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We theoretically, numerically, and experimentally investigate the feasibility of acoustic doping, i.e., changing
one of the effective properties of a medium by adding an impurity, to achieve super-squeezing. This effect,
characterized by perfect and zero-phase transmission, can be obtained with zero index media. In acoustics,
zero-phase propagation can be achieved with a plate-type acoustic metamaterial (PAM) acting as a density-near
zero metamaterial (DNZ). We point out the possibility of modifying the compressibility of a DNZ medium by
mounting a Helmholtz resonator in parallel with the PAM. We are then able to dope the system and to turn it
into a Density and Compressibility Near Zero (DCNZ) medium, thus allowing super-squeezing.

The tremendous boom of electromagnetic and acoustic
metamaterials [1–4] has opened up a wide range of unex-
pected applications and design options for wave manipula-
tion and control, including bending, cloaking, focusing, as
well as energy trapping. A carefully engineered structure can
bring an effective medium to extreme macroscopic parame-
ters, such as a near-zero refractive index n(ω) =

√
µε ≈ 0 in

electromagnetics. Zero-Index media, in which one or more
of the constitutive parameters vanish, can be classified into
three categories [5, 6]: Epsilon-Near-Zero (ENZ) [7–12] (al-
most zero permittivity ε ≈ 0), Mu-Near-Zero (MNZ) [13–15]
(almost zero permeability - µ ≈ 0), or Epsilon and Mu-Near-
Zero media (EMNZ) [16, 17] (both the permittivity and the
permeability are zero at a given frequency, ε ≈ 0, µ ≈ 0). As
a result, the wavelength is stretched and gives rise to a static-
like field, a large phase velocity, and thus a nearly constant
phase distribution along the material, allowing directivity pat-
terning [18], tunnelling, and supercoupling (full transmission
of the incident wave with no distortion or phase change along
the material) [19, 20]. It is worth noting that, although there
is almost no spatial variation, the field still oscillates in time.
The wavelength enlargement is accompanied by a decoupling
of the spatial and temporal field variations [6].

EMNZ media have the particularity of being able to satisfy
both the zero-phase propagation, associated with the static-
like ENZ field distribution, and the impedance matching con-
dition to free space (impedance Z0), given for normal inci-
dence by Z =

√
µ/ε = Z0. An interesting way to design

EMNZ structures is to use doping, i.e., a control of the ma-
terial macroscopic parameters by locally embedding appro-
priate inclusions/impurities, in an ENZ metamaterial [21–24].
Liberal et al. [25] showed that the inclusion of a single well-
designed impurity can transform the effective properties of an
ENZ body into those of an EMNZ, thus leading to full trans-
mission without phase delay, regardless of the host geome-
try and doping impurity location. It is important to note here
that homogenization remains possible even with a small num-
ber of potentially large impurities thanks to the ENZ effective
stretching of the wavelength [25].

Equivalent effects to zero-index ones can be found in acous-
tics by analogy with the transverse magnetic modes in electro-

magnetism. The acoustic constitutive parameters analogous to
ε and µ are respectively the density ρ and the compressibility
C (inverse of the bulk modulus κ). Quasistatic field distribu-
tion and zero-phase propagation can therefore be achieved us-
ing Compressibility and Density-Near-Zero (DCNZ) [36, 37],
Compressibility-Near-Zero (CNZ) [26] or Density-Near-Zero
(DNZ) media [27–31]. A periodic arrangement of thin elastic
plates (or membranes) in air - a Plate-type Acoustic Meta-
material (PAM) - makes the DNZ condition possible thanks
to the strong dispersion around the band gap associated with
the plate resonance. Such a system can be characterized with
the help of three different frequencies [31]. The impedance
matching occurs at the plate resonance frequency but is ac-
companied by a phase delay depending on the length of the
system. At the exact zero effective density frequency, none of
the supercoupling condition, i.e., zero-phase propagation and
impedance matching, is met as it can be seen with the trans-
mission coefficient (module and phase) of a PAM of thickness
L, cross-section S, effective compressibility C = C(ω), and
density ρ = ρ(ω),
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with subscript .0 referring to the surrounding medium. Al-
though the tangent term vanishes when the density tends to
zero, the ratio

√
C/ρ tends towards infinity, resulting in a

non-zero constant phase limit when the density tends to zero
(details in the Supplemental). Zero-phase propagation occurs
in the negative density regime (ρ(ω) = −C(ω)ρ0/C0) with
an impedance mismatch. One way to achieve supercoupling
with only a PAM is to embed the latter within a waveguide
that has a huge cross-sectional difference with the surrounding
waveguides (S/S0 → 0), to compensate the impedance mis-
match [29]. Another way to achieve both perfect transmission
and zero-phase propagation, implemented here, is to use dop-
ing to turn the PAM, i.e., the DNZ body, into a Density and
Compressibility-Near-Zero (DCNZ) metamaterial (ρ(ω)≈ 0,
C(ω)≈ 0).
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FIG. 1. [Color online] Full-wave simulation of a 2D acoustic doping
with a single dopant: sketch of structure (a), pressure field when
the medium is filled with air (b), with a DNZ medium (c), with a
doped DNZ medium (dopant: transverse bar of the "A" letter, filled
with a medium of bulk modulus κd and of width H) (e) or with a
DCNZ medium (f). Figure (d) shows the effective bulk modulus of
the entire host "LAUM" depending on the geometry of the dopant H.
The doping condition to turn the host DNZ medium into an effective
DCNZ medium occurs when C ≈ 0, thus for κ→∞, at H = 10.1 cm
(arrow in (d)).

In this work, we first investigate the feasibility of an
acoustic analogue of the photonic doping effect on a two-
dimensional DNZ system. Then, we show that a one dimen-
sional lossless PAM can be efficiently doped using a single
doping impurity: a tuned Helmholtz resonator. Finally, the in-
fluence of both the dopant location and the losses are studied.

We start by a full-wave simulation of the doping phe-
nomenon on a two-port random 2D medium, using the COM-
SOL multiphysics software. The input and output ports (light
blue areas in Fig.1 (a)) are air-filled waveguides, plugged into
the "L" and "M" shapes respectively. A monochromatic wave
of frequency lower than the cut-off frequency of the ports
(above which other modes than the plane wave one can propa-
gate) impinges the structure from the left ensuring plane wave
propagation. The "LAUM"-shaped medium is filled with air
(b), a DNZ medium (c, e), or a DCNZ medium (f). The di-
mension of the "LAUM" structure (width Lx = 3 m and height
Ly = 1.15 m) is chosen much larger than the acoustic wave-
length in the air (λ0 = 27 cm).

Figure 1(b) shows a non-uniform pressure field distribution
inside the 2D medium with high order modes and a weak
transmission (7%). The pressure field is strongly dependent
on the geometry of the host. If the host medium is replaced
by either a DNZ or a DCNZ medium (Fig. 1(c) and Fig. 1(f)),
the pressure field becomes uniform within the medium due to
the stretching of the effective acoustic wavelength, allowing
a wave propagation without phase delay. In both cases, the
pressure field is geometry independent. A tunnelling effect is
also achieved when the host medium is a DCNZ (Fig. 1(f)) in

contrast to the case of a DNZ (Fig. 1(c)). The host medium
is impedance matched to the ports in the DCNZ case, which
leads to a zero-phase total transmission.

We propose to reproduce the DCNZ behavior by doping
the DNZ host using only a single impurity, i.e., by attributing
different medium properties only to a small part of the ge-
ometry. We choose here to use the transverse bar of the "A"
letter as a dopant. Doping can be achieved by tuning either the
bulk modulus κd or the geometry of the dopant. Figure 1(d)
shows the dependence of the effective bulk modulus of the
whole system on the transverse bar geometry (the width H)
for a fixed value κd = 1.11.104 Pa. A resonant behavior is
observable. The optimal geometry to dope the DNZ host is
H = 10.1 cm, that is the width for which the system’s effec-
tive bulk modulus is the largest, i.e., an almost zero effective
compressibility, while the zero effective density remains un-
changed. It is worth noting here, that the sensitivity of doping
to the dopant geometry directly depends on the variation of
the bulk modulus. Sharp variations require a high degree of
design precision to achieve a maximum value of κ(ω). Fig-
ure 1(e) depicts the pressure field obtained for the doped DNZ
host. The system "DNZ & dopant" exhibits a similar response
to that of a medium integrally filled with a DCNZ material,
thus evidencing acoustic doping (see videos in the Supple-
mental).

We now focus on the feasibility to dope a PAM. We con-
sider a 1D periodic arrangement of N = 20 thin clamped elas-
tic shims (plastic with a Young’s modulus E = 4.6 GPa, den-
sity ρ = 1400 kg.m−3, Poisson’s ratio ν = 0.41, thickness
h = 102 μm) equally spaced by a distance Lgap = 1 cm and
plugged into a waveguide of radius Ra = 15 mm. The prop-
erties of such a PAM have been extensively studied [29–31].
The detailed transfer matrix model and the analytical acous-
tic response of the 20-units long PAM can be found in the
Supplemental. Impedance matching, zero-density, and zero-
phase propagation occur at three different frequencies, re-
spectively fm = 422 Hz, fρ=0 = 414 Hz, and fφ=0 = 405
Hz. A strong impedance mismatch at the zero-phase propaga-
tion frequency prevents such a PAM from total transmission.
Doping the PAM results in shifting both the zero-phase and
the impedance-matching frequencies towards the zero-density
one, since zero-compressibility occurs at the same frequency
as the one of zero-density. Therefore, doping should allow to
achieve supercoupling effect with a PAM even without a large
section change. A doping inclusion mounted in parallel to the
waveguide is considered in this system, as it is necessary to act
on the effective bulk modulus [32–34]. The chosen dopant is a
Helmholtz resonator, which is easily tunable in practice and is
of subwavelength dimensions. The neck length Ln = 20 mm
and the radii of the neck Rn = 2 mm and of the cavity Rc = 10
mm are fixed, while the cavity length Lc is adjustable with a
piston as shown in Fig. 2(a).

We first analyze the lossless case depicted in Fig. 2, where
the Helmholtz resonator is mounted between the 10-th and
11-th plates of the PAM. In order to find the configuration
where doping occurs, we apply a similar procedure to that
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FIG. 2. [Color online] Doping of a 20-units long lossless PAM by adding a Helmholtz resonator: 3D sketches of the unit cell, of the 20 plates
metamaterial doped in its middle by a Helmholtz resonator, and of a close-up on the resonator (a). Transmission (black) and reflection (red)
magnitudes (b), real part of the system effective density (c), phase of the transmission coefficient (e), and real part of the system effective bulk
modulus versus frequency (f). Continuous lines and square symbols represent the analytical and numerical results respectively. Figure (d)
shows the dependence of the effective bulk modulus on the Helmholtz cavity length Lc. Figures (g) and (h) depict the total pressure field of
a 20-units long PAM without and with a dopant at the zero-phase propagation frequency f = 405 Hz and f = 414 Hz respectively (full-wave
simulation).

in Fig. 1(d), i.e., we look for the configuration that produces
a maximum value of effective bulk modulus. This optimal
configuration corresponds to a length Lc = 32.06 mm and
requires to be dimensioned with an extreme precision. Fig-
ures 2(b,c,e,f) show respectively the amplitude of the scatter-
ing parameters, the effective dynamic mass density, the phase
of the transmission coefficient and the effective bulk modu-
lus for the configuration mentioned above. The analytical re-
sults are validated against those from a 3 dimensional full-
wave simulation shown by the square symbols in Fig. 2. A
zero-density accompanied by a maximum of bulk modulus is
found at f = 414 Hz. At this particular frequency, the to-
tal system behaves as a DCNZ metamaterial as evidenced by
the scattering parameters. The zero value of the transmission
phase occurs with a zero reflection and an unitary transmis-
sion, i.e., zero-phase propagation and impedance matching are
combined. We thus confirm the possibility to realize super-
coupling with a PAM using doping.

Figures 2 (g,h) show the total pressure field, respectively
without and with the doping impurity, to illustrate the impact
of the dopant at the zero-phase frequency. In both cases, we
observe a zero-phase propagation either with an impedance
mistmatch or with a full transmission. In the latter case, the
pressure field is perfectly symmetric with respect to the PAM,
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FIG. 3. [Color online] Influence of the dopant position: transmission
magnitude (black), phase of the transmission coefficient (red), and
pressure field along the metamaterial. Tuned Helmholtz resonator
placed between the 2nd and 3rd plates (a) or between the 15-th and
16-th plates (b). Continuous lines and square symbols represent the
analytical and numerical results respectively.

which is characteristic of the supercoupling effect. In contrast,
although zero-phase propagation is satisfied when doping is
not reached, the pressure field is not symmetric (see Fig. 2(g))
due to the non-unitary transmission (impedance mistmatch).

Another property of interest of DCNZ doping is its inde-
pendence from the dopant location. Whatever the Helmholtz
resonator location in the PAM, doping occurs. To illustrate
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this property, Fig. 3 shows two examples with different loca-
tions of the Helmholtz resonator. The dopant is mounted be-
tween the 2nd and 3rd plates in the first case, Fig. 3(a), while
it is placed between the 15-th and the 16-th in the second,
Fig. 3(b). Zero-phase total transmission is observed in both
configurations at f = 414 Hz. The independence on the loca-
tion is due to the large wavelength in the PAM and allows a
high freedom in the design of the system.

We now analyze the robustness of doping in the presence
of losses. The full lossy problem is solved with both the
viscothermal losses in the main waveguide as well as in the
Helmholtz resonator and the viscoelastic losses in the plates.
Viscothermal losses (mainly due to friction on the walls of
the waveguide) are accounted for by considering complex and
frequency dependent impedance and wavenumber Z0(ω) and
k0(ω) respectively [35] (see Supplemental), while the vis-
coelastic losses are modeled by adding an imaginary part to
the plate’s Young modulus E = E0(1+ iβ ).

Visco-elasticity being the dominant source of losses (see
Supplemental), the number of plates in the PAM is reduced to
6. In doing so (see Fig. 4(b-c)), the transmission of the PAM
at the zero-phase frequency fφ=0 = 390 Hz is |Tfφ=0 | = 0.47
(0.42 measured in 31). A large frequency offset separates this
zero-phase frequency from the zero-density and impedance
matched frequencies, respectively occurring at fρ=0 = 414
Hz and fm = 439 Hz. To confirm the analytical and numeri-
cal simulations, the scattering of the real doped system is also
measured using a 4 microphones impedance tube (see Supple-
mental). In the following, solid lines, dashed lines and circle
symbols represent the analytical, numerical, and experimen-
tal results respectively, the agreement of which is found to be
very good.

The inset in Fig. 4(f) shows the evolution of the effective
lossy bulk modulus with respect to the length of the Helmholtz
resonator cavity. A maximum of real part of the bulk modulus
is obtained for the optimal length Lc = 36.75 mm. It is worth
noting here that the value of this maximum is much lower (by
a factor 103) than in the previously presented lossless case.
Figures 4(d-f) give the response of the lossy system using this
optimal configuration. The zero-phase frequency is up shifted
to fφ=0 = 412 Hz and gets closer to the zero-density frequency
of the system, i.e., fρ=0 = 414 Hz.

The careful design of the dopant thus allows to strongly re-
duce the frequency offset between zero-phase, maximum of
transmission and zero-density frequencies. As a result the
zero-phase propagation frequency fφ=0 gets closer to fm. In
contrast to the lossless case, the losses prevent from a perfect
coincidence of maximal transmission and zero-phase propa-
gation frequencies. As such, losses that are inherently present
in any acoustic system can clearly limit the effectiveness of
doping. Nonetheless, it is worth noting here that the doping
condition allows to have a zero-phase propagation with a 13%
higher transmission (according to the analytics and numerics,
and 40% according to the measurements), the measured (resp.
analytical and numerical) magnitude of which goes from 0.42
(resp. 0.47) without dopant to 0.59 (resp. 0.53) in the doped
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FIG. 4. [Color online] Doping in presence of losses: (a,d) pressure
field (full-wave simulation), (b,e) reflection (red) and transmission
(black) magnitude, and (c,f) phase of the transmission coefficient of
a 6-units long lossy PAM (a-c) and a 6-units long lossy PAM doped
with a Helmholtz resonator (Lc = 36.75 mm, Rc = 10 mm, Ln = 20
mm, and Rn = 2 mm) mounted between plates 3 and 4 (d-f). In-
set in (f) depicts the geometry optimization on the cavity length of
the dopant. Continuous lines and dashed lines represent the analyti-
cal and numerical results. The experimental data are presented in a
statistical form, with the symbols being the average of the 23 obser-
vations (system disassembled then reassembled) and the colored area
the statistical standard error, i.e., the std around the mean value.

configuration. Reducing the losses, i.e., finding plates with
lower viscoelastic losses, would lead to a better efficiency of
the process.

Conclusions. In this study, we reported on the feasibility
of doping acoustic structures using only one impurity and we
highlighted the limitations induced by the viscothermal and
viscoelastic losses. We have demonstrated that the integration
of a carefully designed element into a DNZ metamaterial can
modify the effective compressibility of the structure so that
the system responds as a DCNZ metamaterial at the exact zero
density frequency of the non-doped system. The dopant can
be designed based on either its bulk modulus value or its ge-
ometry. In doing so, a perfect transmission can be achieved in
addition to the zero-phase propagation, induced by the stretch-
ing of the effective wavelength, thus meeting the requirements
of tunnelling and supercoupling for the lossless case. More-
over, the DCNZ condition is achieved independently of both
the host geometry and the dopant location. Doping is there-
fore a good alternative to the large change in cross-section re-
quired to observe supercoupling with a PAM, since it requires
only one element to be added to the system. The presence
of losses, mainly the plate viscoelastic ones for a PAM, has
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an impact on the ability to obtain zero effective compressibil-
ity, i.e., to reach an infinite effective bulk modulus. The phe-
nomenon of doping, although still present, is therefore lim-
ited and depends on the number of plates in the system. In
the considered case of a 6-units long PAM, doping signifi-
cantly reduces the frequency offset between the zero-phase,
zero-density and maximum of transmission frequencies. As
a result, the transmission amplitude of the zero-phase wave
is increased by almost 15% compared to the non-doped sys-
tem. The choice of plates with lower losses would increase
the effectiveness of doping. Although complex geometries
with sharp angles may restrict the use of PAMs, the doping
phenomenon can be applied to any other DNZ systems, thus
enabling a high freedom in the design as well as the filling of
more complex geometries such as the 2D "LAUM" shape.

This article is based upon work from COST Action DE-
NORMS CA15125, supported by COST (European Coopera-
tion in Science and Technology). This work was funded by the
Metaroom Project No. ANR-18-CE08-0021 and co-funded by
ANR and RCG.
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