 

2020) to study the effects of climate change on species. Several representative concentration 97 

pathway (IPCC 2014) scenarios were used to simulate changes in the bioclimatic niches of 72 98 

macrofauna species with dominant biomass within the trophic compartments of the food web. 99 

We used those scenarios combining the effects of climate change and the OWF to compute a series 100 

of ENA indices to study the effects of each driver separately and then of the combined drivers on the 101 

food web of Courseulles-sur-Mer. We explored the capacities of ENA indices to study cumulative 102 

effects. Finally, we discussed the advantages and weaknesses of a framework based on ENA indices 103 

to investigate cumulative impacts and provide management recommendations.   104 
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2. Materials and methods 105 

2.1 Study area 106 

This study is focused on the area of the future OWF of Courseulles-sur-Mer (Normandy, France), that 107 

will be located in the lower middle part of the Bay of Seine (Figure 1). The bay opens onto the English 108 

Channel in its northern part, its depth is relatively shallow with a mean of 30 m at the future OWF 109 

location. The OWF area will cover 50 km², and 64 offshore wind turbines are planned. The OWF will 110 

be built on coarse sand and sandy gravels harboring benthic communities of the Bay of Seine 111 

(Baffreau et al., 2017). 112 

 113 

Figure 1: Localization of the future offshore wind farm of Courseulles-sur-Mer in the Bay of Seine.  114 

  115 
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2.2 Cumulative impact models 116 

In order to test ENA indices in cumulative impact scenarios, we created trophic models based on two 117 

studies: (i) a trophic modeling of the expected reef effect caused by the future Courseulles-sur-Mer  118 

OWF (Raoux et al., 2017), and (ii) results from niche models simulating climate change (Ben Rais 119 

Lasram et al., 2020). 120 

 121 

2.2.1 Wind farm effect on the food web 122 

The construction of turbines and their associated scour protection creates new hard-substrate 123 

habitats and shelters such as artificial reefs. These new hard-substrate habitats increase habitat 124 

heterogeneity, leading to increased abundance, biomass, and species richness of the benthic 125 

macrofauna (e.g., the mussel (Mytilus edulis)) and of demersal fish (e.g., the pouting (Trisopterus 126 

luscus)) (Coates et al., 2014; Raoux et al., 2017; Wilhelmsson et al., 2006).  127 

The reef effect of the future Courseulles-sur-Mer OWF was modeled using trophic network models 128 

quantifying the flows of energy between organisms, as described in Raoux et al. (2017). This trophic 129 

model was based on the Ecopath with Ecosim approach (Christensen and Walters, 2004; Polovina, 130 

1984). A first Ecopath model was built to model the ecosystem before the establishment of the OWF. 131 

Ecopath is a mass balance model, meaning that the sums of the inflows and outflows of the system 132 

are equal. It was used as a basis for an Ecosim model. Ecosim is a time dynamic model based on the 133 

mass balance Ecopath model (Pauly et al., 2000). It was used to model the reef effect of the future 134 

Courseulles-sur-Mer OWF and to create an Ecopath model 30 years from the OWF construction. Two 135 

Ecopath models were thus created: a baseline Ecopath model called BOWF (before offshore wind 136 

farm), and a model called REEF, based on the reef effect demonstrated to be the main long-term 137 

effect of the farm (Raoux et al., 2017). Both models were composed of the same 37 compartments of 138 

species, with similar trophic interactions (Leguerrier et al., 2003).  139 

While the Ecopath approach is a well acknowledged mass balance approach, it can be criticized for its 140 

limitations in the modeling of low-trophic-level compartments – which are often subjected to high 141 

inter and intra year biomass variability – and because the method is based on a manual balancing 142 

procedure, which is not based on uncertainty evaluation of the input parameters. In order to take 143 

into account the uncertainty in the input parameters but also to define uncertainty in the outputs 144 

(flow values or ENA indices), another mass balance modeling approach is more suitable, i.e., the LIM 145 

linear inverse models, Monte Carlo Markov Chain or LIM-MCMC (N. Niquil et al., 2012; van Oevelen 146 

et al., 2010a). Linear inverse modeling relies on a set of linear equalities and inequalities to estimate 147 

unknown flows in food webs. The equalities set the mass balance of the model, while the inequalities 148 
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correspond to the confidence intervals of the measured flows. The Monte Carlo method is a sampling 149 

procedure used to determine the complete coverage of the range of possible solutions. Which means 150 

that while Ecopath only considers one value for each parameter/flow, LIM-MCMC integrates a range 151 

of values to represent the variability of living organisms (Meersche et al., 2009; Niquil et al., 2012; 152 

van Oevelen et al., 2010). This variability is also very useful to compare models statistically. 153 

We thus used the BOWF and REEF Ecopath models of Raoux et al. (2017) and transformed them into 154 

linear inverse models (LIMs). Four steps are necessary to create a LIM model, in which we 155 

determined: 156 

- The topology of the network based on the possible flows 157 

- The mass balance equations 158 

- The constraints of the model 159 

- The computing parameters (jump and iterations). 160 

Because the two Ecopath models used the same topology, we based our topology on them. 161 

However, we had to reduce the number of biological compartments to shorten the computation 162 

time. The number of compartments decreased from 37 to 19 (Figure 2, Table A.1), and aggregation 163 

was based on the diet of each Ecopath compartment (Table A.1, A.3 & A.4; Leguerrier et al., 2003). 164 

Keeping the same topology between the LIM BOWF model and the LIM REEF model allowed us to 165 

compare the results of the two models free of any structural bias (Table A.3 & A.4).  166 

 167 

Figure 2: Functional compartments of the Courseulles-sur-Mer ecosystem model organized according 168 

to their trophic level, based on the BOWF trophic levels. 169 

We defined the mass balance equation for each compartment. In a mass balance equation, the input 170 

of a compartment is equal to its output. The input is the consumption of the compartment, while the 171 
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output is the excretion, the respiration and the production of the compartment available for the 172 

system (predation). 173 

Production (P) = consumption (Q) – excretion (U) – respiration (R) 174 

Regarding the constraints of the model, we set minimum and maximum values for parameters such 175 

as the production to biomass ratio (P/B), the production to consumption ratio (P/Q), the respiration 176 

to consumption ratio (R/Q), and the excretion to consumption ratio (U/Q) (Table A.2). We used 177 

constraint values from the literature for some compartments, while others were computed with the 178 

Ecopath values and pedigrees. Pedigrees were used to define the uncertainty around the Ecopath 179 

values to determine minimum and maximum values (Table A.2). When the Ecopath values were 180 

considered very reliable (‘Fish, planktivorous’, ‘Fish, benthos feeders’, ‘Fish, piscivorous’ and ‘Flat 181 

fish’), the uncertainty around the P/B, P/Q and U/Q values was set to 10 %. The diet constraints were 182 

calculated with the same method for all compartments of the models (BOWF and REEF). Finally, we 183 

added primary production values to drive the two LIM models: while the Ecopath model does not 184 

consider primary production values, the LIM model needs minimum and maximum values of 185 

potential primary production (Behrenfeld and Falkowski, 1997; Napoléon and Claquin, 2012). 186 

The xsample function from the LIM package was used to compute the LIM models (van den 187 

Meersche et al., 2009). The LIM-MCMC model depends on two parameters for its computing: the 188 

jump and the number of iterations. With the equations and the constraints, the LIM MCMC model 189 

creates a polytope of solution that includes all the possible values for each flow of the system. The 190 

number of iterations indicates the number of solutions sampled in the space of solution. The mean 191 

distance between iterations is the jump. If the sampling goes outside the space of solution, it will 192 

bounce back (mirror technique) inside the space. A jump of 0.05 gC.m-2 and 500,000 iterations was 193 

chosen after testing the mean shifting value/variability of the biggest flows in order to properly 194 

sample solutions. 195 

 196 

2.2.2 Climate change simulation 197 

In order to assess cumulative impacts through a trophic modeling approach, we had to integrate the 198 

climate change effect in both LIM trophic models. To evaluate the effect of climate change, we used 199 

results from the niche models published in Ben Rais Lasram et al. (2020). Niche model algorithms are 200 

correlative approaches aimed at identifying the potential species niches by correlating species 201 

occurrences to environmental variables such as temperature, salinity or other parameters. Niche 202 

models were built with an ensemble modeling procedure combining different modeling techniques. 203 
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Future climate change projections for 72 species of the Bay of Seine were based on the “business as 204 

usual” representative concentration pathway scenarios (Intergovernmental Panel on Climate Change, 205 

RCP 8.5) at the 2091-2100 time steps (Ben Rais Lasram et al., 2020).  206 

The compartments of the LIM trophic model were not all simulated in the niche model approach. 207 

Consequently, we focused on integrating the niche model results of the commercially exploited 208 

compartments, which included 4 fish compartments – Fish, benthos feeders (FBF); Flat Fish (FFI); 209 

Fish, Piscivorous (FPI); Fish, Planktivorous (FPL) – and 2 mollusk compartments – Cephalopods (CEP); 210 

King Scallop (KSC). Those compartments represented the compartments impacted by climate change. 211 

To integrate the results of the niche models into the trophic models, we linked the evolution of the 212 

suitability index of the niche models to biomass according to Chaalali et al. (2016). We used the 213 

evolution of the suitability index C to multiply the biomass of the species by (1-C) to reflect the 214 

biomass changes: 215 

   
         

    
 

where Pref is the suitability index of the species in the current niche model and Prcp the suitability 216 

index of the species in RCP 8.5. 217 

As the production to biomass ratio (P/B) of fish is based on temperature (Lassalle et al., 2011), the 218 

P/B ratios of all the fish compartments impacted by climate change were modified following the 219 

temperature values of the RCP 8.5 scenarios (Table A.6). We used the temperature values 220 

corresponding to the habitats of each compartment (surface temperature for the pelagic 221 

compartments, sub-surface temperature for the bentho-pelagic compartments, and bottom 222 

temperature for the benthic and demersal compartments). In a mass balanced condition, the P/B 223 

ratio of fish species is considered to be equal to the instantaneous coefficient of total mortality (Z) 224 

(Figure 3): 225 

      

where M is natural mortality and F is fishing mortality, and M is calculated from the empirical 226 

equation: 227 

             
                

where K is the curvature parameter of the von Bertalanffy growth function (VBGF), while L∞ is the 228 

asymptotic length and T the mean environmental temperature in °C depending of the depth. 229 

We computed new P/B ratios by changing the temperature in the natural mortality equation (M) 230 

without changing fishing mortality (F) so as to be coherent. The evolution of natural mortality was 231 
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then applied to the P/B ratio of each fish compartment. If natural mortality increased by 10 % for a 232 

fish species owing to the new temperature, we increased the P/B ratio of the species by 10 % in the 233 

climate change scenario. 234 

We had to use different methods for the Mollusk compartments. There was no equation connecting 235 

the P/B ratio with temperature for cephalopods. We therefore used the cephalopod feeding rate 236 

equation because of its link to temperature (O’Dor and Wells, 1987): 237 

 238 

                                   

 239 

where W is the body mass in g and T is temperature in degrees Celsius. 240 

We computed a new feeding rate for cephalopods with the niche model. The evolution of the 241 

feeding rate between the current and the future RCP 8.5 temperatures allowed us to estimate the 242 

P/B ratio of the cephalopod compartment. We used a food conversion rate of 30 % for cephalopods 243 

(Boyle and Rodhouse, 2005). 244 

For king scallops, we used the growth rate equation (Laing, 1999). The equation was verified by 245 

comparing the temperature estimated from the RCP 8.5 scenarios with the temperature ranges 246 

applied in growth experiments (Chauvaud et al., 2012; Laing, 2000). The temperature estimated with 247 

the RCP model was sustainable by Pecten maximus in situ and ex situ (15.3°C), and resulted in 248 

increased production: 249 

                            

We thus changed the P/B ratio of the king scallop compartment according to the evolution of its 250 

growth rate between the current temperature and the future temperature under the RCP 8.5 251 

scenario. 252 

 253 

Figure 3: Schematic representation of the climate change modeling approach. 254 

2.2.3 Ecological network analysis 255 
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With their 19 compartments each, the LIM models contained a flow matrix of 144 flows. We 256 

computed multiple metrics to analyze the ecological properties of each model. We first computed 257 

the throughflow/activity of (i) each compartment (sum of all the inflows/outflows) (Table A.1), (ii) the 258 

import (IMP), and (iii) respiration (RES) to understand the effects of the climate change and of the 259 

OWF at the flow matrix level. We also computed ENA indices (Table 1). ENA indices summarize the 260 

emergent properties of the ecosystem. A range of indices was chosen according to previous 261 

recommendations about their use by ecosystem managers (Fath et al., 2019; Safi et al., 2019). 262 

  263 
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Table 1: ENA indices computed with the LIM models results. 264 

Name Objective Calculation References 

Total activity of 

the system or 

Total System 

Throughput 

(T..) 

The total system throughput 

is equal to the sum of all the 

flows in the system. It is a 

network level indicator of the 

size and activity of the 

system. 

          

 

     

 

 
where     is the flow between 

compartments j and i. 

(Finn, 1976; 

Ulanowlcz 

and Norden, 

1990). 

Average Mutual 

Information 

(AMI) 

Average mutual information 

measures the organization of 

a network, the more web-like 

the system is, the lower the 

AMI should be. 

       
   

   
     

      

      

 

   

   

   

 

(Gallager, 

1968; Latham, 

2006) 

Ascendency (A) 

Ascendency is a measurement 

of the growth of the system, 

integrating its size (T..) and its 

organization (AMI). 

             

      

      

 

   

   

   

 

 
            

(Ulanowicz, 

1980, 1986; 

Latham, 

2006) 

Development 

capacity (DC) 

The total development 

capacity is the upper limit of 

ascendency, it represents the 

maximum development of the 

system. 

              

   

   

 

   

   

   

 
(Latham, 

2006) 

Overhead (R) 

The overhead is the “reserve” 

of the system information and 

refers to the extent of parallel 

flows in the system 

       

(Ulanowicz et 

al., 2009; 

Ulanowlcz 

and Norden, 

1990) 

Detritivory to 

herbivory ratio 

(D/H) 

The detritivory to herbivory 

ratio is the ratio of detritus 

consumption (Detritivory) 

compared to the consumption 

of primary producers 

(Herbivory) in the ecosystem. 

     
      

     
 

 

where DET is the flow of detritus 

consumption and PP the flow of 

consumption by primary 

producers 

(Latham, 

2006) 
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System 

omnivory (SOI) 

The system omnivory index 

quantifies the distribution of 

trophic interactions among 

different trophic levels. 

                   
 

 

   

       

 

     
              

 
   

         
 
   

 

 
where TL is the trophic level of i 

or j. 

(Libralato, 

2013) 

Recycling index 

or Finn Cycling 

Index (FCI) 

The recycling index is the 

fraction of energy recycled in 

the system. 

     
    

   
 

 
where TST is the total system 

throughflow and TSTc the cycled 
total system throughflow. 

(Odum, 1985) 

Mean Trophic 

Level (MTL) 

The mean trophic level is the 

mean trophic level of the 

network’s compartments. It is 

based on the compartments’ 

trophic levels. Its values can 

be 1 (primary producers and 

detritus), 2 (all consumers), 

and can reach > 4 (top 

predators). 

     
          

    
 

 
where B is the biomass of i or j. 

(Latham, 

2006) 

 265 

2.2.4 The different types of cumulative effects 266 

Sixteen models were computed to test ENA indices in multiple scenarios. The models included: 267 

- The reference BOWF model 268 

- The REEF model  269 

- The climate-change-only scenarios, based on the LIM BOWF model, with each of the selected 270 

compartments impacted by the climate change effect and an extra model (BOWFTOT) 271 

combining all the compartments impacted at once 272 

- The cumulative impact scenarios, based on the LIM REEF model, with each of the selected 273 

compartments impacted by the climate change effect and an extra model (REEFTOT) 274 

combining all the compartments impacted at once. 275 

Each model was named according to its initial model (BOWF or REEF) and to the name of the 276 

impacted compartment if impacted by climate change (Figure 4).  277 
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 278 

Figure 4: Modeling framework of the sixteen models all represented by gray boxes, with the initial 279 

BOWF model, single effect models including seven climate change scenarios and the REEF model, and 280 

the combined models including seven cumulative scenarios.  281 

We followed this framework (Figure 4) to analyze the combined effects of climate change and of the 282 

reef effect depending on the impacted compartment. We used the same methodology as Fu et al. 283 

(2018) to characterize the combined effect on each ENA index and for each scenario.  284 

First, we computed the relative index variation between the reference BOWF model and a single 285 

effect model (reef effect only or climate change only) for each ENA: 286 

   
   

  
     

  
 

where Ic is the index value of the reference model and Ik the index value of a single-effect model (reef 287 

only or CC only). 288 

Then, we summed the variation (   
   

) of each single effect in a same scenario to get the reef + 289 

climate change additive effect: 290 

    
   

 

We also computed the cumulative effect as the variation between the initial BOWF model and the 291 

cumulative impact scenario (reef effect and climate change effect) for each ENA (   
   ): 292 
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To determine the combined effect, we compared the additive effect variation with the cumulative 293 

effect variation. If the two variations were equal, the effect was considered additive: 294 

   
         

   
 

If the additive effect variation was lower than the cumulative effect variation and both variations 295 

were positive or negative, the response was synergistic positive or negative:  296 

Synergistic positive:    
        

   
   297 

Synergistic negative:    
        

   
   298 

If the additive effect variation was higher than the cumulative effect variation while both variations 299 

were positive or negative, the response was dampened positive or negative. 300 

If the additive effect variation was opposite to the cumulative effect variation, the response was 301 

antagonistic. When the combined effect variation was positive, it was a positive antagonism, and vice 302 

versa for negative antagonism (Figure 5). 303 

 304 

Figure 5: Different types of cumulative effects on the different index values (e.g., ENA index).  305 

2.2.5. Statistical comparison 306 

Indices were calculated for each solution of the LIM models (500,000 solutions quantifying each flow 307 

for each model). A previous study showed that parametric tests like Student’s T-tests could identify 308 

differences even for tiny effects (Tecchio et al., 2016). The non-parametric Cliff delta (Cliff, 1993) was 309 

chosen for its better suitability (Valérie Girardin & Justine Lequesne, pers. com., Laboratoire de 310 

Mathématiques Nicolas Oresme, Tecchio et al., 2016). The same threshold as Romano et al. (2006) 311 
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and MacBeth et al. (2012) was used considering the differences between the datasets: negligible if 312 

the Cliff delta (| ∂Cliff |) was < 0.147, low if < 0.33, medium if < 0.474, or strong if > 0.474.  313 

The Cliff delta was used to compare single effect models (“reef only” and “climate change only” 314 

scenarios) to the initial reference BOWF model and to compare the REEF model with the cumulative 315 

impact scenarios (reef effect + climate change effect). This was applied to the throughflow/activity 316 

(input/output) of each compartment as well as on the ENA. The delta also allowed us to compare the 317 

additive effect variation (   
   

) with the cumulative effect variation (   
    . If the difference was 318 

considered medium (| ∂Cliff | < 0.33), the cumulative effect was considered different than the 319 

additive effect. We determined the cumulative effect depending on the difference between the 320 

additive effect variation and the cumulative effect variation (Figure 5). 321 

To reduce the number of models when describing the ENA indices, we used an average unweighted 322 

pair group method with arithmetic mean (UPGMA) based on Euclidean distance. The UPGMA 323 

compared all the different models according to their mean ENA values.  324 

 325 

3. Results 326 

 327 

3.1. Reef effect on the food web 328 

When the reef effect of the offshore wind farm was modeled in the LIM model, it resulted in an 329 

increased activity of the benthic compartment and in a decreased activity of the pelagic 330 

compartment. The reef effect also resulted in increased detritus consumption, increased 331 

phytoplankton activity and increased import (Figure 6). 332 

3.2. Effects of climate change on the food webs before offshore wind farm construction 333 

When the BOWF models were impacted by the climate change scenarios, three compartments 334 

displayed a strong increase in activity and 11 displayed a strong decrease in activity. Throughout the 335 

compartments and scenarios, climate change had mainly a negative effect on compartment activity. 336 

Negative effects on activity can be divided into two types: (i) the direct effect of climate change on 337 

the targeted compartment (for instance, lower biomass of the cephalopod compartment in the 338 

cephalopod scenario leading to lower cephalopod activity), and (ii) the indirect / cascading effect of 339 

climate change on activity (lower biomass of the cephalopod compartment in the cephalopod 340 

scenario leading to lower cetaceous activity) (Figure 6). 341 

3.3. Combined effects of climate change and of an offshore wind farm on the food web 342 
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When the offshore wind farm (REEF) models were impacted by the climate change scenarios, 8 343 

compartments showed a strong increase in activity and 13 a strong decrease in activity. The REEF 344 

scenarios displayed greater changes due to climate change than the BOWF scenarios (38 strong 345 

variations in total for the REEF scenarios versus 30 for the BOWF scenarios), with a relatively more 346 

positive effect on activity. Similarly to the BOWF scenarios, the negative effects on activity were of 347 

two types: (i) the direct effects, and (ii) the indirect / cascading effects. While the direct effects of 348 

climate change appeared to be similar in the BOWF and REEF scenarios, the indirect / cascading 349 

effects were mostly different. There were four similarities between the BOWF and REEF models 350 

among the twenty indirect effects of climate change: (i) the indirect increase in invertebrate predator 351 

activity in the total scenario and the “fish, benthos feeders” scenario, (ii) the indirect decrease in 352 

phocidae activity in the total scenario and in the “fish, piscivorous” scenario, (iii) the indirect 353 

decrease in cetaceous activity in the total scenario and in the “fish, piscivorous” scenario, and (iv) the 354 

indirect decrease in import in the total scenario and the “fish, benthos feeders” scenario (Figure 6). 355 
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 356 

Figure 6: Variation of all the throughflow/activity (input/output) in gC.m² between: the BOWF model 357 

and the single effect models (reef effect or climate change effect, a group on the left), and between 358 

the REEF model and the cumulative models (reef effect + climate change effect, b group on the 359 

right).  Red, increased activity; blue, decreased activity; bold-bordered square, strong variation 360 

according to the cliff delta (| ∂Cliff | < 0.474). 361 

  362 
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3.4. Changes in the structure and functioning of the food web 363 

The flow matrices were used to compute the ENA indices. The UPGMA discriminated five groups of 364 

models. The models including the sole climate change effect and the BOWF model formed three 365 

groups (with two groups composed of only one model). The models including the reef + climate 366 

change effect formed two groups (Figure 7, A).  367 

In both the BOWF and REEF scenarios, the “fish, benthos feeders” (FBF) scenario and the total (TOT) 368 

scenario showed differences with the rest of the climate change scenarios (Figure 7, B). Those 369 

models showed a greater number of strong differences (| ∂Cliff | > 0,474) with their respective 370 

reference model compared to the other scenarios. Four strong differences were observed under the 371 

BOWFTOT model compared to BOWF, six under BOWFFBF compared to BOWF, and three under 372 

REEFTOT and REEFFBF compared to REEF.  373 

The climate change effects on the “fish, benthos feeders” (FBF) scenario and the total (TOT) scenario 374 

appeared as structuring as the REEF effect itself (Figure 7, A & B). The climate change effect strongly 375 

impacted (| ∂Cliff | > 0.474) four indices of the total scenario and six of the “fish, benthos feeders” 376 

scenario, while the reef effect strongly impacted six indices. The remaining climate change scenarios 377 

had little effect on the system (Figure 7, B). 378 

 379 
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Figure 7: A) Following UPGMA to determine different groups of models, 5 groups were selected. B) 380 

The Cliff delta was used to compare the ENA results of: the BOWF model and the single effect models 381 

(reef effect or climate change effect), and between the REEF model and the cumulative models (reef 382 

effect + climate change effect). 383 

 384 

6.3. Cumulative effects on ENA indices 385 

The cumulative impact assessment showed a wide variety of cumulative effects – additional, 386 

synergetic, dampened, and antagonistic. Six of the seven scenarios showed at least one cumulative 387 

effect on their ENA (0.33 < | ∂Cliff |). As for ENA indices, seven out of eight indices in total showed at 388 

least one cumulative effect (ΔIksep ≠ ΔIkcum) (Figure 8). 389 

 390 

 391 

Figure 8: Cumulative effects of the different scenarios on multiple ENA indices (+/- SD). Each 392 

cumulative effect is represented in a zone. Zone I, positive synergistic effect; zone II, positive 393 
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antagonistic effect; zone III, positive dampened effect; zone IV, negative synergistic effect; zone V, 394 

negative antagonistic effect; and zone VI, negative dampened effect. 395 

Most of the cumulative effects were additive (ΔIksep = ΔIkcum) for all the results (all ENA indices for 396 

all models). Sixteen percent of the models showed a cumulative effect (ΔIksep different from ΔIkcum 397 

with | ∂Cliff | > 0.33). 398 

 399 

4. Discussion 400 

This study assesses the cumulative impacts of climate change and an OWF on the Bay of the Seine 401 

food web, based on LIM models. Because of the complexity of modeling climate change in its full 402 

extent (Larocque et al., 2011), this work was focused on the effect of climate change on the 403 

indigenous species of the bay, more particularly on commercially exploited species. That is why it is a 404 

sensitivity analysis of these cumulative impacts on ENA indices. First, our sensitivity analysis revealed 405 

that each effect taken separately had an impact on the functioning and organization of the 406 

ecosystem. The “fish, benthos feeders” compartment appeared particularly sensitive to the two 407 

single effects. When the effects were combined, we observed significant cumulative effects on 408 

multiple ENA indices for multiple scenarios. Those significant cumulative effects led to unexpected 409 

effects on the ecosystem. Overall, ENA indices appeared sensitive to the cumulative impact. 410 

 411 

4.1. The structuring role of the reef effect 412 

The results of the REEF model seem to suggest a regime shifting towards a new stable state. An 413 

ecosystem shift is documented as a change at several trophic levels leading to ecosystem 414 

restructuring (Andersen et al., 2009; Lees et al., 2006). The restructuring of the system should be 415 

visible on the ecosystem structure but also on its functioning. The restructuring due to the reef effect 416 

was already predicted by Raoux et al. (2017; 2019) based on the evolution of the mean trophic level 417 

(MTL 2). We modeled a similar decrease in MTL 2 between the BOWF and REEF models. A decline in 418 

MTL 2 would explain a transition in the food web from long-lived high-trophic-level organisms like 419 

piscivorous fish towards short-lived low-trophic-level organisms such as invertebrates and 420 

planktivorous fish (Pauly et al., 1998). In the reef effect case, the biomass of the higher trophic level 421 

was not reduced, whereas the biomass of low-trophic-level organisms increased. Like Raoux et al. 422 

(2017; 2019), we consider this change as a restructuring of the community towards a new stable 423 

state rather than an unsustainable alteration of the ecosystem (Holling, 1996). We improved over 424 

Raoux et al. (2017; 2019) by also observing a change in the ecosystem’s functioning. This change was 425 
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noticeable through the different responses of the BOWF and REEF models to climate change. When 426 

we impacted the two models with the climate change scenarios, very few similarities between the 427 

BOWF response and the REEF response emerged. The differences in the cascading responses to 428 

climate change between the BOWF and REEF models may be explained by a shift in the system 429 

(Andersen et al., 2009; Lees et al., 2006). Our ENA results reflect a shift from a bentho-pelagic system 430 

towards a more benthic system. The system appeared more active with lower-trophic-level species 431 

relying less on herbivory and more on detritivory and recycling. Alongside the increase in redundant 432 

pathways, the system appeared more resistant to changes. 433 

The ENA variations that we predicted between the BOWF model and the REEF model described a 434 

more resistant OWF system. Resistance is defined as the ability of a system to maintain its original 435 

state in a disturbed context as described by Holling (1996), and in accordance with ‘ecological 436 

resilience’ as described by Harrison (1979). Many ENA indices have been related to the notion of 437 

resistance. Lassalle et al. (2011) hypothesized that an increase in the detritivory to herbivory (D/H) 438 

rate was associated with a system more resistant to primary production variation. Recycling (FCI) 439 

may act as a buffer during disturbances and increase the resistance of the system (Saint-Béat et al., 440 

2015). The overhead/redundancy of the flow (RoC and RoCi) may also act as a buffer during 441 

disturbances to maintain the system and thus increase its resistance (Ulanowlcz and Norden, 1990). 442 

We predicted an increase of each of those indices (D/H, FCI, RoCi). Our results are less conflicting 443 

than the ones observed by Raoux et al. (2019) and describe a more coherent picture of the system, 444 

with benthic compartments playing a key role in the resistance of ecosystems (Norling and Kautsky, 445 

2007; Dame and Christian, 2007; Raoux et al. 2019; Wang et al. 2019).   446 

The effect of climate change on the system also appeared to validate the more resistant state of the 447 

REEF model, especially on the “fish, benthos feeders” scenario (FBF). The BOWF model led to more 448 

changes in ENA indices than the REEF model: Its lower omnivory level (SOI) revealed a less complex 449 

system evolving from a web-like system towards a more linear system (Libralato, 2013). As the 450 

complexity of a system is an indicator of flexibility (Fagan, 1997; Lobry et al., 2008), we can expect a 451 

less stable and more vulnerable system. We also predicted that the system would lose part of its 452 

recycling capacity (FCI) and be less mature due to the lower redundancy of internal flows (RoCi) 453 

(Christensen, 1995; Odum, 1969; Ulanowicz, 2009; Ulanowlcz and Norden, 1990). On the other hand, 454 

the only modeled effect of climate change on the “fish, benthos feeders” scenario of the REEF model 455 

was a higher detritivory to herbivory rate (D/H) of the system. As such, the reef effect seemed to 456 

increase the resistance of the system to climate change. However, one must not forget that these 457 

results depend on the way the climate change effect was modeled. The reef effect could also 458 
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promote other effects of climate change, like the establishment of invasive species (Langhamer, 459 

2012), but their study would need specific field experiments. 460 

 461 

4.2. Role of the compartment impacted by climate change in the response of the ecosystem  462 

Our analysis of the different ENA responses showed a pattern segregating the responses of the 463 

scenarios depending on the compartment impacted by climate change. The “fish, benthos feeders” 464 

(FBF) and the total (TOT) climate change scenarios showed important estimated changes in their 465 

structure and functioning, while the other climate change scenarios seemed close to their reference 466 

model. This happened in both the BOWF and REEF models. In both cases, the “fish, benthos feeders” 467 

(FBF) and the total (TOT) climate change scenarios impacted the “fish, benthos feeders” 468 

compartment (FBF). This leads us to think that the importance of the “fish, benthos feeders” 469 

compartment isn’t defined by the aggregating role of the reef effect (Reubens et al., 2011), but 470 

rather by its position in the food web and thus its keystoneness. The keystoneness of a species 471 

defines its structuring role (Power et al., 1996; Libralato, 2019) and is not an intrinsic property of any 472 

given species (Fauth, 1999). The fact that the “fish, benthos feeders” compartment maintained its 473 

role despite the shift in the regime of the system might be due to the central position of its trophic 474 

niche in both systems. 475 

The “fish, benthos feeders” (FBF) compartment seemed to play two roles in both models: first, it 476 

regulated the “invertebrates, benthic predators” compartment (IPR), and second, it ramified the 477 

system through its high omnivory. This was predicted when the “fish, benthos feeders” were 478 

impacted by the climate change effect (Figure 7). The trophic niche of the “fish, benthos feeders” 479 

was thus claimed by the “invertebrate, benthic predators”, and consequently changed the 480 

functioning of the food web. This result was different when considering the ecosystem shift caused 481 

by the reef effect: the “invertebrate, benthic predators” seemed more capable to replace the “fish, 482 

benthos feeders” in their niche. This replacement seemed to be facilitated by the shift of the 483 

ecosystem towards a more benthic system, in which the invertebrate benthic predators might be 484 

more successful in filling the same trophic role as the fish benthos feeders. As such, the system 485 

seemed less altered by the effect of climate change on the “fish, benthos feeders” scenario in the 486 

offshore wind farm system. However, we should remain careful because changing communities can 487 

have wider effects on the ecosystem likely to go undetected by trophic modeling approaches 488 

(Fontaine et al., 2011; Kéfi et al., 2015, 2012). As such, it is necessary to monitor such keystone 489 

species to maintain the ecosystem properties before, during and after the exploitation of the 490 
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offshore wind farm. Previous studies have indeed already highlighted the advantages of monitoring 491 

keystone species (Payton et al., 2002; Libralato et al., 2006; Gelcich et al., 2010). 492 

4.3. Understanding the mechanism behind the unexpected effect of the cumulative impact 493 

Our scenarios show a wide variety of cumulative impacts, in line with previous studies that consider 494 

the additive effect to be the main type of combined effect in marine ecosystems, with a significant 495 

role of the cumulative impact on ecosystems (Crain et al., 2008). We evidenced synergetic and 496 

antagonistic effects, which proved the ability of ENA indices to reflect unexpected effects visible only 497 

when studying cumulative impacts (Jackson et al., 2001; Przeslawski et al., 2005). Cumulative impacts 498 

are often studied using community or population level metrics (Crain et al., 2008). By observing the 499 

same type of response with ENA, we demonstrate that cumulative effects are also significant at the 500 

functional level of the ecosystem. This is useful as it allows us to follow the properties of the 501 

ecosystem and its state in relation to the cumulated impact. Using functional metrics like ENA 502 

indicators might also help us better understand cumulative effects. This strengthens the importance 503 

of incorporating multiple scenarios of events in future ecological network analysis.  504 

The strongest synergetic effect was predicted on the detritivory to herbivory (D/H) index of the “fish, 505 

benthos feeders” scenario (FBF). This synergistic effect seems to result from the shifting regime of 506 

the Courseulles-sur-Mer ecosystem. As the system shifted from a benthopelagic system to a more 507 

benthic system, the effect of climate change on the ecosystem functioning seemed to change (Figure 508 

7). In the BOWF model, the climate change effect on the fish benthos feeders resulted in an 509 

increased activity of the invertebrate benthic predators. This higher invertebrate benthic predator 510 

activity did not lead to an increase in detritivory because the system was not producing enough 511 

benthic detritus. Yet, this changed with the reef effect. As a system becomes more benthic, it 512 

produces more benthic detritus (Norling and Kautsky, 2008, 2007; Raoux et al., 2017). This increase 513 

in benthic detritus became available to the invertebrate benthic predators, and increased the 514 

detritivory to herbivory rate of the system. Many invertebrate benthic predators are indeed also 515 

scavengers.  This changing response of the ecosystem to climate change due to the regime shift 516 

induced this unexpected effect on the detritivory to herbivory rate. This higher detritus consumption 517 

with the higher detritivory to herbivory rate of the OWF ecosystem resulted in a synergistic effect, as 518 

predicted by the “fish, benthos feeders” scenario (Table 2). An interaction between effects has 519 

already been shown to modify the effect of one or multiple events, e.g., in chemical reactions 520 

(Pelletier et al., 2006) and physiological/ecological reactions (Przeslawski et al., 2005; Christensen et 521 

al., 2006). We observed it at the functional level of the ecosystem. Integrating the evolving 522 

interactions between effects in a shifting ecosystem could help us better anticipate these effects. For 523 
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us to detect those shifts, monitoring the entire ecosystem using ecological network analysis is 524 

needed, using local and relevant data on all trophic levels (Araignous et al., 2019). 525 

While two effects can interact with each other toward a synergistic effect, they may also interact 526 

negatively, with a resulting antagonistic or dampened effect. This was mainly modelled for the 527 

detritivory to herbivory rate of the “flat fish” scenario (Table 2). When considered independently, the 528 

climate change effect and the reef effect increased the detritivory to herbivory rate. However, when 529 

the effects were combined, the cumulative effect on the detritivory to herbivory rate was dampened. 530 

This could be explained by the fact that the regime shift made the ecosystem impervious to the 531 

climate change effect. This mechanism of resistance has already been acknowledged at the 532 

physiological level or at the population level (Vinebrooke et al., 2004). ENA proved able to do the 533 

same at the functional level of the ecosystem. 534 

The regime shift due to the reef effect seemed to explain multiple cumulative effects. However, 535 

sometimes it was uncertain whether the cumulated effect resulted from the model structure or not. 536 

This was visible on the total overhead of the “fish, benthos feeders” scenarios. In this case, the 537 

dominating effect of climate change overcame the cumulative effect (Table 2). With the “fish, 538 

benthos feeders” compartment relying significantly on imports (like cetaceous, seals and birds), a 539 

reduction of its biomass will lower the import overhead. As the import overhead is a part of the total 540 

overhead (Ulanowicz and Norden, 1990), the total overhead will decrease even though the internal 541 

overhead remains unchanged. This could be the result of the model structure itself, as the 542 

dependency of the “fish, benthos feeders” compartment to import is mainly due to the reduced scale 543 

of the trophic model. Moreover, ENA indices are known to be potentially highly influenced by the 544 

model structure (Baird et al., 2009; Johnson et al., 2009). The lower import overhead could also be 545 

the sign of a more isolated system compared to the rest of the English Channel ecosystem (Baird and 546 

Ulanowicz, 1993). 547 

 548 

  549 
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Table 2: Representation of the different mechanisms of the cumulative effects based on the LIM 550 

model results. 551 

Scenario ENA index 
Climate 
change 

effect alone 

Reef 
effect 
alone 

Combined 
effects 

Type of 
cumulative 

effect 
Mechanism 

Fish, 
benthos 
feeders 

(FBF) 

Detritivory 
to 

herbivory 
(D/H) 

+ + +++ Positive 
synergistic 

Interaction between the two 
effects due to the regime 
shift caused by the reef 

effect. 

Fish, 
piscivorous 

(FPI) 

Internal 
relative 

overhead 
(RoCi) 

+ + - Negative 
antagonistic 

Interaction between the two 
effects due to the regime 
shift caused by the reef 

effect. 

Flat fish 
(FFI) 

Detritivory 
to 

herbivory 
(D/H) 

+ + + Positive 
dampened 

Resilience of the ecosystem 
to the climate change effect 

due to the regime shift 
caused by the reef effect. 

Fish, 
benthos 
feeders 

(FBF) 

Relative 
overhead 

(RoC) 
- ++ -- Negative 

antagonistic 
The climate change effect 

overpowers the reef effect. 

 552 

4.4. Ecological network analysis indices: sensitive tools to manage the cumulative impact of the 553 

REEF and climate change effects. 554 

Using a single ENA index to describe a changing system is not suitable to describe a changing 555 

ecosystem; a larger pool of indices is more adapted to reach an overall picture of the ecosystem 556 

organization and functioning (de la Vega et al., 2018). The same is true for combined impacts, which 557 

make it possible to predict different types of cumulative effects for different parameters of the 558 

ecosystem. While an index can describe a synergetic effect of the combined reef and climate change 559 

effects, another index may describe an antagonistic effect. This point should be emphasized when 560 

working on a limited number of indices, as multiple indices can be impacted differently. Interactions 561 

between events thus appear to be radiative – not unidirectional –, i.e., different properties of an 562 

ecosystem can evolve in different ways. This emphasizes the need for complementary indices to 563 

provide a holistic view of the ecosystem (Fath et al., 2019; Safi et al., 2019), especially while 564 

addressing the effect of cumulative impacts. 565 
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Ecological network analysis indices seem to be suitable for addressing a wide range of cumulative 566 

effects. Along with an integrative approach, this ability to study cumulative impacts in their overall 567 

diversity makes ENA indices the ideal ecological indicators necessary for the future of ecological 568 

science and management (de la Vega et al., 2018; Fath et al., 2019; Safi et al., 2019). It is now time to 569 

implement those indices in more complex cumulative impact scenarios to describe the mechanisms 570 

behind cumulative impacts. 571 
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Figure Captions  867 

 868 

Figure 1: Localization of the future offshore wind farm of Courseulles-sur-Mer in the Bay of Seine. 869 

Figure 2: Functional compartments of the Courseulles-sur-Mer ecosystem model organized according 870 

to their trophic level, based on the BOWF trophic levels. 871 

Figure 3: Schematic representation of the climate change modeling approach. 872 

Figure 4: Modeling framework of the sixteen models all represented by gray boxes, with the initial 873 

BOWF model, single effect models including seven climate change scenarios and the REEF model, and 874 

the combined models including seven cumulative scenarios. 875 

Figure 5: Different types of cumulative effects on the different index values (e.g., ENA index).   876 

Figure 6: Variation of all the throughflow/activity (input/output) in gC.m² between: the BOWF model 877 

and the single effect models (reef effect or climate change effect, a group on the left), and between 878 

the REEF model and the cumulative models (reef effect + climate change effect, b group on the 879 

right).  Red, increased activity; blue, decreased activity; bold-bordered square, strong variation 880 

according to the cliff delta (| ∂Cliff | < 0.474). 881 

Figure 7: A) Following UPGMA to determine different groups of models, 5 groups were selected. B) 882 

The Cliff delta was used to compare the ENA results of: the BOWF model and the single effect models 883 

(reef effect or climate change effect), and between the REEF model and the cumulative models (reef 884 

effect + climate change effect). 885 

Figure 8: Cumulative effects of the different scenarios on multiple ENA indices. Each cumulative 886 

effect is represented in a zone. Zone I, positive synergistic effect; zone II, positive antagonistic effect; 887 

zone III, positive dampened effect; zone IV, negative synergistic effect; zone V, negative antagonistic 888 

effect; and zone VI, negative dampened effect. 889 

 890 

Table Captions  891 

 892 

Table 1: ENA indices computed with the LIM models results. 893 

Table 2: Representation of the different mechanisms of the cumulative effects based on the LIM 894 

model results. 895 

 896 

  897 
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Annex: 898 

Table A.1: Ecopath groups from Raoux et al. (2017) compared to LIM groups. 899 

Ecopath compartments from Raoux et al. (2017) LIM trophic compartments LIM Symbol 

1 Bottlenose dolphins 
1 Cetaceans CET 

2 Harbour porpoises 

3 Harbour seals 
2 Phocidae PHO 

4 Grey seals 

5 Plunge and pursuit, diverse seabirds 
3 Birds BIR 

6 Surface feeders, seabirds 

7 Benthopelagic cephalopods 
4 Cephalopods CEP 

8 Benthic cephalopods 

9 Fish, mackerel 

5 Fish, planctivorous FPL 

10 Fish, European pilchard 

11 Fish, European sprat 

12 Fish, planctivorous 

13 Fish, atlantic horse mackerel 

14 Fish, European seabass 

6 Fish, benthos feeders FBF 

15 Fish, sharks and rays 

16 Fish, gurnard 

17 Fish, pouting 

18 Fish, poor cod 

19 Fish, benthos feeders 

20 Fish, sea bream 

21 Fish, Atlantic cod 

7 Fish, piscivorous FPI 22 Fish, whiting 

23 Fish, piscivorous 

24 Fish, sole 

8 Fish, flat fish FFI 25 Fish, European plaice 

26 Fish, other flatfish 

27 Benthic inv., predators 9 Invertebrates, predators IPR 

28 Benthic inv., filter feeders 10 Invertebrates, filter feeders IFF 

29 Benthic inv., bivalves 11 Bivalvia BIV 

30 King scallop 12 King scallops KSC 

31 Benthic inv., deposit feeders 13 
Invertebrates, deposit 
feeders 

IDF 

32 Suprabenthos 14 Suprabenthos SUP 

33 Meiofauna 15 Meiofauna (Nematodes) NEM 

34 Zooplankton 16 Zooplankton ZOO 

35 Bacteria 17 Bacteria BAC 

36 Phytoplankton 18 Phytoplankton PHY 

37 Detritus 19 Detritus DET 
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Table A.2: Parameters of the LIM model. 902 

Compartment 
P/B P/Q R/Q U/Q 

Literature 
min max min max min max min max 

CETaceans 0.04 0.12 - - - - - - 
Christensen et al. (2009) 

PHOcidae 0.075 0.225 - - - - - - 

BIRds 0.05 0.15 0.3 0.8 - - - - 
Saint-Béat (2012), 

Christensen et al. (2009) 

CEPhalopods 1 3 0.1 0.4 - - - - Christensen et al, 2009 

Fish, 
PLanktivorous 

0.486 1.458 0.047 0.424 - - 0.1 0.5 P/B, P/Q and U/Q 
generated using 

confidence intervals 
around standard Ecopath 
parameters (Christensen 

and Pauly, 1993), 
Leguerrier et al (2004) 

Fish, Benthos 
Feeders 

0.542 1.625 0.059 0.534 - - 0.1 0.5 

Fish, 
PIscivorous 

0.450 1.349 0.059 0.534 - - 0.1 0.5 

Fish, Flat FIsh 0.375 1.126 0.074 0.670 - - 0.1 0.5 

Invertebrates, 
PRedators 

1 5 0.05 0.3 - - 0.12 0.28 

Christensen and Pauly 
(1993), Brey (2001) 

Invertebrates, 
Filter Feeders 

1 5 0.05 0.3 - - 0.18 0.42 

BIValvia 1 5 0.05 0.3 - - 0.18 0.42 

King SCallops 1 5 0.05 0.3 - - 0.18 0.42 

Invertebrates, 
Deposit 
Feeders 

1 5 0.05 0.3 - - 0.18 0.42 

SUPrabenthos 0.4 15 0.1 0.37 - - 0.2 0.5 
Brey (2001), Lobry et al. 

(2008), Lassalle et al. 
(2011) 

Meiofauna 
(NEM) 

10.1 35 0.05 0.4 - - 0.13 0.3 
Heip et al. (1990), Van 
Oevelen et al. (2006) 

ZOOplankton     0.25 0.5 0.1 0.3 0.1 0.5 
Vezina et al. (2000), 

Vézina and Savenkoff 
(1999) 

BACteria - - 0.11 0.6 - - 0.05 0.35 

Del Giorgio and Cole 
(1998), Danovaro et al. 
(2008), Tortajada et al. 

(2012) 

PHYtoplankton - -     0.05 0.3 0.05 0.5 

Vezina et al. (2000), 
Vézina and Platt (1988), 

Vézina and Savenkoff 
(1999) 
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Table A.3: Diet matrix of the LIM before offshore wind farm model, including minimum and 904 

maximum values. 905 
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B
A

C
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IMPort 
0.05 0.05 0.00 0.00 0.00 - - - - - - - - - - - - 

0.25 0.25 0.56 0.30 0.30 - - - - - - - - - - - - 

CEPhalopods 
0.04 - - 0.00 - - - - - - - - - - - - - 

0.24 - - 0.37 - - - - - - - - - - - - - 

Fish, Benthos  
Feeders 

0.25 0.33 0.00 0.00 0.00 - 0.00 0.00 - - - - - - - - - 

0.45 0.53 0.36 0.42 0.36 - 0.33 0.31 - - - - - - - - - 

Fish, 
PLanktivorous 

0.08 0.00 0.36 0.00 0.00 - 0.50 - - - - - - - - - - 

0.28 0.20 0.96 0.56 0.46 - 1.00 - - - - - - - - - - 

Fish, 
PIscivorous 

0.08 0.20 - 0.00 0.00 - 0.00 - - - - - - - - - - 

0.28 0.40 - 0.34 0.32 - 0.30 - - - - - - - - - - 

Flat FIsh 
- - - 0.00 - - - - - - - - - - - - - 

- - - 0.35 - - - - - - - - - - - - - 

Invertebrates, 
PRedators 

- - 0.00 0.00 0.00 - 0.00 0.00 - - - - - - - - - 

- - 0.32 0.53 0.63 - 0.38 0.55 - - - - - - - - - 

Invertebrates, 
Filter Feeders 

- - - 0.00 0.00 - 0.00 0.00 0.00 - - - - - - - - 

- - - 0.31 0.34 - 0.31 0.31 0.50 - - - - - - - - 

BIValvia 
- - - 0.00 0.00 - - 0.00 - - - - - - - - - 

- - - 0.30 0.30 - - 0.44 - - - - - - - - - 

King SCallops 
- - - 0.00 0.00 - - 0.00 - - - - - - - - - 

- - - 0.30 0.30 - - 0.30 - - - - - - - - - 

Invertebrates, 
Deposit 
Feeders 

- - - 0.00 0.00 - 0.00 0.21 0.00 - - - - - - - - 

- - - 0.41 0.50 - 0.33 0.81 0.39 - - - - - - - - 

SUPrabenthos 
- - - 0.00 0.00 - 0.00 0.00 0.00 - - - - 0.00 - - - 

- - - 0.33 0.48 - 0.31 0.33 0.45 - - - - 0.35 - - - 

MEiofauNa 
- - - 0.00 0.00 - - 0.00 0.00 0.00 - - 0.00 - - - - 

- - - 0.38 0.30 - - 0.35 0.60 0.15 - - 0.35 - - - - 

ZOOplankton 
- 0.00 0.00 - 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 - 

- 0.12 0.31 - 0.30 1.00 0.31 0.31 0.31 0.20 0.20 0.20 0.35 0.70 0.35 0.10 - 

BACteria 
- - - - - - - - - 0.00 - - 0.00 0.00 0.00 - - 

- - - - - - - - - 0.15 - - 0.40 0.35 0.35 - - 

PHYtoplankton 
- - - - - 0.00 - - - 0.60 0.55 0.55 0.00 0.05 0.00 0.83 0.10 

- - - - - 0.50 - - - 0.80 0.75 0.75 0.45 0.65 0.45 1.00 0.30 

DETritus 
- - - - - - - - 0.00 0.00 0.15 0.15 0.35 0.00 0.45 0.00 0.70 

- - - - - - - - 0.42 0.20 0.35 0.35 0.95 0.45 1.00 0.17 0.90 
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Table A.4: Diet matrix of the LIM offshore wind farm model, including minimum and maximum 906 

values. 907 
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B
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C
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IMPort 
0.00 0.05 0.12 0.00 0.00 - - - - - - - - - - - - 

0.19 0.25 0.72 0.34 0.45 - - - - - - - - - - - - 

CEPhalopods 
0.03 - - 0.00 - - - - - - - - - - - - - 

0.23 - - 0.38 - - - - - - - - - - - - - 

Fish, Benthos  
Feeders 

0.38 0.36 0.00 0.00 0.00 - 0.00 0.00 - - - - - - - - - 

0.46 0.56 0.34 0.49 0.38 - 0.43 0.31 - - - - - - - - - 

Fish,  
PLanktivorous 

0.00 0.00 0.23 0.00 0.00 - 0.36 - - - - - - - - - - 

0.14 0.12 0.83 0.45 0.38 - 1.00 - - - - - - - - - - 

Fish, 
PIscivorous 

0.16 0.26 - 0.00 - - 0.00 - - - - - - - - - - 

0.36 0.46 - 0.35 - - 0.34 - - - - - - - - - - 

Flat FIsh 
- - - 0.00 - - - - - - - - - - - - - 

- - - 0.42 - - - - - - - - - - - - - 

Invertebrates, 
PRedators 

- - - 0.00 0.00 - 0.00 0.00 - - - - - - - - - 

- - - 0.47 0.55 - 0.40 0.48 - - - - - - - - - 

Invertebrates, 
Filter Feeders 

- - - 0.00 0.00 - 0.00 0.00 0.00 - - - - - - - - 

- - - 0.32 0.38 - 0.32 0.31 0.57 - - - - - - - - 

BIValvia 
- - - 0.00 0.00 - - 0.08 0.00 - - - - - - - - 

- - - 0.31 0.31 - - 0.68 0.31 - - - - - - - - 

King SCallops 
- - - 0.00 0.00 - - 0.00 - - - - - - - - - 

- - - 0.10 0.10 - - 0.30 - - - - - - - - - 

Invertebrates, 
Deposit 
Feeders 

- - - 0.00 0.00 - 0.00 0.03 0.00 - - - - - - - - 

- - - 0.37 0.44 - 0.33 0.63 0.38 - - - - - - - - 

SUPrabenthos 
- - - 0.00 0.00 - 0.00 0.00 0.00 - - - - 0.00 - - - 

- - - 0.32 0.32 - 0.31 0.32 0.40 - - - - 0.31 - - - 

Meiofauna 
(NEM) 

- - - 0.00 - - - 0.00 0.00 0.00 - - 0.00 - - - - 

- - - 0.38 - - - 0.36 0.50 0.16 - - 0.36 - - - - 

ZOOplankton 
- - - - - 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 

- - - - - 1.00 0.31 0.30 0.34 0.19 0.20 0.14 0.35 0.59 0.35 - - 

BACteria 
- - - - - - - - - 0.00 - - 0.00 0.00 0.00 - - 

- - - - - - - - - 0.15 - - 0.40 0.35 0.35 - - 

PHYtoplankton 
- - - - - 0.00 - - - 0.48 0.52 0.60 0.00 0.04 0.00 0.78 0.09 

- - - - - 0.47 - - - 0.68 0.72 0.80 0.44 0.64 0.44 1.00 0.29 

DETritus 
- - - - - - - - 0.00 0.12 0.19 0.16 0.35 0.01 0.46 0.00 0.71 

- - - - - - - - 0.60 0.32 0.39 0.36 1.00 0.61 1.00 0.22 0.91 
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Table A.5: Biomass modifications caused by the climate change effect (RCP 8.5). 908 

Compartment \ Biomass BOWF REEF 
BOWF with 

RCP 8.5 
REEF with 

RCP 8.5 

CEP 1.98E-02 2.46E-02 6.60E-03 8.18E-03 

FPL 5.92E+00 4.76E+00 2.53E+00 2.01E+00 

FBF 3.20E+00 6.69E+00 6.25E-01 9.29E-01 

FPI 2.68E-01 1.02E-01 1.81E-02 4.40E-03 

FFI 7.85E-02 1.78E-01 3.07E-02 6.06E-02 

KSC 7.70E-01 7.43E-01 3.31E-03 3.20E-03 
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 911 

Table A.6: P/B ratio modifications as a result of climate change effect modeled over the 2091-2100 912 

period (RCP 8.5). 913 

Group 
Scientific 

name 
P/B 

current 
ecology 

T° 
current 

Linf M F 
T° 

RCP 
8,5 

M 
RCP 
8,5 

P/B 
RCP 
8,5 

Fish, Benthos 
Feeders 

Mullus surmuletus 1.42 Demersal 13.01 46.83 0.20 1.22 15.30 0.21 1.43 

Mustelus mustelus 0.37 Demersal 13.01 175.00 0.12 0.25 15.30 0.13 0.38 

Labrus bergylta 1.42 Demersal 13.01 59.45 0.19 1.23 15.30 0.20 1.43 

Zeus faber 0.86 Benthopelagic 13.01 69.30 0.25 0.61 15.40 0.26 0.87 

Scyliorhinus canicula 0.44 Demersal 13.01 81.25 0.22 0.22 15.30 0.23 0.45 

Trigloporus lastoviza 0.55 Demersal 13.01 39.50 0.77 -0.22 15.30 0.82 0.60 

Scyliorhinus stellaris 0.44 Demersal 13.01 - - - 15.30 - 0.45 

Raja montagui 0.44 Demersal 13.01 78.02 0.33 0.11 15.30 0.35 0.46 

Callionymus lyra 0.82 Demersal 13.01 21.25 0.92 -0.10 15.30 0.97 0.87 

Dicentrarchus labrax 0.54 Demersal 13.01 82.70 0.20 0.34 15.30 0.21 0.55 

Trisopterus luscus 1.32 Benthopelagic 13.01 41.00 0.79 0.53 15.40 0.83 1.36 

Spondyliosoma 
cantharus 

0.58 Demersal 13.01 42.20 0.36 0.22 15.30 0.38 0.60 

Trisopterus minutus 1.50 Benthopelagic 13.01 22.00 0.71 0.79 15.40 0.75 1.54 

Fish, 
Piscivorous 

Pollachius pollachius 0.62 Benthopelagic 13.01 85.60 0.27 0.35 15.40 0.29 0.64 

Gadus morhua 1.20 Benthopelagic 13.01 123.67 0.18 1.02 15.40 0.19 1.21 

Merlangius 
merlangus 

1.07 Benthopelagic 13.01 42.70 0.52 0.55 15.40 0.55 1.10 

Flat Fish 

Limanda limanda 1.14 Demersal 13.01 25.60 0.79 0.35 15.30 0.84 1.19 

Platichthys flesus 0.56 Demersal 13.01 40.80 0.49 0.07 15.30 0.51 0.58 

Solea solea 0.70 Demersal 13.01 42.40 0.44 0.26 15.30 0.46 0.72 

Pleuronectes platessa 0.85 Demersal 13.01 59.40 0.22 0.63 15.30 0.23 0.86 

Fish, 
Planctivorous 

Clupea harengus 0.75 Benthopelagic 13.01 33.10 0.50 0.25 15.40 0.53 0.78 

Engraulis encrasicolus 0.58 Pelagic 13.02 18.60 0.79 -0.21 15.40 0.84 0.63 

Hyperoplus 
lanceolatus 

1.12 Benthopelagic 13.01 29.40 0.64 0.48 15.40 0.67 1.15 

Ammodytes tobianus 1.12 Benthopelagic 13.01 19.70 1.08 0.04 15.40 1.14 1.18 

Scomber scombrus 0.83 Pelagic 13.02 39.40 0.57 0.26 15.40 0.61 0.87 

Trachurus trachurus 0.55 Pelagic 13.02 40.20 0.37 0.18 15.40 0.39 0.57 

Chelidonichthys 
lucernus 

0.55 Demersal 13.01 48.40 0.34 0.21 15.30 0.36 0.57 

Sardina pilchardus 0.99 Pelagic 13.02 19.50 0.64 0.35 15.40 0.68 1.03 

Sprattus sprattus 1.34 Pelagic 13.02 17.50 0.59 0.75 15.40 0.62 1.37 
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Table A.7: Keystoneness values for each compartment of the model as computed in Libralato et al. 916 

(2006). 917 

Compartments 
Mean BOWF 
keystoneness 

Mean 
BOWF 

biomass 

Mean REEF 
keystoneness 

Mean 
REEF 

biomass 

FBF 1.75E-01 3.19E+00 1.87E-01 6.69E+00 

BAC 4.48E-02 7.50E-01 5.26E-02 7.70E-01 

IPR 1.20E-02 2.94E+00 2.47E-02 3.01E+00 

PHY -1.82E-03 3.24E+00 4.16E-03 3.24E+00 

FPI -2.28E-02 2.68E-01 -8.60E-03 1.02E-01 

ZOO -4.53E-02 1.72E+00 -3.80E-02 1.79E+00 

PHO -1.77E-01 9.41E-04 -1.62E-01 2.76E-03 

NEM -1.97E-01 9.70E-01 -1.89E-01 1.06E+00 

CEP -3.06E-01 1.98E-02 -2.94E-01 2.47E-02 

DET -3.62E-01 1.90E+01 -3.57E-01 1.90E+01 

FPL -3.64E-01 5.92E+00 -3.57E-01 4.76E+00 

KSC -3.70E-01 7.70E-01 -3.61E-01 7.43E-01 

FFI -3.94E-01 7.86E-02 -3.85E-01 1.78E-01 

BIV -4.11E-01 1.95E+01 -4.53E-01 4.29E+01 

SUP -4.14E-01 2.00E+00 -4.06E-01 1.71E+00 

BIR -4.89E-01 1.70E-02 -4.75E-01 2.25E-02 

IFF -6.21E-01 3.12E+00 -6.18E-01 4.78E+00 

IDF -6.21E-01 3.57E+00 -6.16E-01 2.98E+00 

CET -6.61E-01 4.29E-04 -6.47E-01 1.51E-04 
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